1
|
Daza JD, Stanley EL, Heinicke MP, Leah C, Doucet DS, Fenner KL, Arias JS, Smith RDA, Peretti AM, Aung NN, Bauer AM. Compound osteoderms preserved in amber reveal the oldest known skink. Sci Rep 2024; 14:15662. [PMID: 38977836 PMCID: PMC11231356 DOI: 10.1038/s41598-024-66451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Scincidae is one of the most species-rich and cosmopolitan clades of squamate reptiles. Abundant disarticulated fossil material has also been attributed to this group, however, no complete pre-Cenozoic crown-scincid specimens have been found. A specimen in Burmite (99 MYA) is the first fossil that can be unambiguously referred to this clade. Our analyses place it as nested within extant skinks, supported by the presence of compound osteoderms formed by articulated small ostedermites. The specimen has a combination of dorsal and ventral compound osteoderms and overlapping cycloid scales that is limited to skinks. We propose that this type of osteoderm evolved as a response to an increased overlap of scales, and to reduced stiffness of the dermal armour. Compound osteoderms could be a key innovation that facilitated diversification in this megadiverse family.
Collapse
Affiliation(s)
- Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA.
| | - Edward L Stanley
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | | | - Chuck Leah
- Houston Museum of Natural Sciences, Houston, TX, 77030, USA
| | - Daniel S Doucet
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Kelsey L Fenner
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - J Salvador Arias
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical, CONICET-Universidad Nacional de Misiones, and Facultad de Ciencias Exactas, Químicas y Naturales, 3300, Posadas, Misiones, Argentina
| | - Ru D A Smith
- Jabatan Geologi, University Malaya, 50603, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Adolf M Peretti
- Peretti Museum Foundation, Baumschulweg, 13, 6045, Meggen, Switzerland
| | - Nyi Nyi Aung
- Peretti Museum Foundation, Baumschulweg, 13, 6045, Meggen, Switzerland
- Myanmar Geosciences Society, Department of Geology, University of Yangon, Yangon, 11041, Myanmar
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
2
|
Wilenzik IV, Barger BB, Pyron RA. Fossil-informed biogeographic analysis suggests Eurasian regionalization in crown Squamata during the early Jurassic. PeerJ 2024; 12:e17277. [PMID: 38708352 PMCID: PMC11067913 DOI: 10.7717/peerj.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Background Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.
Collapse
Affiliation(s)
- Ian V. Wilenzik
- Department of Biology, George Washington University, Washington D.C., United States of America
| | - Benjamin B. Barger
- Department of Biology, George Washington University, Washington D.C., United States of America
| | - R. Alexander Pyron
- Department of Biology, George Washington University, Washington D.C., United States of America
| |
Collapse
|
3
|
Jouault C, Condamine FL, Legendre F, Perrichot V. The Angiosperm Terrestrial Revolution buffered ants against extinction. Proc Natl Acad Sci U S A 2024; 121:e2317795121. [PMID: 38466878 PMCID: PMC10990090 DOI: 10.1073/pnas.2317795121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.
Collapse
Affiliation(s)
- Corentin Jouault
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
| | - Frédéric Legendre
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
| | - Vincent Perrichot
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| |
Collapse
|
4
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Soghigian J, Sither C, Justi SA, Morinaga G, Cassel BK, Vitek CJ, Livdahl T, Xia S, Gloria-Soria A, Powell JR, Zavortink T, Hardy CM, Burkett-Cadena ND, Reeves LE, Wilkerson RC, Dunn RR, Yeates DK, Sallum MA, Byrd BD, Trautwein MD, Linton YM, Reiskind MH, Wiegmann BM. Phylogenomics reveals the history of host use in mosquitoes. Nat Commun 2023; 14:6252. [PMID: 37803007 PMCID: PMC10558525 DOI: 10.1038/s41467-023-41764-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188-250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes.
Collapse
Affiliation(s)
- John Soghigian
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Charles Sither
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Silvia Andrade Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Gen Morinaga
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Brian K Cassel
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Christopher J Vitek
- Center for Vector-Borne Diseases, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Todd Livdahl
- Department of Biology, Clark University, Worcester, MA, USA
| | - Siyang Xia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrea Gloria-Soria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Entomology, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jeffrey R Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Thomas Zavortink
- Bohart Museum of Entomology, University of California, Davis, CA, USA
| | | | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Lawrence E Reeves
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Richard C Wilkerson
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David K Yeates
- Australian National Insect Collection, CSIRO National Collections and Marine Infrastructure, Canberra, ACT, Australia
| | - Maria Anice Sallum
- Departamento de Epidemiologia, Faculdade de Saude Publica, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Brian D Byrd
- College of Health and Human Sciences, School of Health Sciences, Western Carolina University, Cullowhee, NC, USA
| | - Michelle D Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Mitchell JL, McKellar RC, Barbi M, Coulson IM, Bukejs A. Morphological and organic spectroscopic studies of a 44-million-year-old leaf beetle (Coleoptera: Chrysomelidae) in amber with endogenous remains of chitin. Sci Rep 2023; 13:5876. [PMID: 37041264 PMCID: PMC10090159 DOI: 10.1038/s41598-023-32557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
This study details the quality of preservation of amber deposits in the Eocene. Through Baltic amber crack-out studies using Synchrotron Micro-Computed Tomography and Scanning Electron Microscopy it was found that the cuticle of a specimen of leaf beetle (Crepidodera tertiotertiaria (Alticini: Galerucinae: Chrysomelidae)) is exceptionally well preserved. Spectroscopic analysis using Synchrotron Fourier Transform Infrared Spectroscopy suggests presence of degraded [Formula: see text]-chitin in multiple areas of the cuticle, and Energy Dispersive Spectroscopy supports the presence of organic preservation. This remarkable preservation is likely the result of several factors such as the favourable antimicrobial and physical shielding properties of Baltic amber as compared to other depositional media, coupled to rapid dehydration of the beetle early in its taphonomic process. We provide evidence that crack-out studies of amber inclusions, although inherently destructive of fossils, are an underutilised method for probing exceptional preservation in deep time.
Collapse
Affiliation(s)
- Jerit L Mitchell
- Department of Physics, University of Regina, Regina, SK, S4S 0A2, Canada.
| | - Ryan C McKellar
- Royal Saskatchewan Museum, 2445 Albert St., Regina, SK, S4P 4W7, Canada
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Mauricio Barbi
- Department of Physics, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Ian M Coulson
- Department of Geology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Andris Bukejs
- Institute of Life Sciences and Technologies, Daugavpils University, Vienîbas 13, Daugavpils, 5401, Latvia
| |
Collapse
|
7
|
Solórzano‑Kraemer MM, Peñalver E, Herbert MCM, Delclòs X, Brown BV, Aung NN, Peretti AM. Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Sci Rep 2023; 13:2907. [PMID: 36808156 PMCID: PMC9938861 DOI: 10.1038/s41598-023-29612-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023] Open
Abstract
When a vertebrate carcass begins its decay in terrestrial environments, a succession of different necrophagous arthropod species, mainly insects, are attracted. Trophic aspects of the Mesozoic environments are of great comparative interest, to understand similarities and differences with extant counterparts. Here, we comprehensively study several exceptional Cretaceous amber pieces, in order to determine the early necrophagy by insects (flies in our case) on lizard specimens, ca. 99 Ma old. To obtain well-supported palaeoecological data from our amber assemblages, special attention has been paid in the analysis of the taphonomy, succession (stratigraphy), and content of the different amber layers, originally resin flows. In this respect, we revisited the concept of syninclusion, establishing two categories to make the palaeoecological inferences more accurate: eusyninclusions and parasyninclusions. We observe that resin acted as a "necrophagous trap". The lack of dipteran larvae and the presence of phorid flies indicates decay was in an early stage when the process was recorded. Similar patterns to those in our Cretaceous cases have been observed in Miocene ambers and actualistic experiments using sticky traps, which also act as "necrophagous traps"; for example, we observed that flies were indicative of the early necrophagous stage, but also ants. In contrast, the absence of ants in our Late Cretaceous cases confirms the rareness of ants during the Cretaceous and suggests that early ants lacked this trophic strategy, possibly related to their sociability and recruitment foraging strategies, which developed later in the dimensions we know them today. This situation potentially made necrophagy by insects less efficient in the Mesozoic.
