1
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young‐Pearse TL. Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease. Glia 2025; 73:1166-1187. [PMID: 39901616 PMCID: PMC12012329 DOI: 10.1002/glia.24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Richard V. Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra M. Lish
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Zachary M. Augur
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Pallavi Gaur
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Earvin S. Tio
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Felsky
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tracy L. Young‐Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Zhang Y, Guo Y, He Y, You J, Zhang Y, Wang L, Chen S, He X, Yang L, Huang Y, Kang J, Ge Y, Dong Q, Feng J, Cheng W, Yu J. Large-scale proteomic analyses of incident Alzheimer's disease reveal new pathophysiological insights and potential therapeutic targets. Mol Psychiatry 2025; 30:2347-2361. [PMID: 39562718 DOI: 10.1038/s41380-024-02840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Pathophysiological evolutions in early-stage Alzheimer's disease (AD) are not well understood. We used data of 2923 Olink plasma proteins from 51,296 non-demented middle-aged adults. During a follow-up of 15 years, 689 incident AD cases occurred. Cox-proportional hazard models were applied to identify AD-associated proteins in different time intervals. Through linking to protein categories, changing sequences of protein z-scores can reflect pathophysiological evolutions. Mendelian randomization using blood protein quantitative loci data provided causal evidence for potentially druggable proteins. We identified 48 AD-related proteins, with CEND1, GFAP, NEFL, and SYT1 being top hits in both near-term (HR:1.15-1.77; P:9.11 × 10-65-2.78 × 10-6) and long-term AD risk (HR:1.20-1.54; P:2.43 × 10-21-3.95 × 10-6). These four proteins increased 15 years before AD diagnosis and progressively escalated, indicating early and sustained dysfunction in synapse and neurons. Proteins related to extracellular matrix organization, apoptosis, innate immunity, coagulation, and lipid homeostasis showed early disturbances, followed by malfunctions in metabolism, adaptive immunity, and final synaptic and neuronal loss. Combining CEND1, GFAP, NEFL, and SYT1 with demographics generated desirable predictions for 10-year (AUC = 0.901) and over-10-year AD (AUC = 0.864), comparable to full model. Mendelian randomization supports potential genetic link between CEND1, SYT1, and AD as outcome. Our findings highlight the importance of exploring the pathophysiological evolutions in early stages of AD, which is essential for the development of early biomarkers and precision therapeutics.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - YaRu Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - LinBo Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - ShiDong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - XiaoYu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - YuYuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JuJiao Kang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - YiJun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JianFeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - JinTai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Sengupta P, Mukhopadhyay D. IGF1R/ARRB1 Mediated Regulation of ERK and cAMP Pathways in Response to Aβ Unfolds Novel Therapeutic Avenue in Alzheimer's Disease. Mol Neurobiol 2025; 62:8065-8083. [PMID: 39969678 PMCID: PMC12078455 DOI: 10.1007/s12035-025-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
IGF1R/INSR signaling is crucial for understanding Alzheimer's disease (AD) and may aid in the development of potent therapeutic strategies. This study investigated the expression and activity of these receptors and their potential to form functional hybrids in response to amyloid beta (Aβ). IGF1R, INSR, and ARRB1 were found to be upregulated in AD. The propensity for functional hybrid formation was also greater in the presence of Aβ. The association of IGF1R with ARRB1 reached a maximum at 60 min of Aβ treatment, which coincided with increased pERK activity at approximately the same time, indicating the importance of this association in pERK regulation. Knocking down IGF1R, INSR, and ARRB1 independently reduced cAMP, whereas overexpressing IGF1R significantly increased cAMP. Knocking down ARRB1 in IGF1R-overexpressing cells led to a reduction in cAMP, indicating that the interaction of ARRB1 and IGF1R possibly contributes to cAMP dysregulation. Since cAMP plays a crucial role in cognition and memory, alterations in cAMP after receptor hybridization could be significant in AD. Additionally, we noted hyperactivation of MAPK, which is associated with aberrant cellular activity, transcriptional control, and stress pathways. This finding highlights the importance of IGF1R and INSR dysregulation, which plays a major role in addition to conventional RTK signaling through multiple pathways. Here, we focused on the ARRB1 and IGF1R interaction and showed that picropodophyllin (PPP), an IGF1R-specific inhibitor, blocks this interaction and alters the ERK and cAMP status under disease conditions. Cell viability studies further revealed that the PPP substantially improved cell viability in the presence of Aβ. This highlights the role of the PPP in regulating these cascades and opens the arena for further therapeutic development for AD.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debashis Mukhopadhyay
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Bebek G, Miyagi M, Wang X, Appleby BS, Leverenz JB, Pillai JA. Protein co-aggregates of dense core amyloid plaques and CSF differ in rapidly progressive Alzheimer's disease and slower sporadic Alzheimer's disease. Alzheimers Res Ther 2025; 17:118. [PMID: 40420296 PMCID: PMC12107742 DOI: 10.1186/s13195-025-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND The rapidly progressive phenotype of Alzheimer's disease (rpAD) remains a rare and less-studied entity. Therefore, the replication of key results from the rpAD brain and cerebrospinal fluid (CSF) is lacking. METHODS A label-free quantitative LC-MS/MS analysis of proteins co-aggregating with core-amyloid β plaques in fresh frozen tissue (FFT) from medial temporal regions of rpAD ( n = 8 ) neuropathologically characterized at the National Prion Disease Pathology Surveillance Center (NPDPSC), compared with microdissected amyloid plaques from formalin-fixed, paraffin-embedded (FFPE) tissue blocks from patients with rpAD ( n = 22 ) previously published from the NPDPSC cohort, was performed. Matched rpAD CSF from the FFT cases were compared to a previously published proteomic evaluation of CSF in the AD subtype with rapid progression. RESULTS A total of 1841 proteins were characterized in the FFT study, of which 463 were consistently identified in every rpAD patient analyzed. One thousand two hundred eighty-three proteins were shared between the FFT and the prior FFPE study. FFT offered a more comprehensive proteomic profile than the prior FFPE study and prominently included the immune system pathways. Thirty-five proteins were shared in the FFT brain tissue, matched CSF from the same subjects, in which biological processes related to immune response were again notable. These results were validated against prior published proteomic CSF AD data with a faster rate of progression to identify the top 5 potential protein biomarkers of rapid progression in AD CSF. CONCLUSIONS These results support a distinct immune-related proteomic profile in both the brain and the CSF that can be explored as potential biomarkers in the future for the clinical diagnosis of rpAD.
Collapse
Affiliation(s)
- Gurkan Bebek
- Center for Proteomics and Bioinformatics, Department of Nutrition, Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Xinglong Wang
- Department of Pathology, University of Arizona, Tucson, 85721, AZ, USA
| | - Brian S Appleby
- Department of Neurology, National Prion Disease Pathology Surveillance Center, University Hospitals Cleveland Medical Center, Cleveland, 44195, OH, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Department of Neurology, Cleveland, OH, USA
| | - Jagan A Pillai
- Lou Ruvo Center for Brain Health, Neurological Institute, Department of Neurology, Cleveland, OH, USA.
| |
Collapse
|
5
|
Taddei RN, Duff KE. Synapse vulnerability and resilience across the clinical spectrum of dementias. Nat Rev Neurol 2025:10.1038/s41582-025-01094-7. [PMID: 40404832 DOI: 10.1038/s41582-025-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Preservation of synapses is crucial for healthy cognitive ageing, and synapse loss is one of the closest anatomical correlates of cognitive decline in Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia. In these conditions, some synapses seem particularly vulnerable to degeneration whereas others are resilient and remain preserved. Evidence has highlighted that vulnerability and resilience are intrinsically distinct phenomena linked to specific brain structural and/or functional signatures, yet the key features of vulnerable and resilient synapses in the dementias remain incompletely understood. Defining the characteristics of vulnerable and resilient synapses in each form of dementia could offer novel insight into the mechanisms of synapse preservation and of synapse loss that underlies cognitive decline, thereby facilitating the discovery of targeted biomarkers and disease-modifying therapies. In this Review, we consider the concepts of synapse vulnerability and resilience, and provide an overview of our current understanding of the associations between synaptic protein changes, neuropathology and cognitive decline. We also consider how understanding of the underlying mechanisms could identify novel strategies to mitigate the cognitive dysfunction associated with dementias.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Trautwig AN, Fox EJ, Dammer EB, Shantaraman A, Ping L, Duong DM, Watson CM, Wu F, Asress S, Guo Q, Levey AI, Lah JJ, Verde F, Doretti A, Ratti A, Ticozzi N, Ly CV, Miller TM, Garret MA, Berry JD, Thomas EV, Fournier CN, McEachin ZT, Seyfried NT, Glass JD. Network analysis of the cerebrospinal fluid proteome reveals shared and unique differences between sporadic and familial forms of amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:58. [PMID: 40375307 DOI: 10.1186/s13024-025-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease involving loss of motor neurons, typically results in death within 3-5 years of disease onset. Although roughly 10% of cases can be linked to a specific inherited mutation (e.g., C9orf72 hexanucleotide repeat expansion or SOD1 mutation), the cause(s) of most cases are unknown. Consequently, there is a critical need for biomarkers that reflect disease onset and progression across ALS subgroups. METHODS We employed tandem mass tag mass spectrometry (TMT-MS) based proteomics on cerebrospinal fluid (CSF) to identify and quantify 2105 proteins from sporadic, C9orf72, and SOD1 ALS patients, asymptomatic C9orf72 expansion carriers, and controls (N = 101). To verify trends in our Emory University cohort we used data-independent acquisition (DIA-MS) on an expanded, four center cohort. This expanded cohort of 259 individuals included 50 sporadic ALS (sALS), 43 C9orf72 ALS, 22 SOD1 ALS, 72 asymptomatic gene carriers (59 C9orf72 and 13 SOD1) and 72 age-matched controls. We identified 2330 proteins and used differential protein abundance and network analyses to determine how protein profiles vary across disease subtypes in ALS CSF. RESULTS Differential abundance and co-expression network analysis identified proteomic differences between ALS and control, as well as differentially abundant proteins between sporadic, C9orf72 and SOD1 ALS. A panel of proteins differentiated forms of ALS that are indistinguishable in a clinical setting. An additional panel differentiated asymptomatic from symptomatic C9orf72 and SOD1 mutation carriers, marking a pre-symptomatic proteomic signature of genetic forms of ALS. Leveraging this large, multicenter cohort, we validated our ALS CSF network and identified ALS-specific proteins and network modules. CONCLUSIONS This study represents a comprehensive analysis of the CSF proteome across sporadic and genetic causes of ALS that resolves differences among these ALS subgroups and also identifies proteins that distinguish symptomatic from asymptomatic gene carriers. These new data point to varying pathogenic pathways that result in an otherwise clinically indistinguishable disease.
