1
|
Sarkar S, Porel P, Kosey S, Aran KR. Diverse role of S100 calcium-binding protein B in alzheimer's disease: pathological mechanisms and therapeutic implications. Inflammopharmacology 2025; 33:1803-1816. [PMID: 40057929 DOI: 10.1007/s10787-025-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 04/13/2025]
Abstract
S100 calcium-binding protein B, a member of the S100 protein family, plays an important role in the pathogenesis of Alzheimer's disease. Alzheimer's disease, a neurodegenerative disorder, is characterized by amyloid-beta plaques, neurofibrillary tangles, progressive dementia, and severe neuroinflammation. S100 calcium-binding protein B, predominantly secreted by astrocytes, exhibits a dual role in Alzheimer's disease, where at low (nanomolar) concentrations, it exhibits neurotrophic and neuroprotective effects and enhances synaptic plasticity, while at higher concentrations, it contributes to neuroinflammation and neuronal damage. In addition to its pathological roles in Alzheimer's disease, S100 calcium-binding protein B is also considered a potential biomarker, as increased levels correlate with cognitive decline and disease progression in cerebrospinal fluid. Targeting S100 calcium-binding protein B and/or its interaction with the receptor for advanced glycation end-products seems to be a potential target for therapeutic intervention. The development of multiple treatment approaches, such as pharmacological inhibitors, immunotherapy, and modulation of S100 calcium-binding protein B / receptor for advanced glycation end-products signalling pathways, might help to reduce neuroinflammation and amyloid-beta deposition effectively. This review aims to provide an overview of the role of S100 calcium-binding protein B in Alzheimer's disease and to explore its potential as a treatment target, well-grounded in its dual nature. Understanding S100 calcium-binding protein B's involvement in the pathogenesis of Alzheimer's disease may advance its application as a biomarker and help in the development of new treatment strategies, ultimately improving patients' quality of life.
Collapse
Affiliation(s)
- Sampriti Sarkar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Abubaker M, Stanton JE, Mahon O, Grabrucker AM, Newport D, Mulvihill JJE. Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response. Mol Cell Biochem 2025; 480:2645-2660. [PMID: 39499391 DOI: 10.1007/s11010-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Janelle E Stanton
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Olwyn Mahon
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - David Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
3
|
Kim S, Woo Y, Um D, Chun I, Noh SJ, Ji HA, Jung N, Goo BS, Yoo JY, Mun DJ, Nghi TD, Nhung TTM, Han SH, Lee SB, Lee W, Yun J, So KH, Kim DK, Jang H, Suh Y, Rah JC, Baek ST, Yoon KJ, Kim MS, Kim TK, Park SK. Perturbed cell fate decision by schizophrenia-associated AS3MT d2d3 isoform during corticogenesis. SCIENCE ADVANCES 2025; 11:eadp8271. [PMID: 40153497 PMCID: PMC11952104 DOI: 10.1126/sciadv.adp8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The neurodevelopmental theory of schizophrenia emphasizes early brain development in its etiology. Genome-wide association studies have linked schizophrenia to genetic variations of AS3MT (arsenite methyltransferase) gene, particularly the increased expression of AS3MTd2d3 isoform. To investigate the biological basis of this association with schizophrenia pathophysiology, we established a transgenic mouse model (AS3MTd2d3-Tg) ectopically expressing AS3MTd2d3 at the cortical neural stem cells. AS3MTd2d3-Tg mice exhibited enlarged ventricles and deficits in sensorimotor gating and sociability. Single-cell and single-nucleus RNA sequencing analyses of AS3MTd2d3-Tg brains revealed cell fate imbalances and altered excitatory neuron composition. AS3MTd2d3 localized to centrosome, disrupting mitotic spindle orientation and differentiation in developing neocortex and organoids, in part through NPM1 (Nucleophosmin 1). The structural analysis identified that hydrophobic residues exposed in AS3MTd2d3 are critical for its pathogenic function. Therefore, our findings may help to explain the early pathological features of schizophrenia.
Collapse
Affiliation(s)
- Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeon Ah Ji
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Yeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Hyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Wonhyeok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghyeok Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dae-Kyum Kim
- Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1A4, Canada
- Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
4
|
Évora A, Garcia G, Rubi A, De Vitis E, Matos AT, Vaz AR, Gervaso F, Gigli G, Polini A, Brites D. Exosomes enriched with miR-124-3p show therapeutic potential in a new microfluidic triculture model that recapitulates neuron-glia crosstalk in Alzheimer's disease. Front Pharmacol 2025; 16:1474012. [PMID: 40144670 PMCID: PMC11936931 DOI: 10.3389/fphar.2025.1474012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Alzheimer's disease (AD), a complex neurodegenerative disease associated with ageing, is the leading cause of dementia. Few people with early AD are eligible for the novel Food and Drug Administration (FDA)-approved drug treatments. Accordingly, new tools and early diagnosis markers are required to predict subtypes, individual stages, and the most suitable personalized treatment. We previously demonstrated that the regulation of microRNA (miR)-124 is crucial for proper neuronal function and microglia reshaping in human AD cell models. Objective The aim of this study was to develop an efficient miR-124-3p-loaded exosome strategy and validate its therapeutic potential in using a multi-compartment microfluidic device of neuron-glia that recapitulates age-AD pathological features. Methods and results Using cortical microglia from mouse pups, separated from glial mixed cultures and maintained for 2 days in vitro (stressed microglia), we tested the effects of SH-SY5Y-derived exosomes loaded with miR-124-3p mimic either by their direct transfection with Exo-Fect™ (ET124) or by their isolation from the secretome of miR-124 transfected cells (CT124). ET124 revealed better delivery effciency and higher potent effects in improving the stressed microglia status than CT124. Tricultures of human SH-SY5Y neuroblastoma cells (SH-WT) were established in the presence of the human microglia cell line (HMC3) and immortalized human astrocytes (IM-HA) in tricompartmentalized microfluidic devices. Replacement of SH-WT cells with those transfected with APP695 (SH-SWE) in the tricultures and addition of low doses of hydrogen peroxide were used to simulate late-onset AD. The system mimicked AD-associated neurodegeneration and neuroinflammation processes. Notably, ET124 exhibited neuroprotective properties across the three cell types in the AD model by preventing neuronal apoptosis and neurite deficits, redirecting microglial profiles towards a steady state, and attenuating the inflammatory and miRNA fingerprints associated with astrocyte reactivity. Conclusion To the best of our knowledge, this is the first study supporting the neuro- and immunoprotective properties of miR-124-engineered exosomes in a microfluidic triculture platform, recapitulating age-related susceptibility to AD. Our system offers potential to develop personalized medicines in AD patient subtypes.