Collapse
Affiliation(s)
- Mónica M. Solórzano‑Kraemer
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Enrique Peñalver
- CN-Instituto Geológico y Minero de España CSIC, C/Cirilo Amorós 42, 46004, Valencia, Spain.
| | - Mélanie C. M. Herbert
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l’Oceà, Faculty of Earth Sciences, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Brian V. Brown
- grid.243983.70000 0001 2302 4724Entomology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, 90007 Los Angeles, CA USA
| | - Nyi Nyi Aung
- grid.440502.70000 0001 1118 1335Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041 Yangon, Myanmar ,Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland
| | - Adolf M. Peretti
- Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland ,GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045 Meggen, Switzerland
| |
Collapse
|
8
|
Čerňanský A, Daza JD, Smith R, Bauer AM, Smith T, Folie A. A new gecko from the earliest Eocene of Dormaal, Belgium: a thermophilic element of the 'greenhouse world'. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220429. [PMID: 35774137 PMCID: PMC9240692 DOI: 10.1098/rsos.220429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 05/03/2023]
Abstract
We here describe a new gekkotan lizard from the earliest Eocene (MP 7) of the Dormaal locality in Belgium, from the time of the warmest global climates of the past 66 million years (Myr). This new taxon, with an age of 56 Myr, together with indeterminate gekkotan material reported from Silveirinha (Portugal, MP 7) represent the oldest Cenozoic gekkotans known from Europe. Today gekkotan lizards are distributed worldwide in mainly warm temperate to tropical areas and the new gecko from Dormaal represents a thermophilic faunal element. Given the Palaeocene-Eocene thermal maximum at that time, the distribution of this group in such northern latitudes (above 50° North - the latitude of southern England) is not surprising. Although this new gekkotan is represented only by a frontal (further, dentaries and a mandibular fragment are described here as Gekkota indet. 1 and 2-at least two gekkotan species occurred in Dormaal), it provides a new record for squamate diversity from the earliest Eocene 'greenhouse world'. Together with the Baltic amber gekkotan Yantarogekko balticus, they document the northern distribution of gekkotans in Europe during the Eocene. The increase in temperature during the early Eocene led to a rise in sea level, and many areas of Eurasia were submerged. Thus, the importance of this period is magnified by understanding future global climate change.
Collapse
Affiliation(s)
- Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Bratislava 84215, Slovakia
| | - Juan D. Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Richard Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000, Brussels, Belgium
| | - Aaron M. Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA 19085, USA
| | - Thierry Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000, Brussels, Belgium
| | - Annelise Folie
- Scientific Survey of Heritage, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000, Brussels, Belgium
| |
Collapse
|
9
|
Jouault C, Engel MS, Huang D, Berger J, Grandcolas P, Perkovsky EE, Legendre F, Nel A. Termite Valkyries: Soldier-Like Alate Termites From the Cretaceous and Task Specialization in the Early Evolution of Isoptera. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.737367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In several insect eusocial lineages, e.g., some aphids, thrips, ants, some stingless bees, and termites, task specialization is brought to its climax with a sterile soldier caste solely devoted to colony defense. In Isoptera, while the reproductives are defenseless, the soldiers have unique morpho-physiological specializations whose origin and evolution remain unresolved. Here we report on two instances of Cretaceous fossil termite reproductives belonging to different families († Valkyritermes inopinatus gen. et sp. nov. and an unpublished specimen from the Crato Formation), with intriguing phragmotic soldier-like heads and functional wings. These individuals, herein called Valkyries, are the first termite reproductives known with defensive features and suggest that phragmosis arose at least in the Early Cretaceous. Valkyries resemble modern neotenic soldiers except for their complete wings. Their discovery supports the hypothesis that the division between reproductive (indicated by the winged condition of Valkyries) and defensive tasks (indicated by the phragmotic head) has not always been complete in termite history. We explore two alternative scenarios regarding the origin of Valkyries (i.e., relatively recent and convergent origins vs. plesiomorphic condition) and discuss how they might relate to the development of soldiers. We argue that, in both cases, Valkyries likely evolved to face external threats, a selective pressure that could also have favored the origin of soldiers from helpers. Valkyries highlight the developmental flexibility of termites and illustrate the tortuous paths that evolution may follow.
Collapse
|
10
|
Čerňanský A, Stanley EL, Daza JD, Bolet A, Arias JS, Bauer AM, Vidal-García M, Bevitt JJ, Peretti AM, Aung NN, Evans SE. A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument. Sci Rep 2022; 12:1660. [PMID: 35102237 PMCID: PMC8803969 DOI: 10.1038/s41598-022-05735-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous.
Collapse
Affiliation(s)
- Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia.
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Salvador Arias
- Unidad Ejecutora Lillo (CONICET, Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Marta Vidal-García
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Adolf M Peretti
- GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045, Meggen, Switzerland
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
| | - Nyi Nyi Aung
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
- Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041, Yangon, Myanmar
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
11
|
Smith KT. Paleontology: It's a bird, it's a plane, it's Oculudentavis! Curr Biol 2021; 31:R950-R952. [PMID: 34375597 DOI: 10.1016/j.cub.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Few animals have experienced such jarring taxonomic whiplash as has Oculudentavis, a tiny tetrapod preserved in amber. A new specimen of this perplexing lineage now shows that it is a lizard unlike any ever discovered.
Collapse
Affiliation(s)
- Krister T Smith
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, and Faculty of Biological Sciences, Goethe University, 60325 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
13
|
Garner AM, Russell AP. Revisiting the classification of squamate adhesive setae: historical, morphological and functional perspectives. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202039. [PMID: 33972877 PMCID: PMC8074656 DOI: 10.1098/rsos.202039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Research on gecko-based adhesion has become a truly interdisciplinary endeavour, encompassing many disciplines within the natural and physical sciences. Gecko adhesion occurs by the induction of van der Waals intermolecular (and possibly other) forces between substrata and integumentary filaments (setae) terminating in at least one spatulate tip. Gecko setae have increasingly been idealized as structures with uniform dimensions and a particular branching pattern. Approaches to developing synthetic simulacra have largely adopted such an idealized form as a foundational template. Observations of entire setal fields of geckos and anoles have, however, revealed extensive, predictable variation in setal form. Some filaments of these fields do not fulfil the morphological criteria that characterize setae and, problematically, recent authors have applied the term 'seta' to structurally simpler and likely non-adhesively competent fibrils. Herein we briefly review the history of the definition of squamate setae and propose a standardized classificatory scheme for epidermal outgrowths based on a combination of whole animal performance and morphology. Our review is by no means comprehensive of the literature regarding the form, function, and development of the adhesive setae of squamates and we do not address significant advances that have been made in many areas (e.g. cell biology of setae) that are largely tangential to their classification and identification. We contend that those who aspire to simulate the form and function of squamate setae will benefit from a fuller appreciation of the diversity of these structures, thereby assisting in the identification of features most relevant to their objectives.