Collapse
Affiliation(s)
- Adam N Trautwig
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward J Fox
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anantharaman Shantaraman
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline M Watson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Fang Wu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Seneshaw Asress
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Qi Guo
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Federico Verde
- Department of Neuroscience, IRCCS Instituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Universitá Degli Studi Di Milano, Milan, Italy
| | - Alberto Doretti
- Department of Neuroscience, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universitá Degli Studi Di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neuroscience, IRCCS Instituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Universitá Degli Studi Di Milano, Milan, Italy
| | - Cindy V Ly
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Timothy M Miller
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Mark A Garret
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Eleanor V Thomas
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Zachary T McEachin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Ali M, Timsina J, Western D, Liu M, Beric A, Budde J, Do A, Heo G, Wang L, Gentsch J, Schindler SE, Morris JC, Holtzman DM, Ruiz A, Alvarez I, Aguilar M, Pastor P, Rutledge J, Oh H, Wilson EN, Guen YL, Khalid RR, Robins C, Pulford DJ, Tarawneh R, Ibanez L, Wyss-Coray T, Sung YJ, Cruchaga C. Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures across the Alzheimer disease continuum. Neuron 2025; 113:1363-1379.e9. [PMID: 40088886 PMCID: PMC12067247 DOI: 10.1016/j.neuron.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Changes in β-amyloid (Aβ) and hyperphosphorylated tau (T) in brain and cerebrospinal fluid (CSF) precede Alzheimer's disease (AD) symptoms, making the CSF proteome a potential avenue to understand disease pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 analytes (2,029 unique proteins) dysregulated in AD. Of these, 865 (43%) were previously reported, and 1,164 (57%) are novel. The identified proteins cluster in four different pseudo-trajectories groups spanning the AD continuum and were enriched in pathways including neuronal death, apoptosis, and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfunction (mid stages), brain plasticity and longevity (mid stages), and microglia-neuron crosstalk (late stages). Using machine learning, we created and validated highly accurate and replicable (area under the curve [AUC] > 0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel Western
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John Budde
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anh Do
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Agustin Ruiz
- ACE Alzheimer Center Barcelona, Barcelona, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Miquel Aguilar
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Pau Pastor
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward N Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yann Le Guen
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Chloe Robins
- Genomic Sciences, GSK Pharma R&D, 1250 S Collegeville Rd., Collegeville, PA 19426, USA
| | - David J Pulford
- Genomic Sciences, GSK Pharma R&D, 1250 S Collegeville Rd., Collegeville, PA 19426, USA
| | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Weiner S, Sauer M, Montoliu-Gaya L, Benedet AL, Ashton NJ, Gonzalez-Ortiz F, Simrén J, Rahmouni N, Tissot C, Therriault J, Servaes S, Stevenson J, Leinonen V, Rauramaa T, Hiltunen M, Rosa-Neto P, Blennow K, Zetterberg H, Gobom J. Cerebrospinal fluid proteome profiling across the Alzheimer's disease continuum: a step towards solving the equation for 'X'. Mol Neurodegener 2025; 20:52. [PMID: 40329321 PMCID: PMC12057231 DOI: 10.1186/s13024-025-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND While the temporal profile of amyloid (Aβ) and tau cerebrospinal fluid (CSF) biomarkers along the Alzheimer's disease (AD) continuum is well-studied, chronological changes of CSF proteins reflecting other disease-relevant processes, denoted 'X' in the ATX(N) framework, remain poorly understood. METHODS Using an untargeted mass spectrometric approach termed tandem mass tag (TMT), we quantified over 1500 CSF proteins across the AD continuum in three independent cohorts, finely staged by Aβ/tau positron emission tomography (PET), fluid biomarkers, or brain biopsy. Weighted protein co-expression network analysis identified clusters of proteins robustly correlating in all three cohorts which sequentially changed with AD progression. Obtained protein clusters were correlated with fluid biomarker measurements (phosphorylated tau (p-tau) species including p-tau181, p-tau217, and p-tau205, as well as Aβ), Aβ/tau PET imaging, and clinical parameters to discern disease-relevant clusters which were modelled across the AD continuum. RESULTS Neurodegeneration-related proteins (e.g., 14-3-3 proteins, PPIA), derived from different brain cell types, strongly correlated with fluid as well as imaging biomarkers and increased early in the AD continuum. Among them, the proteins SMOC1 and CNN3 were highly associated with Aβ pathology, while the 14-3-3 proteins YWHAZ and YWHAE as well as PPIA demonstrated a strong association with both Aβ and tau pathology as indexed by PET. Endo-lysosomal proteins (e.g., HEXB, TPP1, SIAE) increased early in abundance alongside neurodegeneration-related proteins, and were followed by increases in metabolic proteins such as ALDOA, MDH1, and GOT1 at the mild cognitive impairment (MCI) stage. Finally, later AD stages were characterized by decreases in synaptic/membrane proteins (e.g., NPTX2). CONCLUSIONS Our study identified proxies of Aβ and tau pathology, indexed by PET, (SMOC1, YWHAE, CNN3) and highlighted the dynamic fluctuations of the CSF proteome over the disease course, identifying candidate biomarkers for disease staging beyond Aβ and tau.
Collapse
Affiliation(s)
- Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
| | - Stijn Servaes
- McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
| | - Ville Leinonen
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital and Institute of Clinical Medicine-Pathology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
9
|
Mei Z, Liu J, Bennett DA, Seyfried N, Wingo AP, Wingo TS. Unraveling sex differences in Alzheimer's disease and related endophenotypes with brain proteomes. Alzheimers Dement 2025; 21:e70206. [PMID: 40346727 PMCID: PMC12064417 DOI: 10.1002/alz.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Sex differences exist in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS We examined brain proteomes profiled from the dorsolateral prefrontal cortex of 770 donors (66.2% female). RESULTS Proteome-wide differential expression analysis in males and females jointly identified many significant proteins for AD dementia (n = 1228), amyloid beta (n = 1183), tangles (n = 1309), and global cognitive trajectory (n = 2325) at a false discovery rate of <0.05. Sex-stratified analyses also identified many proteins associated with AD or its endophenotypes. Finally, we found 10 proteins with significant sex-by-trait interactions, including one in AD clinical diagnosis (MARCKS), seven in cognitive trajectories (TOGARAM1, PLCD3, SLC22A5, MTFR1L, DCUN1D5, S100A12, and TRIM46), and two in cerebral pathologies (PANK4 and SOS1). DISCUSSION The 10 proteins with sex interaction in AD cover a range of functions likely relevant for AD pathogenesis, including estrogen response, inflammation, and mitochondrial biology, and their specific roles in AD ought to be studied. Future work should test their potential as sex-specific AD biomarkers. HIGHLIGHTS At the phenotypic level, we found sex differences in baseline cognitive performance, cognitive trajectories, and AD hallmark pathologies. Proteome-wide differential expression analyses identified many brain proteins associated with AD and its endophenotypes in either sex alone or when considered together. We found 10 brain proteins with significant sex interactions in AD and its endophenotypes, which could be investigated as potential sex-specific biomarkers of AD.
Collapse
Affiliation(s)
- Zhen Mei
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Jiaqi Liu
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
| | - David A Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aliza P. Wingo
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
- Division of Mental HealthAtlanta VA Medical CenterDecaturGeorgiaUSA
| | - Thomas S. Wingo
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
- Alzheimer's Disease Research CenterUniversity of California, DavisSacramentoCaliforniaUSA
| |
Collapse
|
10
|
Ying Y, Lin J, Gao W, Yue L, Zeng Q, Bartas K, Cheong D, Jiang H, Zheng Z, Shi L, Ping A, Fang Y, Yan F, Guo T, Zhang J, Wu H, Beier K, Zhu J, Zhu Z. Proteomic profiling in cerebrospinal fluid reveal biomarkers for shunt outcome in idiopathic normal-pressure hydrocephalus. J Adv Res 2025:S2090-1232(25)00287-5. [PMID: 40311753 DOI: 10.1016/j.jare.2025.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND The pathophysiology of idiopathic normal pressure hydrocephalus (iNPH) remains unclear, and the treatment strategy remains suboptimal. This study aims to identify biomarkers for shunt prognosis by cerebrospinal fluid (CSF) proteomic profiling. METHODS CSF samples collected from 37 iNPH patients from the discovery cohort and 12 iNPH patients from an independent validation cohort (71.9 ± 6.1 years (mean ± SD)), and 16 age-balanced controls (69.9 ± 7.6 years (mean ± SD)) were collected from September 2020 to December 2023. 53 CSF samples were analyzed using a mass spectrometry-based proteomic workflow. Clinical evaluations were performed on all iNPH patients, and 44 patients underwent ventriculoperitoneal shunting. Postoperative CSF were also collected from 10 iNPH patients who underwent shunting surgery. Bioinformatics, machine learning, and enzyme-linked immunosorbent assay (ELISA) were performed to identify CSF proteome changes related to pathophysiology in iNPH, and screen for biomarkers associated with shunt response. RESULTS 39 and 285 proteins significantly increased and decreased in iNPH CSF compared to the control group. Gene ontology analysis revealed that the noticeably increased proteins were mainly associated with myeloid leukocyte migration and extracellular matrix organization, and significantly decreased proteins were primarily associated with axon development and synapse organization. Machine learning identified 6 candidate biomarkers that potentially predicted the response to shunt surgery. Among these, QPCT levels were found to be elevated in non-responders, while RBP4 levels were decreased, and both of these changes were validated through ELISA. CONCLUSIONS Our findings provide support for the hypothesis that the pathophysiology of iNPH is characterized by a state of neuroinflammation, extracellular matrix remodeling, and neurodegeneration, and CSF shunting can reverse such pathological state. Machine learning using preoperative proteomic profiles satisfactorily predicted the clinical outcome of the shunt procedure in iNPH. Future research targeting specific proteins in iNPH may be warranted to better comprehend the disease mechanism and design patient-tailored treatments.
