1
|
Prathumwon C, Anuchapreeda S, Kiattisin K, Panyajai P, Wichayapreechar P, Surh YJ, Ampasavate C. Curcumin and EGCG combined formulation in nanostructured lipid carriers for anti-aging applications. Int J Pharm X 2025; 9:100323. [PMID: 40115962 PMCID: PMC11923819 DOI: 10.1016/j.ijpx.2025.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
Curcumin (Cur) and epigallocatechin gallate (EGCG), the primary active compounds in turmeric and green tea, respectively, have been investigated for their anti-aging potential. The Cur and EGCG combination was encapsulated in sustained-release nanostructured lipid carriers (NLCs) to enhance their bioactivities and pharmaceutical properties. A significant enhancement in the antioxidant activities of the Cur and EGCG combination was observed at an optimal ratio, as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (118.83 ± 3.78 %), ferric ion reducing antioxidant power assay (217.25 ± 13.45 %), and lipid peroxidation inhibition assay (106.08 ± 12.93 %), compared to Cur alone without compromising the antioxidant activities and total phenolic content of EGCG. This is due to the enhancement of total phenolic content of the combination of 218.83 ± 10.57 %. For anti-aging activities, the combination exhibited stimulation of SIRT1 protein and inhibition of collagenase and elastase of 27.53 ± 0.73 %, 43.70 ± 1.05 % and 51.76 ± 6.52 % compared with that achieved with Cur alone, respectively. The incorporation of the Cur and EGCG combination into NLCs resulted in high entrapment efficiencies of 98.60 ± 0.05 % for Cur and 98.40 ± 0.08 % for EGCG, with corresponding loading capacities of 0.789 ± 0.001 % and 3.935 ± 0.003 %, respectively. When formulated NLCs into an emulgel base, the system demonstrated sustained release profiles over 48 h, with 12.82 ± 0.99 % release of Cur and 63.77 ± 5.76 % release of EGCG. Significant skin retention was also observed after 24 h, with 23.88 ± 1.71 % Cur and 22.79 ± 4.65 % EGCG retained in the skin. Therefore, Cur: EGCG-loaded NLCs in emulgel can deliver the active compounds into the dermis, enhancing skin penetration, sustained delivery, and anti-aging activity superior to each conventional single active compound in topical formulations.
Collapse
Affiliation(s)
- Chidchanok Prathumwon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pawaret Panyajai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panikchar Wichayapreechar
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 151-741, South Korea
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Fogacci F, Avagimyan A, Cesaro A, Bernardi M, Perone F, Giovannini M, Cicero AFG. The effect of highly bioavailable forms of curcumin on lipoprotein(a) plasma levels: A systematic review and meta-analysis of randomized clinical studies. Prostaglandins Other Lipid Mediat 2025; 178:106994. [PMID: 40252824 DOI: 10.1016/j.prostaglandins.2025.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Curcumin is a bioactive compound derived from the rhizome of Curcuma longa (turmeric) that has garnered increasing attention for its potential health benefits. However, its use in clinical practice is limited due to its generally poor bioavailability. This issue can be overcome using novel delivery systems that enhance curcumin's solubility, extend its residence time in plasma, improve its pharmacokinetic profile, and increase its cellular uptake. Novel curcumin formulations with improved bioavailability have been suggested to elevate plasma concentrations of lipoprotein(a) (Lp(a)), but there is no definitive evidence of a causal relationship. To address this, a systematic literature search was conducted in multiple electronic databases to identify relevant randomized placebo-controlled clinical studies published without a time limit. A meta-analysis of data suggested that dietary supplementation with highly bioavailable forms of curcumin significantly reduces Lp(a) levels [Standardized Mean Difference (SMD)= -0.96 (95 % Confidence Interval (CI): -1.82, -0.11)]. The effect size was robust in the leave-one-out sensitivity analysis and was not primarily driven by any single study. Of course, the clinical significance of this observation should be more thoroughly evaluated in longer-term trials, where the combined metabolic and anti-inflammatory effects of curcumin have vascular protective effects.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna 40130, Italy.
| | - Ashot Avagimyan
- Department of Anatomical Pathology and Clinical Morphology, 0025, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy; Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic "Villa delle Magnolie", Castel Morrone, Caserta 81020, Italy
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna 40130, Italy
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna 40130, Italy; Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| |
Collapse
|
3
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy. Int J Biol Macromol 2025; 304:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The application of natural products for cancer treatment has a long history. The safety and multifunctionality of naturally occurring substances have made them appropriate for cancer treatment and management. Curcumin affects multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced challenges due to its poor pharmacokinetic profile. Consequently, nanoparticles have been developed for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to increased cytotoxicity. Carbohydrate polymer-based nanoparticles provide a promising solution for the delivery of curcumin in cancer treatment by addressing its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, protect curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization provides selective and specific distribution to the tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, develop a revolutionary, functional and safe platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China.
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jinxiang Wang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
4
|
Huang Y, Li J, Wang S, Tian H, Fan S, Zhao Y. Diselenide-based nanoparticles enhancing the radioprotection to the small intestine of mice. J Nanobiotechnology 2025; 23:236. [PMID: 40119423 PMCID: PMC11929180 DOI: 10.1186/s12951-025-03276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
The widespread application of ionizing radiation (IR) in medicine, while beneficial, also poses potential risks that necessitate effective countermeasures. Both 2-(3-aminopropylamino) ethanethiol (WR-1065) and curcumin are recognized as radioprotective agents; however, their clinical utility is hindered by notable shortcomings that could be addressed through reactive oxygen species (ROS)-responsive amphiphilic nanomaterials. We introduced a newly synthesized poly (ethylene glycol) (PEG)-polycaprolactone (PCL) polymer integrated with diselenide bonds and curcumin (HOOC-SeSe-Cur-PEG-SeSe-Cur-PCL, PEG-Cur-SeSe-PCL). The resulting spherical nanoparticles (NPs), which self-assembled from this polymer, were uniform with an average diameter of 118 nm. As a carrier for WR-1065, these NPs demonstrated a loading capacity of 30.9% and an efficacy of 56.7%. Importantly, the degradation of WR-1065 within the NPs was minimal in gastric fluid, decreasing by only approximately 20% over a 6-hour period. The innovative aspect of these NPs is their design to destabilize in ROS-rich environments, facilitating the release of WR-1065 and curcumin. Indeed, the survival rate of mice increased to 50% when these NPs were orally administered prior to exposure to a lethal dose of whole-body irradiation (8 Gy). The radioprotective impact of WR-1065-loaded NPs was evident in the small intestine of irradiated mice, characterized by the amelioration of radiation-induced epithelial damage, reduction of DNA damage, and inhibition of the apoptotic pathway. Collectively, this oral nanocarrier system for WR-1065 and curcumin holds promise as a potential candidate for the prophylaxis and treatment of acute intestinal injuries induced by IR.