Collapse
Affiliation(s)
- Austin M. Garner
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Anthony P. Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
14
|
Griffin CT, Stocker MR, Colleary C, Stefanic CM, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. Assessing ontogenetic maturity in extinct saurian reptiles. Biol Rev Camb Philos Soc 2020; 96:470-525. [PMID: 33289322 DOI: 10.1111/brv.12666] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Caitlin Colleary
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH, 44106, U.S.A
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
| | - Emily J Lessner
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Pathology and Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, U.S.A
| | - Mitchell Riegler
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL, 32611, U.S.A
| | - Kiersten Formoso
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, U.S.A
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA, 90007, U.S.A
| | - Krista Koeller
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, U.S.A
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| |
Collapse
|
15
|
Glynne E, Daza JD, Bauer AM. Surface sculpturing in the skull of gecko lizards (Squamata: Gekkota). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
It has previously been stated that geckos are characterized by smooth cranial bones bearing no sculpturing; however, there are many exceptions. Here we systematically characterize variation in sculpturing in cranial bones across all seven gekkotan families and examine patterns of evolutionary transitions in these traits on a multigene molecular gekkotan phylogeny to elucidate trends in phenotypic diversification in bone sculpturing. Over 195 species were reviewed using specimens where smooth, grooved, pitted and rugose sculpturing patterns were found. Of the 26 cranial bones, only seven (premaxilla, maxilla, nasal, prefrontal, frontal, parietal and postorbitofrontal) were found to bear sculpturing across more than three species. Sculpturing was found to extend beyond these seven bones onto either the dentary, surangular and/or quadrate within five species. Phylogenetic analysis showed that sculpturing evolved recently and repeatedly in several distinct lineages. The remaining 19 skull bones were smooth, except in the five species above, supporting the suggestion that smooth skull bones were ancestral in gekkotans. There is no apparent relationship between body size and the presence of bone sculpturing. The functional significance, if any, of sculpturing requires further investigation.
Collapse
Affiliation(s)
- Elizabeth Glynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| |
Collapse
|
16
|
Álvarez-Parra S, Delclòs X, Solórzano-Kraemer MM, Alcalá L, Peñalver E. Cretaceous amniote integuments recorded through a taphonomic process unique to resins. Sci Rep 2020; 10:19840. [PMID: 33199731 PMCID: PMC7669849 DOI: 10.1038/s41598-020-76830-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Fossil records of vertebrate integuments are relatively common in both rocks, as compressions, and amber, as inclusions. The integument remains, mainly the Mesozoic ones, are of great interest due to the panoply of palaeobiological information they can provide. We describe two Spanish Cretaceous amber pieces that are of taphonomic importance, one bearing avian dinosaur feather remains and the other, mammalian hair. The preserved feather remains originated from an avian dinosaur resting in contact with a stalactite-shaped resin emission for the time it took for the fresh resin to harden. The second piece shows three hair strands recorded on a surface of desiccation, with the characteristic scale pattern exceptionally well preserved and the strands aligned together, which can be considered the record of a tuft. These assemblages were recorded through a rare biostratinomic process we call "pull off vestiture" that is different from the typical resin entrapment and embedding of organisms and biological remains, and unique to resins. The peculiarity of this process is supported by actualistic observations using sticky traps in Madagascar. Lastly, we reinterpret some exceptional records from the literature in the light of that process, thus bringing new insight to the taphonomic and palaeoecological understanding of the circumstances of their origins.
Collapse
Affiliation(s)
- Sergio Álvarez-Parra
- Departament de Dinàmica de la Terra i de l'Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès S/N, 08028, Barcelona, Spain.
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès S/N, 08028, Barcelona, Spain
| | - Mónica M Solórzano-Kraemer
- Paläontologie und Historische Geologie, Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Luis Alcalá
- Fundación Conjunto Paleontológico de Teruel-Dinópolis/Museo Aragonés de Paleontología, Av. Sagunto s/n, 44002, Teruel, Spain
| | - Enrique Peñalver
- Instituto Geológico y Minero de España (Museo Geominero), c/ Cirilo Amorós 42, 46004, Valencia, Spain
| |
Collapse
|
17
|
Wake DB. A surprising fossil vertebrate. Science 2020; 370:654-655. [DOI: 10.1126/science.abe7826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An ancient amphibian converged on a chameleon-like way of feeding
Collapse
Affiliation(s)
- David B. Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Daza JD, Stanley EL, Bolet A, Bauer AM, Arias JS, Čerňanský A, Bevitt JJ, Wagner P, Evans SE. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. Science 2020; 370:687-691. [DOI: 10.1126/science.abb6005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Juan D. Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Edward L. Stanley
- Department of Herpetology, Florida Museum of Natural History, Gainesville, FL, USA
| | - Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Aaron M. Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - J. Salvador Arias
- Unidad Ejecutora Lillo, CONICET - FML, San Miguel de Tucumán, Argentina
| | - Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Philipp Wagner
- Department of Research and Conservation, Allwetterzoo Münster, Münster, Germany
| | - Susan E. Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
19
|
Shi C, Yang Q, Shih C, Labandeira CC, Pang H, Ren D. Cretaceous mantid lacewings with specialized raptorial forelegs illuminate modification of prey capture (Insecta: Neuroptera). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The Mantispidae (Neuroptera), commonly known as mantid lacewings or mantispids, are characterized by raptorial forelegs used by adults for predation. They have a fossil history extending to the Early Jurassic. During the past 180 Myr, the lineage has undergone significant evolutionary transformation, exhibiting an elevated diversity in morphology yet retaining the same overall ground plan. Although raptorial foreleg morphology and capture behaviour are well documented in extant insects, they are poorly known for premodern lineages, attributable to the scarcity and poor preservation of fossils. Here, we report two new genera and species of Mantispidae from mid-Cretaceous Myanmar (Burmese) amber. Both taxa have highly specialized raptorial forelegs and highlight modification of capture strategy in Cretaceous Mantispidae. The foreleg of both species has one major spine that is the same length as the foretibia on the ventral surface of the forefemur, which faces the foretibia with a row of robust setae. The two new amber mantid lacewings provide structural and functional indications that represent an extinct mode of capture strategy. The new findings reveal the presence of a geochronologically rapid diversification of Mantispidae during the Early Cretaceous, thereby illuminating the varied morphologies involved in prey-capture strategies integral to the early evolution of mantispids.
