1
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Lusk BG, Morgan S, Mulvaney SP, Blue B, LaGasse SW, Cress CD, Bjerg JT, Lee WK, Eddie BJ, Robinson JT. Hydrated cable bacteria exhibit protonic conductivity over long distances. Proc Natl Acad Sci U S A 2025; 122:e2416008122. [PMID: 39805007 PMCID: PMC11789020 DOI: 10.1073/pnas.2416008122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
This study presents the direct measurement of proton transport along filamentous Desulfobulbaceae, or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm. We find that protonic conductivity (σP) along cable bacteria varies between samples and is measured as high as 114 ± 28 µS cm-1 at 25 °C and 70% relative humidity (RH). For cable bacteria, the protonic conductance (GP) and σP are dependent upon the RH, increasing by as much as 26-fold between 60% and 80% RH. This observation implies that proton transport occurs via the Grotthuss mechanism along water associated with cable bacteria, forming proton wires. In order to determine σP and GP along cable bacteria, we implemented a protocol using a modified transfer-printing technique to deposit either palladium interdigitated protodes (IDP), palladium transfer length method (TLM) protodes, or gold interdigitated electrodes (IDE) on top of cable bacteria. Due to the relatively mild nature of the transfer-printing technique, this method should be applicable to a broad array of biological samples and curved materials. The observation of protonic conductivity in cable bacteria presents possibilities for investigating the importance of long-distance proton transport in microbial ecosystems and to potentially build biotic or biomimetic scaffolds to interface with materials via proton-mediated gateways or channels.
Collapse
Affiliation(s)
- Bradley G. Lusk
- Science the Earth, Mesa, AZ85201
- National Research Council Research Associateships Program Postdoctoral Fellow Residing in the Chemistry Division, United States Naval Research Laboratory, Washington, DC20375
| | - Sheba Morgan
- Historically Black Colleges and Universities Student Residing in the Chemistry Division, United States Naval Research Laboratory, Washington, DC20375
| | - Shawn P. Mulvaney
- Chemistry Division, United States Naval Research Laboratory, Washington, DC20375
| | - Brandon Blue
- Naval Research Enterprise Internship Program Student Residing in the Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC20375
| | | | - Cory D. Cress
- Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC20375
| | - Jesper T. Bjerg
- Department of Biology, Center for Electromicrobiology, Section for Microbiology, Aarhus University, Aarhus C8000, Denmark
| | - Woo K. Lee
- Chemistry Division, United States Naval Research Laboratory, Washington, DC20375
| | - Brian J. Eddie
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC20375
| | - Jeremy T. Robinson
- Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC20375
| |
Collapse
|
3
|
Campbell AS, Minařík M, Franěk R, Vazačová M, Havelka M, Gela D, Pšenička M, Baker CVH. Opposing roles for Bmp signalling during the development of electrosensory lateral line organs. eLife 2025; 14:e99798. [PMID: 39745052 PMCID: PMC11936418 DOI: 10.7554/elife.99798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/30/2024] [Indexed: 03/26/2025] Open
Abstract
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.
Collapse
Affiliation(s)
- Alexander S Campbell
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Martin Minařík
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Roman Franěk
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Michaela Vazačová
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - David Gela
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Clare VH Baker
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
4
|
Matsui H, Takebe Y, Takahashi M, Ikemoto Y, Matsuo Y. Proton transfer driven by the fluctuation of water molecules in chitin film. J Chem Phys 2024; 161:164901. [PMID: 39435840 DOI: 10.1063/5.0235566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Proton-transfer mechanisms and hydration states were investigated in chitin films possessing the functionality of fuel-cell electrolytes. The absolute hydration number per chitin molecule (N) as a function of relative humidity (RH) was determined from the OH stretching bands of H2O molecules, and the proton conductivity was found to enhance above N = 2 (80%RH). The FIR spectrum at 500-900 cm-1 for 20%RH (N < 1) together with first-principles calculations clearly shows that the w1 site has the same hydration strength as the w2 site. The molecular dynamics simulations for N = 2 demonstrate that H2O molecules with tiny fluctuations are localized on w1 and w2, and the hydrogen-bond (HB) network is formed via the CH2OH group of chitin molecules. Shrinkage of the O-O distance (dOO), which synchronizes with the barrier height, is required for proton transfer from H3O+ to adjacent CH2OH groups or H2O molecules. Nevertheless, dOO is hardly modulated for N = 2 because H2O molecules are strongly constrained on w1 and w2, and therefore, the transfer probability becomes small. For N = 3, novel HBs emerged between the additional H2O molecules broadly distributed on the w3 site and H2O molecules on w1 and w2. The transfer probability is enhanced because large fluctuations and diffusions in the whole H2O molecule yield large modulations of dOO. Consequently, long-range proton hopping is driven by the Zundel-type protonated hydrates in the water network.
Collapse
Affiliation(s)
- Hiroshi Matsui
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Takebe
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masae Takahashi
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuka Ikemoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Yasumitsu Matsuo
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa 572-8508, Japan
| |
Collapse
|
5
|
Saran R, Klein M, Sharma B, Loke JJ, Perrin QM, Miserez A. Proton conductivity of the protein-based velvet worm slime. iScience 2024; 27:110216. [PMID: 39055923 PMCID: PMC11269932 DOI: 10.1016/j.isci.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
The properties of complex bodily fluids are linked to their biological functions through natural selection. Velvet worms capture their prey by ensnaring them with a proteinaceous fluid (slime). We examined the electrical conductivity of slime and found that dry slime is an insulator. However, its conductivity can increase by up to 106 times in its hydrated state, which can be further increased by an order in magnitude under acidic hydration (pH ≈ 2.3). The transient current measured using ion-blocking electrodes showed a continuous decay for up to 7 h, revealing slime's nature as a proton conducting material. Slime undergoes a spontaneous fibrilization process producing high aspect ratio ≈ 105 fibers that exhibit an average conductivity ≈2.4 ± 1.1 mS cm-1. These findings enhance our understanding of slime as a natural biopolymer and provide molecular-level guidelines to rationally design biomaterials that may be employed as hygroscopic conductors.