Collapse
Affiliation(s)
- Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Hongqi Tian
- Kechow Pharma, Inc., Shanghai, 200131, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
5
|
Nowacka A, Ziółkowska E, Smuczyński W, Bożiłow D, Śniegocki M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants (Basel) 2025; 14:351. [PMID: 40227413 PMCID: PMC11939735 DOI: 10.3390/antiox14030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Curcumin, a polyphenol found in turmeric, demonstrates multifaceted anti-cancer activity against glioblastoma. Its therapeutic potential stems from its ability to modulate various molecular pathways implicated in glioblastoma development and progression, enhance the effectiveness of radiation therapy, and induce cancer cell death through diverse mechanisms, including apoptosis, autophagy, and cell cycle arrest. These combined actions make curcumin a promising candidate for glioblastoma treatment, warranting further investigation into its clinical application. In this review, we summarize the latest research on curcumin and its analogs' potential in glioblastoma therapy.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Wojciech Smuczyński
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Techników 3, 85-801 Bydgoszcz, Poland
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Maciej Śniegocki
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
6
|
Roney M, Huq AKMM, Rullah K, Zamri NB, Mohd Aluwi MFF. Curcumin, a bioactive compound of Turmeric (Curcuma longa) and its derivatives as α-amylase and α-glucosidase inhibitors. Cell Biochem Biophys 2025; 83:53-71. [PMID: 39112903 DOI: 10.1007/s12013-024-01477-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 03/03/2025]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disease characterised by a controlled metabolism of fat, carbohydrates, and proteins. In recent decades, it has grown into a significant global public health issue. According to the International Diabetes Federation, there were 425 million DM globally in 2017, and the number might be increased to 629 million by 2045 (a global 48% increase). Approximately 4.2 million deaths globally attributed to DM occur before the age of 60. The existing class of anti-diabetic medications is limited by side effects, which has led to the hunt for novel inhibitors that specifically target the α-amylase and α-glucosidase enzymes. Curcumin is a small-molecular-weight compound found in the roots of the Curcuma longa L (C. longa). plant, which has been used for culinary, medicinal, and other purposes throughout Asia for thousands of years. Curcumin has potent anti-inflammatory, anti-cancer, anti-angiogenic, antispasmodic, antibacterial, and anti-parasitic qualities. Even though the potential of curcumin to cure DM has been well investigated, its low solubility, rapid metabolism, and short plasma half-life have limited its application in DM. Therefore, the objectives of this review were to review the chemical composition of C. longa, the structure of curcumin, the degradation of curcumin, and the effects of curcumin derivatives on anti-diabetic properties against α-amylase and α-glucosidase enzymes. The results showed that C. longa contains carbohydrates, moisture, protein, fat, minerals, volatiles, fibre, and curcuminoids. Among the curcuminoids, curcumin is 60-70% present in C. longa. Moreover, curcumin and its derivatives have a lot of potential for treating DM, which was highlighted in this review. This review emphasises the several biological applications of curcumin, which collectively establish the foundation for its anti-diabetic characteristics. Considering these results, curcumin derivatives may be considered as potential agents in the pharmacotherapeutic management of patients with DM.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - A K M Moyeenul Huq
- Centre for Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kualalampu, 5300, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
7
|
Khadem Sadigh M, Sayyar Z, Mohammadi MA, Baharlounezhad F. Controlling the drug delivery efficiency of chitosan-based systems through silver nanoparticles and oxygen plasma. Int J Biol Macromol 2025; 294:139407. [PMID: 39756727 DOI: 10.1016/j.ijbiomac.2024.139407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Today, curcumin's therapeutic properties are used in drug delivery systems. In this work, chitosan (CS) /Montmorillonite (MMT) hydrogels were synthesized to improve the performance of curcumin molecules. According to the results, drug release characteristics of CS/MMT/curcumin highly depend on the pH of the environment and properties of Ag nanoparticles. Moreover, curcumin and Ag nanoparticles were placed under the influence of oxygen plasma. Our results indicate that oxygen plasma, as a simple, clean, and environment-friendly method, can be used as an effective method for controlling the efficiency of drug release and antibacterial characteristics of curcumin molecules in hydrogels. In this case, by increasing the exposure time of the samples under the influence of oxygen plasma, their antibacterial properties and drug release efficiency are significantly enhanced.
Collapse
Affiliation(s)
- M Khadem Sadigh
- Department of Laser and Optics engineering, University of Bonab, Bonab, Iran.
| | - Z Sayyar
- Department of Chemical Engineering, University of Bonab, Bonab, Iran
| | - M A Mohammadi
- Faculty of physics, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
8
|
Joshi P, Soares JM, Martins GM, Zucolotto Cocca LH, De Boni L, de Oliveira KT, Bagnato VS, Blanco KC. Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications. Photochem Photobiol 2025; 101:359-372. [PMID: 39049138 DOI: 10.1111/php.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
Collapse
Affiliation(s)
- Priyanka Joshi
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Leandro H Zucolotto Cocca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Grupo de Fotônica, Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vanderlei S Bagnato
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
de Lima IA, de Azevedo Lima C, de Annunzio SR, de Oliveira F, da Silva SS, Fontana CR, de Carvalho Santos-Ebinuma V. Fungal derived dye as potential photosensitizer for antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113116. [PMID: 39923640 DOI: 10.1016/j.jphotobiol.2025.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) combines light with a photosensitizing agent to target and destroy abnormal cells or pathogens, offering a non-invasive and precise approach. Applying microbial dyes in PDT presents a great opportunity because these compounds may absorb specific wavelengths of light, generating reactive oxygen species (ROS) that induce oxidative stress, leading to cell or microbial death. This study evaluated the extract of Talaromyces amestolkiae containing azaphilone red dyes obtained from cultivation process as photosensitizer (PS) in antimicrobial photodynamic therapy (aPDT). Initially the crude extract was obtained in incubator shaker varying the culture media composition. Following, the crude extract containing the red dyes exhibited non-toxicity in dark conditions across all concentrations tested. PDT experiments with different amounts of the crude extract at a light dose of 80 J.cm-2 and upon irradiation at 460 nm was studied. A complete reduction of Escherichia coli and approximately 2 log10 reductions of Staphylococcus aureus, Cutibacterium acnes and Enterococcus faecalis was achieved using 25 % (v.v-1) of the crude extract while 50 % (v.v-1) of the crude extract led to a complete reduction of both E. coli and S. aureus, and around 5 log10 reductions of C. acnes and E. faecalis. Importantly, minimal photodegradation of the PS occurred during irradiation across all concentrations studied. These findings highlight the potential of T. amestolkiae-derived red dyes extract for use in aPDT, demonstrating non-toxicity in the absence of light, good aqueous solubility, high photostability, and strong microbial reduction capabilities under specific light conditions.
Collapse
Affiliation(s)
- Isabelle Almeida de Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Caio de Azevedo Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Sarah Raquel de Annunzio
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Carla Raquel Fontana
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
10
|
Datta S, Kronek J, Nadova Z, Timulakova L, Minarcikova A, Miskovsky P. Effect of polymer architecture on the properties and in vitro cytotoxicity of drug formulation: A case study with mono- and di-gradient amphiphilic poly(2-Oxazoline)s. Eur J Pharm Biopharm 2025; 208:114635. [PMID: 39855577 DOI: 10.1016/j.ejpb.2025.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx). Di-gradient copolymers self-assembled in the presence of a hydrophobic model drug, curcumin and formed monodispersed or slightly polydispersed nanoparticle solution. On the other hand, mono-gradient copolymers formed polydispersed nanoparticle solutions. Di-gradient copolymer was slightly more efficient to solubilize curcumin. Mono-gradient copolymer nanoparticle showed faster monomer chain exchange kinetics and comparatively less stability in the presence of serum albumin. At longer incubation times, faster drug release was observed from the mono-gradient copolymer nanoformulations. Cytotoxicity of free curcumin and curcumin loaded nanoparticles in cancer cell of U87 MG (human glioblastoma cell) was dose and time-dependent, whereby the significant cell death occurred after 48 h. Curcumin-loaded mono-gradient copolymer nanoparticles inhibited U87MG cancel cell growth to a large extent compared to the di-gradient copolymer nanoparticles.