Collapse
Affiliation(s)
- Yuqi Ying
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jingquan Lin
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Wei Gao
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Liang Yue
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Qingze Zeng
- Department of Radiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Katrina Bartas
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dayeon Cheong
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Hongjie Jiang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Ligen Shi
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - An Ping
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yuanjian Fang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Feng Yan
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Tiannan Guo
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China.
| | - Hemmings Wu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China.
| | - Kevin Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92617, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92617, USA; UCI Mind, University of California, Irvine, CA 92617, USA.
| | - Junming Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China.
| | - Zhoule Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang Province, Hangzhou 310009, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China.
| |
Collapse
|
11
|
Abyadeh M, Kaya A. Multiomics from Alzheimer's Brains and Mesenchymal Stem Cell-Derived Extracellular Vesicles Identifies Therapeutic Potential of Specific Subpopulations to Target Mitochondrial Proteostasis. J Cent Nerv Syst Dis 2025; 17:11795735251336302. [PMID: 40297324 PMCID: PMC12035200 DOI: 10.1177/11795735251336302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Alzheimer's disease (AD) is characterized by complex molecular alterations that complicate its pathogenesis and contribute to the lack of effective treatments. Mesenchymal stem cell-derived extracellular vesicles (EVs) have shown promise in AD models, but results across different EV subpopulations remain inconsistent. Objectives This study investigates proteomic and transcriptomic data from publicly available postmortem AD brain datasets to identify molecular changes at both the gene and protein levels. These findings are then compared with the proteomes of various EV subpopulations, differing in size and distribution, to determine the most promising subtype for compensating molecular degeneration in AD. Design We conducted a comprehensive analysis of 788 brain samples, including 481 AD cases and 307 healthy controls, examining protein and mRNA levels to uncover AD-associated molecular changes. These findings were then compared with the proteomes of different EV subpopulations to identify potential therapeutic candidates. Methods A multi-omics approach was employed, integrating proteomic and transcriptomic data analysis, miRNA and transcription factor profiling, protein-protein network construction, hub gene identification, and enrichment analyses. This approach aimed to explore molecular changes in AD brains and pinpoint the most relevant EV subpopulations for therapeutic intervention. Results We identified common alterations in the cAMP signaling pathway and coagulation cascade at both the protein and mRNA levels. Distinct changes in energy metabolism were observed at the protein level but not at the mRNA level. A specific EV subtype, characterized by a broader size distribution obtained through high-speed centrifugation, was identified as capable of compensating for dysregulated mitochondrial proteostasis in AD brains. Network biology analyses further highlighted potential regulators of key therapeutic proteins within this EV subtype. Conclusion This study underscores the critical role of proteomic alterations in AD and identifies a promising EV subpopulation, enriched with proteins targeting mitochondrial proteostasis, as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
12
|
Lish AM, Grogan EFL, Benoit CR, Pearse RV, Heuer SE, Luquez T, Orme GA, Galle PC, Milinkeviciute G, Green KN, Alexander KD, Fancher SB, Stern AM, Fujita M, Bennett DA, Seyfried NT, De Jager PL, Menon V, Young-Pearse TL. CLU alleviates Alzheimer's disease-relevant processes by modulating astrocyte reactivity and microglia-dependent synaptic density. Neuron 2025:S0896-6273(25)00254-5. [PMID: 40311610 DOI: 10.1016/j.neuron.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Genetic studies implicate clusterin (CLU) in the pathogenesis of Alzheimer's disease (AD), yet its precise molecular impact remains unclear. Through unbiased proteomic profiling and functional validation in CLU-deficient astrocytes, we identify increased nuclear factor κB (NF-κB)-dependent signaling and complement C3 secretion. Reduction of astrocyte CLU induced microglia-dependent modulation of extracellular apolipoprotein E (APOE) and phosphorylated tau, as well as increased microglial phagocytosis and reduced synapse numbers. By integrating mouse and human cellular models with comprehensive analyses of human plasma and brain tissue, we demonstrate that CLU AD-risk alleles are associated with reduced CLU protein and heightened inflammatory profiles. These findings establish a mechanistic link between AD genetic risk factors, astrocyte reactivity, and microglia-mediated effects on synaptic integrity. Collectively, these results support a model in which CLU upregulation in response to neuropathology is associated with maintenance of cognitive function, while diminished astrocyte CLU levels heighten disease susceptibility.
Collapse
Affiliation(s)
- Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elyssa F L Grogan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah E Heuer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tain Luquez
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn A Orme
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paige C Galle
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kellianne D Alexander
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Pereyra G, Mateo MI, Miaja P, Martin-Bermejo MJ, Martinez-Baños M, Klaassen R, Gruart A, Rueda-Carrasco J, Fernández-Rodrigo A, López-Merino E, Esteve P, Esteban JA, Smit AB, Delgado-García JM, Bovolenta P. SFRP1 upregulation causes hippocampal synaptic dysfunction and memory impairment. Cell Rep 2025; 44:115535. [PMID: 40198223 DOI: 10.1016/j.celrep.2025.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Impaired neuronal and synaptic function are hallmarks of early Alzheimer's disease (AD), preceding other neuropathological traits and cognitive decline. We previously showed that SFRP1, a glial-derived protein elevated in AD brains from preclinical stages, contributes to disease progression, implicating glial factors in early pathogenesis. Here, we generate and analyze transgenic mice overexpressing astrocytic SFRP1. SFRP1 accumulation causes early dendritic and synaptic defects in adult mice, followed by impaired synaptic long-term potentiation and cognitive decline, evident only when the animals age, thereby mimicking AD's structural-functional temporal distinction. This phenotype correlates with proteomic changes, including increased structural synaptic proteins like neurexin, which localizes in close proximity with SFRP1 in cultured hippocampal neurons. We conclude that excessive SFRP1 hinders synaptic protein turnover, reducing synaptic plasticity-a mechanism that may underlie the synaptopathy observed in the brains of prodromal AD patients.
Collapse
Affiliation(s)
- Guadalupe Pereyra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Inés Mateo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Pablo Miaja
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Jesús Martin-Bermejo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Marcos Martinez-Baños
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Remco Klaassen
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Javier Rueda-Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza López-Merino
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | | | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
14
|
Wang Z, Chen Y, Gong K, Zhao B, Ning Y, Chen M, Li Y, Ali M, Timsina J, Liu M, Cruchaga C, Jia J. Cerebrospinal fluid proteomics identification of biomarkers for amyloid and tau PET stages. Cell Rep Med 2025; 6:102031. [PMID: 40118053 PMCID: PMC12047519 DOI: 10.1016/j.xcrm.2025.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Accurate staging of Alzheimer's disease (AD) pathology is crucial for therapeutic trials and prognosis, but existing fluid biomarkers lack specificity, especially for assessing tau deposition severity, in amyloid-beta (Aβ)-positive patients. We analyze cerebrospinal fluid (CSF) samples from 136 participants in the Alzheimer's Disease Neuroimaging Initiative using more than 6,000 proteins. We apply machine learning to predict AD pathological stages defined by amyloid and tau positron emission tomography (PET). We identify two distinct protein panels: 16 proteins, including neurofilament heavy chain (NEFH) and SPARC-related modular calcium-binding protein 1 (SMOC1), that distinguished Aβ-negative/tau-negative (A-T-) from A+ individuals and nine proteins, such as HCLS1-associated protein X-1 (HAX1) and glucose-6-phosphate isomerase (GPI), that differentiated A+T+ from A+T- stages. These signatures outperform the established CSF biomarkers (area under the curve [AUC]: 0.92 versus 0.67-0.70) and accurately predicted disease progression over a decade. The findings are validated in both internal and external cohorts. These results underscore the potential of proteomic-based signatures to refine AD diagnostic criteria and improve patient stratification in clinical trials.
Collapse
Affiliation(s)
- Zhibo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yuhan Chen
- The First Clinical Medical School, Hebei North University, Zhangjiakou 075000, China
| | - Katherine Gong
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Bote Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yuye Ning
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Meilin Chen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, P.R.China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, P.R.China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, P.R.China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, P.R.China.
| |
Collapse
|
15
|
Borkowski K, Yin C, Kindt A, Liang N, de Lange E, Blach C, Newman JW, Kaddurah-Daouk R, Hankemeier T. Metabolic Alteration in Oxylipins and Endocannabinoids Point to an Important Role for Soluble Epoxide Hydrolase and Inflammation in Alzheimer's Disease - Finding from Alzheimer's Disease Neuroimaging Initiative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646677. [PMID: 40236050 PMCID: PMC11996541 DOI: 10.1101/2025.04.01.646677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Mounting evidence implicates inflammation as a key factor in Alzheimer's disease (AD) development. We previously identified pro-inflammatory soluble epoxide hydrolase (sEH) metabolites to be elevated in plasma and CSF of AD patients and to be associated with lower cognition in non-AD subjects. Soluble epoxide hydrolase is a key enzyme converting anti-inflammatory epoxy fatty acids to pro-inflammatory diols, reported to be elevated in multiple cardiometabolic disorders. Here we analyzed over 700 fasting plasma samples from the baseline of Alzheimer's Disease Neuroimaging Initiative (ADNI) 2/GO study. We applied targeted mass spectrometry method to provide absolute quantifications of over 150 metabolites from oxylipin and endocannabinoids pathway, interrogating the role for inflammation/immune dysregulation and the key enzyme soluble epoxide hydrolase in AD. We provide further insights into the regulation of this pathway in different disease stages, APOE genotypes and between sexes. Additionally, we investigated in mild cognitive impaired (MCI) patients, metabolic signatures that inform about resilience to progression and conversion to AD. Key findings include I) confirmed disruption in this key central pathway of inflammation and pointed to dysregulation of sEH in AD with sex and disease stage differences; II) identified markers of disease progression and cognitive resilience using sex and ApoE genotype stratified analysis highlighting an important role for bile acids, lipid peroxidation and stress response hormone cortisol. In conclusion, we provide molecular insights into a central pathway of inflammation and links to cognitive dysfunction, suggesting novel therapeutic approaches that are based on targeting inflammation tailored for subgroups of individuals based on their sex, APOE genotype and their metabolic profile.