Collapse
Affiliation(s)
- Rinku Saran
- Biological and Biomimetic Material Laboratory, Centre for Sustainable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maciej Klein
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Bhargy Sharma
- Biological and Biomimetic Material Laboratory, Centre for Sustainable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jun Jie Loke
- Biological and Biomimetic Material Laboratory, Centre for Sustainable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Quentin Moana Perrin
- Biological and Biomimetic Material Laboratory, Centre for Sustainable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory, Centre for Sustainable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
6
|
Navarro S, Andrio A, Diaz-Caballero M, Ventura S, Compañ V. Harnessing prion-inspired amyloid self-assembly for sustainable and biocompatible proton conductivity. NANOSCALE ADVANCES 2024; 6:2669-2681. [PMID: 38752140 PMCID: PMC11093263 DOI: 10.1039/d4na00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Protein-based materials have emerged as promising candidates for proton-conducting biomaterials. Therefore, drawing inspiration from the amino acid composition of prion-like domains, we designed short self-assembling peptides incorporating the (X-Tyr) motif, with X representing Asn, Gly and Ser, which form fibrillar structures capable of conducting protons. In this study, we conducted an analysis of the conductivity capacity of these fibers, with a focus on temperature and frequency dependence of conductivity. The loss tangent curves data and the electrode polarization model with the Debye approximation were employed to calculate transport properties, including conductivity, diffusivity, and density of charge carriers. Results revealed the prion-like fibers can transport protons more efficiently than biomaterials and other synthetic proton conducting materials, and that a significant increase in conductivity is observed with fibrillar orientations. The temperature dependence of conductivity of the peptides, measured in wet conditions, showed conductivities following the trend σ(NY7) < σ(GY7) < σ(SY7), in all the range of temperatures studied. The Arrhenius behavior, and the activation energy associated with conductivity followed the trend: Eact (SY7) = 8.2 ± 0.6 kJ mol-1 < Eact (GY7) < 13 ± 5 kJ mol-1 < Eact (NY7) = 31 ± 7 kJ mol-1, in different range of temperatures depending of the peptide. Furthermore, the diffusion coefficient correlated with increasing temperature in GY7 and SY7 fibers for temperatures compress between 20 °C and 80 °C, while NY7 only below 60 °C. However, it is noteworthy that the diffusivity observed in the SY7 peptide is lower, compared to GY7 and NY7 presumably due to its enlarged length. This observation can be attributed to two factors: firstly, the higher conductivity values observed in SY7 compared to GY7 and NY7, and secondly, to the value of relation observed of cations present in the peptide SY7 compared with GY7 and NY7, which in turn is dependent on temperature. In light of these findings, we envision our prion-inspired nanofibers as highly efficient proton-conducting natural biopolymers that are both biocompatible and biodegradable. These properties provide the opportunity for the development of next-generation bioelectrical interfaces and protonic devices.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biología Molecular, Universitat Autónoma de Barcelona 08193 Bellaterra Barcelona Spain
| | - Andreu Andrio
- Dpto. Física. Universitat Jaume I Avda. Sos, Baynat s/n Castellon 12071 Spain
| | - Marta Diaz-Caballero
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biología Molecular, Universitat Autónoma de Barcelona 08193 Bellaterra Barcelona Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biología Molecular, Universitat Autónoma de Barcelona 08193 Bellaterra Barcelona Spain
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València Camino de Vera s/n 46020 Valencia Spain
| |
Collapse
|
7
|
Zhu R, Sun P, Cui G, Zhao J, Yu Y. Engineering Interconnected Nanofluidic Channel in a Hydrogel Supernetwork toward K + Ion Accelerating Transport and Efficient Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38696547 DOI: 10.1021/acsami.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ion transportation via the mixed mechanisms of hydrogels underpins ultrafast biological signal transmission in nature, and its application to the rapid and sensitive sensing detection of human specific ions is of great interest for the field of medical science. However, current research efforts are still unable to achieve transmission results that are comparable to those of bioelectric signals. Herein, 3D interconnected nanochannels based on poly(pyrrole-co-dopamine)/poly(vinyl alcohol) (P(Py-co-DA)/PVA) supernetwork conductive hydrogels are designed and fabricated as stimuli-responsive structures for K+ ions. Distinct from conventional configurations, which exhibit rapid electron transfer and permeability to biosubstrates, interconnected nanofluidic nanochannels collaborated with the P(Py-co-DA) conductive polymer in the supernetwork conductive hydrogel significantly improve conductivity (88.3 mS/cm), ion transport time (0.1 s), and ion sensitivity (74.6 mV/dec). The faster ion response time is attributed to the synergism of excellent conductivity originating from the P(Py-co-DA) polymer and the electronic effect in the interconnected nanofluidic channels. Furthermore, the supernetwork conductive hydrogel demonstrates K+ ion selectivity relative to other cations in biofluids such as Na+, Mg2+, and Ca2+. The DFT calculation indicates that the small solvation energy and low chemical transfer resistance are the main reasons for the excellent K+ ion selectivity. Finite element analysis (FEA) simulations further support these experimental results. Consequently, the P(Py-co-DA)/PVA supernetwork conductive hydrogels enriched with the 3D interconnected nanofluidic channels developed in this work possess excellent sensing of K+ ions. This strategy provides great insight into efficient ion sensing in traditional biomedical sensing that has not been explored by previous researchers.
Collapse
Affiliation(s)
- Rui Zhu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Peng Sun
- Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yaoguang Yu
- School of Materials, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
8
|
Chowdhury P, Lincon A, Bhowmik S, Ojha AK, Chaki S, Samanta T, Sen A, Dasgupta S. Biodegradable Solid Polymer Electrolytes from the Discarded Cataractous Eye Protein Isolate. ACS APPLIED BIO MATERIALS 2024; 7:2240-2253. [PMID: 38326107 DOI: 10.1021/acsabm.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The protein extracted from the discarded eye lenses postcataract surgery, referred to as the cataractous eye protein isolate (CEPI), is employed as a polymer matrix for the construction of solid polymer electrolyte species (SPEs). SPEs are expected to be inexpensive, conductive, and mechanically stable in order to be economically and commercially viable. Environmentally, these materials should be biodegradable and nontoxic. Taking these factors into account, we investigated the possibility of using a discarded protein as a polymer matrix for SPEs. Natural compounds sorbitol and sinapic acid (SA) are used as the plasticizer and cross-linker, respectively, to tune the mechanical as well as electrochemical properties. The specific material formed is demonstrated to have high ionic conductivity ranging from ∼2 × 10-2 to ∼8 × 10-2 S cm-1. Without the addition of any salt, the ionic conductivity of sorbitol-plasticized non-cross-linked CEPI is ∼7.5 × 10-2 S cm-1. Upon the addition of NaCl, the conductivity is enhanced to ∼8 × 10-1 S cm-1. This study shows the possibility of utilizing a discarded protein CEPI as an alternative polymer matrix with further potential for the construction of tunable, flexible, recyclable, biocompatible, and biodegradable SPEs for flexible green electronics and biological devices.
Collapse
Affiliation(s)
- Prasun Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhijit Lincon
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shishir Bhowmik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atul Kumar Ojha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sreshtha Chaki
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tridib Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atri Sen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
An Y, Yang Z, Yang Y, Li X, Zheng X, Chen Z, Wu X, Xu B, Wang Y, He Y. Stretchable, Programmable and Magnet-Insensitive Protonic Display Based on Integrated Ionic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308875. [PMID: 37880900 DOI: 10.1002/smll.202308875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 10/27/2023]
Abstract
As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7 T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.
Collapse
Affiliation(s)
- Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yongjia Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinlei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinjia Zheng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhiwu Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xun Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Beihang Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
11
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Ramanthrikkovil Variyam A, Stolov M, Feng J, Amdursky N. Solid-State Molecular Protonics Devices of Solid-Supported Biological Membranes Reveal the Mechanism of Long-Range Lateral Proton Transport. ACS NANO 2024; 18:5101-5112. [PMID: 38314693 PMCID: PMC10867892 DOI: 10.1021/acsnano.3c11990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Lateral proton transport (PT) on the surface of biological membranes is a fundamental biochemical process in the bioenergetics of living cells, but a lack of available experimental techniques has resulted in a limited understanding of its mechanism. Here, we present a molecular protonics experimental approach to investigate lateral PT across membranes by measuring long-range (70 μm) lateral proton conduction via a few layers of lipid bilayers in a solid-state-like environment, i.e., without having bulk water surrounding the membrane. This configuration enables us to focus on lateral proton conduction across the surface of the membrane while decoupling it from bulk water. Hence, by controlling the relative humidity of the environment, we can directly explore the role of water in the lateral PT process. We show that proton conduction is dependent on the number of water molecules and their structure and on membrane composition, where we explore the role of the headgroup, the tail saturation, the membrane phase, and membrane fluidity. The measured PT as a function of temperature shows an inverse temperature dependency, which we explain by the desorption and adsorption of water molecules into the solid membrane platform. We explain our findings by discussing the role of percolating hydrogen bonding within the membrane structure in a Grotthuss-like mechanism.
