1
|
Bahmani Kolour P, Ghazvini H, Naderi M, Ghalehnoei H, Rezaei Talarposhti M. Effects of memantine and donepezil on social memory, anxiety-like behavior and the expression levels of microRNA-124, microRNA-125b, and microRNA-132 in scopolamine-induced memory impairment in rats. Neurol Res 2025; 47:306-317. [PMID: 40028750 DOI: 10.1080/01616412.2025.2472848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/22/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Almost all physiological processes are modulated by microRNAs, therefore, dysregulation of these small regulatory RNAs is observed in a variety of diseases, including cognitive impairments. METHODS In this study, 40 male Wistar rats were randomly divided into five groups of control, scopolamine, donepezil, memantine, and combined administration of donepezil + memantine. Rats in scopolamine, donepezil, memantine, and combined administration of donepezil + memantine groups received scopolamine (1 mg/kg-intraperitoneal) for 7 days. After the last administration of scopolamine, was started injecting donepezil (3 mg/kg-i.p.), memantine (10 mg/kg-i.p.), and combined administration of Donepezil + Memantine (0.5 mg/kg and 5 mg/kg-i.p., respectively), up to 21 days. Twenty-four hours after the last injection, elevated plus-maze, social interaction, open field tests, and gene expression analysis of miR-124, miR-125b, and miR-132 in the hippocampus were carried out. RESULTS The results of the behavioral tests indicate that donepezil and memantine significantly prevented Scopolamine-induced anxiety, sociability, and social memory decline. The gene expression of selected microRNAs did not significantly differ between the groups. DISCUSSION This study revealed that donepezil and memantine effectively prevent synaptic plasticity disruption and cognitive decline induced by scopolamine. Findings indicated that this treatment is unrelated to the expression of the selected microRNAs. The positive effects of memantine and donepezil depend on age, dosages, cognitive task demands, and possibly the length and timing of the treatment.
Collapse
Affiliation(s)
- Pouria Bahmani Kolour
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Naderi
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Rezaei Talarposhti
- Department of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Manza P, Tomasi D, Demiral ŞB, Shokri-Kojori E, Lildharrie C, Lin E, Wang GJ, Volkow ND. Neural basis for individual differences in the attention-enhancing effects of methylphenidate. Proc Natl Acad Sci U S A 2025; 122:e2423785122. [PMID: 40127280 PMCID: PMC12002349 DOI: 10.1073/pnas.2423785122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Stimulant drugs that boost dopamine, like methylphenidate (MP), enhance attention and are effective treatments for attention-deficit hyperactivity disorder (ADHD). Yet there is large individual variation in attentional capacity and response to MP. It is unclear whether this variation is driven by individual differences in relative density of dopamine receptor subtypes, magnitude of dopamine increases induced by MP, or both. Here, we extensively characterized the brain dopamine system with positron emission tomography (PET) imaging (including striatal dopamine D1 and D2/3 receptor availability and MP-induced dopamine increases) and measured attention task-evoked fMRI brain activity in two separate sessions (placebo and 60 mg oral MP; single-blind, counterbalanced) in 37 healthy adults. A network of lateral frontoparietal and visual cortices was sensitive to increasing attentional (and working memory) load, whose activity positively correlated with performance across individuals (partial r = 0.474, P = 0.008; controlling for age). MP-induced change in activity within this network correlated with MP-induced change in performance (partial r = 0.686, P < 0.001). The ratio of D1-to-D2/3 receptors in dorsomedial caudate positively correlated with baseline attentional network activity and negatively correlated with MP-induced changes in activity (all pFWE < 0.02). MP-induced changes in attentional load network activity mediated the association between D1-to-D2/3 ratio and MP-induced improvements in performance (mediation estimate = 23.20 [95%CI: -153.67 -81.79], P = 0.004). MP attention-boosting effects were not linked to the magnitude of striatal dopamine increases, but rather showed dependence on an individual's baseline receptor density. Individuals with lower D1-to-D2/3 ratios tended to have lower frontoparietal activity during sustained attention and experienced greater improvement in brain function and task performance with MP.
Collapse
Affiliation(s)
- Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
- Department of Psychiatry, Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Christina Lildharrie
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Esther Lin
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| |
Collapse
|
3
|
Humińska-Lisowska K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int J Mol Sci 2024; 25:11602. [PMID: 39519153 PMCID: PMC11546834 DOI: 10.3390/ijms252111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review examines the relationship between dopamine-related genetic polymorphisms, personality traits, and athletic success. Advances in sports genetics have identified specific single nucleotide polymorphisms (SNPs) in dopamine-related genes linked to personality traits crucial for athletic performance, such as motivation, cognitive function, and emotional resilience. This review clarifies how genetic variations can influence athletic predisposition through dopaminergic pathways and environmental interactions. Key findings reveal associations between specific SNPs and enhanced performance in various sports. For example, polymorphisms such as COMT Val158Met rs4680 and BDNF Val66Met rs6265 are associated with traits that could benefit performance, such as increased focus, stress resilience and conscientiousness, especially in martial arts. DRD3 rs167771 is associated with higher agreeableness, benefiting teamwork in sports like football. This synthesis underscores the multidimensional role of genetics in shaping athletic ability and advocates for integrating genetic profiling into personalized training to optimize performance and well-being. However, research gaps remain, including the need for standardized training protocols and exploring gene-environment interactions in diverse populations. Future studies should focus on how genetic and epigenetic factors can inform tailored interventions to enhance both physical and psychological aspects of athletic performance. By bridging genetics, personality psychology, and exercise science, this review paves the way for innovative training and performance optimization strategies.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
4
|
Yang J, Afaq A, Sibley R, McMilan A, Pirasteh A. Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01199-y. [PMID: 39167304 DOI: 10.1007/s10334-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and simulated data generation. (1) DL-based attenuation correction (DLAC) remains an area of limited exploration for pediatric whole-body PET/MR and lung-specific DLAC due to data shortages and technical limitations. (2) DL-based image enhancement approximating MR-guided regularized reconstruction with a high-resolution MR prior has shown promise in enhancing PET image quality. However, its clinical value has not been thoroughly evaluated across various radiotracers, and applications outside the head may pose challenges due to motion artifacts. (3) Robust training for DL-based motion correction requires pairs of motion-corrupted and motion-corrected PET/MR data. However, these pairs are rare. (4) DL-based approaches can address the limitations of dynamic PET, such as long scan durations that may cause patient discomfort and motion, providing new research opportunities. (5) Monte-Carlo simulations using anthropomorphic digital phantoms can provide extensive datasets to address the shortage of clinical data. This summary of technical/clinical challenges and potential solutions may provide research opportunities for the research community towards the clinical translation of DL solutions.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA.