Collapse
Affiliation(s)
- Shubhashis Datta
- Faculty of Science, Pavol Jozef Safarik University in Kosice, Park Angelinum 19, 040 01 Kosice, Slovakia.
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9 845 41 Bratislava, Slovakia
| | - Zuzana Nadova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia
| | - Ludmila Timulakova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia
| | - Alzbeta Minarcikova
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9 845 41 Bratislava, Slovakia
| | - Pavol Miskovsky
- Faculty of Science, Pavol Jozef Safarik University in Kosice, Park Angelinum 19, 040 01 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia
| |
Collapse
|
11
|
da Cunha IV, da Silva Oliveira DD, Calefi GG, Silva NBS, Martins CHG, Rezende Júnior CDO, Tsubone TM. Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Eur J Med Chem 2025; 284:117197. [PMID: 39731789 DOI: 10.1016/j.ejmech.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance.
Collapse
Affiliation(s)
- Ieda Vieira da Cunha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Gabriel Guimarães Calefi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Tayana Mazin Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Xu R, Gu Y, McClements DJ, Zheng L, Huang M, Zhao M. Ternary complex of soluble undenatured type II collagen-hydrophobic phytochemical-chondroitin sulfate facilitates high stability and targeted intestinal release properties to active substance. Int J Biol Macromol 2025; 288:138601. [PMID: 39662570 DOI: 10.1016/j.ijbiomac.2024.138601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Researchers have reported that soluble undenatured type II collagen (SC II) and hydrophobic phytochemicals (HPs) can ameliorate osteoarthritis (OA) through several mechanisms. However, the solubility of HPs, the stability of SC II, and the bio-accessibility of both need to be greatly improved before they can be successfully used for this purpose. In this study, two common HPs, curcumin (CUR, a hydrophobic polyphenol) and astaxanthin (AST, a carotenoid), were first loaded into SC II, which was then complexed with chondroitin sulfate (CS) to form ternary complexes: SC II-HP-CS. The results showed that SC II had the highest loading capacity for CUR (19.00 ± 0.76 μg/mg) and AST (21.15 ± 1.67 μg/mg) at pH 2.0. The CUR and AST bound to the SC II through non-covalent interactions (mainly hydrophobic interaction) and they both existed in an amorphous form within the complexes. In addition, the binding affinity and hydrophobic interaction between SC II and CUR was higher than those of AST. The thermal stability of the SC II-CUR-CS (Td = 118.0 ± 2.1 °C) and SC II-AST-CS (Td = 118.8 ± 3.5 °C) complexes were significantly higher than that of the SC II-CUR (Td = 104.27 ± 0.28 °C) and SC II-AST (Td = 103.8 ± 1.6 °C) complexes. SC II-HP complexes dissolved in gastric fluids, resulting in serious degradation of the SC II, while SC II-HP-CS complexes existed in an insoluble form to protect the triple helix structure of SC II (24-46 % retained). The CUR release (94.2 ± 5.8 %) and the free radical scavenging activity (84.6 ± 5.3 %) of SC II-CUR-CS was relatively high after 6 h of intestinal digestion, while AST in SC II-AST and SC II-AST-CS had low solubility and antioxidant activity. Therefore, the ternary complex of SC II-HP-CS was more advantageous as multifunctional delivery systems for the encapsulation, protection, and controlled release of hydrophobic polyphenols, which may provide guidance for the synergistic use of hydrophobic polyphenols and SC II to improve OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yue Gu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | | | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
13
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Saka WA, Oladipo AA, Kolawole OR, Olayioye A, Akhigbe RE. Sexual dysfunction in dichlorvos-exposed male Wistar rat is ameliorated by curcumin and associated with the upregulation of testosterone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1003-1012. [PMID: 39096375 DOI: 10.1007/s00210-024-03333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Dichlorvos is an organophosphate pesticide that is commonly used for agricultural and domestic control of pests and insects. Despite its usefulness, it exerts reproductive toxicity and induces male sexual dysfunction. On the other hand, curcumin has been reported to improve sexual dysfunction. However, till date, no study has reported the impact of curcumin on dichlorvos-induced sexual dysfunction. This study investigated the effect and associated mechanism of curcumin on dichlorvos-induced sexual dysfunction. Thirty-two male Wistar rats were randomized into four groups; the control (1 mL of olive oil), curcumin-treated (100 mg/kg), DDVP-treated (98.54 g/m3 of dichlorvos by inhalation), and DDVP + Curcumin-treated. Dichlorvos induced sexual dysfunction as depicted by reduced motivation to mate (8.38 ± 0.18 vs. 4.00 ± 0.33, P < 0.0001), prolonged latencies (46.63 ± 1.30 vs. 98.75 ± 1.32, P < 0.0001) and reduced frequencies of mount (14.88 ± 0.52 vs. 8.63 ± 0.38), intromission (9.38 ± 0.50 vs. 3.75 ± 0.31, P < 0.0001), and ejaculation (7.63 ± 0.38 vs. 1.50 ± 0.19, P < 0.0001). These findings were accompanied by suppression of hypothalamic-pituitary-testicular axis, evidenced by marked reductions in circulating FSH (60.00 ± 1.04 vs. 21.13 ± 0.52, P < 0.0001), LH (46.38 ± 1.38 vs. 19.00 ± 0.46, P < 0.0001), and testosterone (6.01 ± 0.50 vs. 0.74 ± 0.05, P < 0.0001). Nonetheless, the administration of curcumin in dichlorvos-exposed rats significantly attenuated dichlorvos-induced sexual dysfunction by improving the assessed indices of male sexual act. Also, curcumin significantly increased serum levels of FSH (21.13 ± 0.52 vs. 47.25 ± 0.10, P < 0.0001), LH (19.00 ± 0.46 vs. 43.00 ± 1.49), and testosterone (0.74 ± 0.05 vs. 3.98 ± 0.08, P < 0.0001). This study revealed that curcumin attenuated dichlorvos-induced sexual dysfunction by activating the hypothalamic-pituitary-testicular axis and upregulating circulating testosterone.
Collapse
Affiliation(s)
- W A Saka
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A A Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - O R Kolawole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A Olayioye
- Department of Crop and Environmental Protection, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
15
|
Zhong SJ, Xing YD, Dong LY, Chen Y, Liu N, Wang ZM, Zhang H, Zheng AP. Progress in the study of curcumin metabolism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39692630 DOI: 10.1080/10286020.2024.2420619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
Curcumin has diverse biological functions, especially antioxidant and anti-inflammatory properties, but clinical trials have been hindered by its low bioavailability and pharmacokinetic properties. To achieve therapeutic efficacy, understanding curcumin's in vivo metabolism is crucial. We reviewed current research on curcumin metabolism in PubMed, Google Scholar, and CNKI. This article outlines curcumin's metabolic processes in the body via oral and intravenous injection. It suggests that upon entering the human body, curcumin may undergo oxidation, reduction, binding, and microbial community influence.