Collapse
Affiliation(s)
| | - Mikhail Stolov
- Wolfson
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa 3200003, Israel
| | - Jiajun Feng
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
13
|
Soon WL, Peydayesh M, de Wild T, Donat F, Saran R, Müller CR, Gubler L, Mezzenga R, Miserez A. Renewable Energy from Livestock Waste Valorization: Amyloid-Based Feather Keratin Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47049-47057. [PMID: 37751482 DOI: 10.1021/acsami.3c10218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Increasing carbon emissions have accelerated climate change, resulting in devastating effects that are now tangible on an everyday basis. This is mirrored by a projected increase in global energy demand of approximately 50% within a single generation, urging a shift from fossil-fuel-derived materials toward greener materials and more sustainable manufacturing processes. Biobased industrial byproducts, such as side streams from the food industry, are attractive alternatives with strong potential for valorization due to their large volume, low cost, renewability, biodegradability, and intrinsic material properties. Here, we demonstrate the reutilization of industrial chicken feather waste into proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. Keratin was isolated from chicken feathers via a fast and economical process, converted into amyloid fibrils through heat treatment, and further processed into membranes with an imparted proton conductivity of 6.3 mS cm-1 using a simple oxidative method. The functionality of the membranes is demonstrated by assembling them into a hydrogen fuel cell capable of generating 25 mW cm-2 of power density to operate various types of devices using hydrogen and air as fuel. Additionally, these membranes were used to generate hydrogen through water splitting and in protonic field-effect transistors as thin-film modulators of protonic conductivity via the electrostatic gating effect. We believe that by converting industrial waste into renewable energy materials at low cost and high scalability, our green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.
Collapse
Affiliation(s)
- Wei Long Soon
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Tym de Wild
- Electrochemistry Laboratory, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Rinku Saran
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
14
|
Yang Z, Sarkar AK, Amdursky N. Glycoproteins as a Platform for Making Proton-Conductive Free-Standing Biopolymers. Biomacromolecules 2023; 24:1111-1120. [PMID: 36787188 DOI: 10.1021/acs.biomac.2c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Biopolymers are an attractive environmentally friendly alternative to common synthetic polymers, whereas primarily proteins and polysaccharides are the biomacromolecules that are used for making the biopolymer. Due to the breadth of side chains of such biomacromolecules capable of participating in hydrogen bonding, proteins and polysaccharide biopolymers were also used for the making of proton-conductive biopolymers. Here, we introduce a new platform for combining the merits of both proteins and polysaccharides while using a glycosylated protein for making the biopolymer. We use mucin as our starting point, whereas being a waste of the food industry, it is a highly available and low-cost glycoprotein. We show how we can use different chemical strategies to target either the glycan part or specific amino acids for both crosslinking between the different glycoproteins, thus making a free-standing biopolymer, as well as for introducing superior proton conductivity properties to the formed biopolymer. The resultant proton-conductive soft biopolymer is an appealing candidate for any soft bioelectronic application.
Collapse
Affiliation(s)
- Ziyu Yang
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit Kumar Sarkar
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Solid state ionics enabled ultra-sensitive detection of thermal trace with 0.001K resolution in deep sea. Nat Commun 2023; 14:170. [PMID: 36635278 PMCID: PMC9837202 DOI: 10.1038/s41467-022-35682-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
The deep sea remains the largest uncharted territory on Earth because it's eternally dark under high pressure and the saltwater is corrosive and conductive. The harsh environment poses great difficulties for the durability of the sensing method and the device. Sea creatures like sharks adopt an elegant way to detect objects by the tiny temperature differences in the seawater medium using their extremely thermo-sensitive thermoelectric sensory organ on the nose. Inspired by shark noses, we designed and developed an elastic, self-healable and extremely sensitive thermal sensor which can identify a temperature difference as low as 0.01 K with a resolution of 0.001 K. The sensor can work reliably in seawater or under a pressure of 110 MPa without any encapsulation. Using the integrated temperature sensor arrays, we have constructed a model of an effective deep water mapping and detection device.
Collapse
|
16
|
Chiesa I, De Maria C, Tonin R, Ripanti F, Ceccarini MR, Salvatori C, Mussolin L, Paciaroni A, Petrillo C, Cesprini E, Feo F, Calamai M, Morrone A, Morabito A, Beccari T, Valentini L. Biocompatible and Printable Ionotronic Sensing Materials Based on Silk Fibroin and Soluble Plant-Derived Polyphenols. ACS OMEGA 2022; 7:43729-43737. [PMID: 36506141 PMCID: PMC9730456 DOI: 10.1021/acsomega.2c04729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The emergence of ionotronic materials has been recently exploited for interfacing electronics and biological tissues, improving sensing with the surrounding environment. In this paper, we investigated the synergistic effect of regenerated silk fibroin (RS) with a plant-derived polyphenol (i.e., chestnut tannin) on ionic conductivity and how water molecules play critical roles in regulating ion mobility in these materials. In particular, we observed that adding tannin to RS increases the ionic conductivity, and this phenomenon is accentuated by increasing the hydration. We also demonstrated how silk-based hybrids could be used as building materials for scaffolds where human fibroblast and neural progenitor cells can highly proliferate. Finally, after proving their biocompatibility, RS hybrids demonstrate excellent three-dimensional (3D) printability via extrusion-based 3D printing to fabricate a soft sensor that can detect charged objects by sensing the electric fields that originate from them. These findings pave the way for a viable option for cell culture and novel sensors, with the potential base for tissue engineering and health monitoring.