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Robert Sibley
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Alan McMilan
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| |
Collapse
|
5
|
Safarzadeh E, Ataei S, Akbari M, Abolhasani R, Baziar M, Asghariazar V, Dadkhah M. Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer's disease in Wistar rats. Exp Gerontol 2024; 193:112466. [PMID: 38821324 DOI: 10.1016/j.exger.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Chronic stress (CS) is critically involved in the Alzheimer's disease (AD) pathogenesis resulting in cognitive disturbance. Also, amyloid precursor protein (APP) related gens, pro-inflammatory cytokines, and stress increases AD-related pathogenesis through increasing APP, all are important players in the development of AD. Herein, we explore the possible neuroprotective and anti-amnestic effect of quercetin (QUER) on cognitive deficits induced by scopolamine (SCOP) in stressed rats. Stress induction was performed by exposed of rats to 2-h chronic restraint stress for 10 days. Then rats were supplemented with QUER (25 mg/kg/day oral gavage, for 1 month). Ratswere submitted to intraperitoneal (i.p.) injection of SCOP (1 mg/kg) during the final 9 days of QUER supplementation to induce dementia like condition. Following the interventions, behavioral tests [elevated plus maze (EPM) and novel object recognition memory (NORM)] was examined to analysis the cognitive functions. Meanwhile, prefrontal cortex (PFC) and hippocampus of brain were used for gene expression and biochemical studies. Also, the plasma corticosterone (CORT) level was measured. We established that administration of QUER ameliorated the SCOP-related memory impairment. Also, QUER decreased stress related anxiety like behaviors in the EPM. QUER also altered the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in both PFC and hippocampus of SCOP treated rats in stress and non-stress conditions. We found that QUER increased APP and amyloid precursor-like protein 2 (APLP2) mRNA expression in both non-stress and stressed rats. Also, our findings imply that QUER suppress the effect of SCOP on cognitive functions. Moreover, decreased APP mRNA expression in the hippocampus were observed following pretreatment of rats with QUER in both stress and non-stress groups. Given that decreased amyloid beta (Aβ) expression in the hippocampus of stressed rats, it can be proposed that elevations in APP mRNA expression by QUER activates non-amyloidogenic pathways leading to reduction in Aβ levels. However, our findings indicate that QUER can be a therapeutic candidate, which exerts an anti-amnesic property against SCOP-induced memory decline. On the other hand, prior QUER administration in stress condition could be a promising approach against AD prevention.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Ataei
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Akbari
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rozita Abolhasani
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
6
|
Deng L, Wei W, Qiao C, Yin Y, Li X, Yu H, Jian L, Ma X, Zhao L, Wang Q, Deng W, Guo W, Li T. Dynamic aberrances of substantia nigra-relevant coactivation patterns in first-episode treatment-naïve patients with schizophrenia. Psychol Med 2024; 54:2527-2537. [PMID: 38523252 DOI: 10.1017/s0033291724000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES). METHODS Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored. RESULTS Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034). CONCLUSION Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.
Collapse
Affiliation(s)
- Lihong Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingqi Jian
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Lauretani F, Giallauria F, Testa C, Zinni C, Lorenzi B, Zucchini I, Salvi M, Napoli R, Maggio MG. Dopamine Pharmacodynamics: New Insights. Int J Mol Sci 2024; 25:5293. [PMID: 38791331 PMCID: PMC11121567 DOI: 10.3390/ijms25105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Dopamine is a key neurotransmitter involved in physiological processes such as motor control, motivation, reward, cognitive function, and maternal and reproductive behaviors. Therefore, dysfunctions of the dopaminergic system are related to a plethora of human diseases. Dopamine, via different circuitries implicated in compulsive behavior, reward, and habit formation, also represents a key player in substance use disorder and the formation and perpetuation of mechanisms leading to addiction. Here, we propose dopamine as a model not only of neurotransmission but also of neuromodulation capable of modifying neuronal architecture. Abuse of substances like methamphetamine, cocaine, and alcohol and their consumption over time can induce changes in neuronal activities. These modifications lead to synaptic plasticity and finally to morphological and functional changes, starting from maladaptive neuro-modulation and ending in neurodegeneration.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Crescenzo Testa
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Claudia Zinni
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Beatrice Lorenzi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Irene Zucchini
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Marco Salvi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Raffaele Napoli
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Marcello Giuseppe Maggio
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
9
|
Manza P, Tomasi D, Vines L, Sotelo D, Yonga MV, Wang GJ, Volkow ND. Brain connectivity changes to fast versus slow dopamine increases. Neuropsychopharmacology 2024; 49:924-932. [PMID: 38326458 PMCID: PMC11039764 DOI: 10.1038/s41386-024-01803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The rewarding effects of stimulant drugs such as methylphenidate (MP) depend crucially on how fast they raise dopamine in the brain. Yet how the rate of drug-induced dopamine increases impacts brain network communication remains unresolved. We manipulated route of MP administration to generate fast versus slow dopamine increases. We hypothesized that fast versus slow dopamine increases would result in a differential pattern of global brain connectivity (GBC) in association with regional levels of dopamine D1 receptors, which are critical for drug reward. Twenty healthy adults received MP intravenously (0.5 mg/kg; fast dopamine increases) and orally (60 mg; slow dopamine increases) during simultaneous [11C]raclopride PET-fMRI scans (double-blind, placebo-controlled). We tested how GBC was temporally associated with slow and fast dopamine increases on a minute-to-minute basis. Connectivity patterns were strikingly different for slow versus fast dopamine increases, and whole-brain spatial patterns were negatively correlated with one another (rho = -0.54, pspin < 0.001). GBC showed "fast>slow" associations in dorsal prefrontal cortex, insula, posterior thalamus and brainstem, caudate and precuneus; and "slow>fast" associations in ventral striatum, orbitofrontal cortex, and frontopolar cortex (pFDR < 0.05). "Fast>slow" GBC patterns showed significant spatial correspondence with D1 receptor availability (estimated via normative maps of [11C]SCH23390 binding; rho = 0.22, pspin < 0.05). Further, hippocampal GBC to fast dopamine increases was significantly negatively correlated with self-reported 'high' ratings to intravenous MP across individuals (r(19) = -0.68, pbonferroni = 0.015). Different routes of MP administration produce divergent patterns of brain connectivity. Fast dopamine increases are uniquely associated with connectivity patterns that have relevance for the subjective experience of drug reward.