Collapse
|
16
|
Tandon R, Zhao L, Watson CM, Sarkar N, Elmor M, Heilman C, Sanders K, Hales CM, Yang H, Loring DW, Goldstein FC, Hanfelt JJ, Duong DM, Johnson ECB, Wingo AP, Wingo TS, Roberts BR, Seyfried NT, Levey AI, Lah JJ, Mitchell CS. Stratifying risk of Alzheimer's disease in healthy middle-aged individuals with machine learning. Brain Commun 2025; 7:fcaf121. [PMID: 40226382 PMCID: PMC11986205 DOI: 10.1093/braincomms/fcaf121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Alzheimer's disease has a prolonged asymptomatic phase during which pathological changes accumulate before clinical symptoms emerge. This study aimed to stratify the risk of clinical disease to inform future disease-modifying treatments. Cerebrospinal fluid analysis from participants in the Emory Healthy Brain Study was used to classify individuals based on amyloid beta 42 (Aβ42), total tau (tTau) and phosphorylated tau (pTau) levels. Cognitively normal (CN), biomarker-positive (CN)/BM+individuals were identified using a tTau: Aβ42 ratio > 0.24, determined by Gaussian mixture models. CN/BM+ individuals (n = 134) were classified as having asymptomatic Alzheimer's disease (AsymAD), while CN, biomarker-negative (CN/BM-) individuals served as controls (n = 134). Cognitively symptomatic, biomarker-positive individuals with an Alzheimer's disease diagnosis confirmed by the Emory Cognitive Neurology Clinic were labelled as Alzheimer's disease (n = 134). Study groups were matched for age, sex, race and education. Cerebrospinal fluid samples from these matched Emory Healthy Brain Study groups were analysed using targeted proteomics via selected reaction monitoring mass spectrometry. The targeted cerebrospinal fluid panel included 75 peptides from 58 unique proteins. Machine learning approaches identified a subset of eight peptides (ADQDTIR, AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR, VVSSIEQK, YDNSLK) that distinguished between CN/BM- and symptomatic Alzheimer's disease samples with a binary classifier area under the curve performance of 0.98. Using these eight peptides, Emory Healthy Brain Study AsymAD cases were further stratified into 'Control-like' and 'Alzheimer's disease-like' subgroups, representing varying levels of risk for developing clinical disease. The eight peptides were evaluated in an independent dataset from the Alzheimer's Disease Neuroimaging Initiative, effectively distinguishing CN/BM- from symptomatic Alzheimer's disease cases (area under the curve = 0.89) and stratifying AsymAD individuals into control-like and Alzheimer's disease-like subgroups (area under the curve = 0.89). In the absence of matched longitudinal data, an established cross-sectional event-based disease progression model was employed to assess the generalizability of these peptides for risk stratification. In summary, results from two independent modelling methods and datasets demonstrate that the identified eight peptides effectively stratify the risk of progression from asymptomatic to symptomatic Alzheimer's disease.
Collapse
Affiliation(s)
- Raghav Tandon
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - Caroline M Watson
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Neel Sarkar
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Morgan Elmor
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Craig Heilman
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Katherine Sanders
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Chadwick M Hales
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Huiying Yang
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - David W Loring
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Felicia C Goldstein
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John J Hanfelt
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - Duc M Duong
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Erik C B Johnson
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory School of Medicine, Atlanta, GA 30322, USA
- Division of Mental Health, Atlanta VA Medical Center, Atlanta, GA 30033, USA
| | - Thomas S Wingo
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Blaine R Roberts
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - James J Lah
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Zaman M, Yang S, Huang Y, Yarbro JM, Hao Y, Wang Z, Liu D, Harper KE, Soliman H, Hemphill A, Harvey S, Pruett-Miller SM, Stewart V, Tanwar AS, Kalathur R, Grace CR, Turk M, Chittori S, Jiao Y, Wu Z, High AA, Wang X, Serrano GE, Beach TG, Yu G, Yang Y, Chen PC, Peng J. Midkine Attenuates Aβ Fibril Assembly and Amyloid Plaque Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644383. [PMID: 40166321 PMCID: PMC11957132 DOI: 10.1101/2025.03.20.644383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aβ since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aβ assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aβ40 and Aβ42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdk gene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and detergent-insoluble proteome in these mouse models indicates significant accumulation of Aβ and Aβ-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Masihuz Zaman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shu Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Ya Huang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jay M. Yarbro
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yanhong Hao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kiara E. Harper
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hadeer Soliman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alex Hemphill
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sarah Harvey
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Valerie Stewart
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ajay Singh Tanwar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Martin Turk
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Gang Yu
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Yang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
18
|
Zhang B, Zou Y, Tang Q, Yuan Z, Jiang K, Zhang Z, Chen S, Wu Q, Zhou X, Zhang X. SIRPα modulates microglial efferocytosis and neuroinflammation following experimental subarachnoid hemorrhage via the SHP1/STAT6 axis. J Neuroinflammation 2025; 22:88. [PMID: 40108663 PMCID: PMC11924727 DOI: 10.1186/s12974-025-03414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Subarachnoid hemorrhage induces extensive neuronal cell death, leading to the release of damage-associated molecular patterns (DAMPs). These DAMPs, along with hemoglobin and cell corpses, trigger localized inflammation. Signal regulatory protein alpha (SIRPα) plays a crucial role in efferocytosis by acting as a "don't eat-me" signal, modulating inflammation and tissue homeostasis. However, the precise function and regulatory mechanisms of SIRPα in efferocytosis remain unclear. Proteomic analysis of cerebrospinal fluid (CSF) reveals that SIRPα levels are significantly elevated in the CSF of SAH patients and correlate with clinical outcomes. In vivo and in vitro studies show that microglial knockdown of SIRPα promotes efferocytosis and attenuates neuroinflammation following SAH. SIRPα inhibits efferocytosis by recruiting and phosphorylating SHP1 and SHP2 through phosphorylation of four tyrosine residues in its cytoplasmic domain, with SHP1 playing a particularly critical role. Mutation of these tyrosine residues to non-phosphorylatable alanine residues enhances efferocytosis and reduces neuroinflammation in vitro. RNA-seq analysis suggests that this mutation upregulates the expression of "eat-me" signals, MerTK and CD36, and identifies STAT6 as a key transcription factor involved in this process. In conclusion, SIRPα plays a central role in regulating microglia efferocytosis and neuroinflammation after SAH via the SHP1/STAT6 axis. Targeting this pathway may provide a promising therapeutic approach for SAH.
Collapse
Affiliation(s)
- Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qikai Tang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixuan Yuan
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Jiang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Zhaoxiang Zhang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Bangs MC, Gadhavi J, Carter EK, Ping L, Duong DM, Dammer EB, Wu F, Shantaraman A, Fox EJ, Johnson EC, Lah JJ, Levey AI, Seyfried NT. Proteomic Subtyping of Alzheimer's Disease CSF links Blood-Brain Barrier Dysfunction to Reduced levels of Tau and Synaptic Biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643332. [PMID: 40161719 PMCID: PMC11952530 DOI: 10.1101/2025.03.14.643332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by significant clinical and molecular heterogeneity, influenced by genetic and demographic factors. Using an unbiased, network-driven approach, we analyzed the cerebrospinal fluid (CSF) proteome from 431 individuals (483 samples), including 111 African American participants, to identify core protein modules associated with AD, race, sex, and age. Our analysis revealed ten co-expression modules linked to distinct biological pathways and cell types, many of which correlated with established AD biomarkers such as β-amyloid, tau, and phosphorylated tau. To further resolve disease heterogeneity, we applied a proteomic subtyping approach, identifying six distinct CSF subtypes spanning the clinical and pathological spectrum. These subtypes were validated across independent cohorts, with many aligning with previously defined AD subtypes, including those linked to neuronal hyperplasticity, immune activation, and blood-brain barrier (BBB) integrity. Notably, the BBB subtype, enriched with African Americans and men, was characterized by low CSF tau, high CSF/serum albumin ratios, and reduced synaptic protein levels. This subtype also exhibited increased levels of proteolytic enzymes, including thrombin and matrix metalloproteases, that cleave tau. Plasma dilution into the neuronal hyperplastic AD subtype CSF led to reduced tau and synaptic protein module levels, indicating that plasma protease activity contributes to tau and synaptic protein depletion independent of underlying brain pathology. These findings highlight the impact of BBB integrity on CSF tau levels, particularly in men and African Americans, and underscore the need for diversity-informed AD biomarker strategies to improve diagnostics and therapeutic targeting across populations.
Collapse
Affiliation(s)
- Madison C. Bangs
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshna Gadhavi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - E. Kathleen Carter
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lingyan Ping
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M. Duong
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric B. Dammer
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Wu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anantharaman Shantaraman
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edward J. Fox
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erik C.B. Johnson
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J. Lah
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I. Levey
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Xie Y, Chen X, Xu M, Zheng X. Application of the Human Proteome in Disease, Diagnosis, and Translation into Precision Medicine: Current Status and Future Prospects. Biomedicines 2025; 13:681. [PMID: 40149657 PMCID: PMC11940125 DOI: 10.3390/biomedicines13030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
This review summarizes the existing studies of human proteomics technology in the medical field with a focus on the development mechanism of a disease and its potential in discovering biomarkers. Through a systematic review of the relevant literature, we found the significant advantages and application scenarios of proteomics technology in disease diagnosis, drug development, and personalized treatment. However, the review also identifies the challenges facing proteomics technologies, including sample preparation of low-abundance proteins, massive amounts of data analysis, and how research results can be better used in clinical practice. Finally, this work discusses future research directions, including the development of more effective proteomics technologies, strengthening the integration of multi-source omics technologies, and promoting the application of AI in the human proteome.