Collapse
Affiliation(s)
- Chaofan Shi
- School of Earth Sciences and Engineering, Guangdong Provincial Key Lab of Geodynamics and Geohazards, Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Sun Yat-sen University, Guangzhou, China
| | - Qiang Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chungkun Shih
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Conrad C Labandeira
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Hong Pang
- School of Ecology/Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, The Museum of Biology, Sun Yat-sen University, Guangzhou, China
| | - Dong Ren
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
| |
Collapse
|
20
|
Gustafson GT, Michat MC, Balke M. Burmese amber reveals a new stem lineage of whirligig beetle (Coleoptera: Gyrinidae) based on the larval stage. Zool J Linn Soc 2020; 189:1232-1248. [PMID: 32780030 PMCID: PMC7398075 DOI: 10.1093/zoolinnean/zlz161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 11/10/2019] [Indexed: 01/31/2023]
Abstract
Burmese amber is well known for preserving unique extinct lineages of insects. Here, we describe a new fossil beetle in its larval stage from Burmese amber. Bayesian and parsimony phylogenetic analysis of 50 morphological characters support this fossil as being sister to both the tribes Dineutini and Orectochilini, representing an extinct stem lineage in Gyrininae. It is described here as a new genus and species of whirligig beetle, Chimerogyrus gigagalea gen. & sp. nov., a taxon that preserves remarkable intermediate features between the whirligig beetle tribe Gyrinini and the crown Orectochilini and Dineutini. This new taxon preserves key features for studying the evolution of characters within the larval stage of the Gyrinidae and highlights the importance of Burmese amber for preserving both stem and crown lineages present during the mid-Cretaceous, before the end-Cretaceous mass extinction event.
Collapse
Affiliation(s)
- Grey T Gustafson
- Department of Ecology and Evolutionary Biology and Division of Entomology, Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Mariano C Michat
- Laboratory of Entomology, Department of Biodiversity and Experimental Biology, Institute of Biodiversity and Experimental and Applied Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Balke
- State Bavarian Collection of Zoology, München, Germany
| |
Collapse
|
21
|
Scarpetta SG. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200317. [PMID: 32968509 PMCID: PMC7481707 DOI: 10.1098/rsos.200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Teiid lizards are well represented in the fossil record and are common components of modern ecosystems in North and South America. Many fossils were referred to the cnemidophorine teiid group (whiptails, racerunners and relatives), particularly from North America. However, systematic interpretations of morphological features in cnemidophorines were hampered by the historically problematic taxonomy of the clade, and the biogeography and chronology of cnemidophorine evolution in North America is poorly understood from the fossil record. Few fossil cnemidophorines were identified with an apomorphy-based diagnosis, and there are almost no fossil cnemidophorines that could be used to anchor node calibrations. Here, I describe a cnemidophorine from the Miocene Ogallala Group of Nebraska and diagnose the fossil using apomorphies. In that process, I clarify the systematic utility of several morphological features of cnemidophorine lizards. I refer the fossil to the least inclusive clade containing Aspidoscelis, Holcosus and Pholidoscelis. The most conservative minimum age of the locality of the fossil is a fission-track date of 6.3 Ma, but mammal biochronology provides a more refined age of 9.4 Ma, which can be used as a minimum age for the crown cnemidophorine clade in divergence time analyses. The fossil indicates that a cnemidophorine lineage that does not live in Nebraska today inhabited the area during the Miocene. I refrain from naming a new taxon pending discovery of additional fossil material of the lineage to which the fossil belonged.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Khannoon ER, Evans SE. Embryonic skull development in the gecko, Tarentola annularis (Squamata: Gekkota: Phyllodactylidae). J Anat 2020; 237:504-519. [PMID: 32485010 DOI: 10.1111/joa.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
Tarentola annularis is a climbing gecko with a wide distribution in Africa north of the equator. In the present paper, we describe the development of the osteocranium of this lizard, from the first appearance of the cranial elements up to the point of hatching. This is based on a combination of histology and cleared and stained specimens. This is the first comprehensive account of gekkotan pre-hatching skull development based on a comprehensive series of embryos, rather than a few selected stages. Given that Gekkota is now widely regarded as representing the sister group to other squamates, this account helps to fill a significant gap in the literature. Moreover, as many authors have considered features of the gekkotan skull and skeleton to be indicative of paedomorphosis, it is important to know whether this hypothesis is supported by delays in the onset of cranial ossification. In fact, we found the sequence of cranial bone ossification to be broadly comparable to that of other squamates studied to date, with no significant lags in development.
Collapse
Affiliation(s)
- Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Susan E Evans
- Department of Cell and Developmental Biology, Centre for Integrated Anatomy, University College London, London, UK
| |
Collapse
|
23
|
Bittencourt JS, Simões TR, Caldwell MW, Langer MC. Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates. Commun Biol 2020; 3:201. [PMID: 32350412 PMCID: PMC7190622 DOI: 10.1038/s42003-020-0926-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Squamates have an extremely long evolutionary history with a fossil record that extends into the Middle Triassic. However, most of our knowledge of their early evolutionary history is derived from Laurasian records. Therefore, fundamental questions regarding the early evolution of squamates in the Southern Hemisphere, such as the origins of the extremely diverse and endemic South American fauna, remain unanswered. Here, we describe a new lizard species that represents the oldest fossil squamate from South America, demonstrating that squamates were present on that continent at least 20 million years earlier than previously recorded. The new species represents the first occurrence of the extinct squamate family Paramacellodidae in South America and displays an unusual limb morphology. Finally, our findings suggest early South American squamates were part of a much broader distribution of their respective clades, in sharp contrast to the high levels of endemicity characteristic of modern faunas.
Collapse
Affiliation(s)
- Jonathas Souza Bittencourt
- Departamento de Geologia, Laboratório de Paleontologia e Macroevolução (CPMTC-IGC), Universidade Federal de Minas Gerais, Belo Horizonte-MG, 31270-901, Brazil.
| | - Tiago Rodrigues Simões
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael Wayne Caldwell
- Department of Biological Sciences, and Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Max Cardoso Langer
- Departamento de Biologia, Laboratório de Paleontologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto-SP, 14040-901, Brazil
| |
Collapse
|
24
|
|
25
|
Barthel HJ, Fougerouse D, Geisler T, Rust J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS One 2020; 15:e0228843. [PMID: 32101553 PMCID: PMC7043737 DOI: 10.1371/journal.pone.0228843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/23/2020] [Indexed: 11/18/2022] Open
Abstract
Vertebrate fossils embedded in amber represent a particularly valuable paleobiological record as amber is supposed to be a barrier to the environment, precluding significant alteration of the animals' body over geological time. The mode and processes of amber preservation are still under debate, and it is questionable to what extent original material may be preserved. Due to their high value, vertebrates in amber have never been examined with analytical methods, which means that the composition of bone tissue in amber is unknown. Here, we report our results of a study on a left forelimb from a fossil Anolis sp. indet. (Squamata) that was fully embedded in Miocene Dominican amber. Our results show a transformation of the bioapatite to fluorapatite associated with a severe alteration of the collagen phase and the formation of an unidentified carbonate. These findings argue for a poor survival potential of macromolecules in Dominican amber fossils.