Collapse
Affiliation(s)
- Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Leah Vines
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Diana Sotelo
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michele-Vera Yonga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Pedersen R, Johansson J, Nordin K, Rieckmann A, Wåhlin A, Nyberg L, Bäckman L, Salami A. Dopamine D1-Receptor Organization Contributes to Functional Brain Architecture. J Neurosci 2024; 44:e0621232024. [PMID: 38302439 PMCID: PMC10941071 DOI: 10.1523/jneurosci.0621-23.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal-transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
- Max-Planck-Institut für Sozialrecht und Sozialpolitik, Munich 80799, Germany
| | - Anders Wåhlin
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| |
Collapse
|
11
|
Choi S, Kim M, Kim T, Choi EJ, Lee J, Moon SY, Cho SS, Lee J, Kwon JS. Fronto-striato-thalamic circuit connectivity and neuromelanin in schizophrenia: an fMRI and neuromelanin-MRI study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:81. [PMID: 37945576 PMCID: PMC10636101 DOI: 10.1038/s41537-023-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Changes in dopamine and fronto-striato-thalamic (FST) circuit functional connectivity are prominent in schizophrenia. Dopamine is thought to underlie connectivity changes, but experimental evidence for this hypothesis is lacking. Previous studies examined the association in some of the connections using positron emission tomography (PET) and functional MRI (fMRI); however, PET has disadvantages in scanning patients, such as invasiveness. Excessive dopamine induces neuromelanin (NM) accumulation, and NM-MRI is suggested as a noninvasive proxy measure of dopamine function. We aimed to investigate the association between NM and FST circuit connectivity at the network level in patients with schizophrenia. We analysed substantia nigra NM-MRI and resting-state fMRI data from 29 schizophrenia patients and 63 age- and sex-matched healthy controls (HCs). We identified the FST subnetwork with abnormal connectivity found in schizophrenia patients compared to that of HCs and investigated the relationship between constituting connectivity and NM-MRI signal. We found a higher NM signal (t = -2.12, p = 0.037) and a hypoconnected FST subnetwork (FWER-corrected p = 0.014) in schizophrenia patients than in HCs. In the hypoconnected subnetwork of schizophrenia patients, lower left supplementary motor area-left caudate connectivity was associated with a higher NM signal (β = -0.38, p = 0.042). We demonstrated the association between NM and FST circuit connectivity. Considering that the NM-MRI signal reflects dopamine function, our results suggest that dopamine underlies changes in FST circuit connectivity, which supports the dopamine hypothesis. In addition, this study reveals implications for the future use of NM-MRI in investigations of the dopamine system.
Collapse
Affiliation(s)
- Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eun-Jung Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jungha Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Soo Cho
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Pedersen R, Johansson J, Salami A. Dopamine D1-signaling modulates maintenance of functional network segregation in aging. AGING BRAIN 2023; 3:100079. [PMID: 37408790 PMCID: PMC10318303 DOI: 10.1016/j.nbas.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
Past research has shown that as individuals age, there are decreases in within-network connectivity and increases in between-network connectivity, a pattern known as functional dedifferentiation. While the mechanisms behind reduced network segregation are not fully understood, evidence suggests that age-related differences in the dopamine (DA) system may play a key role. The DA D1-receptor (D1DR) is the most abundant and age-sensitive receptor subtype in the dopaminergic system, known to modulate synaptic activity and enhance the specificity of the neuronal signals. In this study from the DyNAMiC project (N = 180, 20-79y), we set out to investigate the interplay among age, functional connectivity, and dopamine D1DR availability. Using a novel application of multivariate Partial Least squares (PLS), we found that older age, and lower D1DR availability, were simultaneously associated with a pattern of decreased within-network and increased between-network connectivity. Individuals who expressed greater distinctiveness of large-scale networks exhibited more efficient working memory. In line with the maintenance hypotheses, we found that older individuals with greater D1DR in caudate exhibited less dedifferentiation of the connectome, and greater working memory, compared to their age-matched counterparts with less D1DR. These findings suggest that dopaminergic neurotransmission plays an important role in functional dedifferentiation in aging with consequences for working memory function at older age.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
14
|
Matera C, Calvé P, Casadó-Anguera V, Sortino R, Gomila AMJ, Moreno E, Gener T, Delgado-Sallent C, Nebot P, Costazza D, Conde-Berriozabal S, Masana M, Hernando J, Casadó V, Puig MV, Gorostiza P. Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals. Int J Mol Sci 2022; 23:ijms231710114. [PMID: 36077512 PMCID: PMC9456102 DOI: 10.3390/ijms231710114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.
Collapse
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Pablo Calvé
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Davide Costazza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
| | - Sara Conde-Berriozabal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | - Mercè Masana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | - Jordi Hernando
- Department of Chemistry, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - M. Victoria Puig
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
15
|
Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, McNulty C, Riklund K, Wåhlin A, Papenberg G, Kalpouzos G, Bäckman L, Salami A. DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res 2022; 100:1296-1320. [PMID: 35293013 PMCID: PMC9313590 DOI: 10.1002/jnr.25039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Abstract
Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Present address:
Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholm11330Sweden
| | - Tetiana Gorbach
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Umeå School of Business, Economics and StatisticsUmeå UniversityUmeåSweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Vania Panes Lundmark
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Charlotte McNulty
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Goran Papenberg
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Lars Bäckman
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| |
Collapse
|
16
|
Cortical D1 and D2 dopamine receptor availability modulate methylphenidate-induced changes in brain activity and functional connectivity. Commun Biol 2022; 5:514. [PMID: 35637272 PMCID: PMC9151821 DOI: 10.1038/s42003-022-03434-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Dopamine signaling plays a critical role in shaping brain functional network organization and behavior. Prominent theories suggest the relative expression of D1- to D2-like dopamine receptors shapes excitatory versus inhibitory signaling, with broad consequences for cognition. Yet it remains unknown how the balance between cortical D1R versus D2R signaling coordinates the activity and connectivity of functional networks in the human brain. To address this, we collected three PET scans and two fMRI scans in 36 healthy adults (13 female/23 male; average age 43 ± 12 years), including a baseline D1R PET scan and two sets of D2R PET scans and fMRI scans following administration of either 60 mg oral methylphenidate or placebo (two separate days, blinded, order counterbalanced). The drug challenge allowed us to assess how pharmacologically boosting dopamine levels alters network organization and behavior in association with D1R-D2R ratios across the brain. We found that the relative D1R-D2R ratio was significantly greater in high-level association cortices than in sensorimotor cortices. After stimulation with methylphenidate compared to placebo, brain activity (as indexed by the fractional amplitude of low frequency fluctuations) increased in association cortices and decreased in sensorimotor cortices. Further, within-network resting state functional connectivity strength decreased more in sensorimotor than association cortices following methylphenidate. Finally, in association but not sensorimotor cortices, the relative D1R-D2R ratio (but not the relative availability of D1R or D2R alone) was positively correlated with spatial working memory performance, and negatively correlated with age. Together, these data provide a framework for how dopamine-boosting drugs like methylphenidate alter brain function, whereby regions with relatively higher inhibitory D2R (i.e., sensorimotor cortices) tend to have greater decreases in brain activity and connectivity compared to regions with relatively higher excitatory D1R (i.e., association cortices). They also support the importance of a balanced interaction between D1R and D2R in association cortices for cognitive function and its degradation with aging. Joint PET and MRI analyses of cortical D1 and D2 dopamine receptors in healthy adults provide a framework for understanding how dopamine-boosting drugs alter brain function.