Collapse
Affiliation(s)
| | | | - Maokai Xu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| |
Collapse
|
21
|
Shang D, Song Y, Cui Y, Chen C, Xu F, Zhu C, Dong X, Chen Y, Wang S, Li X, Liang X. Superhydrophilic Nanostructured Microparticles for Enhanced Phosphoprotein Enrichment from Alzheimer's Disease Brain. ACS NANO 2025; 19:8118-8130. [PMID: 39992002 DOI: 10.1021/acsnano.4c16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and closely related to abnormal phosphoproteoforms. The analysis of low-abundance phosphoproteoforms relies heavily on the enrichment of phosphoproteins. However, existing phosphoprotein enrichment materials suffer from either low selectivity or low coverage due to the unavoidable unspecific adsorption of background proteins. Here, we propose a strategy of nanostructure-enabled superhydrophilic surfaces and synthesize Ti4+-functionalized superhydrophilic nanostructured microparticles (SNMs-Ti4+) via an emulsion interfacial polymerization process. In this process, hydrophilic and hydrophobic monomers assemble into a stable oil-in-water emulsion, producing microparticles with abundant hydrophilic phosphate nanoprotrusions on the surface. The microparticles are subsequently functionalized with Ti4+. SNMs-Ti4+ exhibit enormous nanoprotrusions and abundant Ti4+ modifications, which allow SNMs-Ti4+ to effectively adsorb the phosphoproteins and suppress the unspecific adsorption of background proteins. Using these SNMs-Ti4+, we identified 2256 phosphoproteins from HeLa cells, twice the number of those enriched with commercial kits. From AD mouse brains, 2603 phosphoproteins were successfully enriched, and 10 times of AD-related differentially regulated phosphoproteins were discovered than those without enrichment. These microparticles show great prospects for biomarker detection, disease diagnosis, and downstream biological process disclosure.
Collapse
Affiliation(s)
- Danyi Shang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Cui
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Feifei Xu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Congcong Zhu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xuefang Dong
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuling Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
22
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
23
|
Tiek D, Song X, Yu X, Wu R, Iglesia R, Catezone A, McCortney K, Walshon J, Horbinski C, Jamshidi P, Castellani R, Vassar R, Miska J, Hu B, Cheng SY. Oxidative stress induced protein aggregation via GGCT produced pyroglutamic acid in drug resistant glioblastoma. iScience 2025; 28:111769. [PMID: 39949960 PMCID: PMC11821397 DOI: 10.1016/j.isci.2025.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Drug resistance is a major barrier to cancer therapies and remains poorly understood. Recently, non-mutational mechanisms of drug resistance have been proposed where a more plastic metabolic response can play a major role. Here, we show that upon drug resistance, glioblastoma (GBM) cells have increased oxidative stress, mitochondria function, and protein aggregation. Gamma (γ)-glutamylcyclotranserase (GGCT), an enzyme in the γ-glutamyl cycle for glutathione production, located on chromosome 7 which is commonly amplified in GBM is also increased upon resistance. We further observe that the byproduct of GGCT-pyroglutamic acid-can bind aggregating proteins and that genetic and pharmacological inhibition of GGCT prevents protein aggregation. Finally, we found increased protein aggregation, GGCT expression, and pyroglutamic acid staining in recurrent GBM patient samples, adjacent non-tumor brain, and Alzheimer's brains. These findings suggest a new pathway for protein aggregation within drug resistant brain cancer that should be further studied in other brain disorders.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Runxin Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia Catezone
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katy McCortney
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jordain Walshon
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig Horbinski
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Rudolph Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Robert Vassar
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurosurgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Berryhill C, Evans TN, Doud EH, Smith-Kinnaman WR, Hanquier JN, Mosley AL, Cornett EM. Quantitative Analysis of Nonhistone Lysine Methylation Sites and Lysine Demethylases in Breast Cancer Cell Lines. J Proteome Res 2025; 24:550-561. [PMID: 39778878 PMCID: PMC11812601 DOI: 10.1021/acs.jproteome.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of tandem mass tag (TMT) labeling for global Kme quantification without antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified among the four cell lines, revealing cell line-specific patterning.
Collapse
Affiliation(s)
- Christine
A. Berryhill
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Taylor N. Evans
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Emma H. Doud
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Whitney R. Smith-Kinnaman
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Jocelyne N. Hanquier
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Amber L. Mosley
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Evan M. Cornett
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| |
Collapse
|
25
|
Sogorb-Esteve A, Weiner S, Simrén J, Swift IJ, Bocchetta M, Todd EG, Cash DM, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Genfi, Blennow K, Zetterberg H, Rohrer JD, Gobom J. Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes. Sci Transl Med 2025; 17:eadm9654. [PMID: 39908349 DOI: 10.1126/scitranslmed.adm9654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls ("noncarriers"). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer's disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University, UB8 3PH London, UK
| | - Emily G Todd
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - David M Cash
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Phoebe H Foster
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036 Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Bioclinicum, Karolinska Institutet, 171 64 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 171 77 Solna, Sweden
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, 20122 Milan, Italy
- University of Milan, Centro Dino Ferrari, 20122 Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, 80539 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
- Department of Neurology, Martin-Luther-University Hospital of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Florence Pasquier
- University of Lille, 59000 Lille, France
- Inserm 1172, Lille, 59000 Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000 Lille, France
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec H4A 3J1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 5A5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, 20014 San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014 San Sebastian, Gipuzkoa, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Department of Continuity of Care and Frialy, ASST Spedali Civili Brescia, 25123 Brescia, Italy
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, 75013 Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
26
|
Cheng Q, Fan Y, Zhang P, Liu H, Han J, Yu Q, Wang X, Wu S, Lu Z. Biomarkers of synaptic degeneration in Alzheimer's disease. Ageing Res Rev 2025; 104:102642. [PMID: 39701184 DOI: 10.1016/j.arr.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Synapse has been considered a critical neuronal structure in the procession of Alzheimer's disease (AD), attacked by two pathological molecule aggregates (amyloid-β and phosphorylated tau) in the brain, disturbing synaptic homeostasis before disease manifestation and subsequently causing synaptic degeneration. Recently, evidence has emerged indicating that soluble oligomeric amyloid-β (AβO) and tau exert direct toxicity on synapses, causing synaptic damage. Synaptic degeneration is closely linked to cognitive decline in AD, even in the asymptomatic stages of AD. Therefore, the identification of novel, specific, and sensitive biomarkers involved in synaptic degeneration holds significant promise for early diagnosis of AD, reducing synaptic degeneration and loss, and controlling the progression of AD. Currently, a range of biomarkers in cerebrospinal fluid (CSF), such as synaptosome-associated protein 25 (SNAP-25), synaptotagmin-1, growth-associated protein-43 (GAP-43), and neurogranin (Ng), along with functional brain imaging techniques, can detect variations in synaptic density, offering high sensitivity and specificity for AD diagnosis. However, these methods face challenges, including invasiveness, high cost, and limited accessibility. In contrast, biomarkers found in blood or urine provide a minimally invasive, cost-effective, and more accessible alternative to traditional diagnostic methods. Notably, neuron-derived exosomes in blood, which contain synaptic proteins, show variations in concentration that can serve as indicators of synaptic injury, providing an additional, less invasive approach to AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yiou Fan
- Laboratory and Quality Management Department, Centers for Disease Control and Prevention of Shandong, Jinan, Shandong, China
| | - Pengfei Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jialin Han
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qian Yu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xueying Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shuang Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
27
|
Zhang X, Liu Y, Rekowski MJ, Wang N. Lactylation of tau in human Alzheimer's disease brains. Alzheimers Dement 2025; 21:e14481. [PMID: 39740133 PMCID: PMC11851134 DOI: 10.1002/alz.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Aggregation of hyperphosphorylated tau (tauopathy) is associated with cognitive impairment in patients with Alzheimer's disease (AD). In AD, a metabolic shift due to the Warburg effect results in increased lactate production. Lactate can induce a post-translational modification (PTM) on proteins that conjugates lactyl groups to lysine (K) residues, which is known as lactylation. METHODS We analyzed lactylation of tau in control and AD brain tissue and conducted cell-based assays. In addition, we used in vitro assays to determine whether p300 catalyzed tau lactylation. RESULTS Quantitative proteomics detected that tau lactylation was elevated in AD brains, with K residue at position 331 (K331) being a prominent site. Lactate induced tau lactylation, which increased tau phosphorylation and cleavage and reduced ubiquitination. Inhibition of lactate production lowered tau lactylation; p300 catalyzed tau lactylation. DISCUSSION Our findings suggest that tau lactylation links metabolic dysregulation with tauopathy and could serve as a novel diagnostic and therapeutic target. HIGHLIGHTS Elevated tau lactylation, particularly at K331, is evident in in human AD brain samples. Lactate induces tau lactylation, enhancing phosphorylation and cleavage while inhibiting ubiquitination. The acetyl-transferase p300 catalyzes tau lactylation, with K331 being the most prominent site.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Yan Liu
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Michaella J. Rekowski
- Mass Spectrometry/Proteomics Core LaboratoryUniversity of Kansas Medical CenterKansas CityKansasUSA
- Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ning Wang
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
- Landon Center on AgingUniversity of Kansas Medical CenterKansas CityKansasUSA
- University of Kansas Alzheimer's Disease Research CenterFairwayKansasUSA
| |
Collapse
|
28
|
Kioko M, Mwangi S, Njunge JM, Berkley JA, Bejon P, Abdi AI. Linking Cerebral Malaria Pathogenesis to APOE-Mediated Amyloidosis: Observations and Hypothesis. Mol Neurobiol 2025; 62:1720-1725. [PMID: 39023792 PMCID: PMC11772498 DOI: 10.1007/s12035-024-04366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Although most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease. If our hypothesis is tested and found to be true, it could have far-reaching implications for what we know about cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James M Njunge
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James A Berkley
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.