Collapse
Affiliation(s)
- H Jonas Barthel
- Paleontology Section, Institute of Geosciences, RheinischeFriedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Denis Fougerouse
- School of Earth and Planetary Sciences, Curtin University, Perth, Australia
| | - Thorsten Geisler
- Geochemistry/Petrology Section, Institute of Geosciences, RheinischeFriedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, RheinischeFriedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
26
|
Ord TJ, Garcia-Porta J, Querejeta M, Collar DC. Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation. Am Nat 2020; 195:E51-E66. [DOI: 10.1086/706305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Rikkinen J, Grimaldi DA, Schmidt AR. Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis. Sci Rep 2019; 9:19730. [PMID: 31874965 PMCID: PMC6930221 DOI: 10.1038/s41598-019-55622-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/30/2019] [Indexed: 01/03/2023] Open
Abstract
Myxomycetes constitute a group within the Amoebozoa well known for their motile plasmodia and morphologically complex fruiting bodies. One obstacle hindering studies of myxomycete evolution is that their fossils are exceedingly rare, so evolutionary analyses of this supposedly ancient lineage of amoebozoans are restricted to extant taxa. Molecular data have significantly advanced myxomycete systematics, but the evolutionary history of individual lineages and their ecological adaptations remain unknown. Here, we report exquisitely preserved myxomycete sporocarps in amber from Myanmar, ca. 100 million years old, one of the few fossil myxomycetes, and the only definitive Mesozoic one. Six densely-arranged stalked sporocarps were engulfed in tree resin while young, with almost the entire spore mass still inside the sporotheca. All morphological features are indistinguishable from those of the modern, cosmopolitan genus Stemonitis, demonstrating that sporocarp morphology has been static since at least the mid-Cretaceous. The ability of myxomycetes to develop into dormant stages, which can last years, may account for the phenotypic stasis between living Stemonitis species and this fossil one, similar to the situation found in other organisms that have cryptobiosis. We also interpret Stemonitis morphological stasis as evidence of strong environmental selection favouring the maintenance of adaptations that promote wind dispersal.
Collapse
Affiliation(s)
- Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014, Helsinki, Finland. .,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland.
| | - David A Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192, USA
| | - Alexander R Schmidt
- Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany.
| |
Collapse
|
28
|
Skipwith PL, Bi K, Oliver PM. Relicts and radiations: Phylogenomics of an Australasian lizard clade with east Gondwanan origins (Gekkota: Diplodactyloidea). Mol Phylogenet Evol 2019; 140:106589. [DOI: 10.1016/j.ympev.2019.106589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
29
|
ČerŇanský A, Syromyatnikova EV, Kovalenko ES, Podurets KM, Kaloyan AA. The Key to Understanding the European Miocene Chalcides (Squamata, Scincidae) Comes from Asia: The Lizards of the East Siberian Tagay Locality (Baikal Lake) in Russia. Anat Rec (Hoboken) 2019; 303:1901-1934. [PMID: 31595688 DOI: 10.1002/ar.24289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022]
Abstract
The early middle Miocene (MN 5) lizards from the East Siberian Tagay locality (Baikal Lake, Russia) in Asia are described here. The lizard fauna consists of two clades, Lacertidae and Scincidae. The skink material is allocated to Chalcides. While this taxon was previously reported from Europe, it has rarely been observed in the Neogene record with only jaw fragments and frontal bones described. Its taxonomy was therefore enigmatic. The Tagay material is almost identical to the European fossils of Chalcides from Austria and Hungary, but it also contains the parietal bone. While the material is also similar to the extant Ch. ocellatus, it exhibits several morphological differences. A new species is therefore erected-Chalcides augei sp. nov. These findings further support the connection of the Baikal Lake area with central Europe during the first half of the Miocene. The comparative anatomy of the frontals, parietals and lower jaws was evaluated by micro-CT in selected skink taxa. This comparison highlights several important differences, for example, paired frontals are present in Broadleysaurus (an outgroup taxon), in Acontias and all studied members of Scincidae herein. The character optimization in Mesquite supports fused frontals as being the condition at the basal node of the Ateuchosauridae + Sphenomorphidae + Eugongylidae + Lygosomidae + Egerniidae + Mabuyidae clade. While the parapineal foramen is restricted to the parietal in most taxa studied herein, it is absent (or vestigial) in Acontias and Feylinia. In contrast to all other skinks, this foramen is located on the frontal in Ateuchosaurus chinensis. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1901-1934, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Andrej ČerŇanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Elena V Syromyatnikova
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia.,Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
30
|
Jiang T, Szwedo J, Wang B. A unique camouflaged mimarachnid planthopper from mid-Cretaceous Burmese amber. Sci Rep 2019; 9:13112. [PMID: 31511621 PMCID: PMC6739471 DOI: 10.1038/s41598-019-49414-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Predation is a major driving force for the evolution of functional forms. Avoidance of visual predators has resulted in different kinds of anti-predator defences, such as: camouflage, crypsis, disruptive coloration, and masquerade or mimesis. Camouflage is one of the forms involving shape, colouration, structure and behaviour when the visual pattern and orientation of an animal can determine whether it lives or dies. Inferring the behaviour and function of an ancient organism from its fossilised remains is a difficult task, but in many cases it closely resembles that of its descendants on uniformitarian grounds. Here we report and discuss examples of morphological and behavioural traits involving camouflage named recently as a flatoidinisation syndrome, shown by the inclusion of a planthopper in mid-Cretaceous Burmese amber. We found a new genus and species of an extinct Cretaceous planthopper family Mimarachnidae showing peculiar complex morphological adaptations to camouflage it on tree bark. Due to convergence, it resembles an unrelated tropiduchid planthopper from Eocene Baltic amber and also a modern representatives of the planthopper family Flatidae. Flattening of the body, the horizontal position of the tegmina at repose, tegmina with an undulating margin and elevated, wavy longitudinal veins, together with colouration and more sedentary behavioral traits enable these different insects to avoid predators. Our discovery reveals flatoidinisation syndrome in mid-Cretaceous Burmese amber which may provide insights into the processes of natural selection and evolution in this ancient forest.
Collapse
Affiliation(s)
- Tian Jiang
- China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian district, Beijing, 100083, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Jacek Szwedo
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China.
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, 59, Wita Stwosza St., PL80-308, Gdańsk, Poland.
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Scarpetta SG. The first known fossil Uma: ecological evolution and the origins of North American fringe-toed lizards. BMC Evol Biol 2019; 19:178. [PMID: 31492110 PMCID: PMC6729053 DOI: 10.1186/s12862-019-1501-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/22/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Fossil evidence suggests that extant North American lizard genera (north of Mexico) evolved during the Miocene. Although fossils of the clade Phrynosomatidae (spiny lizards and sand lizards) have been reported, there have been no previously described fossils of the fringe-toed sand lizards (Uma). In the extant biota, Uma inhabit arid deserts, and members of the western clade of Uma are restricted to sand dunes or other habitats containing fine-grained sand. RESULTS I describe the first known fossil of Uma and refer the fossil to the total clade of Uma with an apomorphy-based diagnosis. The fossil is a partial premaxilla that was found in the Miocene strata of the Dove Spring Formation of southern California, dating to 8.77 Ma. The paleoenvironment of the Dove Spring Formation was semiarid and contained ephemeral streams that facilitated deposition, and there is no evidence of sand dune deposits in the strata containing the locality from which the Uma fossil was found. Divergence time analyses of a concatenated molecular dataset with four fossil calibrations support a Neogene origin of the total clade of Uma and of the crown clade of Uma. Those analyses also estimated a Neogene divergence between Uma scoparia and the Uma notata complex. Multispecies coalescent analyses with one fossil calibration inferred a Paleogene origin for the total clade of Uma and a Pliocene or Pleistocene divergence between Uma scoparia and the Uma notata complex. The fossil and the total and crown clades of Uma precede the evolution of modern desert ecosystems in the southwestern United States and northern Mexico by millions of years. CONCLUSIONS The total clade and the crown clade of Uma were not restricted to arid deserts throughout their evolutionary histories. I demonstrate that an apomorphy-based diagnosis can be used to identify fossils of isolated skeletal elements for at least one clade of phrynosomatid lizard, and suggest exercising caution when using environmental tolerances of extant taxa to hypothesize paleoecological reconstructions.