Collapse
Affiliation(s)
- Shi-Jie Zhong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Ya-Dong Xing
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Lu-Yao Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Yi Chen
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Nan Liu
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Zeng-Ming Wang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Hui Zhang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Ai-Ping Zheng
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| |
Collapse
|
16
|
Xu Y, Liu YH, Xu LH, Sun SC, Wen JL, Yuan TQ. Multifunctional composite film of curcumin Pickering emulsion stabilized by lignocellulose nanofibrils isolated from bamboo shoot shells for monitoring shrimp freshness. Carbohydr Polym 2024; 346:122663. [PMID: 39245517 DOI: 10.1016/j.carbpol.2024.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Concerns about food safety and environmental impact from chemical surfactants have prompted interest in natural lignocellulosic materials as alternatives. In this study, we combined hydrated deep eutectic solvent (DES) pretreatment with ultrasound treatment to prepare lignocellulosic nanofibrils (LCNF) from bamboo shoot shells with appropriate surface properties for stabilizing Pickering emulsions. The pretreatment intensity effectively modulated the surface characteristics of LCNF, achieving desirable wettability through lignin retention and in-situ esterification. The resulting LCNF/curcumin Pickering emulsion (CPE) demonstrated curcumin protection and pH-responsive color changes, while the ensuing CPE/PVA composite film exhibited ultraviolet shielding, mechanical strength, oxygen barrier, and antioxidant properties. Furthermore, the CPE/PVA film showed promise as a real-time indicator for monitoring shrimp freshness, maintaining sensitivity to spoilage even after six months of storage. These findings advance the advancement of green LCNF technologies, providing eco-friendly solutions for valorizing bamboo shoot shells and enhancing the application of LCNF in Pickering emulsions.
Collapse
Affiliation(s)
- Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yi-Hui Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024; 32:1207-1232. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Abraham B, Shakeela H, Devendra LP, Arun KB, Vasanth Ragavan K, Brennan C, Mantri N, Adhikari B, Nisha P. Lignin nanoparticles from Ayurvedic industry spent materials: Applications in Pickering emulsions for curcumin and vitamin D 3 encapsulation. Food Chem 2024; 458:140284. [PMID: 38970952 DOI: 10.1016/j.foodchem.2024.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Lignin nanoparticles (LNP), extracted from spent materials of Dashamoola Arishta (Ayurvedic formulation), shared a molecular weight of 14.42 kDa with commercial lignin. Processed into LNPs (496.43 ± 0.54 nm) via planetary ball milling, they demonstrated stability at pH 8.0 with a zeta potential of -32 ± 0.27 mV. Operating as Pickering particles, LNP encapsulated curcumin and vitamin D3 in sunflower oil, forming LnE + Cu + vD3 nanoemulsions (particle size: 347.40 ± 0.71 nm, zeta potential: -42.27 ± 0.72 mV) with high encapsulation efficiencies (curcumin: 87.95 ± 0.21%, vitamin D3: 72.66 ± 0.11%). The LnE + Cu + vD3 emulsion exhibited stability without phase separation over 90 days at room (27 ± 2 °C) and refrigeration (4 ± 1 °C) temperatures. Remarkably, LnE + Cu + vD3 exhibited reduced toxicity, causing 29.32% and 34.99% cell death in L6 and RAW264.7 cells respectively, at the highest concentration (50 μg/mL). This underscores the potential valorization of Ayurvedic industry spent materials for diverse industrial applications.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplary Science and Technology, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Heeba Shakeela
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplary Science and Technology, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Leena P Devendra
- Microbial Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India
| | - K B Arun
- Department of Life Science, Christ College (Deemed to be University), Bangalore, 560029, India
| | - K Vasanth Ragavan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplary Science and Technology, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplary Science and Technology, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
20
|
Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, Deng D. Co-Assembled Binary Polyphenol Natural Products for the Prevention and Treatment of Radiation-Induced Skin Injury. ACS NANO 2024; 18:27557-27569. [PMID: 39329362 DOI: 10.1021/acsnano.4c08508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radiation therapy, a fundamental treatment for tumors, is often accompanied by radiation-induced skin injury (RISI). Excessive production of reactive oxygen species (ROS) and subsequent inflammation are two key factors in RISI development that will cause skin injury and affect radiotherapy. Herein, the co-assembled binary polyphenol natural products inspired the development of a dual-functional cascade microneedle system for prevention and treatment of RISI. Specifically, epigallocatechin gallate (EGCG) and curcumin (CUR) were co-assembled into nanoparticles (CEPG) by intermolecular interactions and then incorporated with catalase (CAT) to achieve a cascade system in the microneedles (this microneedle system was conducive to penetrate into the epidermal keratinocytes where RISI had the greatest impact). When using microneedles, the tip dissolved rapidly and delivered CEPG and CAT into the dermis, where CEPG NPs were able to respond to ROS and decompose into EGCG and CUR. More importantly, EGCG and CAT formed a cascade that converts superoxide anions into water step-by-step, which can reduce cell damage caused by free radicals in the early stages of radiation for prevention; meanwhile, CUR inhibited inflammatory pathways, achieving the treatment of skin inflammation in the post-radiotherapy period. These explorations broaden the strategy for the application of natural products in RISI.
Collapse
Affiliation(s)
- Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Marinho MAG, da Silva Marques M, de Oliveira Vian C, de Moraes Vaz Batista Filgueira D, Horn AP. Photodynamic therapy with curcumin and near-infrared radiation as an antitumor strategy to glioblastoma cells. Toxicol In Vitro 2024; 100:105917. [PMID: 39142446 DOI: 10.1016/j.tiv.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma is a malignant neoplasm that develops in the central nervous system and is characterized by high rates of cell proliferation and invasion, presenting resistance to treatments and a poor prognosis. Photodynamic therapy (PDT) is a therapeutic modality that can be applied in oncological cases and stands out for being less invasive. Photosensitizers (PS) of natural origin gained prominence in PDT. Curcumin (CUR) is a natural compound that has been used in PDT, considered a promising PS. In this work, we evaluated the effects of PDT-mediated CUR and near-infrared radiation (NIR) in glioblastoma cells. Through trypan blue exclusion analysis, we chose the concentration of 5 μM of CUR and the dose of 2 J/cm2 of NIR that showed better responses in reducing the viable cell number in the C6 cell line and did not show cytotoxic/cytostatic effects in the HaCat cell line. Our results show that there is a positive interaction between CUR and NIR as a PDT model since there was an increase in ROS levels, a decrease in cell proliferation, increase in cytotoxicity with cell death by autophagy and necrosis, in addition to the presence of oxidative damage to proteins. These results suggest that the use of CUR and NIR is a promising strategy for the antitumor application of PDT.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil.