| |
Collapse
|
29
|
Jang S, Gwak HS, Lee KY, Lee JH, Kim KH, Kim JH, Park JB, Shin SH, Yoo H, Dho YS, Wang KC, Yoo BC. Exploratory profiling of metabolites in cerebrospinal fluid using a commercially available targeted LC-MS based metabolomics kit to discriminate leptomeningeal metastasis. Cancer Metab 2025; 13:2. [PMID: 39838492 PMCID: PMC11748265 DOI: 10.1186/s40170-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective. We explored targeted CSF metabolic profiling to discriminate among LM and other conditions affecting the central nervous system (CNS). METHODS We quantitatively measured amino acids, biogenic amines, hexoses, acylcarnitines (AC), cholesteryl esters (CE), glycerides, phosphatidylcholines (PC), lysophosphatidylcholines (LPC), sphingomyelins (SM), and ceramides (Cer) in 117 CSF samples from various groups of healthy controls (HC, n = 10), patients with LM (LM, n = 47), parenchymal brain tumor (PBT, n = 45), and inflammatory disease (ID, n = 13) with internal standards using the Absolute IDQ- p400® targeted mass spectrometry kit. Metabolites detected in > 90% of samples or showing a difference in proportional level between groups ≥ 75% were used in logistic regression models when there was no single metabolite with AUC = 1 for the groups of comparison. RESULTS PC and SM had higher levels in LM than in PBT or HC, whereas LPC had lower level in PBT than the other groups. Glycerides and Cer levels were higher in PBT and LM than in HC. Long-chain AC level in PBT was lower than in LM or HC. A regression model including Ala, PC (42:7), PC (30:3), PC (37:0), and Tyr achieved complete discrimination (AUC = 1.0) between LM and HC. In comparison of PBT and HC, twenty-six individual metabolites allowed complete discrimination between two groups, and between ID and HC fourty-six individual lipid metabolites allowed complete discrimination. Twenty-one individual metabolites (18 ACs and 3 PCs) allowed complete discrimination between LM and PBT. CONCLUSIONS Using a commercial targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics kit, we were able to differentiate LM from HC and PBT. Most of the discriminative metabolites among different diseases were lipid metabolites, for which their CNS distribution and quantification in different cell types are largely unknown, whereas amino acids, biogenic amines, and hexoses failed to show significant differences. Future validation studies with larger, controlled cohorts should be performed, and hopefully, the kit may expand its metabolite coverage for unique cancer cell glucose metabolism.
Collapse
Affiliation(s)
- Soojin Jang
- Department of Neurosurgery, College of Medicine, Seoul National University, Seoul, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jun Hwa Lee
- Biomarker Branch, and Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, and Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yun-Sik Dho
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyu-Chang Wang
- Neuro-oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
30
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Giusti Pedrosa A, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the amyloid plaque proteome in Down syndrome, early-onset Alzheimer's disease, and late-onset Alzheimer's disease. Acta Neuropathol 2025; 149:9. [PMID: 39825890 PMCID: PMC11742868 DOI: 10.1007/s00401-025-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o), and controls (66.4 ± 13.04). We identified differentially abundant proteins when comparing Aβ plaques and neighboring non-plaque tissue (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192), and LOAD (n = 128), with 43 plaque-associated proteins shared across all groups. Positive correlations were observed between plaque-associated proteins in DS and EOAD (R2 = .77), DS and LOAD (R2 = .73), and EOAD and LOAD (R2 = .67). Top gene ontology biological processes (GOBP) included lysosomal transport (p = 1.29 × 10-5) for DS, immune system regulation (p = 4.33 × 10-5) for EOAD, and lysosome organization (p = 0.029) for LOAD. Protein networks revealed a plaque-associated protein signature involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD, and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, with 65 altered proteins shared across all cohorts. Non-plaque proteins in DS showed modest correlations with EOAD (R2 = .59) and LOAD (R2 = .33) compared to the correlation between EOAD and LOAD (R2 = .79). Top GOBP term for all groups was chromatin remodeling (p < 0.001), with additional terms for DS including extracellular matrix, and protein-DNA complexes and gene expression regulation for EOAD and LOAD. Our study reveals key functional characteristics of the amyloid plaque proteome in DS, compared to EOAD and LOAD, highlighting shared pathways in endo/lysosomal functions and immune responses. The non-plaque proteome revealed distinct alterations in ECM and chromatin structure, underscoring unique differences between DS and AD subtypes. Our findings enhance our understanding of AD pathogenesis and identify potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mitchell Martá-Ariza
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dominique F Leitner
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jianina Suazo
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Manon Thierry
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Beatrix Ueberheide
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Neal R, Yang Z, Obideen M, Peterson M, Shah A, Hajjar I. Cerebrospinal Fluid (CSF) Proteomic Signature in Preclinical and Clinical Alzheimer's disease (AD): Role of Adhesion Molecules. RESEARCH SQUARE 2025:rs.3.rs-5404760. [PMID: 39877089 PMCID: PMC11774469 DOI: 10.21203/rs.3.rs-5404760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Background Although Amyloid-beta and Tau are the hallmarks of Alzheimer's Disease (AD), other protein pathways such as endothelial dysfunction may be involved and may precede cognitive symptoms. Our objective was to characterize the cerebrospinal fluid (CSF) proteomic profiles focusing on cardiometabolic-related protein pathways in individuals on the AD spectrum. Methods We performed CSF and plasma-targeted proteomics (276 proteins) from 354 participants of the Brain Stress Hypertension and Aging Program (BSHARP), of which 8% had preclinical AD, and 24% had MCI due to AD. We instituted a bioinformatic pipeline to generate data-driven protein modules, used "Hub" and "Critical" proteins within each module to describe protein signatures for each AD stage and then assessed their associations with clinical and biological AD traits. Finally, we completed pathway enrichment analysis to get insight into pathways that might be implicated in AD pathogenesis. Results The 276 measured proteins clustered into five modules that were associated with CSF Amyloid-β42, Tau, and pTau. (all p-value <0.05). A CSF protein AD signature was characterized by elevated levels of CSF Hepatocyte Growth Factor (HGF), Intercellular and Vascular Cell Adhesion Molecule 1 (ICAM-1, VCAM-1), Neuropilin 1 and 2 (NRP-1, NRP-2), Scavenger Receptor Class B Member 2(SCARB2), Plasminogen Activator, Urokinase (PLAU). (all <0.05) We also found a significant difference in the CSF/Plasma ratio for the proteins associated with Cognitive Status and the Tau/Aβ42 ratio (TAR) in the CSF. Pathway enrichment analysis revealed that cell adhesion and endothelial dysfunction (all p-value <0.05) were key mechanisms involved in AD pathogenesis, especially in the preclinical stage. Conclusion Our results suggest a proteomic signature in the CSF of individuals with preclinical AD that is driven by adhesion molecules and might be implicated in the pathogenesis of AD. Future studies investigating these pathways may provide insights into novel AD biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Reem Neal
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Zhiyi Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Malik Obideen
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Melissa Peterson
- Family Medicine and Osteopathic Manipulative Medicine, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center
| | - Amil Shah
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
| | - Ihab Hajjar
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
| |
Collapse
|
32
|
Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1's neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296018. [PMID: 40034505 PMCID: PMC11864243 DOI: 10.1177/25424823241296018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025] Open
Abstract
Background Neurons in Alzheimer's disease (AD) experience elevated DNA damage, with DNA repair sites enriched at enhancer regions of genes essential for neuronal survival. Excitatory neurons in the cortical superficial layers expressing CUX2 and RORB (Cux2+/Rorb+), are selectively vulnerable in AD, but their relationship to single nucleotide polymorphisms (SNPs) in AD genome-wide association studies (GWAS) is unclear. Objective This study aimed to identify and characterize functional AD-GWAS SNPs using single-nucleus RNA sequencing data, focusing on selectively vulnerable neurons and DNA repair hotspots. Methods Filters were applied to identify candidate SNPs based on overlap with repair hotspots, RNA expression, transcription factor binding, AD association, and epigenetic significance. In vitro assays and analyses of large datasets from bulk RNA-seq (n = 1894), proteomics (n = 400), and single-nucleus RNA-seq (n = 424, 1.6 M cells) were conducted. Results BIN1 SNP, rs78710909, met multiple criteria - located in an AD-GWAS locus, repair hotspot, and promoter region. rs78710909C exhibits 1.52× higher AD risk and 5.4× differential transcription factor binding. In vitro, rs78710909C shows greater enhancer activity and weaker p53 but stronger E2F1 binding. BIN1's neuronal isoform is neuroprotective, but its AD expression is lower (p < 0.01). Moreover, only in AD and Cux2+/Rorb + neurons, rs78710909C is associated with a lower average BIN1 neuronal isoform ratio (p < 0.01). The genes upregulated in neurons with lower neuronal isoform ratio were associated with the hallmarks of AD pathology. Conclusions In a disease-relevant mechanism, the BIN1 SNP rs78710909C is associated with a lower ratio of BIN1's neuronal isoform which increases the vulnerability of specific excitatory neurons in AD patients.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Georgy Sapozhnikov
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shoutang Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Canal‐Garcia A, Branca RM, Francis PT, Ballard C, Winblad B, Lehtiö J, Nilsson P, Aarsland D, Pereira JB, Bereczki E. Proteomic signatures of Alzheimer's disease and Lewy body dementias: A comparative analysis. Alzheimers Dement 2025; 21:e14375. [PMID: 39711511 PMCID: PMC11780320 DOI: 10.1002/alz.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION We aimed to identify unique proteomic signatures of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease dementia (PDD). METHODS We conducted a comparative proteomic analysis of 33 post mortem brains from AD, DLB, and PDD individuals without dementia focusing on prefrontal, cingulate, and parietal cortices, using weighted gene co-expression network analyses with differential enrichment analysis. RESULTS Network modules revealed hub proteins common to all dementias. Lewy body dementias differed from AD by reduced levels of the autophagy protein p62 (SQSTM1), whereas DLB was distinguished from both AD and PDD by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) across brain regions. An increase in mitochondrial and synaptic proteins was related to better cognition whereas enrichment in the extracellular matrix, complement system, and autophagy proteins was associated with greater cognitive impairment. DISCUSSION Our study offers valuable insights into the network-based biomarker characterization of molecular signatures of AD, DLB, and PDD. HIGHLIGHTS Reduced levels of the autophagy protein p62 (SQSTM1) differentiated Lewy body dementias from Alzheimer's disease (AD) across multiple brain regions. Dementia with Lewy bodies (DLB) was distinguished from both AD and Parkinson's disease dementia (PDD) by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) levels across brain regions. Key mitochondrial oxidative phosphorylation proteins (e.g., COX7A2, TOMM40L, NDUFV1), and synaptic proteins (e.g., GABRB3, GABRB2, GLUA3, GLUA4, SNAP47, dynamin1) were more abundant in preserved cognitive states. Extracellular matrix proteins and members of the complement system (decorin, biglycan, C4A, C4B) showed a strong positive correlation with cognitive decline.