Collapse
Affiliation(s)
- Simon G Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 2275 Speedway Stop C9000, Austin, TX, 78712-1722, USA.
| |
Collapse
|
32
|
Xing L, O'Connor JK, Chiappe LM, McKellar RC, Carroll N, Hu H, Bai M, Lei F. A New Enantiornithine Bird with Unusual Pedal Proportions Found in Amber. Curr Biol 2019; 29:2396-2401.e2. [PMID: 31303484 DOI: 10.1016/j.cub.2019.05.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 11/15/2022]
Abstract
Recent discoveries of vertebrate remains trapped in middle Cretaceous amber from northern Myanmar [1, 2] have provided insights into the morphology of soft-tissue structures in extinct animals [3-7], in particular, into the evolution and paleobiology of early birds [4, 8, 9]. So far, five bird specimens have been described from Burmese amber: two isolated wings, an isolated foot with wing fragment, and two partial skeletons [4, 8-10]. Most of these specimens contain the remains of juvenile enantiornithine birds [4]. Here, we describe a new specimen of enantiornithine bird in amber, collected at the Angbamo locality in the Hukawng Valley. The new specimen includes a partial right hindlimb and remiges from an adult or subadult bird. Its foot, of which the third digit is much longer than the second and fourth digits, is distinct from those of all other currently recognized Mesozoic and extant birds. Based on the autapomorphic foot morphology, we erect a new taxon, Elektorornis chenguangi gen. et sp. nov. We suggest that the elongated third digit was employed in a unique foraging strategy, highlighting the bizarre morphospace in which early birds operated.
Collapse
Affiliation(s)
- Lida Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Jingmai K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China.
| | - Luis M Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Ryan C McKellar
- Royal Saskatchewan Museum, Regina, Saskatchewan S4P 4W7, Canada; Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada; Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Nathan Carroll
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Han Hu
- Zoology Division, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
33
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Bauer AM. Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story. Integr Comp Biol 2019; 59:117-130. [DOI: 10.1093/icb/icz020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivations of the adhesive system and its role in lineage diversification. Evidence points to a single basal origin of the spinulate oberhautchen layer of the epidermis, which is a necessary precursor for the subsequent elaboration of a functional adhesive mechanism in geckos. However, multiple gains and losses are implicated for the elaborated setae that are necessary for adhesion via van der Waals forces. The well-supported phylogeny of gekkotans has demonstrated that convergence and parallelism in digital design are even more prevalent than previously believed. It also permits the reexamination of previously collected morphological data in an explicitly evolutionary context. Both time-calibrated trees and recently discovered amber fossils that preserve gecko toepads suggest that a fully-functional adhesive apparatus was not only present, but also represented by diverse architectures, by the mid-Cretaceous. Further characterization and phylogenetically-informed analyses of the other components of the adhesive system (muscles, tendons, blood sinuses, etc.) will permit a more comprehensive reconstruction of the evolutionary pathway(s) by which geckos have achieved their structural and taxonomic diversity. A phylogenetic perspective can meaningfully inform functional and performance studies of gecko adhesion and locomotion and can contribute to advances in bioinspired materials.
Collapse
Affiliation(s)
- A M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
35
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
36
|
Agarwal I, Khandekar A, Giri VB, Ramakrishnan U, Karanth KP. The hills are alive with geckos! A radiation of a dozen species on sky islands across peninsular India (Squamata: Gekkonidae, Hemiphyllodactylus) with the description of three new species. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00392-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Xing L, McKellar RC, O'Connor JK, Bai M, Tseng K, Chiappe LM. A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Sci Rep 2019; 9:927. [PMID: 30700773 PMCID: PMC6353931 DOI: 10.1038/s41598-018-37427-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022] Open
Abstract
Over the last three years, Burmese amber (~99 Ma, from Myanmar) has provided a series of immature enantiornithine skeletal remains preserved in varying developmental stages and degrees of completeness. These specimens have improved our knowledge based on compression fossils in Cretaceous sedimentary rocks, adding details of three-dimensional structure and soft tissues that are rarely preserved elsewhere. Here we describe a remarkably well-preserved foot, accompanied by part of the wing plumage. These body parts were likely dismembered, entering the resin due to predatory or scavenging behaviour by a larger animal. The new specimen preserves contour feathers on the pedal phalanges together with enigmatic scutellae scale filament (SSF) feathers on the foot, providing direct analogies to the plumage patterns observed in modern birds, and those cultivated through developmental manipulation studies. Ultimately, this connection may allow researchers to observe how filamentous dinosaur 'protofeathers' developed-testing theories using evolutionary holdovers in modern birds.
Collapse
Affiliation(s)
- Lida Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Ryan C McKellar
- Royal Saskatchewan Museum, Regina, Saskatchewan, S4P 4W7, Canada.
- Biology Department, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada.
- Department of Ecology & Evolutionary Biology, 1501 Crestline Drive - Suite 140, University of Kansas, Lawrence, Kansas, 66045, USA.
| | - Jingmai K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, 100044, China.
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kuowei Tseng
- Department of Exercise and Health Science, University of Taipei, Taipei, 11153, China
| | - Luis M Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| |
Collapse
|
38
|
An Integrative View of Lepidosaur Cranial Anatomy, Development, and Diversification. HEADS, JAWS, AND MUSCLES 2019. [DOI: 10.1007/978-3-319-93560-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Lajmi A, Bansal R, Giri V, Karanth P. Phylogeny and biogeography of the endemic Hemidactylus geckos of the Indian subregion suggest multiple dispersals from Peninsular India to Sri Lanka. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Aparna Lajmi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- National Centre for Biological Sciences, Bengaluru, India
| | - Rohini Bansal
- Department of Medical Neurobiology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Varad Giri
- National Centre for Biological Sciences, Bengaluru, India
| | - Praveen Karanth
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
40
|
Xing L, Caldwell MW, Chen R, Nydam RL, Palci A, Simões TR, McKellar RC, Lee MSY, Liu Y, Shi H, Wang K, Bai M. A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. SCIENCE ADVANCES 2018; 4:eaat5042. [PMID: 30035227 PMCID: PMC6051735 DOI: 10.1126/sciadv.aat5042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
We present the first known fossilized snake embryo/neonate preserved in early Late Cretaceous (Early Cenomanian) amber from Myanmar, which at the time, was an island arc including terranes from Austral Gondwana. This unique and very tiny snake fossil is an articulated postcranial skeleton, which includes posterior precloacal, cloacal, and caudal vertebrae, and details of squamation and body shape; a second specimen preserves a fragment of shed skin interpreted as a snake. Important details of skeletal ontogeny, including the stage at which snake zygosphene-zygantral joints began to form along with the neural arch lamina, are preserved. The vertebrae show similarities to those of fossil Gondwanan snakes, suggesting a dispersal route of Gondwanan faunas to Laurasia. Finally, the new species is the first Mesozoic snake to be found in a forested environment, indicating greater ecological diversity among early snakes than previously thought.