Collapse
Affiliation(s)
- Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Rodolfo Tonin
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories,
Neuroscience Department, Meyer Children’s
Hospital, Firenze 50121, Italy
| | - Francesca Ripanti
- Department
Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | | | - Carlotta Salvatori
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Lorenzo Mussolin
- Department
Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Department
Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Department
Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
- AREA
Science Park, Padriciano,
99, 34149 Trieste, Italy
| | - Emanuele Cesprini
- Land Environment
Agriculture & Forestry Department, University
of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Federica Feo
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories,
Neuroscience Department, Meyer Children’s
Hospital, Firenze 50121, Italy
| | - Martino Calamai
- European
Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics−National Research Council (CNR-INO), Sesto Fiorentino 50019, Italy
| | - Amelia Morrone
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories,
Neuroscience Department, Meyer Children’s
Hospital, Firenze 50121, Italy
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
NEUROFARBA, Università degli Studi
di Firenze, Viale Pieraccini 6, Firenze 50121, Italy
| | - Antonino Morabito
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
NEUROFARBA, Università degli Studi
di Firenze, Viale Pieraccini 6, Firenze 50121, Italy
- Department
of Pediatric Surgery, Meyer Children’s
Hospital, Viale Pieraccini 24, Firenze 50139, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, Terni 05100, Italy
- Italian Consortium
for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
| |
Collapse
|
17
|
Russell DF, Zhang W, Warnock TC, Neiman LL. Lectin binding and gel secretion within Lorenzinian electroreceptors of Polyodon. PLoS One 2022; 17:e0276854. [PMCID: PMC9671328 DOI: 10.1371/journal.pone.0276854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022] Open
Abstract
We imaged the carbohydrate-selective spatial binding of 8 lectins in the ampullary organs (AOs) of electroreceptors on the rostrum of freshwater paddlefish (Polyodon spathula), by fluorescence imaging and morphometry of frozen sections. A focus was candidate sites of secretion of the glycoprotein gel filling the lumen of AOs. The rostrum of Polyodon is an electrosensory appendage anterior of the head, covered with >50,000 AOs, each homologous with the ampulla of Lorenzini electroreceptors of marine rays and sharks. A large electrosensory neuroepithelium (EN) lines the basal pole of each AO’s lumen in Polyodon; support cells occupy most (97%) of an EN’s apical area, along with electrosensitive receptor cells. (1) Lectins WGA or SBA labeled the AO gel. High concentrations of the N-acetyl-aminocarbohydrate ligands of these lectins were reported in canal gel of ampullae of Lorenzini, supporting homology of Polyodon AOs. In cross sections of EN, WGA or SBA labeled cytoplasmic vesicles and organelles in support cells, especially apically, apparently secretory. Abundant phalloidin+ microvilli on the apical faces of support cells yielded the brightest label by lectins WGA or SBA. In parallel views of the apical EN surface, WGA labeled only support cells. We concluded that EN support cells massively secrete gel from their apical microvilli (and surface?), containing amino carbohydrate ligands of WGA or SBA, into the AO lumen. (2) Lectins RCA120 or ConA also labeled EN support cells, each differently. RCA120-fluorescein brightly labeled extensive Golgi tubules in the apical halves of EN cells. ConA did not label microvilli, but brightly labeled small vesicles throughout support cells, apparently non-secretory. (3) We demonstrated “sockets” surrounding the basolateral exteriors of EN receptor cells, as candidate glycocalyces. (4) We explored whether additional secretions may arise from non-EN epithelial cells of the interior ampulla wall. (5) Model: Gel is secreted mainly by support cells in the large EN covering each AO’s basal pole. Secreted gel is pushed toward the pore, and out. We modeled gel velocity as increasing ~11x, going distally in AOs (toward the narrowed neck and pore), due to geometrical taper of the ampulla wall. Gel renewal and accelerated expulsion may defend against invasion of the AO lumen by microbes or small parasites. (6) We surveyed lectin labeling of accessory structures, including papilla cells in AO necks, striated ectoderm epidermis, and sheaths on afferent axons or on terminal glia.
Collapse
Affiliation(s)
- David F. Russell
- Department of Biological Sciences, Neuroscience Program, Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- * E-mail: ,
| | - Wenjuan Zhang
- Honors Tutorial College, Ohio University, Athens, Ohio, United States of America
| | - Thomas C. Warnock
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
| | - Lilia L. Neiman
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
18
|
Papilla cells may guard the entrance to ampullary organs of Polyodon electroreceptors. Tissue Cell 2022; 78:101868. [DOI: 10.1016/j.tice.2022.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
|
19
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
20
|
Ding L, Li M, Liu C, Zhou Z, Chen J, Chen X, Chen L, Li J. Study on characteristics of the electric‐field‐sensitive hydrogel inspired by jelly in the ampullae of Lorenzini of elasmobranchs. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laiqian Ding
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Mingyang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
- Key Laboratory for Precision and Non‐traditional Machining Technology of Ministry of Education Dalian University of Technology Dalian China
| | | | - Jing Chen
- Beijing Spacecrafts Co., Ltd. Beijing China
| | | | - Li Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| |
Collapse
|
21
|
Rautenberg M, Bhattacharya B, Das C, Emmerling F. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks. Inorg Chem 2022; 61:10801-10809. [PMID: 35776665 DOI: 10.1021/acs.inorgchem.2c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-stable metal-organic frameworks (MOFs) with proton-conducting behavior have attracted great attention as promising materials for proton-exchange membrane fuel cells. Herein, we report the mechanochemical gram-scale synthesis of three new mixed-ligand phosphonate-based MOFs, {Co(H2PhDPA)(4,4'-bipy)(H2O)·2H2O}n (BAM-1), {Fe(H2PhDPA)(4,4'-bipy) (H2O)·2H2O}n (BAM-2), and {Cu(H2PhDPA)(dpe)2(H2O)2·2H2O}n (BAM-3) [where H2PhDPA = phenylene diphosphonate, 4,4'-bipy = 4,4'-bipyridine, and dpe = 1,2-di(4-pyridyl)ethylene]. Single-crystal X-ray diffraction measurements revealed that BAM-1 and BAM-2 are isostructural and possess a three-dimensional (3D) network structure comprising one-dimensional (1D) channels filled with guest water molecules. Instead, BAM-3 displays a 1D network structure extended into a 3D supramolecular structure through hydrogen-bonding and π-π interactions. In all three structures, guest water molecules are interconnected with the uncoordinated acidic hydroxyl groups of the phosphonate moieties and coordinated water molecules by means of extended hydrogen-bonding interactions. BAM-1 and BAM-2 showed a gradual increase in proton conductivity with increasing temperature and reached 4.9 × 10-5 and 4.4 × 10-5 S cm-1 at 90 °C and 98% relative humidity (RH). The highest proton conductivity recorded for BAM-3 was 1.4 × 10-5 S cm-1 at 50 °C and 98% RH. Upon further heating, BAM-3 undergoes dehydration followed by a phase transition to another crystalline form which largely affects its performance. All compounds exhibited a proton hopping (Grotthuss model) mechanism, as suggested by their low activation energy.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Chayanika Das
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| |
Collapse
|
22
|
Bottaro M. Sixth sense in the deep-sea: the electrosensory system in ghost shark Chimaera monstrosa. Sci Rep 2022; 12:9848. [PMID: 35701513 PMCID: PMC9198096 DOI: 10.1038/s41598-022-14076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Animals that continually live in deep sea habitats face unique challenges and require adaptive specializations solutions in order to locate and identify food, predators, and conspecifics. The Ampullae of Lorenzini are specialized electroreceptors used by chondrichthyans for important biological functions. Ampullary organs of the ghost shark Chimaera monstrosa, a deep-sea species commonly captured as by-catch in the bottom trawl fishery, are here described for the first time using macroscopic, ultrastructural and histological approaches. The number of ampullary pores in C. monstrosa is about 700, distributed into the whole cephalic section of C. monstrosa, and organized in12 pore clusters and they are arranged into different configurations and form a distinct morphological pattern for this species, showing some anatomical peculiarities never described before in others cartilaginous fishes and may constitute an evolutionary adaptation of this ancient chondrichthyan species to the extreme environmental conditions of its deep sea niche.