Collapse
Affiliation(s)
- Artemizia Évora
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rubi
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora De Vitis
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Michetti F, Romano Spica V. The "Jekyll Side" of the S100B Protein: Its Trophic Action in the Diet. Nutrients 2025; 17:881. [PMID: 40077749 PMCID: PMC11901436 DOI: 10.3390/nu17050881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The calcium-binding S100B protein is concentrated in glial cells (including enteroglial cells) in the nervous system. Its conformation and amino acid composition are significantly conserved in different species; this characteristic suggests conserved biological role(s) for the protein. The biological activity is concentration-dependent: low physiological concentrations exert a neurotrophic effect, while high concentrations exert a proinflammatory/toxic role. The proinflammatory/toxic role of S100B currently attracts the scientific community's primary attention, while the protein's physiological action remains unraveled-yet remarkably interesting. This is now a topical issue due to the recently consolidated notion that S100B is a natural trophic nutrient available in breast milk and/or other aliments, possibly interacting with other body districts through its impact on microbiota. These recent data may offer novel clues to understanding the role of this challenging protein.
Collapse
Affiliation(s)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| |
Collapse
|
6
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores‐Almazan V, Afzal R, De Sanctis C, Maldonado‐Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2025; 21:e14487. [PMID: 39737785 PMCID: PMC11848160 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E. Richardson
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Miranda E. Orr
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- St. Louis VA Medical CenterSt. LouisMissouriUSA
| | - Timothy C. Orr
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Susan K. Rohde
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PathologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of NeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Human GeneticsGenomics of Neurodegenerative Diseases and AgingVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of NeurologyAlzheimer Center AmsterdamNeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Alexander J. Ehrenberg
- Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Emma L. Thorn
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas D. Christie
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Victoria Flores‐Almazan
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robina Afzal
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Claudia De Sanctis
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carolina Maldonado‐Díaz
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Satomi Hiya
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Leyla Canbeldek
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Cheyanne Slocum
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jorge Samanamud
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kevin Clare
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nicholas Scibetta
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Raquel T. Yokoda
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew YorkUSA
| | - Daniel Koenigsberg
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Gabriel A. Marx
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Justin Kauffman
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Adam Goldstein
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Enna Selmanovic
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical SciencesFaculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Thomas Wisniewski
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Center for Cognitive NeurologyDepartment of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Charles L. White
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alison M. Goate
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Crary
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kurt Farrell
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael L. Alosco
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ann C. McKee
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
- VA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Thor D. Stein
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
- VA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Kevin F. Bieniek
- Department of Pathology & Laboratory MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Elena V. Daoud
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jamie M. Walker
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| |
Collapse
|
7
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
8
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
9
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
10
|
Vázquez-Mojena Y, Rodríguez-Labrada R, Córdova-Rodríguez Y, Domínguez-Barrios Y, Fernández-Herrera ME, León-Arcia K, Pavón-Fuentes N, Robinson-Agramonte MDLA, Velázquez-Pérez L. Serum S100β Levels Are Linked with Cognitive Decline and Peripheral Inflammation in Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1509-1520. [PMID: 38347269 DOI: 10.1007/s12311-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/25/2024]
Abstract
Experimental and clinical studies have indicated a potential role of the protein S100β in the pathogenesis and phenotype of neurodegenerative diseases. However, its impact on spinocerebellar ataxia type 2 (SCA2) remains to be elucidated. The objective of the study is to determine the serum levels of S100β in SCA2 and its relationship with molecular, clinical, cognitive, and peripheral inflammatory markers of the disease. Serum concentrations of S100β were measured by enzyme-linked immunosorbent assay in 39 SCA2 subjects and 36 age- and gender-matched controls. Clinical scores of ataxia, non-ataxia symptoms, cognitive dysfunction, and some blood cell count-derived inflammatory indices were assessed. The SCA2 individuals manifested S100β levels similar to the control group, at low nanomolar concentrations. However, the S100β levels were directly associated with a better performance of cognitive evaluation within the SCA2 cohort. Moreover, the S100β levels were inversely correlated with most peripheral inflammatory indices. Indeed, the neutrophil-to-lymphocyte ratio significantly mediated the effect of serum S100β on cognitive performance, even after controlling for the ataxia severity in the causal mediation analysis. Our findings suggested that, within physiologic concentrations, the protein S100β exerts a neuroprotective role against cognitive dysfunction in SCA2, likely via the suppression of pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yaimeé Vázquez-Mojena
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Roberto Rodríguez-Labrada
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba.
- Cuban Centre for Neurosciences, 190 Street, 19818, Between 25 & 27, 11600, Cubanacan, Playa, Havana, Cuba.
| | - Yanetsy Córdova-Rodríguez
- Institute of Nephrology "Abelardo Buch López", 26 Avenue & Rancho Boyeros Avenue10400, Plaza de La Revolución, Havana, Cuba
| | - Yennis Domínguez-Barrios
- Clinical & Surgical Hospital "Calixto Garcia", Universidad Avenue & J St, Vedado10400, Plaza de La Revolución, Havana, Cuba
| | - Mario E Fernández-Herrera
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
| | - Karen León-Arcia
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Nancy Pavón-Fuentes
- Neuroimmunology Dept, International Centre for Neurological Restoration, 25 Avenue 15805, Between 158 St & 160 St, 11300, Playa, Havana, Cuba
| | | | - Luis Velázquez-Pérez
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
- Cuban Academy of Sciences, Cuba St 460, Between Teniente Rey & Amargura, Habana Vieja, 10100, Havana, Cuba
- Faculty of Chemistry, University of Havana, Zapata St Between G St & Carlitos Aguirre St, 10400, Plaza de La Revolución, Havana, Cuba
| |
Collapse
|
11
|
Chang NP, DaPrano EM, Lindman M, Estevez I, Chou TW, Evans WR, Nissenbaum M, McCourt M, Alzate D, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. JCI Insight 2024; 9:e177002. [PMID: 38713518 PMCID: PMC11382884 DOI: 10.1172/jci.insight.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
| | | | | | | | | | - Wesley R Evans
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | | | | | | | | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | |
Collapse
|
12
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
13
|
Zhang W, Zhang J, Wang Y, Wang S, Wu Y, Zhang W, Wu M, Wang L, Xu G, Deng F, Liu W, Liu Z, Chen L, Xiao K, Zhang L. In Vitro Detection of S100B and Severity Evaluation of Traumatic Brain Injury Based on Biomimetic Peptide-Modified Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306809. [PMID: 38009781 DOI: 10.1002/smll.202306809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Jianrui Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengwei Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
14
|
Coelho R, De Benedictis CA, Sauer AK, Figueira AJ, Faustino H, Grabrucker AM, Gomes CM. Secondary Modification of S100B Influences Anti Amyloid-β Aggregation Activity and Alzheimer's Disease Pathology. Int J Mol Sci 2024; 25:1787. [PMID: 38339064 PMCID: PMC10855146 DOI: 10.3390/ijms25031787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aβ aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aβ proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aβ aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aβ binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aβ toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.
