1
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 PMCID: PMC11650979 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Allen JD, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB. Priming antibody responses to the fusion peptide in rhesus macaques. NPJ Vaccines 2024; 9:126. [PMID: 38997302 PMCID: PMC11245479 DOI: 10.1038/s41541-024-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to prime and elicit antibody responses against the conserved fusion peptide (FP). GC responses and antibody specificities were tracked longitudinally using lymph node fine-needle aspirates and electron microscopy polyclonal epitope mapping (EMPEM), respectively, to show antibody responses to the FP/N611 glycan hole region were primed, although exhibited limited neutralization breadth. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.
Collapse
Affiliation(s)
- Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Payal P Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kimberly M Cirelli
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Chiamaka A Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jinal Bhiman
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Pauthner
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Division of Infectious Disease and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Greene KM, Allen JD, Ngo JT, Choe Y, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB. Focusing antibody responses to the fusion peptide in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.545779. [PMID: 37425865 PMCID: PMC10327030 DOI: 10.1101/2023.06.26.545779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.
Collapse
Affiliation(s)
- Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Payal P. Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kimberly M. Cirelli
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diane G. Carnathan
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chiamaka A Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kelli M. Greene
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julia T. Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Yury Choe
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinal Bhiman
- Centre for HIV and STI, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Darrell J. Irvine
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dennis R. Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA02139, USA
| | - Guido Silvestri
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Shane Crotty
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Disease and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Torrents de la Peña A, Sewall LM, de Paiva Froes Rocha R, Jackson AM, Pratap PP, Bangaru S, Cottrell CA, Mohanty S, Shaw AC, Ward AB. Increasing sensitivity of antibody-antigen interactions using photo-cross-linking. CELL REPORTS METHODS 2023; 3:100509. [PMID: 37426749 PMCID: PMC10326447 DOI: 10.1016/j.crmeth.2023.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebeca de Paiva Froes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Payal P. Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Subhasis Mohanty
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Albert C. Shaw
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Henderson R, Zhou Y, Stalls V, Wiehe K, Saunders KO, Wagh K, Anasti K, Barr M, Parks R, Alam SM, Korber B, Haynes BF, Bartesaghi A, Acharya P. Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage. Nat Commun 2023; 14:2782. [PMID: 37188681 PMCID: PMC10184639 DOI: 10.1038/s41467-023-38108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza has therefore focused on recapitulating the natural affinity maturation process. Here, we determine structures of antibodies in complex with HIV-1 Envelope for all observed members and ancestral states of the broadly neutralizing HIV-1 V3-glycan targeting DH270 antibody clonal B cell lineage. These structures track the development of neutralization breadth from the unmutated common ancestor and define affinity maturation at high spatial resolution. By elucidating contacts mediated by key mutations at different stages of antibody development we identified sites on the epitope-paratope interface that are the focus of affinity optimization. Thus, our results identify bottlenecks on the path to natural affinity maturation and reveal solutions for these that will inform immunogen design aimed at eliciting a broadly neutralizing immune response by vaccination.
Collapse
Affiliation(s)
- Rory Henderson
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Barton F Haynes
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Saunders KO, Edwards RJ, Tilahun K, Manne K, Lu X, Cain DW, Wiehe K, Williams WB, Mansouri K, Hernandez GE, Sutherland L, Scearce R, Parks R, Barr M, DeMarco T, Eater CM, Eaton A, Morton G, Mildenberg B, Wang Y, Rountree RW, Tomai MA, Fox CB, Moody MA, Alam SM, Santra S, Lewis MG, Denny TN, Shaw GM, Montefiori DC, Acharya P, Haynes BF. Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Sci Transl Med 2022; 14:eabo5598. [PMID: 36070369 PMCID: PMC10034035 DOI: 10.1126/scitranslmed.abo5598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Microbiology and Molecular Genetics, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Chloe M. Eater
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | | | | | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - R. Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Mark A. Tomai
- 3M Corporate Research Materials Lab, 3M Company; St. Paul, MN, 55144, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Pediatrics, Duke University Medical Center; Durham, NC, 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center; Boston, MA, 02215, USA
| | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| |
Collapse
|
10
|
Barnes CO, Schoofs T, Gnanapragasam PN, Golijanin J, Huey-Tubman KE, Gruell H, Schommers P, Suh-Toma N, Lee YE, Cetrulo Lorenzi JC, Piechocka-Trocha A, Scheid JF, West AP, Walker BD, Seaman MS, Klein F, Nussenzweig MC, Bjorkman PJ. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. SCIENCE ADVANCES 2022; 8:eabp8155. [PMID: 35960796 PMCID: PMC9374330 DOI: 10.1126/sciadv.abp8155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-Å x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach.