Collapse
Affiliation(s)
- Massimiliano Bottaro
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn - Italian National Institute of Marine Biology, Ecology and Biotechnology, Villa del Principe, Piazza del Principe 4, 16126, Genoa, Italy.
| |
Collapse
|
23
|
Willmer IQ, Wosnick N, Rocha RCC, Saint'Pierre TD, Vianna M, Hauser-Davis RA. First report on metal and metalloid contamination of Ampullae of Lorenzini in sharks: A case study employing the Brazilian sharpnose shark Rhizoprionodon lalandii from Southeastern Brazil as an ecotoxicological model. MARINE POLLUTION BULLETIN 2022; 179:113671. [PMID: 35468471 DOI: 10.1016/j.marpolbul.2022.113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metal contamination has never been assessed in Ampullae of Lorenzini. This study employed Rhizoprionodon lalandii, as an ecotoxicological model to investigate potential metal accumulation in Ampullae of Lorenzini jelly. No differences between sexes were observed regarding jelly metal concentrations at Rio das Ostras (RJ) or Santos (SP). Statistically significant correlations were noted between total lengths (TL) and condition factors and several metals at both sampling sites, demonstrating the potential for Chondrichthyan sensory capacity disruption and possible effects on foraging success. Maternal metal transfer to Ampullae jelly was confirmed. Rhizoprionodon lalandii is thus, a good model to assess Ampullae of Lorenzini contamination, as this electrosensory organ seems to be highly vulnerable to metal contamination.
Collapse
Affiliation(s)
- Isabel Quental Willmer
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil; Laboratório de Biologia e Tecnologia Pesqueira, UFRJ, Rio de Janeiro, Brazil
| | - Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, UFRJ, Rio de Janeiro, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
24
|
Matsui H, Fukuda K, Takano S, Ikemoto Y, Sasaki T, Matsuo Y. Mechanisms of the antiferro-electric ordering in superprotonic conductors Cs 3H(SeO 4) 2 and Cs 3D(SeO 4) 2. J Chem Phys 2022; 156:204504. [DOI: 10.1063/5.0088230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wide ranges of absorbance spectra were measured to elucidate a difference in the antiferro-electric (AF) ordering mechanisms below 50 and 168 K in Cs3H(SeO4)2 and Cs3D(SeO4)2, respectively. Collective excitations due to deuterons successfully observed at 610 cm−1 exhibit a remarkable isotope effect. This indicates that the transfer state in the dimer of Cs3D(SeO4)2 is dominated by a deuteron hopping in contrast to Cs3H(SeO4)2, where a proton hopping makes a tiny contribution compared to a phonon-assisted proton tunneling (PAPT) associated with 440-cm−1 defbend . The fluctuation relevant to the AF ordering in Cs3D(SeO4)2 is not driven by the conventional deuteron hopping but by the phonon-assisted deuteron hopping associated with 310-cm−1 defbend . Consequently, Cs3D(SeO4)2 has a distinct ordering mechanism from Cs3H(SeO4)2, in which quantum fluctuations toward the AF ordering are enhanced through the PAPT associated with the in-phase libration.
Collapse
Affiliation(s)
- Hiroshi Matsui
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kakeru Fukuda
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Saki Takano
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuka Ikemoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Takahiko Sasaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yasumitsu Matsuo
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa 572-8508, Japan
| |
Collapse
|
25
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:81-122. [PMID: 34047144 DOI: 10.1515/reveh-2021-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ambient levels of electromagnetic fields (EMF) have risen sharply in the last 80 years, creating a novel energetic exposure that previously did not exist. Most recent decades have seen exponential increases in nearly all environments, including rural/remote areas and lower atmospheric regions. Because of unique physiologies, some species of flora and fauna are sensitive to exogenous EMF in ways that may surpass human reactivity. There is limited, but comprehensive, baseline data in the U.S. from the 1980s against which to compare significant new surveys from different countries. This now provides broader and more precise data on potential transient and chronic exposures to wildlife and habitats. Biological effects have been seen broadly across all taxa and frequencies at vanishingly low intensities comparable to today's ambient exposures. Broad wildlife effects have been seen on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and longevity and survivorship. Cyto- and geno-toxic effects have been observed. The above issues are explored in three consecutive parts: Part 1 questions today's ambient EMF capabilities to adversely affect wildlife, with more urgency regarding 5G technologies. Part 2 explores natural and man-made fields, animal magnetoreception mechanisms, and pertinent studies to all wildlife kingdoms. Part 3 examines current exposure standards, applicable laws, and future directions. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Wildlife loss is often unseen and undocumented until tipping points are reached. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced.
Collapse
Affiliation(s)
- B Blake Levitt
- National Association of Science Writers, Berkeley, CA, USA
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
26
|
England SJ, Robert D. The ecology of electricity and electroreception. Biol Rev Camb Philos Soc 2022; 97:383-413. [PMID: 34643022 DOI: 10.1111/brv.12804] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Electricity, the interaction between electrically charged objects, is widely known to be fundamental to the functioning of living systems. However, this appreciation has largely been restricted to the scale of atoms, molecules, and cells. By contrast, the role of electricity at the ecological scale has historically been largely neglected, characterised by punctuated islands of research infrequently connected to one another. Recently, however, an understanding of the ubiquity of electrical forces within the natural environment has begun to grow, along with a realisation of the multitude of ecological interactions that these forces may influence. Herein, we provide the first comprehensive collation and synthesis of research in this emerging field of electric ecology. This includes assessments of the role electricity plays in the natural ecology of predator-prey interactions, pollination, and animal dispersal, among many others, as well as the impact of anthropogenic activity on these systems. A detailed introduction to the ecology and physiology of electroreception - the biological detection of ecologically relevant electric fields - is also provided. Further to this, we suggest avenues for future research that show particular promise, most notably those investigating the recently discovered sense of aerial electroreception.
Collapse
Affiliation(s)
- Sam J England
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| | - Daniel Robert
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| |
Collapse
|
27
|
Wang X, Mao W, Song Y, Meng F, Hu X, Liu B, Su Z. Hourglass-Type Polyoxometalate-Based Crystalline Material as an Efficient Proton-Conducting Solid Electrolyte. Inorg Chem 2021; 60:18912-18917. [PMID: 34842432 DOI: 10.1021/acs.inorgchem.1c02702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton exchange membrane fuel cells are limited because they are limited to working temperatures and are susceptible to damage by dramatic electrochemical environments such as hydrogen peroxide/radicals. It is necessary to develop new proton-conducting materials that are water-stable and can operate at high temperatures. The hourglass reduced molybdophosphate-based compound (H2bimb)3[Zn3(H6P4Mo6O31)2] (bimb = 1,4-bis[(1H-imidazol-1-yl)methyl]benzene) was designed and synthesized under solvothermal conditions. Single-crystal X-ray diffraction analyses demonstrated noticeably that CUST-571 was composed of an hourglass {Zn[P4Mo6]2} structure, which consisted of two fully reduced half-units {P4Mo6}. It was found that CUST-571 possessed an excellent proton conductivity of 4.54 × 10-3 S cm-1 at 85 °C and 98% RH (relative humidity). In addition, CUST-571 is capable of an excellent catalytic decomposition of H2O2, which is beneficial to increase the life of fuel cells. On the basis of the aforementioned results, CUST-571 may be a promising proton-conducting polyoxometalate hybrid material in the future.