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Camila de Oliveira Vian
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| |
Collapse
|
22
|
Zhao X, Zhang R, Song Z, Yang K, He H, Jin L, Zhang W. Curcumin suppressed the proliferation and apoptosis of HPV-positive cervical cancer cells by directly targeting the E6 protein. Phytother Res 2024; 38:4967-4981. [PMID: 37157900 DOI: 10.1002/ptr.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Xingyu Zhao
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Ruowen Zhang
- Faculty of Medicine, Beihua University, Jilin, People's Republic of China
| | - Zitong Song
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Kun Yang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Han He
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Lianhai Jin
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Wei Zhang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| |
Collapse
|
23
|
Zhu YA, Li F, Wang M, Cao Y, Kong B, Liu Q, Wang H, Chen Q. Improving the storage quality of Harbin red sausages by quaternized chitosan/sodium alginate coating curcumin nano-emulsion. Meat Sci 2024; 216:109585. [PMID: 38959640 DOI: 10.1016/j.meatsci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In this study, the effect of sodium alginate and quaternized chitosan bis-polysaccharide-based shell transport curcumin nano-emulsions (Cur@QCS/SA) on the microbiological, physicochemical properties, quality characteristics of Harbin red sausage during storage is investigated. According to the microbiological results, the shelf life of Harbin red sausage is extended from 3 d to 6 d by adding 0.15% Cur@QCS/SA, and Bacillus is the most predominant bacterial before 6 d. Additionally, the physicochemical properties change significantly, the pH, weight loss (WL), water holding capacity (WHC), water activity (aw), L*, and a* of red sausage decrease gradually with the extension of storage time, as well as b*, lipid oxidation, proteolysis increase significantly (P < 0.05). Secondly, it is found that 0.15% treatment group can better maintain the quality characteristics of Harbin red sausage according to texture profile analysis (TPA), electronic nose (E-nose), and electronic tongue (E-tongue) (P < 0.05). This study provides a new way for nano-emulsions in food applications and a new option for the preservation of Harbin red sausage as well as other low-temperature meat products.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meihui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
24
|
Chaiyasaeng W, Hongwiset D, Tocharus C, Punyawudho B, Tocharus J, Chaichompoo W, Rojsitthisak P, Pabuprapap W, Yingyongnarongkul BE, Suksamrarn A. Comparative Pharmacokinetics and Tissue Distribution of Hexahydrocurcumin Following Intraperitoneal vs Oral Administration in Mice Using LC-MS/MS. ACS OMEGA 2024; 9:41032-41042. [PMID: 39372019 PMCID: PMC11447725 DOI: 10.1021/acsomega.4c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine hexahydrocurcumin (HHC) levels in mouse plasma, brain, liver, and kidneys using a negative ion mode electrospray ionization (ESI) source. Demonstrating a lower limit of quantification (LLOQ) of 5 ng/mL, the method showed excellent linearity across a concentration range of 5-500 ng/mL in all tested matrices. Precision evaluations reported a coefficient of variation (CV%) of less than 13.19% for both intraday and interday measurements, while accuracy ranged from 95.13 to 105.07% across all quality control levels. HHC extraction recovery was consistently observed between 70.18 and 93.28%, with a CV% deviation of less than 15%. In the pharmacokinetic evaluation of HHC in mice following a single intraperitoneal (IP) or oral administration, a noncompartment analysis was utilized. After IP administration (40 mg/kg), the C max value was 47.90 times higher than that achieved via oral administration. Peak plasma concentrations were observed approximately 5 min post-IP and 15 min post-oral dosing. The observed half-lives after these administrations were approximately 1.52 and 2.17 h for IP and oral routes, respectively. Oral administration revealed a relative bioavailability of only 12.28% compared with the IP route. Furthermore, following IP administration, the half-life values in brain, liver, and kidney were not significantly different but more than the half-life value found in plasma. The liver and kidney exhibited the highest concentrations of HHC, while the brain showed the least, suggesting that the hydrophobic nature of HHC impedes its passage through the blood-brain barrier. This study is the first to provide detailed insights into the pharmacokinetics and tissue distribution characteristics of HHC following oral and IP administration in mice, setting the stage for further focus on HHC as a potential new drug candidate.
Collapse
Affiliation(s)
- Worawut Chaiyasaeng
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Darunee Hongwiset
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Chainarong Tocharus
- Department
of Anatomy, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Baralee Punyawudho
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department
of Physiology, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Pornchai Rojsitthisak
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachirachai Pabuprapap
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Boon-ek Yingyongnarongkul
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| |
Collapse
|
25
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
26
|
Zhang Y, Sun B, Wang L, Shen W, Shen S, Cheng X, Liu X, Xia H. Curcumin-Loaded Liposomes in Gel Protect the Skin of Mice against Oxidative Stress from Photodamage Induced by UV Irradiation. Gels 2024; 10:596. [PMID: 39330198 PMCID: PMC11431562 DOI: 10.3390/gels10090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Prolonged exposure to ultraviolet (UV) irradiation can cause oxidative stress in the skin, accompanied by rapid immunosuppressive effects, resulting in a peroxidation reaction throughout the body. Curcumin (Cur), as the bioactive compound of turmeric, is a natural polyphenol with potent antioxidant properties but is often overlooked due to its poor solubility and low bioavailability. In this study, curcumin-loaded liposomes in a sodium alginate gel complex preparation were designed to improve the bioavailability of curcumin and to study its preventive effect on photodamage. Cur-loaded liposomes (Cur-L), Cur-loaded gel (Cur-G) based on an alginate matrix, and curcumin-loaded liposomes in gel (Cur-LG) were prepared, and their antioxidant effects and drug diffusion abilities were evaluated. The antioxidant capacity of Cur, Cur-L, Cur-G, and Cur-LG was also studied in a mouse model of photodamage. Cur had the highest antioxidant activity at about 4 mg/mL. Cur-LG at this concentration showed antioxidant effects during 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and H2O2 experiments. During the UV light damage test, Cur-LG demonstrated the ability to effectively neutralize free radicals generated as a result of lipid peroxidation in the skin, serum, and liver, thereby enhancing the overall activity of superoxide dismutase (SOD). In conclusion, using Cur-LG may protect against epidermal and cellular abnormalities induced by UV irradiation.
Collapse
Affiliation(s)
- Yongli Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wang Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
27
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
28
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Camacho-Ramírez A, Meléndez-Zamudio M, Cervantes J, Palestino G, Guerra-Contreras A. One-step synthesis of amphiphilic copolymers PDMS- b-PEG using tris(pentafluorophenyl)borane and subsequent study of encapsulation and release of curcumin. J Mater Chem B 2024; 12:7076-7089. [PMID: 38817163 DOI: 10.1039/d4tb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A series of amphiphilic block copolymer (BCP) micelles based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEG) were synthesized by a one-step reaction in the presence of tris(pentafluorophenyl)borane (BCF) as a catalyst. The structural composition of PDMS-b-PEG (PR11) and PEG-b-PDMS-b-PEG (PR12) was corroborated by FTIR, 29Si NMR, and TGA. The BCPs were assembled in an aqueous solution, obtaining micelles between 57 and 87 nm in size. PR11 exhibited a higher (2.0 g L-1) critical micelle concentration (CMC) than PR12 (1.5 g L-1) due to the short chain length. The synthesized nano micelles were used to encapsulate curcumin, which is one of three compounds of turmeric plant 'Curcuma longa' with significant biological activities, including antioxidant, chemoprotective, antibacterial, anti-inflammatory, antiviral, and anti-depressant properties. The encapsulation efficiency of curcumin was 60% for PR11 and 45% for PR12. Regarding the release study, PR11 delivered 53% curcumin after five days under acidic conditions (pH of 1.2) compared to 43% at a pH of 7.4. The degradation products of curcumin were observed under basic conditions and were more stable at acidic pH. In both situations, the release process is carried out by breaking the silyl-ether bond, allowing the release of curcumin. PR11 showed prolonged release times, so it could be used to reduce ingestion times and simultaneously work as a nanocarrier for other hydrophobic drugs.