Collapse
Affiliation(s)
- Romina Coelho
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.C.); (A.J.F.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Chiara A. De Benedictis
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94PH61 Limerick, Ireland
| | - Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94PH61 Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94PH61 Limerick, Ireland
| | - António J. Figueira
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.C.); (A.J.F.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, Rua Nossa Senhora da Conceição No. 2, 3405-155 Coimbra, Portugal
| | - Andreas M. Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94PH61 Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94PH61 Limerick, Ireland
| | - Cláudio M. Gomes
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.C.); (A.J.F.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Martins IM, Lima A, de Graaff W, Cristóvão JS, Brosens N, Aronica E, Kluskens LD, Gomes CM, Azeredo J, Kessels HW. M13 phage grafted with peptide motifs as a tool to detect amyloid-β oligomers in brain tissue. Commun Biol 2024; 7:134. [PMID: 38280942 PMCID: PMC10821927 DOI: 10.1038/s42003-024-05806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Oligomeric clusters of amyloid-β (Aβ) are one of the major biomarkers for Alzheimer's disease (AD). However, proficient methods to detect Aβ-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aβ-derived peptides on their surface preferentially interact with Aβ-oligomers. When exposed to brain tissue isolated from APP/PS1-transgenic mice, these bacteriophages detect small-sized Aβ-aggregates in hippocampus at an early age, prior to the occurrence of Aβ-plaques. Similarly, the bacteriophages reveal the presence of such small Aβ-aggregates in post-mortem hippocampus tissue of AD-patients. These results advocate bacteriophages displaying Aβ-peptides as a convenient and low-cost tool to identify Aβ-oligomers in post-mortem brain tissue of AD-model mice and AD-patients.
Collapse
Affiliation(s)
- Ivone M Martins
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Alexandre Lima
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Wim de Graaff
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Niek Brosens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Leon D Kluskens
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Azeredo
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Helmut W Kessels
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
17
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
18
|
Szychowski KA, Skóra B. The elastin-derived peptide (VGVAPG) activates autophagy in neuroblastoma (SH-SY5Y) cells via peroxisome proliferator-activated receptor gamma (PPARγ). Mol Cell Neurosci 2023; 127:103902. [PMID: 37918553 DOI: 10.1016/j.mcn.2023.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Autophagy is a self-degradative process important for balancing the sources of energy and involved in the development of Alzheimer's disease (AD). To date, a number of papers have shown that elastin-derived peptides (EDPs) affect the expression and activation of peroxisome proliferator-activated receptor gamma (PPARγ), which is crucial for the development of AD and autophagy initiation. Therefore, the aim of the present study was to determine whether EDPs with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence activate the autophagic process in undifferentiated SH-SY5Y human neuroblastoma cells. Our study is the first to show that EDPs with the VGVAPG sequence initiate the autophagy process in the undifferentiated SH-SY5Y cell line exhibiting a number of features of normal neuroblasts. In particular, we observed in our study that VGAVPG peptide increased ULK1, AKT, PPARγ, and LC3B protein expression. Moreover, our experiments with the agonist (rosiglitazone) and antagonist (GW9662) of PPARγ confirm that the studied EDP acts through the PPARγ pathway affecting mTOR and finally autophagy. Some studies have shown that autophagy disturbances are involved in the development of AD. Therefore, we believe that our study will provide new evidence of the possible involvement of EDPs (especially VGVAPG) in the development of AD.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
19
|
Chang NP, DaPrano EM, Evans WR, Nissenbaum M, McCourt M, Alzate D, Lindman M, Chou TW, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550097. [PMID: 37546744 PMCID: PMC10401942 DOI: 10.1101/2023.07.21.550097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
- Nydia P. Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Evan M. DaPrano
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Wesley R. Evans
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Alzate
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Moreira GG, Gomes CM. Tau liquid-liquid phase separation is modulated by the Ca 2+ -switched chaperone activity of the S100B protein. J Neurochem 2023; 166:76-86. [PMID: 36621842 DOI: 10.1111/jnc.15756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
Aggregation of the microtubule-associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid-liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sustained neuroinflammation and the release of alarmins at early stages of inflammatory responses encompass protective functions. The Ca2+ -binding S100B protein is an alarmin augmented in AD that was recently implicated as a proteostasis regulator acting as a chaperone-type protein, inhibiting aggregation and toxicity through interactions of amyloidogenic clients with a regulatory surface exposed upon Ca2+ -binding. Here we expand the regulatory functions of S100B over protein condensation phenomena by reporting its Ca2+ -dependent activity as a modulator of tau LLPS induced by crowding agents (PEG) and metal ions (Zn2+ ). We observe that apo S100B has a negligible effect on PEG-induced tau demixing but that Ca2+ -bound S100B prevents demixing, resulting in a shift of the phase diagram boundary to higher crowding concentrations. Also, while incubation with apo S100B does not compromise tau LLPS, addition of Ca2+ results in a sharp decrease in turbidity, indicating that interactions with S100B-Ca2+ promote transition of tau to the mixed phase. Further, electrophoretic analysis and FLIM-FRET studies revealed that S100B incorporates into tau liquid droplets, suggesting an important stabilizing and chaperoning role contributing to minimize toxic tau aggregates. Resorting to Alexa488-labeled tau we observed that S100B-Ca2+ reduces the formation of tau fluorescent droplets, without compromising liquid-like behavior and droplet fusion events. The Zn2+ -binding properties of S100B also contribute to regulate Zn2+ -promoted tau LLPS as droplets are decreased by Zn2+ buffering by S100B, in addition to the Ca2+ -triggered interactions with tau. Altogether this work uncovers the versatility of S100B as a proteostasis regulator acting on protein condensation phenomena of relevance across the neurodegeneration continuum.
Collapse
Affiliation(s)
- Guilherme G Moreira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Sun XC, Wang H, Ma X, Xia HF. Application of Human Umbilical Cord Mesenchymal Stem Cells in Rat Spinal Cord Injury Model. ASAIO J 2023; 69:e256-e264. [PMID: 37039820 DOI: 10.1097/mat.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is a hot topic in clinic. In this study, female rats were selected and randomly divided into four groups (normal, sham, SCI, and mesenchymal stem cells [MSCs] groups). Hemostatic forceps were used to clamp the spinal cord for 1 min to establish the SCI animal model in rats. The levels of proinflammatory factors in the blood of each group were compared 4 h after operation. The motor function of hind limb was estimated by Basso, Beattie & Bresnahan Locomotor rating scale (BBB scale) at 3 months after surgery, the spinal cord tissue from the experimental area was obtained and stained histologically and immunohistochemically. Basso, Beattie & Bresnahan Locomotor rating scale results indicated that human umbilical cord (HUC) MSCs transplantation could improve the walking ability in rats with the SCI. Human umbilical cord mesenchymal stem cells substantially upregulated the secretion of anti-inflammatory factors and downregulated the secretion of proinflammatory factors, and promoted the repair of the SCI and inhibited the increase of glial cells induced by the SCI. Human umbilical cord mesenchymal stem cells transplantation can partially recovered the motor ability of rats with the SCI through promoting the regeneration of nerve cell and the expression of neural related genes, and inhibiting inflammatory reaction.