Collapse
Affiliation(s)
- Xinting Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Wenjia Mao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Yingjie Song
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Fanxing Meng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Bailing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| |
Collapse
|
28
|
Song WJ, Lee Y, Jung Y, Kang YW, Kim J, Park JM, Park YL, Kim HY, Sun JY. Soft artificial electroreceptors for noncontact spatial perception. SCIENCE ADVANCES 2021; 7:eabg9203. [PMID: 34818043 PMCID: PMC8612677 DOI: 10.1126/sciadv.abg9203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/07/2021] [Indexed: 05/22/2023]
Abstract
Elasmobranch fishes, such as sharks, skates, and rays, use a network of electroreceptors distributed on their skin to locate adjacent prey. The receptors can detect the electric field generated by the biomechanical activity of the prey. By comparing the intensity of the electric fields sensed by each receptor in the network, the animals can perceive the relative positions of the prey without making physical contact. Inspired by this capacity for prey localization, we developed a soft artificial electroreceptor that can detect the relative positions of nearby objects in a noncontact manner by sensing the electric fields that originate from the objects. By wearing the artificial receptor, one can immediately receive spatial information of a nearby object via auditory signals. The soft artificial electroreceptor is expected to expand the ways we can perceive space by providing a sensory modality that did not evolve naturally in human beings.
Collapse
Affiliation(s)
- Won Jun Song
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Younghoon Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yeonsu Jung
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yong-Woo Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Junhyung Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author. (H.-Y.K.); (J.-Y.S.)
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author. (H.-Y.K.); (J.-Y.S.)
| |
Collapse
|
29
|
Phillips M, Wheeler AC, Robinson MJ, Leppert V, Jia M, Rolandi M, Hirst LS, Amemiya CT. Colloidal structure and proton conductivity of the gel within the electrosensory organs of cartilaginous fishes. iScience 2021; 24:102947. [PMID: 34458698 PMCID: PMC8379299 DOI: 10.1016/j.isci.2021.102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Cartilaginous fishes possess gel-filled tubular sensory organs called Ampullae of Lorenzini (AoL) that are used to detect electric fields. Although recent studies have identified various components of AoL gel, it has remained unclear how the molecules are structurally arranged and how their structure influences the function of the organs. Here we describe the structure of AoL gel by microscopy and small-angle X-ray scattering and infer that the material is colloidal in nature. To assess the relative function of the gel's protein constituents, we compared the microscopic structure, X-ray scattering, and proton conductivity properties of the gel before and after enzymatic digestion with a protease. We discovered that while proteins were largely responsible for conferring the viscous nature of the gel, their removal did not diminish proton conductivity. The findings lay the groundwork for more detailed studies into the specific interactions of molecules inside AoL gel at the nanoscale.
Collapse
Affiliation(s)
- Molly Phillips
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Alauna C. Wheeler
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
| | - Matthew J. Robinson
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA 95343, USA
| | - Valerie Leppert
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA 95343, USA
| | - Manping Jia
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Linda S. Hirst
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, USA
| | - Chris T. Amemiya
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
30
|
Martinez-Gonzalez JA, Cavaye H, McGettrick JD, Meredith P, Motovilov KA, Mostert AB. Interfacial water morphology in hydrated melanin. SOFT MATTER 2021; 17:7940-7952. [PMID: 34378618 DOI: 10.1039/d1sm00777g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The importance of electrically functional biomaterials is increasing as researchers explore ways to utilise them in novel sensing capacities. It has been recognised that for many of these materials the state of hydration is a key parameter that can heavily affect the conductivity, particularly those that rely upon ionic or proton transport as a key mechanism. However, thus far little attention has been paid to the nature of the water morphology in the hydrated state and the concomitant ionic conductivity. Presented here is an inelastic neutron scattering (INS) experiment on hydrated eumelanin, a model bioelectronic material, in order to investigate its 'water morphology'. We develop a rigorous new methodology for performing hydration dependent INS experiments. We also model the eumelanin dry spectra with a minimalist approach whereas for higher hydration levels we are able to obtain difference spectra to extract out the water scattering signal. A key result is that the physi-sorbed water structure within eumelanin is dominated by interfacial water with the number of water layers between 3-5, and no bulk water. We also detect for the first time, the potential signatures for proton cations, most likely the Zundel ion, within a biopolymer/water system. These new signatures may be general for soft proton ionomer systems, if the systems are comprised of only interfacial water within their structure. The nature of the water morphology opens up new questions about the potential ionic charge transport mechanisms within hydrated bioelectronics materials.
Collapse
Affiliation(s)
- J A Martinez-Gonzalez
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | | | | | | | | | | |
Collapse
|
31
|
Phillips M, Tang WJ, Robinson M, Daza DO, Hassan K, Leppert V, Hirst LS, Amemiya CT. Evidence of chitin in the ampullae of Lorenzini of chondrichthyan fishes. Curr Biol 2021; 30:R1254-R1255. [PMID: 33080193 DOI: 10.1016/j.cub.2020.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously reported that the polysaccharide chitin, a key component of arthropod exoskeletons and fungal cell walls, is endogenously produced by fishes and amphibians in spite of the widely held view that it was not synthesized by vertebrates [1]. Genes encoding chitin synthase enzymes were found in the genomes of a number of fishes and amphibians and shown to be correspondingly expressed at the sites where chitin was localized [1,2]. In this report, we present evidence suggesting that chitin is prevalent within the specialized electrosensory organs of cartilaginous fishes (Chondrichthyes). These organs, the Ampullae of Lorenzini (AoL), are widely distributed and comprise a series of gel-filled canals emanating from pores in the skin (Figure 1A). The canals extend into bulbous structures called alveoli that contain sensory cells capable of detecting subtle changes in electric fields (Figure 1B) [3,4]. The findings described here extend the number of vertebrate taxa where endogenous chitin production has been detected and raise questions regarding chitin's potential function in chondrichthyan fishes and other aquatic vertebrates.
Collapse
Affiliation(s)
- Molly Phillips
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - W Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Matthew Robinson
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA 95343, USA
| | - Daniel Ocampo Daza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA; Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Khan Hassan
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Valerie Leppert
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA 95343, USA
| | - Linda S Hirst
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
| | - Chris T Amemiya
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
32
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
33
|
Nandi R, Agam Y, Amdursky N. A Protein-Based Free-Standing Proton-Conducting Transparent Elastomer for Large-Scale Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101208. [PMID: 34219263 DOI: 10.1002/adma.202101208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Indexed: 05/26/2023]
Abstract
A most important endeavor in modern materials' research is the current shift toward green environmental and sustainable materials. Natural resources are one of the attractive building blocks for making environmentally friendly materials. In most cases, however, the performance of nature-derived materials is inferior to the performance of carefully designed synthetic materials. This is especially true for conductive polymers, which is the topic here. Inspired by the natural role of proteins in mediating protons, their utilization in the creation of a free-standing transparent polymer with a highly elastic nature and proton conductivity comparable to that of synthetic polymers, is demonstrated. Importantly, the polymerization process relies on natural protein crosslinkers and is spontaneous and energy-efficient. The protein used, bovine serum albumin, is one of the most affordable proteins, resulting in the ability to create large-scale materials at a low cost. Due to the inherent biodegradability and biocompatibility of the elastomer, it is promising for biomedical applications. Here, its immediate utilization as a solid-state interface for sensing of electrophysiological signals, is shown.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
34
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
35
|
Jia M, Kim J, Nguyen T, Duong T, Rolandi M. Natural biopolymers as proton conductors in bioelectronics. Biopolymers 2021; 112:e23433. [PMID: 34022064 DOI: 10.1002/bip.23433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice-versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion-conducting polymers: proton (H+ ) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton-conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
Collapse
Affiliation(s)
- Manping Jia
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jinhwan Kim
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Biomedical Engineering, California State University Long Beach, Long Beach, California, USA
| | - Thi Duong
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Mechanical and Aerospace Engineering, The Henry Samueli School of Engineering, University of California, Irvine, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
36
|
Strakosas X, Seitanidou M, Tybrandt K, Berggren M, Simon DT. An electronic proton-trapping ion pump for selective drug delivery. SCIENCE ADVANCES 2021; 7:7/5/eabd8738. [PMID: 33514549 PMCID: PMC7846156 DOI: 10.1126/sciadv.abd8738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/11/2020] [Indexed: 05/24/2023]
Abstract
The organic electronic ion pump (OEIP) delivers ions and charged drugs from a source electrolyte, through a charge-selective membrane, to a target electrolyte upon an electric bias. OEIPs have successfully delivered γ-aminobutyric acid (GABA), a neurotransmitter that reduces neuronal excitations, in vitro, and in brain tissue to terminate induced epileptic seizures. However, during pumping, protons (H+), which exhibit higher ionic mobility than GABA, are also delivered and may potentially cause side effects due to large local changes in pH. To reduce the proton transfer, we introduced proton traps along the selective channel membrane. The traps are based on palladium (Pd) electrodes, which selectively absorb protons into their structure. The proton-trapping Pd-OEIP improves the overall performance of the current state-of-the-art OEIP, namely, its temporal resolution, efficiency, selectivity, and dosage precision.