Collapse
Affiliation(s)
- Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | | | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn E. Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Johannes F. Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022; 7:27. [PMID: 35228534 PMCID: PMC8885667 DOI: 10.1038/s41541-022-00446-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.
Collapse
|
12
|
Xu Z, Walker S, Wise MC, Chokkalingam N, Purwar M, Moore A, Tello-Ruiz E, Wu Y, Majumdar S, Konrath KM, Kulkarni A, Tursi NJ, Zaidi FI, Reuschel EL, Patel I, Obeirne A, Du J, Schultheis K, Gites L, Smith T, Mendoza J, Broderick KE, Humeau L, Pallesen J, Weiner DB, Kulp DW. Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nat Commun 2022; 13:695. [PMID: 35121758 PMCID: PMC8816947 DOI: 10.1038/s41467-022-28363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susanne Walker
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mansi Purwar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alan Moore
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuanhan Wu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Sonali Majumdar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Abhijeet Kulkarni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Faraz I Zaidi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Emma L Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ishaan Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - April Obeirne
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianqiu Du
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Lauren Gites
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Trevor Smith
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Janess Mendoza
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | | | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Jesper Pallesen
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Escolano A, Gristick HB, Gautam R, DeLaitsch AT, Abernathy ME, Yang Z, Wang H, Hoffmann MA, Nishimura Y, Wang Z, Koranda N, Kakutani LM, Gao H, Gnanapragasam PNP, Raina H, Gazumyan A, Cipolla M, Oliveira TY, Ramos V, Irvine DJ, Silva M, West AP, Keeffe JR, Barnes CO, Seaman MS, Nussenzweig MC, Martin MA, Bjorkman PJ. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Sci Transl Med 2021; 13:eabk1533. [PMID: 34818054 PMCID: PMC8932345 DOI: 10.1126/scitranslmed.abk1533] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 develop after prolonged virus and antibody coevolution. Previous studies showed that sequential immunization with a V3-glycan patch germline-targeting HIV-1 envelope trimer (Env) followed by variant Envs can reproduce this process in mice carrying V3-glycan bNAb precursor B cells. However, eliciting bNAbs in animals with polyclonal antibody repertoires is more difficult. We used a V3-glycan immunogen multimerized on virus-like particles (VLPs), followed by boosting with increasingly native-like Env-VLPs, to elicit heterologous neutralizing antibodies in nonhuman primates (NHPs). Structures of antibody/Env complexes after prime and boost vaccinations demonstrated target epitope recognition with apparent maturation to accommodate glycans. However, we also observed increasing off-target antibodies with boosting. Eight vaccinated NHPs were subsequently challenged with simian-human immunodeficiency virus (SHIV), and seven of eight animals became infected. The single NHP that remained uninfected after viral challenge exhibited one of the lowest neutralization titers against the challenge virus. These results demonstrate that more potent heterologous neutralization resulting from sequential immunization is necessary for protection in this animal model. Thus, improved prime-boost regimens to increase bNAb potency and stimulate other immune protection mechanisms are essential for developing anti–HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Virology Branch, Basic Research Section, NIAID, NIH. 5601 Fisher’s Lane. Rockville, MD 20892, USA
| | - Andrew T. DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Darrell J. Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
15
|
Antanasijevic A, Sewall LM, Cottrell CA, Carnathan DG, Jimenez LE, Ngo JT, Silverman JB, Groschel B, Georgeson E, Bhiman J, Bastidas R, LaBranche C, Allen JD, Copps J, Perrett HR, Rantalainen K, Cannac F, Yang YR, de la Peña AT, Rocha RF, Berndsen ZT, Baker D, King NP, Sanders RW, Moore JP, Crotty S, Crispin M, Montefiori DC, Burton DR, Schief WR, Silvestri G, Ward AB. Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nat Commun 2021; 12:4817. [PMID: 34376662 PMCID: PMC8355326 DOI: 10.1038/s41467-021-25087-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/23/2021] [Indexed: 11/08/2022] Open