Collapse
Affiliation(s)
- Xue-Cheng Sun
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Hu Wang
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Ma
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Fei Xia
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Abelein A, Johansson J. Amyloid inhibition by molecular chaperones in vitro can be translated to Alzheimer's pathology in vivo. RSC Med Chem 2023; 14:848-857. [PMID: 37252101 PMCID: PMC10211315 DOI: 10.1039/d3md00040k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/21/2023] [Indexed: 09/23/2023] Open
Abstract
Molecular chaperones are important components in the cellular quality-control machinery and increasing evidence points to potential new roles for them as suppressors of amyloid formation in neurodegenerative diseases, such as Alzheimer's disease. Approaches to treat Alzheimer's disease have not yet resulted in an effective treatment, suggesting that alternative strategies may be useful. Here, we discuss new treatment approaches based on molecular chaperones that inhibit amyloid-β (Aβ) aggregation by different microscopic mechanisms of action. Molecular chaperones that specifically target secondary nucleation reactions during Aβ aggregation in vitro - a process closely associated with Aβ oligomer generation - have shown promising results in animal treatment studies. The inhibition of Aβ oligomer generation in vitro seemingly correlates with the effects of treatment, giving indirect clues about the molecular mechanisms present in vivo. Interestingly, recent immunotherapy advances, which have demonstrated significant improvements in clinical phase III trials, have used antibodies that selectively act against Aβ oligomer formation, supporting the notion that specific inhibition of Aβ neurotoxicity is more rewarding than reducing overall amyloid fibril formation. Hence, specific modulation of chaperone activity represents a promising new strategy for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| |
Collapse
|
23
|
Chernyaeva L, Ratti G, Teirilä L, Fudo S, Rankka U, Pelkonen A, Korhonen P, Leskinen K, Keskitalo S, Salokas K, Gkolfinopoulou C, Crompton KE, Javanainen M, Happonen L, Varjosalo M, Malm T, Leinonen V, Chroni A, Saavalainen P, Meri S, Kajander T, Wollman AJ, Nissilä E, Haapasalo K. Reduced binding of apoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation. EMBO Rep 2023:e56467. [PMID: 37155564 DOI: 10.15252/embr.202256467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aβ1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aβ1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aβ1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aβ1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aβ plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.
Collapse
Affiliation(s)
- Larisa Chernyaeva
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Laura Teirilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Uni Rankka
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anssi Pelkonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Matti Javanainen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Humanitas University, Milano, Italy
| | - Tommi Kajander
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Adam Jm Wollman
- Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Eija Nissilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Liu M, Zhu L, Guo YJ, Zhang SS, Jiang L, Zhang Y, Chao FL, Tang Y. The effects of voluntary running exercise on the astrocytes of the medial prefrontal cortex in APP/PS1 mice. J Comp Neurol 2023. [PMID: 37146123 DOI: 10.1002/cne.25485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Pathological changes in the medial prefrontal cortex (mPFC) and astrocytes are closely associated with Alzheimer's disease (AD). Voluntary running has been found to effectively delay AD. However, the effects of voluntary running on mPFC astrocytes in AD are unclear. A total of 40 10-month-old male amyloid precursor protein/presenilin 1 (APP/PS1) mice and 40 wild-type (WT) mice were randomly divided into control and running groups, and the running groups underwent voluntary running for 3 months. Mouse cognition was assessed by the novel object recognition (NOR), Morris water maze (MWM), and Y maze tests. The effects of voluntary running on mPFC astrocytes were investigated using immunohistochemistry, immunofluorescence, western blotting, and stereology. APP/PS1 mice performed significantly worse than WT mice in the NOR, MWM, and Y maze tests, and voluntary running improved the performance of APP/PS1 mice in these tests. The total number of mPFC astrocytes was increased, cell bodies were enlarged, and protrusion number and length were increased in AD mice compared with WT mice, but there was no difference in component 3 (C3) levels in the mPFC (total mPFC level); however, C3 and S100B levels in astrocytes were increased in AD mice. Voluntary running reduced the total number of astrocytes and S100B levels in astrocytes and increased the density of PSD95+ puncta in direct contact with astrocyte protrusions in the APP/PS1 mouse mPFC. Three months of voluntary running inhibited astrocyte hyperplasia and S100B expression in astrocytes, increased the density of synapses in contact with astrocytes, and improved cognitive function in APP/PS1 mice.
Collapse
Affiliation(s)
- Mei Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Lin Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Yi-Jing Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Shan-Shan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Army Medical University, Chongqing, P. R. China
| | - Lin Jiang
- Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, P. R. China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Feng-Lei Chao
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
25
|
Kumar R, Arroyo-García LE, Manchanda S, Adam L, Pizzirusso G, Biverstål H, Nilsson P, Fisahn A, Johansson J, Abelein A. Molecular Mechanisms of Amyloid-β Self-Assembly Seeded by In Vivo-Derived Fibrils and Inhibitory Effects of the BRICHOS Chaperone. ACS Chem Neurosci 2023; 14. [PMID: 37023330 PMCID: PMC10119923 DOI: 10.1021/acschemneuro.3c00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Self-replication of amyloid-β-peptide (Aβ) fibril formation is a hallmark in Alzheimer's disease (AD). Detailed insights have been obtained in Aβ self-assembly in vitro, yet whether similar mechanisms are relevant in vivo has remained elusive. Here, we investigated the ability of in vivo-derived Aβ fibrils from two different amyloid precursor protein knock-in AD mouse models to seed Aβ42 aggregation, where we quantified the microscopic rate constants. We found that the nucleation mechanism of in vivo-derived fibril-seeded Aβ42 aggregation can be described with the same kinetic model as that in vitro. Further, we identified the inhibitory mechanism of the anti-amyloid BRICHOS chaperone on seeded Aβ42 fibrillization, revealing a suppression of secondary nucleation and fibril elongation, which is strikingly similar as observed in vitro. These findings hence provide a molecular understanding of the Aβ42 nucleation process triggered by in vivo-derived Aβ42 propagons, providing a framework for the search for new AD therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Luis Enrique Arroyo-García
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Department
of Women’s and Children’s Health, Karolinska Institutet, 171 64 Solna, Sweden
| | - Shaffi Manchanda
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Laurène Adam
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Giusy Pizzirusso
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Department
of Women’s and Children’s Health, Karolinska Institutet, 171 64 Solna, Sweden
| | - Henrik Biverstål
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Per Nilsson
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - André Fisahn
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Jan Johansson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Axel Abelein
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
26
|
Figueira AJ, Saavedra J, Cardoso I, Gomes CM. S100B chaperone multimers suppress the formation of oligomers during Aβ42 aggregation. Front Neurosci 2023; 17:1162741. [PMID: 37025373 PMCID: PMC10070764 DOI: 10.3389/fnins.2023.1162741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Extracellular aggregation of the amyloid-β 1-42 (Aβ42) peptide is a major hallmark of Alzheimer's disease (AD), with recent data suggesting that Aβ intermediate oligomers (AβO) are more cytotoxic than mature amyloid fibrils. Understanding how chaperones harness such amyloid oligomers is critical toward establishing the mechanisms underlying regulation of proteostasis in the diseased brain. This includes S100B, an extracellular signaling Ca2+-binding protein which is increased in AD as a response to neuronal damage and whose holdase-type chaperone activity was recently unveiled. Driven by this evidence, we here investigate how different S100B chaperone multimers influence the formation of oligomers during Aβ42 fibrillation. Resorting to kinetic analysis coupled with simulation of AβO influx distributions, we establish that supra-stoichiometric ratios of dimeric S100B-Ca2+ drastically decrease Aβ42 oligomerization rate by 95% and AβO levels by 70% due to preferential inhibition of surface-catalyzed secondary nucleation, with a concomitant redirection of aggregation toward elongation. We also determined that sub-molar ratios of tetrameric apo-S100B decrease Aβ42 oligomerization influx down to 10%, while precluding both secondary nucleation and, more discreetly, fibril elongation. Coincidently, the mechanistic predictions comply with the independent screening of AβO using a combination of the thioflavin-T and X-34 fluorophores. Altogether, our findings illustrate that different S100B multimers act as complementary suppressors of Aβ42 oligomerization and aggregation, further underpinning their potential neuroprotective role in AD.