Collapse
Affiliation(s)
- X Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - M Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - K Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - M Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - D T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| |
Collapse
|
37
|
Mondal S, Agam Y, Amdursky N. Enhanced Proton Conductivity across Protein Biopolymers Mediated by Doped Carbon Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005526. [PMID: 33108059 DOI: 10.1002/smll.202005526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Carbon nanoparticles, known as carbon-dots (C-Dots), are famous for their optoelectronic properties. Here it is shown that C-Dots can also mediate protons, where protein biopolymers are used as the protonic transport matrix. Energy transfer measurements indicate that different doped C-Dots bind to the protein biopolymer in different efficiencies. Electrical impedance measurements reveal enhanced conductance across the protein biopolymer upon C-Dots integration, dependent on the doping type. The enhanced conductivity is attributed to protonic conduction due to the large observed kinetic isotope effect, resulting in one of the highest measured proton conductivity across protein biopolymers. Transistor measurements show that the various doped C-Dots-protein biopolymer exhibit different increase in charge carrier density and in carrier mobility, suggesting different modes of proton transport. The ability of C-Dots to support protonic conduction opens a field of carbon-based protonic nanoparticles and due to the formation simplicity of C-Dots they can be integrated in a variety of protonic devices.
Collapse
Affiliation(s)
- Somen Mondal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
38
|
Electrosensory Impairment in the Atlantic Stingray, Hypanus sabinus, After Crude Oil Exposure. ZOOLOGY 2020; 143:125844. [PMID: 33130491 DOI: 10.1016/j.zool.2020.125844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Elasmobranchs are renowned for their extremely sensitive electrosensory system, which is used to detect predators, prey, and mates, and is possibly used for navigation. The proper functioning of the electrosensory system is thus critical to fitness. The objective of this study was to test whether exposure to crude oil impairs the electroreceptive capabilities of elasmobranch fishes. Electrosensory function was quantified from six stingrays before and after exposure to a concentration of oil that mimicked empirically measured concentrations along the coast of Louisiana following the Deepwater Horizon spill. Orientation distance (cm), and angle with respect to the dipole axis of a prey-simulating electric field were used to derive the electric field intensity that elicited a response. Oil exposed stingrays continued to exhibit feeding behavior, but they initiated orientations to prey-simulating electric fields from a significantly closer orientation distance. The mean orientation distance after oil exposure was 5.29 ± 0.41 SE cm compared to a pre-exposure orientation distance of 7.16 ± 0.66 SE cm. Stingrays required a mean electric field intensity of 0.596 ± 0.21 SE μV cm-1 to initiate a response after oil exposure, compared to a mean of only 0.127 ± 0.03 SE μV cm-1 in uncontaminated seawater. Oil exposed stingrays thus exhibited a response to a stimulus approximately 4.7 times greater than controls. Stingrays impacted by an oil spill appear to experience reduced electrosensory capabilities, which could detrimentally impact fitness. This study is the first to quantify the effects of crude oil on behavioral electrosensory function.
Collapse
|
39
|
Qian X, Chen L, Yin L, Liu Z, Pei S, Li F, Hou G, Chen S, Song L, Thebo KH, Cheng HM, Ren W. CdPS
3
nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020; 370:596-600. [DOI: 10.1126/science.abb9704] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xitang Qian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Long Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Fan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Khalid Hussain Thebo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, 1001 Xueyuan Road, Shenzhen 518055, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
40
|
Park J, Tabet A, Moon J, Chiang PH, Koehler F, Sahasrabudhe A, Anikeeva P. Remotely Controlled Proton Generation for Neuromodulation. NANO LETTERS 2020; 20:6535-6541. [PMID: 32786937 PMCID: PMC8558523 DOI: 10.1021/acs.nanolett.0c02281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and to evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signaling in the nervous system.
Collapse
Affiliation(s)
- Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junsang Moon
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Po-Han Chiang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu City, Taiwan 30010, ROC
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
42
|
Matsui H, Shimatani K, Ikemoto Y, Sasaki T, Matsuo Y. Phonon-assisted proton tunneling in the hydrogen-bonded dimeric selenates of Cs 3H(SeO 4) 2. J Chem Phys 2020; 152:154502. [PMID: 32321268 DOI: 10.1063/1.5145108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In phases III and IV of Cs3H(SeO4)2, the vibrational state and intrabond transfer of the proton in the dimeric selenates are systematically studied with a wide range of absorbance spectra, a spin-lattice relaxation rate of 1H-NMR (T1 -1), and DFT calculations. The OH stretching vibrations have extremely broad absorption at around 2350 (B band) and 3050 cm-1 (A band), which originate from the 0-1 and 0-2 transitions in the asymmetric double minimum potential, respectively. The anharmonic-coupling calculation makes clear that the A band couples not only to the libration but also to the OH bending band. The vibrational state (nano-second order) is observed as the response of the proton basically localized in either of the two equivalent sites. The intrabond transfer between those sites (pico-second order) yields the protonic fluctuation reflected in T1 -1. Together with the anomalous absorption [νp2 phonon, libration, tetrahedral deformation (δ440), and 610-cm-1 band], we have demonstrated that the intrabond transfer above 70 K is dominated by the thermal hopping that is collectively excited at 610 cm-1 and the phonon-assisted proton tunneling (PAPT) relevant to the tetrahedral deformation [PAPT(def)]. Below 70 K, T1 -1 is largely enhanced toward the antiferroelectric ordering and the distinct splitting emerges in the libration, which dynamically modulates the O(2)-O'(2) distance of the dimer. The PAPT(lib) associated with the libration is confirmed to be a driving force of the AF ordering.