Collapse
Affiliation(s)
- Lida Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Randall L. Nydam
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - Alessandro Palci
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Tiago R. Simões
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ryan C. McKellar
- Royal Saskatchewan Museum, Regina, Saskatchewan S4P 4W7, Canada
- Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Michael S. Y. Lee
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ye Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Paleo-diary Museum of Natural History, Beijing 100097, China
| | | | - Kuan Wang
- Paleo-diary Museum of Natural History, Beijing 100097, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber. Sci Rep 2018; 8:8770. [PMID: 29904068 PMCID: PMC6002357 DOI: 10.1038/s41598-018-26848-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/16/2018] [Indexed: 11/18/2022] Open
Abstract
Frogs are a familiar and diverse component of tropical forests around the world. Yet there is little direct evidence from the fossil record for the antiquity of this association. We describe four fossil frog specimens from mid-Cretaceous (~99 mya) amber deposits from Kachin State, Myanmar for which the associated fauna provides rich paleoenvironmental context. Microcomputed tomographic analysis provides detailed three-dimensional anatomy for these small frogs, which is generally unavailable for articulated anurans in the Mesozoic. These crown-group anuran specimens provide the earliest direct evidence for anurans in a wet tropical forest. Based on a distinct combination of skeletal characters, at least one specimen has clear similarities to living alytoid frogs as well as several Mesozoic taxa known from the Jehol Biota in China. Whereas many Mesozoic frogs are from seasonal and mesic paleoenvironments, these fossils provide the earliest direct evidence of anurans in wet tropical forests.
Collapse
|
42
|
Hughes DF, Tolley KA, Behangana M, Lukwago W, Menegon M, Dehling JM, Stipala J, Tilbury CR, Khan AM, Kusamba C, Greenbaum E. Cryptic diversity in Rhampholeon boulengeri (Sauria: Chamaeleonidae), a pygmy chameleon from the Albertine Rift biodiversity hotspot. Mol Phylogenet Evol 2018; 122:125-141. [PMID: 29199108 PMCID: PMC6010225 DOI: 10.1016/j.ympev.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/03/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
Abstract
Several biogeographic barriers in the Central African highlands have reduced gene flow among populations of many terrestrial species in predictable ways. Yet, a comprehensive understanding of mechanisms underlying species divergence in the Afrotropics can be obscured by unrecognized levels of cryptic diversity, particularly in widespread species. We implemented a multilocus phylogeographic approach to examine diversity within the widely distributed Central African pygmy chameleon, Rhampholeon boulengeri. Gene-tree analyses coupled with a comparative coalescent-based species delimitation framework revealed R. boulengeri as a complex of at least six genetically distinct species. The spatiotemporal speciation patterns for these cryptic species conform to general biogeographic hypotheses supporting vicariance as the main factor behind patterns of divergence in the Albertine Rift, a biodiversity hotspot in Central Africa. However, we found that parapatric species and sister species inhabited adjacent habitats, but were found in largely non-overlapping elevational ranges in the Albertine Rift, suggesting that differentiation in elevation was also an important mode of divergence. The phylogeographic patterns recovered for the genus-level phylogeny provide additional evidence for speciation by isolation in forest refugia, and dating estimates indicated that the Miocene was a significant period for this diversification. Our results highlight the importance of investigating cryptic diversity in widespread species to improve understanding of diversification patterns in environmentally diverse regions such as the montane Afrotropics.
Collapse
Affiliation(s)
- Daniel F Hughes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Krystal A Tolley
- South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa; Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2000, Johannesburg, South Africa
| | - Mathias Behangana
- Department of Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Wilber Lukwago
- Department of Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Michele Menegon
- Tropical Biodiversity Section, MUSE - The Science Museum of Trento, Corso del Lavoro e della Scienza 3, Trento 38123, Italy
| | - J Maximilian Dehling
- Institut für Integrierte Naturwissenschaften, Abteilung Biologie, AG Zoologie, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Jan Stipala
- School of Biosciences, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Colin R Tilbury
- Department of Botany & Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Arshad M Khan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Chifundera Kusamba
- Laboratoire d'Herpétologie, Département de Biologie, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
43
|
Lee HJ, Lee YN, Fiorillo AR, Lü J. Lizards ran bipedally 110 million years ago. Sci Rep 2018; 8:2617. [PMID: 29449576 PMCID: PMC5814403 DOI: 10.1038/s41598-018-20809-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Four heteropod lizard trackways discovered in the Hasandong Formation (Aptian-early Albian), South Korea assigned to Sauripes hadongensis, n. ichnogen., n. ichnosp., which represents the oldest lizard tracks in the world. Most tracks are pes tracks (N = 25) that are very small, average 22.29 mm long and 12.46 mm wide. The pes tracks show "typical" lizard morphology as having curved digit imprints that progressively increase in length from digits I to IV, a smaller digit V that is separated from the other digits by a large interdigital angle. The manus track is 19.18 mm long and 19.23 mm wide, and shows a different morphology from the pes. The predominant pes tracks, the long stride length of pes, narrow trackway width, digitigrade manus and pes prints, and anteriorly oriented long axis of the fourth pedal digit indicate that these trackways were made by lizards running bipedally, suggesting that bipedality was possible early in lizard evolution.
Collapse
Affiliation(s)
- Hang-Jae Lee
- Geological Museum, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34123, South Korea
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea.
| | | | - Junchang Lü
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
44
|
DeMar DG, Conrad JL, Head JJ, Varricchio DJ, Wilson GP. A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania). Proc Biol Sci 2018; 284:rspb.2016.1902. [PMID: 28123087 DOI: 10.1098/rspb.2016.1902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/20/2016] [Indexed: 11/12/2022] Open
Abstract
Iguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g. Pleurodonta (basilisks, iguanas, and their relatives)) are poorly constrained, mainly due to a meagre Mesozoic-age fossil record. Here, we report on two nearly complete skeletons from the Late Cretaceous (Campanian) of North America that represent a new and relatively large-bodied and possibly herbivorous iguanomorph that inhabited a semi-arid environment. The new taxon exhibits a mosaic of anatomical features traditionally used in diagnosing Iguania and non-iguanian squamates (i.e. Scleroglossa; e.g. parietal foramen at the frontoparietal suture, astragalocalcaneal notch in the tibia, respectively). Our cladistic analysis of Squamata revealed a phylogenetic link between Campanian-age North American and East Asian stem iguanomorphs (i.e. the new taxon + Temujiniidae). These results and our evaluation of the squamate fossil record suggest that crown pleurodontans were restricted to the low-latitude Neotropics prior to their early Palaeogene first appearances in the mid-latitudes of North America.