Collapse
Affiliation(s)
- António J. Figueira
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Saavedra
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cláudio M. Gomes
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Cláudio M. Gomes,
| |
Collapse
|
27
|
Figueira AJ, Moreira GG, Saavedra J, Cardoso I, Gomes CM. Tetramerization of the S100B Chaperone Spawns a Ca 2+ Independent Regulatory Surface that Enhances Anti-aggregation Activity and Client Specificity. J Mol Biol 2022; 434:167791. [PMID: 35970403 DOI: 10.1016/j.jmb.2022.167791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) hallmarks include the aggregation of amyloid-β (Aβ), tau and neuroinflammation promoted by several alarmins. Among these is S100B, a small astrocytic homodimeric protein, upregulated in AD, whose multiple biological activities depend on localization, concentration, and assembly state. S100B was reported to inhibit the aggregation and toxicity of Aβ42 and tau similarly to a holdase-type chaperone. This activity is dependent of Ca2+-binding, which triggers the exposure of a regulatory binding cleft at the S100B dimer interface with which amyloidogenic clients dynamically interact. Although the dimer prevails, a significant portion of secreted S100B in the human brain occurs as higher order multimers, whose protective functions remain uncharacterized and which we here investigate. Resorting to ThT-monitored aggregation kinetics, we determined that unlike the dimer, tetrameric S100B inhibits Aβ42 aggregation at sub/equimolar ratios, an effect that persists in the absence of Ca2+ binding. Structural analysis revealed that S100B tetramerization spawns a novel extended cleft accommodating an aggregation-prone surface that mediates interactions with monomeric Aβ client via hydrophobic interactions, as corroborated by Bis-ANS fluorescence and docking analysis. Correspondingly, at high ionic strength that reduces solvation and favours hydrophobic contacts, the inhibition of Aβ42 aggregation by tetrameric S100B is 3-fold increased. Interestingly, this extended Ca2+-independent surface favours Aβ42 as substrate, as tau K18 aggregation is not inhibited by the apo tetramer. Overall, results illustrate a mechanism through which oligomerization of the S100B chaperone fine-tunes anti-aggregation activity and client specificity, highlighting the potential functional relevance of S100B multimers in the regulation of AD proteotoxicity.
Collapse
Affiliation(s)
- António J Figueira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/Antonio27902425
| | - Guilherme G Moreira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/GuilhermeGilMo1
| | - Joana Saavedra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
28
|
Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc Natl Acad Sci U S A 2022; 119:2114486119. [PMID: 35082148 PMCID: PMC8812518 DOI: 10.1073/pnas.2114486119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane receptor of the immunoglobulin superfamily that is secreted in a soluble (sTREM2) form. Mutations in TREM2 have been linked to increased risk of Alzheimer's disease (AD). A prominent neuropathological component of AD is deposition of the amyloid-β (Aβ) into plaques, particularly Aβ40 and Aβ42. While the membrane-bound form of TREM2 is known to facilitate uptake of Aβ fibrils and the polarization of microglial processes toward amyloid plaques, the role of its soluble ectodomain, particularly in interactions with monomeric or fibrillar Aβ, has been less clear. Our results demonstrate that sTREM2 does not bind to monomeric Aβ40 and Aβ42, even at a high micromolar concentration, while it does bind to fibrillar Aβ42 and Aβ40 with equal affinities (2.6 ± 0.3 µM and 2.3 ± 0.4 µM). Kinetic analysis shows that sTREM2 inhibits the secondary nucleation step in the fibrillization of Aβ, while having little effect on the primary nucleation pathway. Furthermore, binding of sTREM2 to fibrils markedly enhanced uptake of fibrils into human microglial and neuroglioma derived cell lines. The disease-associated sTREM2 mutant, R47H, displayed little to no effect on fibril nucleation and binding, but it decreased uptake and functional responses markedly. We also probed the structure of the WT sTREM2-Aβ fibril complex using integrative molecular modeling based primarily on the cross-linking mass spectrometry data. The model shows that sTREM2 binds fibrils along one face of the structure, leaving a second, mutation-sensitive site free to mediate cellular binding and uptake.