Abstract
Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Leigh M Sewall
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Luis E Jimenez
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jennifer B Silverman
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinal Bhiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Jeffrey Copps
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fabien Cannac
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuhe R Yang
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alba Torrents de la Peña
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Froes Rocha
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil P King
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rogier W Sanders
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John P Moore
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Shane Crotty
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
van Schooten J, van Haaren MM, Li H, McCoy LE, Havenar-Daughton C, Cottrell CA, Burger JA, van der Woude P, Helgers LC, Tomris I, Labranche CC, Montefiori DC, Ward AB, Burton DR, Moore JP, Sanders RW, Crotty S, Shaw GM, van Gils MJ. Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathog 2021; 17:e1009736. [PMID: 34432859 PMCID: PMC8423243 DOI: 10.1371/journal.ppat.1009736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/07/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1's extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.
Collapse
Affiliation(s)
- Jelle van Schooten
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marlies M. van Haaren
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura E. McCoy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Judith A. Burger
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia van der Woude
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leanne C. Helgers
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilhan Tomris
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Celia C. Labranche
- Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative—Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative—Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Charles TP, Burton SL, Arunachalam PS, Cottrell CA, Sewall LM, Bollimpelli VS, Gangadhara S, Dey AK, Ward AB, Shaw GM, Hunter E, Amara RR, Pulendran B, van Gils MJ, Derdeyn CA. The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathog 2021; 17:e1009257. [PMID: 33556148 PMCID: PMC7895394 DOI: 10.1371/journal.ppat.1009257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.
Collapse
Affiliation(s)
- Tysheena P. Charles
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha L. Burton
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Prabhu S. Arunachalam
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Venkata S. Bollimpelli
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Bali Pulendran
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Dingens AS, Pratap P, Malone K, Hilton SK, Ketas T, Cottrell CA, Overbaugh J, Moore JP, Klasse PJ, Ward AB, Bloom JD. High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. eLife 2021; 10:e64281. [PMID: 33438580 PMCID: PMC7864656 DOI: 10.7554/elife.64281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mapping polyclonal serum responses is critical to rational vaccine design. However, most high-resolution mapping approaches involve isolating and characterizing individual antibodies, which incompletely defines the polyclonal response. Here we use two complementary approaches to directly map the specificities of the neutralizing and binding antibodies of polyclonal anti-HIV-1 sera from rabbits immunized with BG505 Env SOSIP trimers. We used mutational antigenic profiling to determine how all mutations in Env affected viral neutralization and electron microscopy polyclonal epitope mapping (EMPEM) to directly visualize serum Fabs bound to Env trimers. The dominant neutralizing specificities were generally only a subset of the more diverse binding specificities. Additional differences between binding and neutralization reflected antigenicity differences between virus and soluble Env trimer. Furthermore, we refined residue-level epitope specificity directly from sera, revealing subtle differences across sera. Together, mutational antigenic profiling and EMPEM yield a holistic view of the binding and neutralizing specificity of polyclonal sera.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Payal Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Keara Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - PJ Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|