Collapse
Affiliation(s)
- Abygail Camacho-Ramírez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Miguel Meléndez-Zamudio
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1, Canada
| | - Jorge Cervantes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Gabriela Palestino
- Biopolymers and Nanostructures Laboratory, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P., C.P. 78210, Mexico
| | - Antonio Guerra-Contreras
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| |
Collapse
|
30
|
Mohammadi AH, Bagheri F, Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int J Biol Macromol 2024:133625. [PMID: 39084997 DOI: 10.1016/j.ijbiomac.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Exosomes (Exos), natural nanovesicles released by various cell types, show potential as an effective drug delivery platform due to their intrinsic role as transporters of biomolecules between different cells. However, Exos functionalization with targeting ligands is a critical step to enhance their targeting capability, which could be challenging. In this study, Exos were modified to specifically bind to CD44-positive cells by anchoring chondroitin sulfate (CS) to their surface. Exo modification was facilitated with CS conjugation with alpha-tocopherol succinate (TOS) as an anchorage. The modified Exos were utilized for delivering curcumin (Cur) to pancreatic cancer (PC) cells. In vitro Cur release studies revealed that Exos play a crucial role in maintaining Cur within themselves, demonstrating their potential as effective carriers for drug delivery to targeted locations. Notably, Cur loaded into the modified Exos exhibited enhanced cytotoxicity compared to unmodified Exo-Cur. Meanwhile, Exo-Cur-TOS-CS induced apoptosis more effectively in AsPC-1 cells than unmodified Exos (70.2 % versus 56.9 %). It is worth mentioning that with CD44-mediated cancer-specific targeting, Exo-CS enabled increased intracellular accumulation in AsPC-1 cells, showing promise as a targeted platform for cancer therapy. These results confirm that Exo modification has a positive impact on enhancing the therapeutic efficacy and cytotoxicity of drugs.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
31
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
32
|
Yamaga M, Kawabe H, Tani H, Yamaki A. Enhanced absorption of prenylated cinnamic acid derivatives from Brazilian green propolis by turmeric in humans and rats. Food Sci Nutr 2024; 12:4680-4691. [PMID: 39055207 PMCID: PMC11266932 DOI: 10.1002/fsn3.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroshi Kawabe
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Ayanori Yamaki
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| |
Collapse
|
33
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods 2024; 13:1774. [PMID: 38891002 PMCID: PMC11172163 DOI: 10.3390/foods13111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
34
|
Matthewman C, Krishnakumar IM, Swick AG. Review: bioavailability and efficacy of 'free' curcuminoids from curcumagalactomannoside (CGM) curcumin formulation. Nutr Res Rev 2024; 37:14-31. [PMID: 36655498 DOI: 10.1017/s0954422423000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The golden spice turmeric with its main bioactive component curcumin is one of the most popular and extensively studied nutraceuticals. Despite numerous pre-clinical studies reporting positive pharmacodynamics of turmeric extracts and curcumin, the main issues in translating the pharmacological effects to clinical efficacy have been to overcome its poor pharmacokinetics and to deliver significant amounts of the biologically relevant forms of the actives to various tissues. This review is aimed at providing a first critical evaluation of the current published literature with the novel curcumagalactomannoside (CGM) formulation of curcumin using fenugreek galactomannan dietary fibre, specifically designed to address curcumin poor pharmacokinetics. We describe CGM and its technology as a food-grade formulation to deliver 'free' unconjugated curcuminoids with enhanced bioavailability and improved pharmacokinetic properties. The therapeutic relevance of improving bioavailability of 'free' curcuminoids and some of the technical challenges in the measurement of the 'free' form of curcuminoids in plasma and tissues are also discussed. A total of twenty-six manuscripts are reviewed here, including fourteen pre-clinical and twelve clinical studies that have investigated CGM pharmacokinetics, safety and efficacy in various animal models and human conditions. Overall current scientific evidence suggests CGM formulation has improved bioavailability and tissue distribution of the biologically relevant unconjugated forms of turmeric actives called 'free' curcuminoids that may be responsible for the superior clinical outcomes reported with CGM treatments in comparison with unformulated standard curcumin across multiple studies.
Collapse
|
35
|
Izadi M, Sadri N, Abdi A, Zadeh MMR, Jalaei D, Ghazimoradi MM, Shouri S, Tahmasebi S. Longevity and anti-aging effects of curcumin supplementation. GeroScience 2024; 46:2933-2950. [PMID: 38409646 PMCID: PMC11009219 DOI: 10.1007/s11357-024-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mahdi Ghazimoradi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shouri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
37
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Morocho Z, Panella M, Gamez Hernandez A, Clarke C, Perez E, Silverberg S, Lee S. Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure. ACS Pharmacol Transl Sci 2024; 7:1546-1556. [PMID: 38751632 PMCID: PMC11091966 DOI: 10.1021/acsptsci.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence suggests that many bioactive molecules can nonspecifically modulate the physicochemical properties of membranes and influence the action of embedded membrane proteins. This study investigates the interactions of curcumin with protein-free model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC with cholesterol (4/1 mol ratio). The focus is on the capability of curcumin to modify membrane barrier properties such as water permeability assayed through the droplet interface bilayer (DIB) model membrane. For pure DOPC, our findings show a concentration-dependent biphasic effect: a reduction in water permeability is observed at low concentrations (up to 2 mol %), whereas at high concentrations of curcumin, water permeability increases. In the presence of cholesterol, we observed an overall reduction in water permeability. A combination of complementary experimental methods, including phase transition parameters studied by differential scanning calorimetry (DSC) and structural properties measured by attenuated total reflectance (ATR)-FTIR, provides a deeper understanding of concentration-dependent interactions of curcumin with DOPC bilayers in the absence and presence of cholesterol. Our experimental findings align with a molecular mechanism of curcumin's interaction with model membranes, wherein its effect is contingent on its concentration. At low concentrations, curcumin binds to the lipid-water interface through hydrogen bonding with the phosphate headgroup, thereby obstructing the transport of water molecules. Conversely, at high concentrations, curcumin permeates the acyl chain region, inducing packing disorders and demonstrating evidence of phase separation. Enhanced knowledge of the impact of curcumin on membranes, which, in turn, can affect protein function, is likely to be beneficial for the successful translation of curcumin into effective medicine.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Zachary Morocho
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Micaela Panella
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
38
|
Fu Y, Sun S, Shi D, Bi J. Construction of endothelial cell signatures for predicting the diagnosis, prognosis and immunotherapy response of bladder cancer via machine learning. J Cell Mol Med 2024; 28:e18155. [PMID: 38429911 PMCID: PMC10907833 DOI: 10.1111/jcmm.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
We subtyped bladder cancer (BC) patients based on the expression patterns of endothelial cell (EC) -related genes and constructed a diagnostic signature and an endothelial cell prognostic index (ECPI), which are useful for diagnosing BC patients, predicting the prognosis of BC and evaluating drug sensitivity. Differentially expressed genes in ECs were obtained from the Tumour Immune Single-Cell Hub database. Subsequently, a diagnostic signature, a tumour subtyping system and an ECPI were constructed using data from The Cancer Genome Atlas and Gene Expression Omnibus. Associations between the ECPI and the tumour microenvironment, drug sensitivity and biofunctions were assessed. The hub genes in the ECPI were identified as drug candidates by molecular docking. Subtype identification indicated that high EC levels were associated with a worse prognosis and immunosuppressive effect. The diagnostic signature and ECPI were used to effectively diagnose BC and accurately assess the prognosis of BC and drug sensitivity among patients. Three hub genes in the ECPI were extracted, and the three genes had the closest affinity for doxorubicin and curcumin. There was a close relationship between EC and BC. EC-related genes can help clinicians diagnose BC, predict the prognosis of BC and select effective drugs.