Collapse
|
29
|
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues MS, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. Dynamic interactions and Ca 2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun 2021; 12:6292. [PMID: 34725360 PMCID: PMC8560819 DOI: 10.1038/s41467-021-26584-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca2+-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation. Here we report the activity of S100B as a suppressor of tau aggregation and seeding, operating at sub-stoichiometric conditions. We show that S100B interacts with tau in living cells even in microtubule-destabilizing conditions. Structural analysis revealed that tau undergoes dynamic interactions with S100B, in a Ca2+-dependent manner, notably with the aggregation prone repeat segments at the microtubule binding regions. This interaction involves contacts of tau with a cleft formed at the interface of the S100B dimer. Kinetic and mechanistic analysis revealed that S100B inhibits the aggregation of both full-length tau and of the microtubule binding domain, and that this proceeds through effects over primary and secondary nucleation, as confirmed by seeding assays and direct observation of S100B binding to tau oligomers and fibrils. In agreement with a role as an extracellular chaperone and its accumulation near tau positive inclusions, we show that S100B blocks proteopathic tau seeding. Together, our findings establish tau as a client of the S100B chaperone, providing evidence for neuro-protective functions of this inflammatory mediator across different tauopathies. The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa S Carvalho
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana P Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mário S Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Güenter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
30
|
Wartchow KM, Rodrigues L, Swierzy I, Buchfelder M, de Souza DO, Gonçalves CA, Kleindienst A. Amyloid-β Processing in Aged S100B Transgenic Mice Is Sex Dependent. Int J Mol Sci 2021; 22:ijms221910823. [PMID: 34639161 PMCID: PMC8509484 DOI: 10.3390/ijms221910823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Leticia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Izabela Swierzy
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Diogo Onofre de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
- Correspondence:
| |
Collapse
|
31
|
Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, Shin JH, Medeiros PHQS, Ledwaba SE, Kolling GL, Martins CS, Venkataraman V, Warren CA, Brito GAC. S100B Inhibition Attenuates Intestinal Damage and Diarrhea Severity During Clostridioides difficile Infection by Modulating Inflammatory Response. Front Cell Infect Microbiol 2021; 11:739874. [PMID: 34568098 PMCID: PMC8461106 DOI: 10.3389/fcimb.2021.739874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the enteric nervous system, which is a source of S100B, in Clostridioides difficile (C. difficile) infection (CDI) is poorly understood although intestinal motility dysfunctions are known to occur following infection. Here, we investigated the role of S100B in CDI and examined the S100B signaling pathways activated in C. difficile toxin A (TcdA)- and B (TcdB)-induced enteric glial cell (EGC) inflammatory response. The expression of S100B was measured in colon tissues and fecal samples of patients with and without CDI, as well as in colon tissues from C. difficile-infected mice. To investigate the role of S100B signaling in IL-6 expression induced by TcdA and TcdB, rat EGCs were used. Increased S100B was found in colonic biopsies from patients with CDI and colon tissues from C. difficile-infected mice. Patients with CDI-promoted diarrhea exhibited higher levels of fecal S100B compared to non-CDI cases. Inhibition of S100B by pentamidine reduced the synthesis of IL-1β, IL-18, IL-6, GMCSF, TNF-α, IL-17, IL-23, and IL-2 and downregulated a variety of NFκB-related genes, increased the transcription (SOCS2 and Bcl-2) of protective mediators, reduced neutrophil recruitment, and ameliorated intestinal damage and diarrhea severity in mice. In EGCs, TcdA and TcdB upregulated S100B-mediated IL-6 expression via activation of RAGE/PI3K/NFκB. Thus, CDI appears to upregulate colonic S100B signaling in EGCs, which in turn augment inflammatory response. Inhibition of S100B activity attenuates the intestinal injury and diarrhea caused by C. difficile toxins. Our findings provide new insight into the role of S100B in CDI pathogenesis and opens novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - David T Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jibraan A Fawad
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jae H Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Pedro H Q S Medeiros
- Department of Microbiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Solanka E Ledwaba
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Conceição S Martins
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.,Department of Rehabilitation Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Gerly A C Brito
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
32
|
Cristóvão JS, Moreira GG, Rodrigues FEP, Carapeto AP, Rodrigues MS, Cardoso I, Ferreira AEN, Machuqueiro M, Fritz G, Gomes CM. Cu 2+-binding to S100B triggers polymerization of disulfide cross-linked tetramers with enhanced chaperone activity against amyloid-β aggregation. Chem Commun (Camb) 2021; 57:379-382. [PMID: 33326534 DOI: 10.1039/d0cc06842j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S100B is an extracellular protein implicated in Alzheimer's Disease and a suppressor of amyloid-β aggregation. Herein we report a mechanism tying Cu2+ binding to a change in assembly state yielding disulfide cross-linked oligomers with higher anti-aggregation activity. This chemical control of chaperone function illustrates a regulatory process relevant under metal and proteostasis dysfunction as in neurodegeneration.
Collapse
Affiliation(s)
- Joana S Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
34
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
35
|
Computational Analysis of the Interactions between the S100B Extracellular Chaperone and Its Amyloid β Peptide Client. Int J Mol Sci 2021; 22:ijms22073629. [PMID: 33807304 PMCID: PMC8037576 DOI: 10.3390/ijms22073629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/01/2023] Open
Abstract
S100B is an astrocytic extracellular Ca2+-binding protein implicated in Alzheimer’s disease, whose role as a holdase-type chaperone delaying Aβ42 aggregation and toxicity was recently uncovered. Here, we employ computational biology approaches to dissect the structural details and dynamics of the interaction between S100B and Aβ42. Driven by previous structural data, we used the Aβ25–35 segment, which recapitulates key aspects of S100B activity, as a starting guide for the analysis. We used Haddock to establish a preferred binding mode, which was studied with the full length Aβ using long (1 μs) molecular dynamics (MD) simulations to investigate the structural dynamics and obtain representative interaction complexes. From the analysis, Aβ-Lys28 emerged as a key candidate for stabilizing interactions with the S100B binding cleft, in particular involving a triad composed of Met79, Thr82 and Glu86. Binding constant calculations concluded that coulombic interactions, presumably implicating the Lys28(Aβ)/Glu86(S100B) pair, are very relevant for the holdase-type chaperone activity. To confirm this experimentally, we examined the inhibitory effect of S100B over Aβ aggregation at high ionic strength. In agreement with the computational predictions, we observed that electrostatic perturbation of the Aβ-S100B interaction decreases anti-aggregation activity. Altogether, these findings unveil features relevant in the definition of selectivity of the S100B chaperone, with implications in Alzheimer’s disease.
Collapse
|
36
|
Cristóvão JS, Romão MA, Gallardo R, Schymkowitz J, Rousseau F, Gomes CM. Targeting S100B with Peptides Encoding Intrinsic Aggregation-Prone Sequence Segments. Molecules 2021; 26:molecules26020440. [PMID: 33467751 PMCID: PMC7830867 DOI: 10.3390/molecules26020440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
S100 proteins assume a diversity of oligomeric states including large order self-assemblies, with an impact on protein structure and function. Previous work has uncovered that S100 proteins, including S100B, are prone to undergo β-aggregation under destabilizing conditions. This propensity is encoded in aggregation-prone regions (APR) mainly located in segments at the homodimer interface, and which are therefore mostly shielded from the solvent and from deleterious interactions, under native conditions. As in other systems, this characteristic may be used to develop peptides with pharmacological potential that selectively induce the aggregation of S100B through homotypic interactions with its APRs, resulting in functional inhibition through a loss of function. Here we report initial studies towards this goal. We applied the TANGO algorithm to identify specific APR segments in S100B helix IV and used this information to design and synthesize S100B-derived APR peptides. We then combined fluorescence spectroscopy, transmission electron microscopy, biolayer interferometry, and aggregation kinetics and determined that the synthetic peptides have strong aggregation propensity, interact with S100B, and may promote co-aggregation reactions. In this framework, we discuss the considerable potential of such APR-derived peptides to act pharmacologically over S100B in numerous physiological and pathological conditions, for instance as modifiers of the S100B interactome or as promoters of S100B inactivation by selective aggregation.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (J.S.C.); (M.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Mariana A. Romão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (J.S.C.); (M.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Rodrigo Gallardo
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), 3000 Leuven, Belgium;
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PB 802, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), 3000 Leuven, Belgium;
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PB 802, 3000 Leuven, Belgium
- Correspondence: (C.M.G.); (F.R.); (J.S.)
| | - Frederic Rousseau
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), 3000 Leuven, Belgium;
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PB 802, 3000 Leuven, Belgium
- Correspondence: (C.M.G.); (F.R.); (J.S.)