Collapse
|
17
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Gupta S, Prakash A, Medhi B. Imaging techniques in drug development. Indian J Pharmacol 2022; 54:309-313. [PMID: 36537398 PMCID: PMC9846912 DOI: 10.4103/ijp.ijp_533_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Shreya Gupta
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India,Address for correspondence: Prof. Bikash Medhi, Department of Pharmacology, PGIMER, Chandigarh - 160 012, India. E-mail:
| |
Collapse
|
19
|
Malviya G, Siow B. Hybrid PET/MR systems. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Savchenko A, Müller C, Lubec J, Leo D, Korz V, Afjehi-Sadat L, Malikovic J, Sialana FJ, Lubec G, Sukhanov I. The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes. Front Psychiatry 2022; 13:799433. [PMID: 35370807 PMCID: PMC8971526 DOI: 10.3389/fpsyt.2022.799433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field.
Collapse
Affiliation(s)
- Artem Savchenko
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Carina Müller
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Leila Afjehi-Sadat
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Jovana Malikovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
21
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
22
|
Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, Whitman AJ, Jagust WJ, Berry AS. Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. Cereb Cortex 2021; 32:2762-2772. [PMID: 34718454 DOI: 10.1093/cercor/bhab379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with declines in multiple components of the dopamine system including loss of dopamine-producing neurons, atrophy of the dopamine system's cortical targets, and reductions in the density of dopamine receptors. Countering these patterns, dopamine synthesis appears to be stable or elevated in older age. We tested the hypothesis that elevation in dopamine synthesis in aging reflects a compensatory response to neuronal loss rather than a nonspecific monotonic shift in older age. We measured individual differences in striatal dopamine synthesis capacity in cognitively normal older adults using [18F]Fluoro-l-m-tyrosine positron emission tomography cross-sectionally and tested relationships with longitudinal reductions in cortical thickness and working memory decline beginning up to 13 years earlier. Consistent with a compensation account, older adults with the highest dopamine synthesis capacity were those with greatest atrophy in posterior parietal cortex. Elevated dopamine synthesis capacity was not associated with successful maintenance of working memory performance overall, but had a moderating effect such that higher levels of dopamine synthesis capacity reduced the impact of atrophy on cognitive decline. Together, these findings support a model by which upregulation of dopamine synthesis represents a mechanism of cognitive resilience in aging.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Molly R Lapoint
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin N Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan M Taylor
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Victoria R Tennant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - A J Whitman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
23
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
24
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Maurer A, Pichler BJ, Wehrl HF, Herfert K. Striatal and prefrontal D2R and SERT distributions contrastingly correlate with default-mode connectivity. Neuroimage 2021; 243:118501. [PMID: 34428573 DOI: 10.1016/j.neuroimage.2021.118501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022] Open
Abstract
Although brain research has taken important strides in recent decades, the interaction and coupling of its different physiological levels is still not elucidated. Specifically, the molecular substrates of resting-state functional connectivity (rs-FC) remain poorly understood. The aim of this study was elucidating interactions between dopamine D2 receptors (D2R) and serotonin transporter (SERT) availabilities in the striatum (CPu) and medial prefrontal cortex (mPFC), two of the main dopaminergic and serotonergic projection areas, and the default-mode network. Additionally, we delineated its interaction with two other prominent resting-state networks (RSNs), the salience network (SN) and the sensorimotor network (SMN). To this extent, we performed simultaneous PET/fMRI scans in a total of 59 healthy rats using [11C]raclopride and [11C]DASB, two tracers used to image quantify D2R and SERT respectively. Edge, node and network-level rs-FC metrics were calculated for each subject and potential correlations with binding potentials (BPND) in the CPu and mPFC were evaluated. We found widespread negative associations between CPu D2R availability and all the RSNs investigated, consistent with the postulated role of the indirect basal ganglia pathway. Correlations between D2Rs in the mPFC were weaker and largely restricted to DMN connectivity. Strikingly, medial prefrontal SERT correlated both positively with anterior DMN rs-FC and negatively with rs-FC between and within the SN, SMN and the posterior DMN, underlining the complex role of serotonergic neurotransmission in this region. Here we show direct relationships between rs-FC and molecular properties of the brain as assessed by simultaneous PET/fMRI in healthy rodents. The findings in the present study contribute to the basic understanding of rs-FC by revealing associations between inter-subject variances of rs-FC and receptor and transporter availabilities. Additionally, since current therapeutic strategies typically target neurotransmitter systems with the aim of normalizing brain function, delineating associations between molecular and network-level brain properties is essential and may enhance the understanding of neuropathologies and support future drug development.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
25
|
Onuki Y, Ono S, Nakajima T, Kojima K, Taga N, Ikeda T, Kuwajima M, Kurokawa Y, Kato M, Kawai K, Osaka H, Sato T, Muramatsu SI, Yamagata T. Dopaminergic restoration of prefrontal cortico-putaminal network in gene therapy for aromatic l-amino acid decarboxylase deficiency. Brain Commun 2021; 3:fcab078. [PMID: 34423296 PMCID: PMC8374966 DOI: 10.1093/braincomms/fcab078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) is an essential dopamine-synthesizing enzyme. In children with AADC deficiency, the gene delivery of AADC into the putamen, which functionally interacts with cortical regions, was found to improve motor function and ameliorate dystonia. However, how the restoration of dopamine in the putamen in association with cortico-putaminal networks leads to therapeutic effects remains unclear. Here, we examined neuroimaging data of eight patients with AADC deficiency (five males and three females, age range 4-19 years) who received the AADC gene therapy of the bilateral putamen in an open-label phase 1/2 study. Using high-resolution positron emission tomography with a specific AADC tracer, 6-[18F]fluoro-l-m-tyrosine (FMT), we showed that FMT uptake increased in the broad area of the putamen over the years. Then, with the structural connectivity-based parcellation of the putaminal area, we found that motor improvement is associated with dopaminergic restoration of the putaminal area that belongs to the prefrontal cortico-putaminal network. The prefrontal area dominantly belongs to the frontoparietal control network, which contributes to cognitive-motor control function, including motor initiation and planning. The results suggest that putaminal dopamine promotes the development of an immature motor control system, particularly in the human prefrontal cortex that is primarily affected by AADC deficiency.