Collapse
Affiliation(s)
- David G DeMar
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Jack L Conrad
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA.,Department of Vertebrate Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Jason J Head
- Department of Zoology and University Museum of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - David J Varricchio
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Gregory P Wilson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
A gigantic marine ostracod (Crustacea: Myodocopa) trapped in mid-Cretaceous Burmese amber. Sci Rep 2018; 8:1365. [PMID: 29358761 PMCID: PMC5778021 DOI: 10.1038/s41598-018-19877-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022] Open
Abstract
The mid-Cretaceous Burmese amber (~99 Ma, Myanmar), widely known for exquisite preservation of theropods, also yields microfossils, which can provide important contextual information on paleoenvironment and amber formation. We report the first Cretaceous ostracod in amber—the gigantic (12.9 mm) right valve of an exclusively marine group (Myodocopa: Myodocopida) preserved in Burmese amber. Ostracods are usually small (0.5–2 mm), with well-calcified carapaces that provide an excellent fossil record extending to at least the Ordovician (~485 million years ago), but they are rarely encountered in amber. The new specimen effectively doubles the age of the ostracod amber record, offering the first representative of the Myodocopa, a weakly calcified group with a poor fossil record. Its carapace morphology is atypical and likely plesiomorphic. The preserved valve appears to be either a moulted exuvium or a dead and disarticulated specimen, and subsequent resin flows contain forest floor inclusions with terrestrial arthropods, i.e., fragmentary remains of spiders, and insect frass. These features resolve an enigmatic taphonomic pathway, and support a marginal marine setting for resin production.
Collapse
|
46
|
Matsumoto R, Evans SE. The first record of albanerpetontid amphibians (Amphibia: Albanerpetontidae) from East Asia. PLoS One 2018; 13:e0189767. [PMID: 29298317 PMCID: PMC5752013 DOI: 10.1371/journal.pone.0189767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 11/18/2022] Open
Abstract
Albanerpetontids are an enigmatic fossil amphibian group known from deposits of Middle Jurassic to Pliocene age. The oldest and youngest records are from Europe, but the group appeared in North America in the late Early Cretaceous and radiated there during the Late Cretaceous. Until now, the Asian record has been limited to fragmentary specimens from the Late Cretaceous of Uzbekistan. This led to speculation that albanerpetontids migrated into eastern Asia from North America in the Albian to Cenomanian interval via the Beringian land bridge. However, here we describe albanerpetontid specimens from the Lower Cretaceous Kuwajima Formation of Japan, a record that predates their first known occurrence in North America. One specimen, an association of skull and postcranial bones from a single small individual, permits the diagnosis of a new taxon. High Resolution X-ray Computed Microtomography has revealed previously unrecorded features of albanerpetontid skull morphology in three dimensions, including the presence of a supraoccipital and epipterygoids, neither of which occurs in any known lissamphibian. The placement of this new taxon within the current phylogenetic framework for Albanerpetontidae is complicated by a limited overlap of comparable elements, most notably the non-preservation of the premaxillae in the Japanese taxon. Nonetheless, phylogenetic analysis places the new taxon closer to Albanerpeton than to Anoualerpeton, Celtedens, or Wesserpeton, although Bootstrap support values are weak. The results also question the monophyly of Albanerpeton as currently defined.
Collapse
Affiliation(s)
- Ryoko Matsumoto
- Department of Zoology, Kanagawa Prefectural Museum of Natural History, Odawara, Kanagawa Prefecture, Japan
| | - Susan E. Evans
- Department of Cell and Developmental Biology, University College London, London, England
| |
Collapse
|
47
|
Deepak V, Karanth P. Aridification driven diversification of fan-throated lizards from the Indian subcontinent. Mol Phylogenet Evol 2017; 120:53-62. [PMID: 29197684 DOI: 10.1016/j.ympev.2017.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
The establishment of monsoon climate and the consequent aridification has been one of the most important climate change episodes in the Indian subcontinent. However, little is known about how these events might have shaped the diversification patterns among the widely distributed taxa. Fan-throated lizards (FTL) (Genus: Sitana, Sarada) are widespread, diurnal and restricted to the semi-arid zones of the Indian subcontinent. We sampled FTL in 107 localities across its range. We used molecular species delimitation method and delineated 15 species including six putative species. Thirteen of them were distinguishable based on morphology but two sister species were indistinguishable and have minor overlaps in distribution. Five fossils were used to calibrate and date the phylogeny. Diversification of fan-throated lizards lineage started ~18 mya and higher lineage diversification was observed after 11 my. The initial diversification corresponds to the time when monsoon climate was established and the latter was a period of intensification of monsoon and initiation of aridification. Thirteen out of the fifteen FTL species delimited are from Peninsular India; this is probably due to the landscape heterogeneity in this region. The species poor sister genus Otocryptis is paraphyletic and probably represents relict lineages which are now confined to forested areas. Thus, the seasonality led changes in habitat, from forests to open habitats appear to have driven diversification of fan-throated lizards.
Collapse
Affiliation(s)
- V Deepak
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India; Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom.
| | - Praveen Karanth
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
48
|
Eliason CM, Hudson L, Watts T, Garza H, Clarke JA. Exceptional preservation and the fossil record of tetrapod integument. Proc Biol Sci 2017; 284:rspb.2017.0556. [PMID: 28878057 DOI: 10.1098/rspb.2017.0556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
The fossil record of exceptionally preserved soft tissues in Konservat-Lagerstätten provides rare yet significant insight into past behaviours and ecologies. Such deposits are known to occur in bursts rather than evenly through time, but reasons for this pattern and implications for the origins of novel structures remain unclear. Previous assessments of these records focused on marine environments preserving chemically heterogeneous tissues from across animals. Here, we investigate the preservation of skin and keratinous integumentary structures in land-dwelling vertebrates (tetrapods) through time, and in distinct terrestrial and marine depositional environments. We also evaluate previously proposed biotic and abiotic controls on the distribution of 143 tetrapod Konservat-Lagerstätten from the Permian to the Pleistocene in a multivariate framework. Gap analyses taking into account sampling intensity and distribution indicate that feathers probably evolved close to their first appearance in the fossil record. By contrast, hair and archosaur filaments are weakly sampled (five times less common than feathers), and their origins may significantly pre-date earliest known occurrences in the fossil record. This work suggests that among-integument variation in preservation can bias the reconstructed first origins of integumentary novelties and has implications for predicting where, and in what depositional environments, to expect further discoveries of exquisitely preserved tetrapod integument.
Collapse
Affiliation(s)
- Chad M Eliason
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA .,Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA.,Field Museum of Natural History, Chicago, IL 60605, USA
| | - Leah Hudson
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Taylor Watts
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Hector Garza
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Julia A Clarke
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA .,Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
49
|
Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 2017; 71:2344-2358. [DOI: 10.1111/evo.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Travis J. Hagey
- BEACON Center for Evolution in Action Michigan State University East Lansing Michigan 48824
| | - Josef C. Uyeda
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| | - Kristen E. Crandell
- Department of Zoology University of Cambridge Cambridge CB2‐3EJ United Kingdom
| | - Jorn A. Cheney
- Structure and Motion Laboratory, The Royal Veterinary College University of London Hatfield United Kingdom
| | - Kellar Autumn
- Biology Department Lewis & Clark College Portland Oregon 97219
| | - Luke J. Harmon
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| |
Collapse
|
50
|
Mesozoic Lizards from Brazil and Their Role in Early Squamate Evolution in South America. J HERPETOL 2017. [DOI: 10.1670/16-007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|