Collapse
Affiliation(s)
- Anna Canal‐Garcia
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rui M. Branca
- Department of Oncology‐PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Paul T. Francis
- King's College LondonWolfson Centre for Age‐Related DiseasesLondonUK
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Clive Ballard
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Bengt Winblad
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| | - Janne Lehtiö
- Department of Oncology‐PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per Nilsson
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| | - Dag Aarsland
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
- Institute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Joana B. Pereira
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Erika Bereczki
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| |
Collapse
|
34
|
Hajós M, Pandey K, Singer AC, Duong D, Bitarafan S, Shpokayte M, Malchano Z, Kern R, Lah JJ, Levey AI, Seyfried NT. CSF proteomics reveals changes in myelin and synaptic biology after Spectris treatment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70051. [PMID: 39935616 PMCID: PMC11812123 DOI: 10.1002/trc2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Brain steady-state gamma oscillations evoked using a non-invasive medical device (Spectris) have shown potential clinical benefits in patients with mild-moderate Alzheimer's disease (AD), including reduced functional and cognitive decline, reduced brain volume and myelin loss, and increased brain functional connectivity. We analyzed changes in cerebrospinal fluid (CSF) proteins after Spectris treatment in mild cognitive impairment (MCI) and their relationship to established biological pathways implicated in AD. METHODS Unbiased proteomic analysis of CSF samples from participants with amyloid-positive MCI (n = 10) was conducted from the FLICKER (NCT03543878) clinical trial. Participants used the Cognito Therapeutics medical device (Spectris), confirmed to evoke steady-state gamma oscillations. Participants were instructed to use the device daily for 1 hour each day during the trial. CSF was collected prior to the start of stimulation and after 4 and 8 weeks of treatment. The proteome was analyzed using tandem mass tag mass spectrometry. RESULTS Differential expression analysis of proteins at baseline and after 8 weeks of treatment (N = 5) revealed that 110 out of 2951 proteins met the significance threshold (analysis of variance, P < 0.05, no false discovery rate). Sixty proteins were upregulated, and 50 proteins were downregulated after treatment. Changes in protein expression were mapped to the consensus human AD protein network, representing co-expressed and functionally linked modules linked to cell type and biochemical pathways. Treatment altered CSF proteins linked to AD-related brain proteome modules, including those involved in myelination (proteolipid protein 1, ecotropic viral integration site 2A), synaptic and neuroimmune functions, and regulation of cellular lipid transportation. Biological pathway analysis revealed that most impacted pathways were associated with lipoproteins, cholesterol, phospholipids processing, and phosphatidylcholine biosynthesis. DISCUSSION The CSF proteomic changes observed in this study suggest pleiotropic effects on multiple pathways involved in AD, including myelination, synaptic and neuroimmune function, and lipid transport. These findings are also consistent with observations of white matter and myelin preservation after Spectris treatment of AD. Highlights We analyzed changes in cerebrospinal fluid (CSF) proteins in response to sensory-evoked gamma oscillations in individuals with mild cognitive impairment.Sensory evoked steady-state gamma oscillations were evoked by Spectris medical device.Changes in CSF proteins were observed after 8 weeks of daily 1 hour treatment.Affected proteins were related to myelination, synaptic and neuroimmune functions, and regulation of cellular lipid transportation.Proteomic changes support clinical outcomes and myelin preservation of Spectris treatment.
Collapse
Affiliation(s)
- Mihály Hajós
- Cognito Therapeutics Inc.CambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Kiran Pandey
- Emtherapro Inc, Systems BiologyAtlantaGeorgiaUSA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Duc Duong
- Depatrment of BiochemsitryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | | | | | - Ralph Kern
- Cognito Therapeutics Inc.CambridgeMassachusettsUSA
| | - James J. Lah
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
35
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
36
|
François M, Pascovici D, Wang Y, Vu T, Liu JW, Beale D, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Leifert W. Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer's Disease. Metabolites 2024; 14:714. [PMID: 39728495 DOI: 10.3390/metabo14120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Background: As the burden of Alzheimer's disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. Methods: In this study, we conducted a comprehensive multi-omics analysis of saliva samples (n = 20 mild cognitive impairment (MCI), n = 20 Alzheimer's disease and age- and n = 40 gender-matched cognitively normal individuals), from the South Australian Neurodegenerative Disease (SAND) cohort, integrating proteomics, metabolomics, and microbiome data with plasma measurements, including pTau181. Results: Among the most promising findings, the protein Stratifin emerged as a top candidate, showing a strong negative correlation with plasma pTau181 (r = -0.49, p < 0.001) and achieving an AUC of 0.95 in distinguishing AD and MCI combined from controls. In the metabolomics analysis, 3-chlorotyrosine and L-tyrosine exhibited high correlations with disease severity progression, with AUCs of 0.93 and 0.96, respectively. Pathway analysis revealed significant alterations in vitamin B12 metabolism, with Transcobalamin-1 levels decreasing in saliva as AD progressed despite an increase in serum vitamin B12 levels (p = 0.008). Microbiome analysis identified shifts in bacterial composition, with a microbiome cluster containing species such as Lautropia mirabilis showing a significant decrease in abundance in MCI and AD samples. The overall findings were reinforced by weighted correlation network analysis, which identified key hubs and enriched pathways associated with AD. Conclusions: Collectively, these data highlight the potential of saliva as a powerful medium for early AD diagnosis, offering a practical solution for large-scale screening and monitoring.
Collapse
Affiliation(s)
- Maxime François
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Dana Pascovici
- CSIRO Health & Biosecurity, Westmead, NSW 2145, Australia
| | - Yanan Wang
- CSIRO Health & Biosecurity, Microbiomes for One Systems Health-Future Science Platform, Adelaide, SA 5000, Australia
| | - Toan Vu
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jian-Wei Liu
- CSIRO Environment, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David Beale
- Metabolomics Unit, CSIRO Environment, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Wayne Leifert
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| |
Collapse
|
37
|
Ma N, Wang H, Lu Q, Liu J, Fan X, Li L, Wang Q, Li X, Yu B, Zhang Y, Gao J. Temporal changes of neurobehavior in rats following varied blast magnitudes and screening of serum biomarkers in early stage of brain injury. Sci Rep 2024; 14:30023. [PMID: 39627295 PMCID: PMC11615197 DOI: 10.1038/s41598-024-81656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Blast neurotrauma has been linked to impairments in higher-order cognitive functions, including memory, attention, and mood. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute and chronic neurological alterations occurred. Three pressure magnitudes (low, moderate and high) were used to evaluate injury thresholds. A biology shock tube (BST) was used to simulate shock waves with overpressures of 60 kPa, 90 kPa and 120 kPa respectively. Neurological behavior of the rats was assessed by the Multi-Conditioning System (MCS) at 1 d, 7 d, 28 d and 90 d after shock wave exposure. Serum dopamine (DA), 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) were measured at the same time points. The proteomic analysis was conducted to identify potentially vulnerable cellular and molecule targets of serum in the immediate post-exposure period. Results revealed that: (1) Anxiety-like behavior increased significantly at 1 d post-exposure in the medium and high overpressure (90 kPa, 120 kPa) groups, returned to baseline at 7 days, and anxiety-like behavior in the high overpressure groups re-emerged at 28 d and 90 d. (2) High overpressure (120 kPa) impaired learning and memory in the immediate post-exposure period. (3) The serum DA levels decreased significantly at 1 d post-exposure in the medium and high overpressure groups; The 5-HT levels decreased significantly at 1 d and 90 d in the high overpressure groups; The BDNF levels decreased significantly at 90 d in the high overpressure groups. (4) Proteomic analysis identified 38, 306, and 57 differentially expressed proteins in serum following low, medium and high overpressure exposures, respectively. Two co-expressed proteins were validated. Functional analysis revealed significant enrichment of 1121, 2096, and 1121 Gene Ontology (GO) items and 33, 47, and 26 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating extensive molecular responses to overpressure in the early phase. These findings suggest that exposure, even at moderate levels, can induce persistent neurobehavioral and molecular alterations, highlighting the need for further research into the long-term consequences of blast neurotrauma.
Collapse
Affiliation(s)
- Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Jinren Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China.
| |
Collapse
|
38
|
Cankar N, Beschorner N, Tsopanidou A, Qvist FL, Colaço AR, Andersen M, Kjaerby C, Delle C, Lambert M, Mundt F, Weikop P, Jucker M, Mann M, Skotte NH, Nedergaard M. Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model. Cell Rep 2024; 43:114977. [PMID: 39541211 DOI: 10.1016/j.celrep.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Filippa L Qvist
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Proteomics Research Infrastructure, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niels Henning Skotte
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
39
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
40
|
Li D, Han X, Farrer LA, Stein TD, Jun GR. Transcriptome Signatures for Cognitive Resilience Among Individuals with Pathologically Confirmed Alzheimer Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317218. [PMID: 39606402 PMCID: PMC11601734 DOI: 10.1101/2024.11.12.24317218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Limited success to date in development of drugs that target hallmark Alzheimer disease (AD) proteins as a means to slow AD-related cognitive decline has sparked interest in approaches focused on cognitive resilience. We sought to identify transcriptome signatures among brain donors with neuropathologically confirmed AD that distinguish those with cognitive impairment from those that were cognitively intact. METHODS We compared gene expression patterns in brain tissue from donors in four cohorts who were cognitively and pathologically normal (controls), met clinical and pathological criteria for AD (SymAD), or were cognitively normal prior to death despite pathological evidence of AD (cognitively resilient or AsymAD). Differentially expressed genes (DEGs) at the transcriptome-wide significance (TWS) level (P<10 -6 ) in the total sample and nominally significant (P<0.05) in at least two datasets were further evaluated in analyses testing association of gene expression with co-calibrated and harmonized cognitive domain scores and AD-related neuropathological traits. RESULTS We identified 52 TWS DEGs, including 14 that surpassed a significance threshold of P<5×10 -8 . The three most significant DEGs, ADAMTS2 (Log2 fold change [Log2FC]=0.46, P=2.94×10 -14 ), S100A4 (Log2FC=0.61, P=3.98×10 -11 ) and NRIP2 (Log2FC=0.32, P=9.52×10 -11 ) were up-regulated in SymAD compared to AsymAD brains. ADAMTS2 and SLC6A9 were also significantly and nominally differentially expressed between AsymAD cases and controls (FDR P=0.45 and FDR P=0.57, respectively). Significant associations (P<0.0038) were identified for executive function with expression of ADAMTS2 (P=4.15×10 -8 ) and ARSG (P=1.09×10 -3 ), and for memory with PRELP (P=3.92×10 -5 ) and EMP3 (P=7.75×10 -4 ), and for language with SLC38A2 (P=6.76×10 -5 ) and SLC6A9 (P=2.13 ×10 -3 ). Expression of ARSG and FHIP1B were associated with measures of Tau pathology (AT8: P=1.5×10 -3 , and pTau181: P=3.64×10 -3 , respectively), and SLC6A9 expression was associated with multiple pTau isoforms including pTau181 (P=1.5×10 -3 ) and pTau396 (P=2.05×10 -3 ). PRELP expression was associated with synaptic density (PSD.95: P=6.18 ×10 -6 ). DEGs were significantly enriched in pathways involving E2F targets, cholesterol homeostasis, and oxidative phosphorylation. CONCLUSION We identified multiple DEGs that differentiate neuropathologically confirmed AD cases with and without cognitive impairment prior to death. Expression of several of these genes was also associated with measures of cognitive performance and AD-related neuropathological traits, thus providing important insights into cognitive resilience mechanisms and strategies for delaying clinical symptoms of AD.