Collapse
Affiliation(s)
- Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Sayaka Ono
- Department of Neurology, Saiseikai Kurihashi Hospital, Saitama 349-1105, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Karin Kojima
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naoyuki Taga
- Department of Anesthesiology and Critical Care Medicine, Division of Anesthesiology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Mari Kuwajima
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshie Kurokawa
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan.,Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | | | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi 329-0498, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
26
|
Tardiff N, Medaglia JD, Bassett DS, Thompson-Schill SL. The modulation of brain network integration and arousal during exploration. Neuroimage 2021; 240:118369. [PMID: 34242784 PMCID: PMC8507424 DOI: 10.1016/j.neuroimage.2021.118369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship between brainstem arousal systems and functional connectivity has not been assessed within the context of a task with an established relationship between arousal and behavior, with most prior studies relying on incidental variations in arousal or pharmacological manipulation and static brain networks constructed over long periods of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, arousal—as measured indirectly via pupil diameter—and brain network dynamics. Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that were more segregated in terms of connectivity and topology but more integrated with respect to the diversity of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle S Bassett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States; Santa Fe Institute, Santa Fe, NM, United States
| | | |
Collapse
|
27
|
Braun U, Harneit A, Pergola G, Menara T, Schäfer A, Betzel RF, Zang Z, Schweiger JI, Zhang X, Schwarz K, Chen J, Blasi G, Bertolino A, Durstewitz D, Pasqualetti F, Schwarz E, Meyer-Lindenberg A, Bassett DS, Tost H. Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat Commun 2021; 12:3478. [PMID: 34108456 PMCID: PMC8190281 DOI: 10.1038/s41467-021-23694-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory performance entails brain-wide switching between activity states using a combination of functional magnetic resonance imaging in healthy controls and individuals with schizophrenia, pharmacological fMRI, genetic analyses and network control theory. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Individuals with schizophrenia show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations. Our results demonstrate the relevance of dopamine signaling for the steering of whole-brain network dynamics during working memory and link these processes to schizophrenia pathophysiology. Working memory requires the brain to switch between cognitive states and activity patterns. Here, the authors show that the steering of these neural network dynamics is influenced by dopamine D1- and D2-receptor function and altered in schizophrenia.
Collapse
Affiliation(s)
- Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. .,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Anais Harneit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Menara
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Gießen, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Gießen, Germany
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Pasqualetti
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
28
|
McCutcheon RA, Brown K, Nour MM, Smith SM, Veronese M, Zelaya F, Osugo M, Jauhar S, Hallett W, Mehta MM, Howes OD. Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness. SCIENCE ADVANCES 2021; 7:7/24/eabg1512. [PMID: 34108214 PMCID: PMC8189589 DOI: 10.1126/sciadv.abg1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/15/2021] [Indexed: 05/02/2023]
Abstract
Dopamine signaling is constrained to discrete tracts yet has brain-wide effects on neural activity. The nature of this relationship between local dopamine signaling and brain-wide neuronal activity is not clearly defined and has relevance for neuropsychiatric illnesses where abnormalities of cortical activity and dopamine signaling coexist. Using simultaneous PET-MRI in healthy volunteers, we find strong evidence that patterns of striatal dopamine signaling and cortical blood flow (an index of local neural activity) contain shared information. This shared information links amphetamine-induced changes in gradients of striatal dopamine receptor availability to changes in brain-wide blood flow and is informed by spatial patterns of gene expression enriched for genes implicated in schizophrenia, bipolar disorder, and autism spectrum disorder. These results advance our knowledge of the relationship between cortical function and striatal dopamine, with relevance for understanding pathophysiology and treatment of diseases in which simultaneous aberrations of these systems exist.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Kirsten Brown
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Stephen M Smith
- Oxford University Centre for Functional MRI of the Brain (FMRIB), Oxford, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - William Hallett
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, UK
| | - Mitul M Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
29
|
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021; 10:735. [PMID: 33810328 PMCID: PMC8066851 DOI: 10.3390/cells10040735] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter involved in multiple physiological functions including motor control, modulation of affective and emotional states, reward mechanisms, reinforcement of behavior, and selected higher cognitive functions. Dysfunction in dopaminergic transmission is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we will discuss the current insights on the role of DA in motor control and reward learning mechanisms and its involvement in the modulation of synaptic dynamics through different pathways. In particular, we will consider the role of DA as neuromodulator of two forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD) in several cortical and subcortical areas. Finally, we will delineate how the effect of DA on dendritic spines places this molecule at the interface between the motor and the cognitive systems. Specifically, we will be focusing on PD, vascular dementia, and schizophrenia.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Antonio de Donato
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
30
|
Cumming P, Abi-Dargham A, Gründer G. Molecular imaging of schizophrenia: Neurochemical findings in a heterogeneous and evolving disorder. Behav Brain Res 2020; 398:113004. [PMID: 33197459 DOI: 10.1016/j.bbr.2020.113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The past four decades have seen enormous efforts placed on a search for molecular markers of schizophrenia using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this narrative review, we cast a broad net to define and summarize what researchers have learned about schizophrenia from molecular imaging studies. Some PET studies of brain energy metabolism with the glucose analogue FDGhave have shown a hypofrontality defect in patients with schizophrenia, but more generally indicate a loss of metabolic coherence between different brain regions. An early finding of significantly increased striatal trapping of the dopamine synthesis tracer FDOPA has survived a meta-analysis of many replications, but the increase is not pathognomonic of the disorder, since one half of patients have entirely normal dopamine synthesis capacity. Similarly, competition SPECT studies show greater basal and amphetamine-evoked dopamine occupancy at post-synaptic dopamine D2/3 receptors in patients with schizophrenia, but the difference is likewise not pathognomonic. We thus propose that molecular imaging studies of brain dopamine indicate neurochemical heterogeneity within the diagnostic entity of schizophrenia. Occupancy studies have established the relevant target engagement by antipsychotic medications at dopamine D2/3 receptors in living brain. There is evidence for elevated frontal cortical dopamine D1 receptors, especially in relation to cognitive deficits in schizophrenia. There is a general lack of consistent findings of abnormalities in serotonin markers, but some evidence for decreased levels of nicotinic receptors in patients. There are sparse and somewhat inconsistent findings of reduced binding of muscarinic, glutamate, and opioid receptors ligands, inconsistent findings of microglial activation, and very recently, evidence of globally reduced levels of synaptic proteins in brain of patients. One study reports a decline in histone acetylase binding that is confined to the dorsolateral prefrontal cortex. In most contexts, the phase of the disease and effects of past or present medication can obscure or confound PET and SPECT findings in schizophrenia.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| | - Anissa Abi-Dargham