Collapse
Affiliation(s)
- Yang Fu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shanshan Sun
- Department of PharmacyThe People's Hospital of Liaoning ProvinceShenyangLiaoningChina
| | - Du Shi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianbin Bi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
39
|
Michel MC. A 25-Year Journey as Author and Associate Editor of Pharmacological Reviews-Editorial. Pharmacol Rev 2024; 76:196-198. [PMID: 38351073 DOI: 10.1124/pharmrev.123.000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 02/16/2024] Open
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
40
|
Lv Y, Li P, Cen L, Wen F, Su R, Cai J, Chen J, Su W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int J Biol Macromol 2024; 257:128643. [PMID: 38061514 DOI: 10.1016/j.ijbiomac.2023.128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Plastic packaging causes environmental pollution, and the development of simple and effective biodegradable active packaging remains a challenge. In this study, gelatin (G) and sodium carboxymethylcellulose (CMC) were used as film materials, with the addition of curcumin (Cur), a photosensitive substance, to investigate the changes in the physical and chemical properties of the film and its application in fruit preservation. The results demonstrated that Cur was compatible with the film. With the addition of Cur, the thickness of the film increased up to 1.3 times, while the moisture content was reduced to 12.10 %. The tensile strength (TS) and elongation at break (EAB) of the film can reach 8.84 MPa and 19.33 %, respectively. The photodynamic antibacterial experiment revealed that the film containing 0.5 % Cur exhibited the highest antibacterial rate, reaching 99.99 % against Staphylococcus aureus (S. aureus) and 95 % against Escherichia coli (E. coli). During storage, the grapes remained unspoiled for up to 9 days after being phototreated with the film and the microbial content of the skin was much lower than that of the control group. In addition, Cur provided antioxidant activity for the film, with a scavenging activity of 39.54 % against the 2,2-diphenyl-1-picrind radical (DPPH). Bananas exposed to the film-forming solution for a short period of time remained fresh for up to 6 days. During preservation, the weight of the treated bananas decreased more slowly than that of the control group. In addition, the activity of SOD on the 7th day was approximately 20 U/g higher than that of the control group, which helped to reduce oxidative stress during banana preservation. In summary, G-CMC/Cur film is an optional fruit-cling film that can be used in food packaging.
Collapse
Affiliation(s)
- Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
41
|
Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM. The synergistic effect of nanocurcumin and donepezil on Alzheimer's via PI3K/AKT/GSK-3β pathway modulating. Prostaglandins Other Lipid Mediat 2024; 170:106791. [PMID: 37918555 DOI: 10.1016/j.prostaglandins.2023.106791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) hallmarks include amyloid-βeta (Aβ) and tau proteins aggregates, neurite degeneration, microglial activation with cognitive impairment. Phosphatidylinositol-3-kinase/protein kinase B/Glycogen synthase kinase-3-beta (PI3K/AKT/GSK-3) pathway is essential for neuroprotection, cell survival and proliferation by blocking apoptosis. This study aimed to assess protective role of nanocurcumin (NCMN) as strong antioxidant and anti-inflammatory agent with elucidating its synergistic effects with Donepezil as acetylcholinesterase inhibitor on AD in rats via modulating PI3K/AKT/GSK-3β pathway. The experiment was performed on 70 male Wistar albino rats divided into seven groups (control, NCMN, Donepezil, AD-model, Donepezil co-treatment, NCMN only co-treatment, and NCMN+Donepezil combined treatment). Behavioral and biochemical investigations as cholinesterase activity, oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxidedismutase, and catalase), tumor necrosis factor-alpha, Tau, β-site amyloid precursor protein cleaving enzyme-1 (BACE-1), Phosphatase and tensin homolog (Pten), mitogen-activated protein kinase-1 (MAPK-1), Glycogen synthase kinase-3-beta (GSK-3β) and toll-like receptor-4 were evaluated. Treatment with NCMN improved memory, locomotion, neuronal differentiation by activating PI3K/AKT/GSK-3β pathway. These results were confirmed by histological studies in hippocampus.
Collapse
Affiliation(s)
- Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Egypt.
| | - Nagat F Nawar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Mai M El-Keey
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| |
Collapse
|
42
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
43
|
Savall ASP, de Mello JD, Fidelis EM, Comis-Neto AA, Nepomuceno MR, Pacheco CDO, Haas SE, Pinton S. Nanoencapsulated Curcumin: Enhanced Efficacy in Reversing Memory Loss in An Alzheimer Disease Model. Brain Sci 2024; 14:130. [PMID: 38391705 PMCID: PMC10886961 DOI: 10.3390/brainsci14020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Investigating new drugs or formulations that target Alzheimer disease (AD) is critical for advancing therapeutic interventions. Therefore, this study aimed to assess the effectiveness of nanoencapsulated curcumin (NC Curc) in alleviating memory impairment, oxidative stress, and neuroinflammation in a validated AD model. Male Wistar rats were given bilateral intracerebroventricular injections of either saline or streptozotocin (STZ) (3 mg/3 µL/site) to establish the AD model (day 0). On day 22, daily oral administrations of curcumin (6 mg/kg), NC Curc (6 mg/kg), or a vehicle (unloaded NC) were initiated and continued for 14 days. NC Curc significantly reversed memory deficits in object recognition and inhibitory avoidance tests induced by STZ. Both formulations of curcumin attenuated elevated acetylcholinesterase activity caused by STZ. Importantly, NC Curc alone effectively mitigated STZ-induced oxidative stress. Additionally, NC Curc treatment normalized GFAP levels, suggesting a potential reduction in neuroinflammation in STZ-treated rats. Our findings indicate that NC Curc improves memory in an AD rat model, highlighting its enhanced therapeutic effects compared to unencapsulated curcumin. This research significantly contributes to understanding the therapeutic and neurorestorative potential of NC Curc in AD, particularly in reversing pathophysiological changes.
Collapse
Affiliation(s)
- Anne Suély Pinto Savall
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Jhuly Dorneles de Mello
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Eduarda Monteiro Fidelis
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Antonio Alvenir Comis-Neto
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Maria Regina Nepomuceno
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Camila de Oliveira Pacheco
- Laboratory of Pharmacology and Pharmacometrics, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Sandra Elisa Haas
- Laboratory of Pharmacology and Pharmacometrics, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| | - Simone Pinton
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa, Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil
| |
Collapse
|
44
|
Shimray SA, Ningthoujam A, Khaidem DKS, Chipem FAS. Theoretical studies on the photo protective mechanism of curcuminoids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123449. [PMID: 37774584 DOI: 10.1016/j.saa.2023.123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
In this work, the deactivation pathways of curcuminoids after photoexcitation was studied by employing density functional theory to explore their UVA radiation screening capacity. A comprehensive computational characterization of the excited-state processes of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was done. The molecules exist in diketo and enol forms which are in equilibrium and interconvertible through keto-enol tautomerism. The enolic forms of each of the studied molecules have eight geometric cis-trans isomers as a result of torsion rotation about three different carbon-carbon double bonds across the aliphatic chain. For each geometric isomer, sixteen possible rotamers are found to exist due to rotation about five different carbon-carbon single bond rotations, also across the skeleton of the aliphatic chain. Upon photoexcitation, the studied molecules follow three main pathways of radiationless decay: (a) rotamerism and interconversion between rotamers of comparable energies which are in equilibrium, (b) interconversion between the cis-trans geometrical isomers where an efficient vibrational relaxation path is formed at ∼90° during torsion rotation about carbon-carbon double bond, and (c) excited state intramolecular proton transfer in a single O-H stretching vibration through a cyclic intramolecular hydrogen bonded ring formed at the centre of the molecule giving back the original structure. The absorption and emission spectra of the molecules were also simulated where the theoretically obtained absorption and emission maxima are close to the reported experimental values.
Collapse
Affiliation(s)
- Sophy A Shimray
- Department of Chemistry, Manipur University, Canchipur 795 003, India
| | - Amar Ningthoujam
- Department of Chemistry, Manipur University, Canchipur 795 003, India
| | | | | |
Collapse
|
45
|
Alam S, Lee J, Sahebkar A. Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability. Curr Pharm Des 2024; 30:1838-1851. [PMID: 38808709 DOI: 10.2174/0113816128303514240517054617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Pavlova JA, Guseva EA, Dontsova OA, Sergiev PV. Natural Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1-26. [PMID: 38467543 DOI: 10.1134/s0006297924010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is the process by which cell contents, such as aggregated proteins, dysfunctional organelles, and cell structures are sequestered by autophagosome and delivered to lysosomes for degradation. As a process that allows the cell to get rid of non-functional components that tend to accumulate with age, autophagy has been associated with many human diseases. In this regard, the search for autophagy activators and the study of their mechanism of action is an important task for treatment of many diseases, as well as for increasing healthy life expectancy. Plants are rich sources of autophagy activators, containing large amounts of polyphenolic compounds in their composition, which can be autophagy activators in their original form, or can be metabolized by the intestinal microbiota to active compounds. This review is devoted to the plant-based autophagy activators with emphasis on the sources of their production, mechanism of action, and application in various diseases. The review also describes companies commercializing natural autophagy activators.