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (J.S.C.); (M.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
- Correspondence: (C.M.G.); (F.R.); (J.S.)
| |
Collapse
|
37
|
Zhang J, Krishnan A, Wu H, Venkataraman V. Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta. Molecules 2021; 26:molecules26010227. [PMID: 33466232 PMCID: PMC7794955 DOI: 10.3390/molecules26010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Anuradha Krishnan
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Hao Wu
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
- Department of Rehabilitation Medicine, NeuroMusculoskeletal Institute, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
- Correspondence: ; Tel.: +1-856-566-6418
| |
Collapse
|
38
|
Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol 2021; 19:265-277. [PMID: 32727332 PMCID: PMC8033985 DOI: 10.2174/1570159x18666200729100427] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders (ND) are the central nervous system (CNS) related complications originated by enhanced oxidative stress, mitochondrial failure and overexpression of proteins like S100B. S100B is a helix-loop-helix protein with the calcium-binding domain associated with various neurological disorders through activation of the MAPK pathway, increased NF-kB expression resulting in cell survival, proliferation and gene up-regulation. S100B protein plays a crucial role in Alzheimer's disease, Parkinson's disease, multiple sclerosis, Schizophrenia and epilepsy because the high expression of this protein directly targets astrocytes and promotes neuroinflammation. Under stressful conditions, S100B produces toxic effects mediated through receptor for advanced glycation end products (AGE) binding. S100B also mediates neuroprotection, minimizes microgliosis and reduces the expression of tumor necrosis factor (TNF-alpha) but that are concentration- dependent mechanisms. Increased level of S100B is useful for assessing the release of inflammatory markers, nitric oxide and excitotoxicity dependent neuronal loss. The present review summarizes the role of S100B in various neurological disorders and potential therapeutic measures to reduce the prevalence of neurological disorders.
Collapse
Affiliation(s)
- Urvashi Langeh
- Department of Neuropharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Department of Neuropharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
39
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
40
|
Wang J, Liu J, Li R, Wang C. Research and progress on biomarkers of neuromyelitis optica spectrum disorders. J Recept Signal Transduct Res 2020; 41:417-424. [PMID: 33019871 DOI: 10.1080/10799893.2020.1830109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are a demyelinating disorder of the central nervous system based on the involvement of the optic nerve and/or spinal cord. The disease is characterized by high recurrence and disability. NMOSD is mainly diagnosed by AQP4-IgG and MOG-IgG. However, there are still some patients with negative or undetermined double-antibody, and AQP4-IgG and MOG-IgG cannot indicate the clinical disease activity. Therefore, it is urgent to explore interesting biomarkers in serum and cerebrospinal fluid to promote early clinical diagnosis and/or as a target for diagnosis and treatment. This article summarized the research progress in serum and cerebrospinal fluid biomarkers of astrocytes, neurons, myelin sheath, and other damage after the onset of NMOSD. Besides the value of microglial activation-related proteins in the diagnosis and treatment of NMOSD was prospected, so as to promote the research progress of NMOSD.
Collapse
Affiliation(s)
- Jinyang Wang
- School of Laboratory Medicine, Weifang Medical College, Weifang, P. R. China.,Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Ruibing Li
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Chengbin Wang
- School of Laboratory Medicine, Weifang Medical College, Weifang, P. R. China.,Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
41
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
42
|
Cristóvão JS, Figueira AJ, Carapeto AP, Rodrigues MS, Cardoso I, Gomes CM. The S100B Alarmin Is a Dual-Function Chaperone Suppressing Amyloid-β Oligomerization through Combined Zinc Chelation and Inhibition of Protein Aggregation. ACS Chem Neurosci 2020; 11:2753-2760. [PMID: 32706972 DOI: 10.1021/acschemneuro.0c00392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Amyloid beta (Aβ) aggregation and imbalance of metal ions are major hallmarks of Alzheimer's disease (AD). Indeed, amyloid plaques of AD patients are enriched in zinc and Aβ42, and AD related-cognitive decline is dependent on extracellular zinc concentration. In vitro, zinc induces the formation of polymorphic Aβ42 oligomers that delay the formation of amyloid fibers at the expense of increased cellular toxicity. S100B is an inflammatory alarmin and one of the most abundant proteins in the brain and is upregulated in AD and associated with amyloid plaques, where it exerts extracellular functions. Recent findings have uncovered novel neuroprotective functions for S100B as a suppressor of Aβ aggregation and toxicity and in the regulation of zinc homeostasis in neurons. Here we combine biophysical and kinetic approaches to demonstrate that such S100B protective functions converge, making the protein a dual-function chaperone capable of suppressing the formation of toxic Aβ oligomers through both chelation of zinc and inhibition of protein aggregation. From detailed kinetic analysis of Aβ42 aggregation monitoring ThT fluorescence, we show that substoichiometric S100B prevents the formation of toxic off-pathway oligomers that are formed by monomeric Aβ42 in the presence of zinc. Indeed, S100B is effective when added during the lag and transition phases of Aβ42 aggregation, and its action under these circumstances results from its ability to buffer zinc, as it perfectly mimics the effect obtained with the chelating agent EDTA. Further, bioimaging analysis combining transmission electron microscopy and atomic force microscopy confirms that catalytic amounts of S100B partly revert the formation of toxic oligomers. Taken together these results indicate a new role for S100B as a dual chaperone whose distinct functions are interrelated and depend on the relative levels of zinc, S100B, and Aβ, which dynamically evolve during AD.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - António J. Figueira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Ana P. Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Mário S. Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Isabel Cardoso
- i3S−Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal
- IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Cláudio M. Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
43
|
Chen Y, Chen X, Yao M, Chen L, Chen W, Liu X. Association of S100B 3'UTR polymorphism with risk of chronic heart failure in a Chinese Han population. Medicine (Baltimore) 2020; 99:e21018. [PMID: 32590820 PMCID: PMC7328937 DOI: 10.1097/md.0000000000021018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To study the correlation between single nucleotide polymorphism (SNP) of the 3' untranslated region (UTR) rs9722 locus in S100B and the risk of chronic heart failure (CHF), plasma levels of S100B protein as well as has-miR-340-3p in a Chinese Han population.A total of 215 patients with CHF (124 ischemic cardiomyopathy (ICM) and 91 dilated cardiomyopathy (DCM)) and 215 healthy controls were recruited to analyze the S100B rs9722 genotype by Sanger sequencing. The levels of hsa-miR-340-3p in the plasma were detected by RT-PCR, and S100B levels were detected by ELISA.The risk of CHF in S100B rs9722 locus T allele carriers was 4.24 times higher than that in those with the C allele (95% CI: 2.84-6.33, P < .001). The association of S100B rs9722 locus SNP with ICM and DCM risk was not affected by factors such as age, gender, and body mass index (BMI). The levels of plasma S100B and hsa-miR-340-3p in patients with ICM and DCM were significantly higher than those in the control group (P < .001). There was no significant difference in plasma S100B levels between patients with ICM and DCM (P > .05). Among ICM, DCM, and control subjects, TT genotype carriers had the highest levels of plasma S100B and hsa-miR-340-3p, followed by the CT genotype and TT genotype, and the difference was statistically significant (P < .05). Plasma hsa-miR-340-3p levels were positively correlated with S100B levels in the control subjects and patients with ICM and DCM.The S100B rs9722 locus SNP is associated with CHF risk in a Chinese Han population.