- Stony Brook University, Renaissance School of Medicine, Stony Brook, New York, USA
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
31
|
Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging. Front Physiol 2020; 11:792. [PMID: 32792972 PMCID: PMC7385290 DOI: 10.3389/fphys.2020.00792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Positron emission tomography (PET) neuroimaging in neuropsychiatry is a powerful tool for the quantification of molecular brain targets to characterize disease, assess disease subtype differences, evaluate short- and long-term effects of treatments, or even to measure neurotransmitter levels in healthy and psychiatric conditions. In this work, we present different methodological approaches (time-invariant models and models with time-varying terms) that have been used to measure dynamic changes in neurotransmitter levels induced by pharmacological or behavioral challenges in humans. The developments and potential use of hybrid PET/magnetic resonance imaging (MRI) for neurotransmission brain research will also be highlighted.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Heather Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Evan D Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University, New Haven, CT, United States.,Invicro LLC, New Haven, CT, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
33
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
34
|
Turner MP, Fischer H, Sivakolundu DK, Hubbard NA, Zhao Y, Rypma B, Bäckman L. Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performance. Neuroimage 2020; 206:116232. [PMID: 31593794 DOI: 10.1016/j.neuroimage.2019.116232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Facial recognition ability declines in adult aging, but the neural basis for this decline remains unknown. Cortical areas involved in face recognition exhibit lower dopamine (DA) receptor availability and lower blood-oxygen-level-dependent (BOLD) signal during task performance with advancing adult age. We hypothesized that changes in the relationship between these two neural systems are related to age differences in face-recognition ability. To test this hypothesis, we leveraged positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to measure D1 receptor binding potential (BPND) and BOLD signal during face-recognition performance. Twenty younger and 20 older participants performed a face-recognition task during fMRI scanning. Face recognition accuracy was lower in older than in younger adults, as were D1 BPND and BOLD signal across the brain. Using linear regression, significant relationships between DA and BOLD were found in both age-groups in face-processing regions. Interestingly, although the relationship was positive in younger adults, it was negative in older adults (i.e., as D1 BPND decreased, BOLD signal increased). Ratios of BOLD:D1 BPND were calculated and relationships to face-recognition performance were tested. Multiple linear regression revealed a significant Group × BOLD:D1 BPND Ratio interaction. These results suggest that, in the healthy system, synchrony between neurotransmitter (DA) and hemodynamic (BOLD) systems optimizes the level of BOLD activation evoked for a given DA input (i.e., the gain parameter of the DA input-neural activation function), facilitating task performance. In the aged system, however, desynchronization between these brain systems would reduce the gain parameter of this function, adversely impacting task performance and contributing to reduced face recognition in older adults.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Activation of the mGlu 1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M 4 muscarinic receptor allosteric modulators. Mol Psychiatry 2020; 25:2786-2799. [PMID: 30116027 PMCID: PMC6588501 DOI: 10.1038/s41380-018-0206-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Recent clinical and preclinical studies suggest that selective activators of the M4 muscarinic acetylcholine receptor have potential as a novel treatment for schizophrenia. M4 activation inhibits striatal dopamine release by mobilizing endocannabinoids, providing a mechanism for local effects on dopamine signaling in the striatum but not in extrastriatal areas. G protein-coupled receptors (GPCRs) typically induce endocannabinoid release through activation of Gαq/11-type G proteins whereas M4 transduction occurs through Gαi/o-type G proteins. We now report that the ability of M4 to inhibit dopamine release and induce antipsychotic-like effects in animal models is dependent on co-activation of the Gαq/11-coupled mGlu1 subtype of metabotropic glutamate (mGlu) receptor. This is especially interesting in light of recent findings that multiple loss of function single nucleotide polymorphisms (SNPs) in the human gene encoding mGlu1 (GRM1) are associated with schizophrenia, and points to GRM1/mGlu1 as a gene within the "druggable genome" that could be targeted for the treatment of schizophrenia. Herein, we report that potentiation of mGlu1 signaling following thalamo-striatal stimulation is sufficient to inhibit striatal dopamine release, and that a novel mGlu1 positive allosteric modulator (PAM) exerts robust antipsychotic-like effects through an endocannabinoid-dependent mechanism. However, unlike M4, mGlu1 does not directly inhibit dopamine D1 receptor signaling and does not reduce motivational responding. Taken together, these findings highlight a novel mechanism of cross talk between mGlu1 and M4 and demonstrate that highly selective mGlu1 PAMs may provide a novel strategy for the treatment of positive symptoms associated with schizophrenia.
Collapse
|
36
|
Lövdén M, Karalija N, Andersson M, Wåhlin A, Axelsson J, Köhncke Y, Jonasson LS, Rieckman A, Papenberg G, Garrett DD, Guitart-Masip M, Salami A, Riklund K, Bäckman L, Nyberg L, Lindenberger U. Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations. Cereb Cortex 2019; 28:3894-3907. [PMID: 29028935 DOI: 10.1093/cercor/bhx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ylva Köhncke
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars S Jonasson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Center for Aging and Demographic Research, CEDAR, Umeå University, Umeå, Sweden
| | - Anna Rieckman
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, San Domenico di Fiesole (FI), Italy
| |
Collapse
|
37
|
Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:637-643. [PMID: 31687471 PMCID: PMC6819871 DOI: 10.1016/j.trci.2019.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction We investigated the effects of zerumbone (1 and 10 mg/kg) against hyperactivity, anxiety and memory impairment in scopolamine-induced dementia in Sprague-Dawley rats. Methods Open field tests, elevated plus maze and Morris water maze were performed to assess general locomotor activity, anxiety-like behaviours and learning and memory processes respectively in rats pretreated with scopolamine. Results Scopolamine-treated rats showed high total activity, stereotype, and total distance travelled in the open field arena, reduced number of entries to open arms, decreased the percentage of time spent in open arms and higher escape latency time in the Morris water maze test. Interestingly, single administration of zerumbone (1 and 10 mg/kg) reversed the hyperactivity, anxiety-like behaviours, and learning impairment effects of scopolamine in the three experimental model studied respectively. Discussion Our findings demonstrated that the scopolamine-induced impairment of learning and memory was reversed by the administration of zerumbone. As a conclusion, our findings presented the positive effects of zerumbone on dementia-like behaviours in the animal model used and could possibly contribute for future research to manage hyperactivity, anxiety, and learning disabilities.