Collapse
|
41
|
Del Campo M, Quesada C, Vermunt L, Peeters CFW, Hok-A-Hin YS, Trieu C, Braber AD, Verberk IMW, Visser PJ, Tijms BM, van der Flier WM, Teunissen CE. CSF proteins of inflammation, proteolysis and lipid transport define preclinical AD and progression to AD dementia in cognitively unimpaired individuals. Mol Neurodegener 2024; 19:82. [PMID: 39523360 PMCID: PMC11552178 DOI: 10.1186/s13024-024-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
This preclinical AD CSF proteome study identified a panel of 12-CSF markers detecting amyloid positivity and clinical progression to AD with high accuracy; some of these CSF proteins related to immune function, neurotrophic processes, energy metabolism and endolysosomal functioning (e.g., ITGB2, CLEC5A, IGFBP-1, CST3) changed before amyloid positivity is established.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Carlos Quesada
- Departmento de Matemática Aplicada a Las TIC, Polytechnical University of Madrid, Madrid, Spain
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods Group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Calvin Trieu
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, VU University Medical Center, Amsterdam, Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
43
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
44
|
Jang S, Choi B, Lim C, Kim M, Lee JE, Lee H, Baek E, Cho KS. Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease. PLoS Genet 2024; 20:e1011475. [PMID: 39561115 PMCID: PMC11575808 DOI: 10.1371/journal.pgen.1011475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.
Collapse
Affiliation(s)
- Seokhui Jang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chaejin Lim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minkyoung Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
- Korea Hemp Institute, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
46
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
47
|
Guo Q, Ping L, Dammer EB, Duong DM, Yin L, Xu K, Shantaraman A, Fox EJ, Golde TE, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Heparin-enriched plasma proteome is significantly altered in Alzheimer's disease. Mol Neurodegener 2024; 19:67. [PMID: 39380021 PMCID: PMC11460197 DOI: 10.1186/s13024-024-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to β-amyloid (Aβ) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aβ, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Collapse
Affiliation(s)
- Qi Guo
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lingyan Ping
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luming Yin
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kaiming Xu
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anantharaman Shantaraman
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Edward J Fox
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Todd E Golde
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Erik C B Johnson
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Blaine R Roberts
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
48
|
Parente AD, Bolland DE, Huisinga KL, Provost JJ. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays Biochem 2024; 68:121-134. [PMID: 38962852 DOI: 10.1042/ebc20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Malate dehydrogenase (MDH) is pivotal in mammalian tissue metabolism, participating in various pathways beyond its classical roles and highlighting its adaptability to cellular demands. This enzyme is involved in maintaining redox balance, lipid synthesis, and glutamine metabolism and supports rapidly proliferating cells' energetic and biosynthetic needs. The involvement of MDH in glutamine metabolism underlines its significance in cell physiology. In contrast, its contribution to lipid metabolism highlights its role in essential biosynthetic processes necessary for cell maintenance and proliferation. The enzyme's regulatory mechanisms, such as post-translational modifications, underscore its complexity and importance in metabolic regulation, positioning MDH as a potential target in metabolic dysregulation. Furthermore, the association of MDH with various pathologies, including cancer and neurological disorders, suggests its involvement in disease progression. The overexpression of MDH isoforms MDH1 and MDH2 in cancers like breast, prostate, and pancreatic ductal adenocarcinoma, alongside structural modifications, implies their critical role in the metabolic adaptation of tumor cells. Additionally, mutations in MDH2 linked to pheochromocytomas, paragangliomas, and other metabolic diseases emphasize MDH's role in metabolic homeostasis. This review spotlights MDH's potential as a biomarker and therapeutic target, advocating for further research into its multifunctional roles and regulatory mechanisms in health and disease.
Collapse
Affiliation(s)
- Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Danielle E Bolland
- Department of Biology, University of Minnesota Morris, Morris, MN 56267, U.S.A
| | - Kathryn L Huisinga
- Department of Chemistry and Biochemistry, Malone University, Canton, OH 44709, U.S.A
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
49
|
Lizama BN, Williams C, North HA, Pandey K, Duong D, Di Caro V, Mecca AP, Blennow K, Zetterberg H, Levey AI, Grundman M, van Dyck CH, Caggiano AO, Seyfried NT, Hamby ME. CT1812 biomarker signature from a meta-analysis of CSF proteomic findings from two Phase 2 clinical trials in Alzheimer's disease. Alzheimers Dement 2024; 20:6860-6880. [PMID: 39166791 PMCID: PMC11485314 DOI: 10.1002/alz.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION CT1812 is in clinical development for the treatment of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) exploratory proteomics was employed to identify pharmacodynamic biomarkers of CT1812 in mild to moderate AD from two independent clinical trials. METHODS Unbiased analysis of tandem-mass tag mass spectrometry (TMT-MS) quantitative proteomics, pathway analysis and correlation analyses with volumetric magnetic resonance imaging (vMRI) were performed for the SPARC cohort (NCT03493282). Comparative analyses and a meta-analysis with the interim SHINE cohort (NCT03507790; SHINE-A) followed by network analysis (weighted gene co-expression network analysis [WGCNA]) were used to understand the biological impact of CT1812. RESULTS CT1812 pharmacodynamic biomarkers and biological pathways were identified that replicate across two clinical cohorts. The meta-analysis revealed novel candidate biomarkers linked to S2R biology and AD, and network analysis revealed treatment-associated networks driven by S2R. DISCUSSION: Early clinical validation of CT1812 candidate biomarkers replicating in independent cohorts strengthens the understanding of the biological impact of CT1812 in patients with AD, and supports CT1812's synaptoprotective mechanism of action and its continued clinical development. HIGHLIGHTS This exploratory proteomics study identified candidate biomarkers of CT1812 in SPARC (NCT03493282) Comparative analyses identified biomarkers replicating across trials/cohorts Two independent Ph2 trial cohorts (SPARC and interim SHINE [NCT03507790; SHINE-A]) were used in a meta-analysis Amyloid beta (Aβ) & synaptic biology impacted by CT1812 and volumetric magnetic resonance imaging (vMRI) treatment-related correlates emerge Network analyses revealed sigma-2 receptor (S2R)-interacting proteins that may be "drivers" of changes.
Collapse
Affiliation(s)
| | | | | | | | - Duc Duong
- Emory University School of Medicine, BiochemistryAtlantaGeorgiaUSA
| | | | - Adam P. Mecca
- Department of PsychiatryAlzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
| | - Kaj Blennow
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiAnhuiP.R. China
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGöteborgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, MölndalGöteborgSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGöteborgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, MölndalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Allan I. Levey
- Emory University School of Medicine, NeurologyAtlantaGeorgiaUSA
| | - Michael Grundman
- Global R&D PartnersLLCSan DiegoCaliforniaUSA
- Dept. of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Christopher H. van Dyck
- Department of PsychiatryAlzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
| | | | | | | |
Collapse
|
50
|
Ropri AS, Lam TG, Kalia V, Buchanan HM, Bartosch AMW, Youth EHH, Xiao H, Ross SK, Jain A, Chakrabarty JK, Kang MS, Boyett D, Spinazzi EF, Iodice G, McGovern RA, Honig LS, Brown LM, Miller GW, McKhann GM, Teich AF. Alzheimer's disease CSF biomarkers correlate with early pathology and alterations in neuronal and glial gene expression. Alzheimers Dement 2024; 20:7090-7103. [PMID: 39192661 PMCID: PMC11485399 DOI: 10.1002/alz.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early Alzheimer's disease (AD) pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify cerebrospinal fluid (CSF) biomarkers for AD-related central nervous system (CNS) pathophysiologic changes using tissue and fluids with early pathology, free of post mortem artifact. METHODS We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS AD pathology on biopsy correlates with CSF β-amyloid-42/40, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/β-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights seven core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data. DISCUSSION As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking. HIGHLIGHTS AD CSF biomarkers correlate with CNS pathology and transcriptomic changes. Seven proteins correlate with CNS pathology and gene expression changes. Inflammatory and neuronal gene expression changes correlate with YKL-40 and NPTXR, respectively. CSF metabolomic analysis identifies pathways that correlate with biopsy data. Fatty acid metabolic pathways correlate with β-amyloid pathology.
Collapse
Affiliation(s)
- Ali S. Ropri
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tiffany G. Lam
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Heather M. Buchanan
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anne Marie W. Bartosch
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Elliot H. H. Youth
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Harrison Xiao
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sophie K. Ross
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anu Jain
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Jayanta K. Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Boyett
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Eleonora F. Spinazzi
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Gail Iodice
- Ankyra TherapeuticsCambridgeMassachusettsUSA
| | - Robert A. McGovern
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Guy M. McKhann
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Andrew F. Teich
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|