Collapse
Affiliation(s)
- Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
47
|
Fallahnezhad S, Ghorbani-Taherdehi F, Sahebkar A, Nadim A, Kafashzadeh M, Kafashzadeh M, Gorji-Valokola M. Potential neuroprotective effect of nanomicellar curcumin on learning and memory functions following subacute exposure to bisphenol A in adult male rats. Metab Brain Dis 2023; 38:2691-2720. [PMID: 37843661 DOI: 10.1007/s11011-023-01257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/22/2023] [Indexed: 10/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical commonly utilized in the manufacture of plastics, which may cause damage to brain tissue. Curcumin is a phytochemical with protective effects against neurological and mental diseases. The purpose of this research was to evaluate whether nanomicellar curcumin (NmCur) might protect rats against BPA-induced learning and memory deficits. After determining the proper dose of BPA, the animals were randomly divided into 8 groups (8 rats in each group) receiving dextrose 5% (as vehicle of NmCur) (Dex), sesame oil (as vehicle of BPA) (Sea), Sea plus Dex, NmCur (50 mg/kg), BPA (50 mg/kg), and 50 mg/kg BPA plus 10, 25, and 50 mg/kg NmCur groups, respectively. Behavioral tests performed using passive avoidance training (PAT), open-field (OF), and Morris water maze (MWM) tests. The expression of oxidative stress markers, proinflammatory cytokines, oxidative stress-scavenging enzymes, glutamate receptors, and MAPK and memory-related proteins was measured in rat hippocampus and cortical tissues. BPA up-regulated ROS, MDA, TNF-α, IL-6, IL-1β, SOD, GST, p-P38, and p-JNK levels; however, it down-regulated GSH, GPx, GR, CAT, p-AKT, p-ERK1/2, p-NR1, p-NR2A, p-NR2B, p-GluA1, p-CREB, and BDNF levels. BPA decreased step-through latency (STL) and peripheral and total, but not central, locomotor activity. It increased the time to find the hidden platform, the mean of escape latency time, and the traveled distance in the target quadrant, but decreased the time spent in the target quadrant. The combination of BPA (50 mg/kg) and NmCur (25 and 50 mg/kg) reversed all of BPA's adverse effects. Therefore, NmCur exhibited neuroprotective effects against subacute BPA-caused learning and memory impairment.
Collapse
Affiliation(s)
- Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Faezeh Ghorbani-Taherdehi
- Department of Anatomy and Cell Biology, School of Medicine, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azade Nadim
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrnaz Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehrnoosh Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahmoud Gorji-Valokola
- Department of Pharmacology, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
48
|
Kępińska-Pacelik J, Biel W. Turmeric and Curcumin-Health-Promoting Properties in Humans versus Dogs. Int J Mol Sci 2023; 24:14561. [PMID: 37834009 PMCID: PMC10572432 DOI: 10.3390/ijms241914561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The growing popularity of the use of nutraceuticals in the prevention and alleviation of symptoms of many diseases in humans and dogs means that they are increasingly the subject of research. A representative of the nutraceutical that deserves special attention is turmeric. Turmeric belongs to the family Zingiberaceae and is grown extensively in Asia. It is a plant used as a spice and food coloring, and it is also used in traditional medicine. The biologically active factors that give turmeric its unusual properties and color are curcuminoids. It is a group of substances that includes curcumin, de-methoxycurcumin, and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. The most important pro-health effects observed after taking curcuminoids include anti-inflammatory, anticancer, and antioxidant effects. The aim of this study was to characterize turmeric and its main substance, curcumin, in terms of their properties, advantages, and disadvantages, based on literature data.
Collapse
Affiliation(s)
- Jagoda Kępińska-Pacelik
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
49
|
Vergaro V, Dell'Anna MM, Shahsavari HR, Baldassarre F, Migoni D, Mastrorilli P, Fanizzi FP, Ciccarella G. Synthesis of a light-responsive platinum curcumin complex, chemical and biological investigations and delivery to tumor cells by means of polymeric nanoparticles. NANOSCALE ADVANCES 2023; 5:5340-5351. [PMID: 37767039 PMCID: PMC10521244 DOI: 10.1039/d3na00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Platinum-based anticancer drugs are common in chemotherapy, but problems such as systemic toxicity and acquired resistance of some tumors hamper their clinical applications and therapeutic efficacy. It is necessary to synthesize Pt-based drugs and explore strategies to reduce side effects and improve pharmacokinetic profiles. Photo-responsive chemotherapeutics have emerged as an alternative strategy against several cancers, as photoactivation offers spatial selectivity and fewer side effects. Here, we combine chemical synthesis and nanotechnology to create a multifunctional platinum drug delivery system based on the novel metal complex [Pt(ppy)(curc)] (ppy = deprotonated 2-phenylpyridine, curc = deprotonated curcumin)] embodying the naturally occurring bioactive molecule, curcumin. The ultrasonication method coupled with the layer-by-layer technology was employed to produce nanocolloids, which demonstrated a good biocompatibility, higher solubility in aqueous solution, stability, large drug loading, and good biological activity in comparison with the free drug. In vitro release experiments revealed that the polymeric nanoformulation is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but sensitive to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of the loaded drug. Our approach modifies the bioavailability of this Pt-based drug increasing its therapeutic action in terms of both cytotoxic and anti-metastasis effects.
Collapse
Affiliation(s)
- Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | | | - Hamid R Shahsavari
- DICATECh, Politecnico di Bari via Orabona, 4 70125 Bari Italy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | - Danilo Migoni
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | | | - Francesco Paolo Fanizzi
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| |
Collapse
|
50
|
Zhang HA, Pratap-Singh A, Kitts DD. Effect of pulsed light on curcumin chemical stability and antioxidant capacity. PLoS One 2023; 18:e0291000. [PMID: 37656767 PMCID: PMC10473471 DOI: 10.1371/journal.pone.0291000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
Curcumin is the major bioactive component in turmeric with potent antioxidant activity. Little is known about how pulsed light (PL) technology (an emerging non-thermal food processing technology relying on high intensity short duration flashes of light) can affect the chemical stability and antioxidant capacity of curcumin. This study found that PL treatment of fluence levels from 0 to 12.75 J/cm2 produced a fluence-dependent reduction in curcumin content. These results paralleled the production of a tentative curcumin dimer, identified as a potential photochemical transformation product. PL-treated curcumin at relatively higher fluence levels decreased chemical-based ORAC and ABTS antioxidant capacity, relative to control (P < 0.05). This contrasted the effect observed to increase coincidently both intracellular antioxidant capacity (e.g., DCFH-DA (P < 0.05)) and GSH/GSSG ratio (P < 0.05), respectively, in cultured differentiated Caco-2 cells. In conclusion, the application of PL on curcumin results in photochemical transformation reactions, such as dimerization, which in turn, can enhance biological antioxidant capacity in differentiated Caco-2 cells.
Collapse
Affiliation(s)
- Huiying Amelie Zhang
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| | - Anubhav Pratap-Singh
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kitts
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|