Collapse
|
38
|
Hope TA, Fayad ZA, Fowler KJ, Holley D, Iagaru A, McMillan AB, Veit-Haiback P, Witte RJ, Zaharchuk G, Catana C. Summary of the First ISMRM-SNMMI Workshop on PET/MRI: Applications and Limitations. J Nucl Med 2019; 60:1340-1346. [PMID: 31123099 PMCID: PMC6785790 DOI: 10.2967/jnumed.119.227231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of simultaneous PET/MRI in 2011, there have been significant advancements. In this review, we highlight several technical advancements that have been made primarily in attenuation and motion correction and discuss the status of multiple clinical applications using PET/MRI. This review is based on the experience at the first PET/MRI conference cosponsored by the International Society for Magnetic Resonance in Medicine and the Society of Nuclear Medicine and Molecular Imaging.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathryn J Fowler
- Department of Radiology, University of California San Diego, San Diego, California
| | - Dawn Holley
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Andrei Iagaru
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrick Veit-Haiback
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Robert J Witte
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; and
| | - Greg Zaharchuk
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
39
|
Nour MM, Dahoun T, McCutcheon RA, Adams RA, Wall MB, Howes OD. Task-induced functional brain connectivity mediates the relationship between striatal D2/3 receptors and working memory. eLife 2019; 8:e45045. [PMID: 31290741 PMCID: PMC6620042 DOI: 10.7554/elife.45045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Working memory performance is thought to depend on both striatal dopamine 2/3 receptors (D2/3Rs) and task-induced functional organisation in key cortical brain networks. Here, we combine functional magnetic resonance imaging and D2/3R positron emission tomography in 51 healthy volunteers, to investigate the relationship between working memory performance, task-induced default mode network (DMN) functional connectivity changes, and striatal D2/3R availability. Increasing working memory load was associated with reduced DMN functional connectivity, which was itself associated with poorer task performance. Crucially, the magnitude of the DMN connectivity reduction correlated with striatal D2/3R availability, particularly in the caudate, and this relationship mediated the relationship between striatal D2/3R availability and task performance. These results inform our understanding of natural variation in working memory performance, and have implications for understanding age-related cognitive decline and cognitive impairments in neuropsychiatric disorders where dopamine signalling is altered.
Collapse
Affiliation(s)
- Matthew M Nour
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchUniversity College LondonLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging (WCHN)University College LondonLondonUnited Kingdom
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
| | - Rick A Adams
- Institute of Cognitive Neuroscience (ICN)University College LondonLondonUnited Kingdom
- Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences (Invicro Ltd)Hammersmith HospitalLondonUnited Kingdom
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Zhang H, Xiong Z, He Q, Fan F. ACSS2-related autophagy has a dual impact on memory. Chin Neurosurg J 2019; 5:14. [PMID: 32922914 PMCID: PMC7398205 DOI: 10.1186/s41016-019-0162-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degenerative pathway which is responsible for neuronal survival. Under the condition of nutrient deprivation, autophagy can lead to dysfunction in memory consolidation. AMPK/mTOR pathway is currently the most studied autophagy mechanism, while recently researchers have proved ACSS2 can also affect autophagy. ACSS2 is phosphorylated at Ser659 by AMPK and then forms a translocation complex with Importin α5 to translocate into the nucleus. This process interacts with TFEB, resulting in upregulated expression of lysosomal and autophagosomal genes. These upregulations inhibit synaptic plasticity and hence memory functions. On the other hand, ACSS2 is also recognized as a regulator of histone acetylation. After recruiting CBP/p300 and activating CBP's HAT activity in the nucleus, ACSS2 maintains the level of localized histone acetylation by recapturing acetate from histone deacetylation to reform acetyl-CoA, providing substrates for HAT. The increase of histone acetylation locally enhanced immediate early gene transcription, including Egr2, Fos, Nr2f2, Sgk1, and Arc, to benefit neuronal plasticity and memory in many ways.
Collapse
Affiliation(s)
- Hao Zhang
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Zujian Xiong
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Qin He
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Fan Fan
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| |
Collapse
|
41
|
Prenatal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice. Neuropharmacology 2019; 150:1-14. [DOI: 10.1016/j.neuropharm.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
|
42
|
Catana C. Development of Dedicated Brain PET Imaging Devices: Recent Advances and Future Perspectives. J Nucl Med 2019; 60:1044-1052. [PMID: 31028166 DOI: 10.2967/jnumed.118.217901] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Whole-body PET scanners are not optimized for imaging small structures in the human brain. Several PET devices specifically designed for this task have been proposed either for stand-alone operation or as MR-compatible inserts. The main distinctive features of some of the most recent concepts and their performance characteristics, with a focus on spatial resolution and sensitivity, are reviewed. The trade-offs between the various performance characteristics, desired capabilities, and cost that need to be considered when designing a dedicated brain scanner are presented. Finally, the aspirational goals for future-generation scanners, some of the factors that have contributed to the current status, and how recent advances may affect future developments in dedicated brain PET instrumentation are briefly discussed.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
43
|
Manivannan A, Foran W, Jalbrzikowski M, Murty VP, Haas GL, Tarcijonas G, Luna B, Sarpal DK. Association Between Duration of Untreated Psychosis and Frontostriatal Connectivity During Maintenance of Visuospatial Working Memory. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:454-461. [PMID: 30852127 DOI: 10.1016/j.bpsc.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND A longer duration of untreated psychosis (DUP) has been linked with poor clinical outcomes and variation in resting-state striatal connectivity with central executive regions. However, the link between DUP and task-based activation of executive neurocognition has not previously been examined. This functional magnetic resonance imaging study examined the association between DUP and both activation and frontostriatal functional connectivity during a visual working memory (WM) paradigm in patients with first-episode psychosis. METHODS Patients with first-episode psychosis (n = 37) underwent functional magnetic resonance imaging scanning while performing a visual WM task. At the single-subject level, task conditions were modeled; at the group level, each condition was examined along with DUP. Activation was examined within the dorsolateral prefrontal cortex, a primary region supporting visual WM activation. Frontostriatal functional connectivity during the WM was examined via psychophysical interaction between the dorsal caudate and the dorsolateral prefrontal cortex. Results were compared with a reference range of connectivity values in a matched group of healthy volunteers (n = 25). Task performance was also examined in relation to neuroimaging findings. RESULTS No significant association was observed between DUP and WM activation. Longer DUP showed less functional frontostriatal connectivity with the maintenance of increasing WM load. Results were not related to task performance measures, consistent with previous work. CONCLUSIONS Our data suggest that DUP may affect frontostriatal circuitry that supports executive functioning. Future work is necessary to examine if these findings contribute to the mechanism underlying the relationship between DUP and worsened clinical outcomes.
Collapse
Affiliation(s)
- Ashwinee Manivannan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Gretchen L Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
44
|
Sander CY, Mandeville JB, Wey HY, Catana C, Hooker JM, Rosen BR. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation. J Cereb Blood Flow Metab 2019; 39:131-146. [PMID: 28816571 PMCID: PMC6311667 DOI: 10.1177/0271678x17725418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO2) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D2/D3 receptor binding of [11C]raclopride or [18F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BPND) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [11C]raclopride or [18F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.