Collapse
Affiliation(s)
| | - Xianghong Chen
- Department of General Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 48 Baishuitang Road
| | - Maozhong Yao
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, Hainan Province, China
| | - Lei Chen
- Department of Cardiovascular Medicine
| | | | | |
Collapse
|
44
|
Baecker J, Wartchow K, Sehm T, Ghoochani A, Buchfelder M, Kleindienst A. Treatment with the Neurotrophic Protein S100B Increases Synaptogenesis after Traumatic Brain Injury. J Neurotrauma 2020; 37:1097-1107. [DOI: 10.1089/neu.2019.6475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Justus Baecker
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Krista Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina Sehm
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Ali Ghoochani
- Department of Radiology, Canary Center, Stanford University School of Medicine, Palo Alto, California
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
- Department of Spine Surgery, Klinikum Rummelsberg, Schwarzenbruck, Germany
| |
Collapse
|
45
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
46
|
Hagmeyer S, Romão MA, Cristóvão JS, Vilella A, Zoli M, Gomes CM, Grabrucker AM. Distribution and Relative Abundance of S100 Proteins in the Brain of the APP23 Alzheimer's Disease Model Mice. Front Neurosci 2019; 13:640. [PMID: 31281238 PMCID: PMC6596341 DOI: 10.3389/fnins.2019.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence links proteins of the S100 family to the pathogenesis of Alzheimer's disease (AD). S100 proteins are EF-hand calcium-binding proteins with intra- and extracellular functions related to regulation of proliferation, differentiation, apoptosis, and trace metal homeostasis, and are important modulators of inflammatory responses. For example, S100A6, S100A8, and S100B expression levels were found increased in inflammatory diseases, but also neurodegenerative disorders, and S100A8/A9 complexes may provide a mechanistic link between amyloid-beta (Aβ) plaque formation and neuroinflammation. On the other hand, S100B, a proinflammatory protein that is chronically up-regulated in AD and whose elevation precedes plaque formation, was recently shown to suppress Aβ aggregation. Here, we report expression of S100A6 and S100B in astrocytes and less so in neurons, and low level of expression of S100A8 in both neurons and glial cells in vitro. In vivo, S100A8 expression is almost absent in the brain of aged wildtype mice, while S100A6 and S100B are expressed in all brain regions and most prominently in the cortex and cerebellum. S100B seems to be enriched in Purkinje cells of the cerebellum. In contrast, in the brain of APP23 mice, a mouse model for Alzheimer's disease, S100B, S100A6, and S100A8 show co-localization with Aβ plaques, compatible with astrocyte activation, and the expression level of S100A8 is increased in neural cells. While S100A6 and S100B are enriched in the periphery of plaques where less fibrillar Aβ is found, S100A8 is more intense within the center of the inclusion. In vitro assays show that, similarly to S100B, S100A6, and S100A8 also delay Aβ aggregation suggesting a regulatory action over protein aggregation. We posit that elevated expression levels and overlapping spatial distribution of brain S100 proteins and plaques translates functional relationships between these inflammatory mediators and AD pathophysiology processes that uncover important molecular mechanisms linking the aggregation and neuroinflammation cascades.
Collapse
Affiliation(s)
- Simone Hagmeyer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany
| | - Mariana A. Romão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas M. Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
47
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
48
|
Abstract
Abstract
Inhibition of amyloid β peptide (Aβ) aggregation is an important goal due to the connection of this process with Alzheimer’s disease. Traditionally, inhibitors were developed with an aim to retard the overall macroscopic aggregation. However, recent advances imply that approaches based on mechanistic insights may be more powerful. In such approaches, the microscopic steps underlying the aggregation process are identified, and it is established which of these step(s) lead to neurotoxicity. Inhibitors are then derived to specifically target steps involved in toxicity. The Aβ aggregation process is composed of at minimum three microscopic steps: primary nucleation of monomers only, secondary nucleation of monomers on fibril surface, and elongation of fibrils by monomer addition. The vast majority of toxic species are generated from the secondary nucleation process: this may be a key process to inhibit in order to limit toxicity. Inhibition of primary nucleation, which delays the emergence of toxic species without affecting their total concentration, may also be effective. Inhibition of elongation may instead increase the toxicity over time. Here we briefly review findings regarding secondary nucleation of Aβ, its dominance over primary nucleation, and attempts to derive inhibitors that specifically target secondary nucleation with an aim to limit toxicity.
Collapse
Affiliation(s)
- Sara Linse
- Lund University , Department of Biochemistry and Structural Biology , P.O. Box 124 , 221 00 Lund , Sweden
- Lund University , NanoLund , Lund , Sweden
| |
Collapse
|
49
|
Forshaw S, Knighton RC, Reber J, Parker JS, Chmel NP, Wills M. A strained alkyne-containing bipyridine reagent; synthesis, reactivity and fluorescence properties. RSC Adv 2019; 9:36154-36161. [PMID: 35540623 PMCID: PMC9074932 DOI: 10.1039/c9ra06866j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
We report the synthesis of a bipyridyl reagent containing a strained alkyne, which significantly restricts its flexibility. Upon strain-promoted alkyne-azide cycloaddition (SPAAC) with an azide, which does not require a Cu catalyst, the structure becomes significantly more flexible and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further. The reagent has the potential to act as a fluorescent labelling agent with azide-containing substrates, including biological molecules. A bipyridyl reagent containing a strained alkyne 7, reacts with benzyl azide to give a significantly more flexible product 10 and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further.![]()
Collapse
Affiliation(s)
- Sam Forshaw
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | | - Jami Reber
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | - Jeremy S. Parker
- Early Chemical Development, Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca
- Macclesfield
- UK
| | | | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| |
Collapse
|
50
|
Abstract
The S100B protein is an intra- and extracellular signaling protein that
plays a role in a multitude of cellular processes and abnormal S100B is
associated with various neurological diseases and cancers. S100B recognizes and
binds effector proteins in a calcium-dependent manner. S100B has been shown to
interact with the actin capping protein CapZ, protein kinase C, Hdm2 and 4, RAGE
receptor, and p53, among others. These protein partners interact with
a common area on the S100B protein surface, validating the method of using the
consensus sequence for S100B target search. In addition, each S100B target
protein distinguishes itself by additional contacts with S100B. This perspective
suggests that the combination of sequence homology search and structural
analysis promises to identify newer S100B-binding partners beyond the use of the
consensus sequence alone as the given example in the XPB subunit of the TFIIH
general transcription factor. XPB is a helicase required for both transcription
and DNA repair. Inherited xpb mutations are associated with human disease
Xeroderma Pigmentasum, Cockayne syndrome, and trichothiodystrophy. S100B protein
is likely associated with much more biological pathways and processes. We
believe that S100B will attract more and more attentions in the scientific
community and S100B related studies will have important implications in human
health and medicine.
Collapse
Affiliation(s)
- K D Prez
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| | - L Fan
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| |
Collapse
|