Collapse
Affiliation(s)
- Hiroshi Matsui
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kazuki Shimatani
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuka Ikemoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Takahiko Sasaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yasumitsu Matsuo
- Department of Life Science, Faculty of Science & Engineering, Setsunan University, Neyagawa 572-8508, Japan
| |
Collapse
|
43
|
Immunolocalization of Keratan Sulfate in Rat Spinal Tissues Using the Keratanase Generated BKS-1(+) Neoepitope: Correlation of Expression Patterns with the Class II SLRPs, Lumican and Keratocan. Cells 2020; 9:cells9040826. [PMID: 32235499 PMCID: PMC7226845 DOI: 10.3390/cells9040826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022] Open
Abstract
This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.
Collapse
|
44
|
Mondal S, Agam Y, Nandi R, Amdursky N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem Sci 2020; 11:3547-3556. [PMID: 34109027 PMCID: PMC8152808 DOI: 10.1039/c9sc04392f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 06/04/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins are the main proton mediators in various biological proton circuits. Using proteins for the formation of long-range proton conductors is offering a bioinspired approach for proton conductive polymers. One of the main challenges in the field of proton conductors is to explore the local environment within the polymers, along with deciphering the conduction mechanism. Here, we show that the protonic conductivity across a protein-based biopolymer can be hindered using straightforward chemical modifications, targeting carboxylate- or amine-terminated residues of the protein, as well as exploring the effect of surface hydrophobicity on proton conduction. We further use the natural tryptophan residue as a local fluorescent probe for the inner local hydration state of the protein surface and its tendency to form hydrogen bonds with nearby water molecules, along with the dynamicity of the process. Our electrical and spectroscopic measurements of the different chemically-modified protein materials as well as the material at different water-aprotic solvent mixtures result in our fundamental understanding of the proton mediators within the material and gaining important insights on the proton conduction mechanism. Our biopolymer can be used as an attractive platform for the study of bio-related protonic circuits as well as a proton conducting biopolymer for various applications, such as protonic transistors, ionic transducers and fuel cells.
Collapse
Affiliation(s)
- Somen Mondal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
45
|
Guo QH, Jia M, Liu Z, Qiu Y, Chen H, Shen D, Zhang X, Tu Q, Ryder MR, Chen H, Li P, Xu Y, Li P, Chen Z, Shekhawat GS, Dravid VP, Snurr RQ, Philp D, Sue ACH, Farha OK, Rolandi M, Stoddart JF. Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. J Am Chem Soc 2020; 142:6180-6187. [DOI: 10.1021/jacs.9b13790] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Manping Jia
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, California 95064, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | | | | | | | | | | | - Matthew R. Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | | | | | | | | - Andrew C.-H. Sue
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
| | | | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, California 95064, United States
| | - J. Fraser Stoddart
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
46
|
Silberbush O, Engel M, Sivron I, Roy S, Ashkenasy N. Self-Assembled Peptide Nanotube Films with High Proton Conductivity. J Phys Chem B 2019; 123:9882-9888. [DOI: 10.1021/acs.jpcb.9b07555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ohad Silberbush
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Maor Engel
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Ido Sivron
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Subhasish Roy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
47
|
Tian Z, Hwang W, Kim YJ. Mechanistic understanding of monovalent cation transport in eumelanin pigments. J Mater Chem B 2019; 7:6355-6361. [PMID: 31465076 DOI: 10.1039/c9tb01211g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent research advances in charge-conducting materials have enabled the transformation of the naturally-occurring materials into crucial components in many technologies, including renewable energy storage devices or bioelectronics. Among various candidates, eumelanins are promising charge storage materials, exhibiting hybrid electronic ionic conductivity in a hydrated environment. The chemical and electrochemical properties of eumelanins are relatively well studied; however, the structure-property relationship is still elusive up to date. Herein, we reported the mesoscale structure of eumelanins and its impact on the charge transport. X-ray scattering suggests that eumelanin pigments exhibit the semi-crystalline structure with ordered d-spacings. These unique mesoscale structures further influence the charge transport mechanism with the cations of various sizes. Understanding the structures with consequent electrochemical properties suggest that eumelanins can further be tuned to serve as high-performance naturally-occurring charge storage materials.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Wonseok Hwang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20740, USA
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
48
|
Strakosas X, Selberg J, Pansodtee P, Yonas N, Manapongpun P, Teodorescu M, Rolandi M. A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci Rep 2019; 9:10844. [PMID: 31350439 PMCID: PMC6659689 DOI: 10.1038/s41598-019-46302-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Continuous glucose monitoring from sweat and tears can improve the quality of life of diabetic patients and provide data for more accurate diagnosis and treatment. Current continuous glucose sensors use enzymes with a one-to-two week lifespan, which forces periodic replacement. Metal oxide sensors are an alternative to enzymatic sensors with a longer lifetime. However, metal oxide sensors do not operate in sweat and tears because they function at high pH (pH > 10), and sweat and tears are neutral (pH = 7). Here, we introduce a non-enzymatic metal oxide glucose sensor that functions in neutral fluids by electronically inducing a reversible and localized pH change. We demonstrate glucose monitoring at physiologically relevant levels in neutral fluids mimicking sweat, and wireless communication with a personal computer via an integrated circuit board.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nebyu Yonas
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Pattawut Manapongpun
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
49
|
Natali M, Campana A, Posati T, Benvenuti E, Prescimone F, Ramirez DOS, Varesano A, Vineis C, Zamboni R, Muccini M, Aluigi A, Toffanin S. Engineering of keratin functionality for the realization of bendable all-biopolymeric micro-electrode array as humidity sensor. Biosens Bioelectron 2019; 141:111480. [PMID: 31272056 DOI: 10.1016/j.bios.2019.111480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
The technological quest for flexible devices to be interfaced with the biological world has driven the recent reinvention of bioderived polymers as multifunctional active and passive constituent elements for electronic and photonic devices to use in the biomedical field. Keratin is one of the most important structural proteins in nature to be used as biomaterial platform in view of the recently reported advances in the extraction and processing from hair and wool fibers. In this article we report for the first time the simultaneous use of naturally extracted keratin as both active ionic electrolyte for water ions sensing and as bendable and insoluble substrate into the same multielectrode array-based device. We implemented the multifunctional system exclusively made by keratin as a bendable sensor for monitoring the humidity flow. The enhancement of the functional and structural properties of keratin such as bendability and insolubility were obtained by unprecedented selective chemical doping. The mechanisms at the basis of the sensing of humidity in the device were investigated by cyclic voltammetry and rationalized by reversible binding and extraction of water ions from the volume of the keratin active layer, while the figures of merit of the biopolymer such as the ionic conductivity and relaxation time were determined by means of electrical impedance and dielectric relaxation spectroscopy. A reliable linear correlation between the controlled-humidity level and the amperometric output signal together with the assessment on measure variance are demonstrated. Collectively, the fine-tuned ionic-electrical characterization and the validation in controlled conditions of the free-standing insoluble all-keratin made microelectrode array ionic sensor pave the way for the effective use of keratin biopolymer in wearable or edible electronics where conformability, reliability and biocompatibility are key-enabling features.
Collapse
Affiliation(s)
- M Natali
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy.
| | - A Campana
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy
| | - T Posati
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via P. Gobetti 101, 40129, Bologna, Italy
| | - E Benvenuti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy
| | - F Prescimone
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy
| | - D O Sanchez Ramirez
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - A Varesano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - C Vineis
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - R Zamboni
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via P. Gobetti 101, 40129, Bologna, Italy
| | - M Muccini
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy
| | - A Aluigi
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via P. Gobetti 101, 40129, Bologna, Italy
| | - S Toffanin
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
50
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|