Collapse
Affiliation(s)
- Christin Y Sander
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Joseph B Mandeville
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Hsiao-Ying Wey
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Ciprian Catana
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Jacob M Hooker
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- 1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,2 Harvard Medical School, Boston, MA, USA.,3 Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| |
Collapse
|
45
|
Dopamine D 2/3 Binding Potential Modulates Neural Signatures of Working Memory in a Load-Dependent Fashion. J Neurosci 2018; 39:537-547. [PMID: 30478031 PMCID: PMC6335744 DOI: 10.1523/jneurosci.1493-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA (measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA–BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D2/3 PET assessment using [11C]raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D2/3 receptors to BOLD response in the thalamo–striatal–cortical circuit, which supports WM functioning. Critically, the DA–BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA–BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA–BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks. SIGNIFICANCE STATEMENT Dopamine (DA) is a major neuromodulator in the CNS and plays a key role in several cognitive processes via modulating the blood oxygenation level-dependent (BOLD) signal. Some studies have shown a link between DA and BOLD, whereas others have failed to observe such a relationship. A possible reason for the discrepancy is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. We examined the relationship of DA to BOLD response during working memory under three load conditions and found that the DA–BOLD association is expressed in a load-dependent fashion. These findings may help explain the disproportionate impairment evident in more effortful cognitive tasks in normal aging and in those suffering dopamine-dependent neurodegenerative diseases (e.g., Parkinson's disease).
Collapse
|
46
|
Najafi H, Hosseini SM, Tavallaie M, Soltani BM. A Predicted Molecular Model for Development of Human Intelligence. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Dukart J, Holiga Š, Chatham C, Hawkins P, Forsyth A, McMillan R, Myers J, Lingford-Hughes AR, Nutt DJ, Merlo-Pich E, Risterucci C, Boak L, Umbricht D, Schobel S, Liu T, Mehta MA, Zelaya FO, Williams SC, Brown G, Paulus M, Honey GD, Muthukumaraswamy S, Hipp J, Bertolino A, Sambataro F. Cerebral blood flow predicts differential neurotransmitter activity. Sci Rep 2018; 8:4074. [PMID: 29511260 PMCID: PMC5840131 DOI: 10.1038/s41598-018-22444-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans.
Collapse
Affiliation(s)
- Juergen Dukart
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland.
| | - Štefan Holiga
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Christopher Chatham
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Peter Hawkins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jim Myers
- Neuropsychopharmacology Unit, Imperial College London, London, United Kingdom
| | | | - David J Nutt
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Emilio Merlo-Pich
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Celine Risterucci
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Lauren Boak
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Daniel Umbricht
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Scott Schobel
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Thomas Liu
- Center for Functional MRI, University of California San Diego, 9500 Gilman Drive MC 0677, La Jolla, CA 92093, United States
- Departments of Radiology, Psychiatry and Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Gregory Brown
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Martin Paulus
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Garry D Honey
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Hipp
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Alessandro Bertolino
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Institute Of Psychiatry, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Sambataro
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| |
Collapse
|
48
|
Sander CY, Hesse S. News and views on in-vivo imaging of neurotransmission using PET and MRI. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2017; 61:414-428. [PMID: 28750497 PMCID: PMC5916779 DOI: 10.23736/s1824-4785.17.03019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular neuroimaging with PET is an integrated tool in psychiatry research and drug-development for as long as this modality has been available, in particular for studying neurotransmission and endogenous neurotransmitter release. Pharmacologic, behavioral and other types of challenges are currently applied to induce changes in neurochemical levels that can be inferred through their effects on changes in receptor binding and related outcome measures. Based on the availability of tracers that are sensitive for measuring neurotransmitter release these experiments have focused on the brain's dopamine system, while recent developments have extended those studies to other targets such as the serotonin or choline system. With the introduction of hybrid, truly simultaneous PET/MRI systems, in-vivo imaging of the dynamics of neuroreceptor signal transmission in the brain using PET and functional MRI (fMRI) has become possible. fMRI has the ability to provide information about the effects of receptor function that are complementary to the PET measurement. Dynamic acquisition of both PET and fMRI signals enables not only an in-vivo real-time assessment of neurotransmitter or drug binding to receptors but also dynamic receptor adaptations and receptor-specific neurotransmission. While fMRI temporal resolution is comparatively fast in relation to PET, the timescale of observable biological processes is highly dependent on the kinetics of radiotracers and study design. Overall, the combination of the specificity of PET radiotracers to neuroreceptors, fMRI signal as a functional readout and integrated study design promises to expand our understanding of the location, propagation and connections of brain activity in health and disease.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA -
- Harvard Medical School, Boston, MA, USA -
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Treatment and Research Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
49
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
50
|
Albaugh MD, Orr C, Chaarani B, Althoff RR, Allgaier N, Alberto ND, Hudson K, Mackey S, Spechler PA, Banaschewski T, Brühl R, Bokde AL, Bromberg U, Büchel C, Cattrell A, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Goodman R, Gowland P, Grimmer Y, Heinz A, Kappel V, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Penttilä J, Poustka L, Paus T, Smolka MN, Struve M, Walter H, Whelan R, Schumann G, Garavan H, Potter AS. Inattention and Reaction Time Variability Are Linked to Ventromedial Prefrontal Volume in Adolescents. Biol Psychiatry 2017; 82:660-668. [PMID: 28237458 PMCID: PMC5509516 DOI: 10.1016/j.biopsych.2017.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability-an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. METHODS Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. RESULTS Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. CONCLUSIONS This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD.
Collapse
Affiliation(s)
- Matthew D. Albaugh
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Catherine Orr
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Robert R. Althoff
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nicholas D’ Alberto
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kelsey Hudson
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Philip A. Spechler
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [or depending on journal requirements can be: Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2 - 12, Berlin, Germany
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Anna Cattrell
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Patricia J. Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Canada;,Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l’Energie Atomique, CEA-Saclay Center, Paris, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg
| | - Robert Goodman
- King’s College London Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Yvonne Grimmer
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Viola Kappel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- INSERM, UMR 1000, Research Unit NeuroImaging and Psychiatry, Service Hospitalier Frédéric Joliot, Orsay, University Paris-Sud, University Paris Saclay, Orsay, and Maison De Solenn, University Paris Descartes, Paris, France AP-HP, Department of Adolescent Psychopathology and Medicine, Maison De Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Jani Penttilä
- University of Tampere, Medical School, Tampere, Finland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Maren Struve
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Alexandra S. Potter
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|