1
|
Deng YL, Chi BT, Lu SY, Xiong DD, He RQ, Qin DY, Huang WY, Yang X, Chen G, Peng W, Luo J. How has the field of immunogenic cell death in breast cancer evolved and impacted clinical practice over the past eleven years? Hum Vaccin Immunother 2025; 21:2505349. [PMID: 40418649 PMCID: PMC12118423 DOI: 10.1080/21645515.2025.2505349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
This study elucidates the research landscape of immunogenic cell death (ICD) in breast cancer through a bibliometric analysis of 457 Web of Science articles. Contributions from China and the USA are particularly prominent, with notable international collaborations. Core journals such as Biomaterials published influential studies, while researchers like Huang Y made impactful contributions. High-frequency keyword analysis identified key research hotspots, including immunotherapy, the tumor microenvironment, and nanomedicine. The integration of chemotherapy with immunotherapy and the identification of key proteins have driven recent advancements. Fundamental research on immunotherapy, photodynamic therapy (PDT), and triple-negative breast cancer (TNBC) points to future trends and potential breakthroughs. This study offers a strategic overview of ICD in breast cancer, providing insights into clinical practice and guiding future research in the field.
Collapse
Affiliation(s)
- Yu-Long Deng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Shang-Yi Lu
- Department of Hepatological and Gland Surgery, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning, P. R. China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jiayuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
2
|
Liu J, Tang W, Chen L, Zhang Q, Liu T, Qin L, Zhang Y, Chen X. Engineered gold nanoparticles for accurate and full-scale tumor treatment via pH-dependent sequential charge-reversal and copper triggered photothermal-chemodynamic-immunotherapy. Biomaterials 2025; 321:123322. [PMID: 40222257 DOI: 10.1016/j.biomaterials.2025.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Current anti-tumor strategies majorly rely on the targeted delivery of functional nanomedicines to tumor region, neglecting the importance of effective infiltration of these nanomedicines in whole tumor tissue. This process normally causes the quick endocytosis by the tumor cells at surface layer of tumor tissue, resulting in the restriction of the penetration of these nanomedicines and limited therapeutic region, which would not be able to treat the entire tumor tissue. Herein, we prepared a series of engineered gold nanoparticles (Au-MBP NPs) with step-wise charge reversal in different acid environments that could entirely infiltrate into the whole tumor tissue and then perform tumor-specific photothermal-chemodynamic-immunotherapy to achieve the complete and accurate tumor treatment. These Au-MBP NPs consisted of AuNPs, thiol modified piperidine (SH-PD, charge reversal group), thiol modified benzoyl thiourea (SH-BTU, copper chelator) and 11-mercaptoundecanoic acid (MUA) with different proportions. Once these Au-MBP NPs arrived tumor tissue, the decreasing pH values from shallow to deep region of tumor tissue separately induced the charge reversal of these nanoparticles from negative to positive, allowing them to bind with negatively charged tumor cells at designed area to occupy the whole tumor for further therapy. Following with the internalization by tumor cells, these Au-MBP NPs would selectively capture the excessive Cu2+ to decrease the available copper in tumor cells, resulting in the inhibition of tumor metastasis via the copper metabolism blockade. On one hand, the captured Cu2+ also induced the aggregation of Au-MBP NPs, which in situ generated the photothermal agents in tumor cells for tumor-specific photothermal therapy (PTT). On the other hand, the chelated Cu2+ ions were reduced to Cu+, which catalyzed the high concentration of intracellular H2O2 to produce cytotoxic hydroxyl radical (•OH), exerting tumor-specific chemodynamic therapy (CDT). Furthermore, the immune-associated tumor antigens were also generated during PTT and CDT processes via immunogenic cell death (ICD), which further matured the dendritic cells (DCs) and then activated CD4+ and CD8+ T cells to turn on the immunotherapy, resulting in additional anti-tumor and anti-metastasis effects. Both in vitro and in vivo results indicated that these Au-MBP NPs possessed enormous potential for effectively suppressing primary and metastatic tumors.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenjuan Tang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianqian Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Longyu Qin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Xue X, Wang M, Cui J, Yang M, Ma L, Kang R, Tang D, Wang J. Glutathione metabolism in ferroptosis and cancer therapy. Cancer Lett 2025; 621:217697. [PMID: 40189013 DOI: 10.1016/j.canlet.2025.217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Glutathione (GSH), a non-enzymatic antioxidant in mammalian cells, plays an essential role in maintaining redox balance, mitigating oxidative stress, and preserving cellular homeostasis. Beyond its well-established function in detoxifying reactive oxygen species (ROS), GSH serves as a critical regulator of ferroptosis-an iron-dependent form of cell death marked by excessive lipid peroxidation. Serving as a cofactor for glutathione peroxidase 4 (GPX4), GSH catalyzes the conversion of lipid peroxides into non-toxic lipid alcohols, thereby preventing the accumulation of deleterious lipid oxidation products and halting the spread of oxidative damage. In cancer cells, upregulated GSH synthesis and GPX4 activity contribute to an enhanced antioxidant defense, countering oxidative stress provoked by increased metabolic demands and exposure to therapeutic agents such as chemotherapy, radiotherapy, and immunotherapy. This ability of cancer cells to modulate their ferroptosis susceptibility through GSH metabolism underscores its potential as a therapeutic target. Additionally, GSH influences several key oncogenic and tumor-suppressive signaling pathways, including NFE2L2/NRF2, TP53/p53, NF-κB, Hippo, and mTOR, which collectively regulate responses to oxidative stress, affect metabolic processes, and modulate sensitivity to ferroptosis in cancer cells. This review explores recent advancements in understanding GSH's multifaceted role in ferroptosis, emphasizing its implications for cancer biology and therapeutic interventions.
Collapse
Affiliation(s)
- Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Manyuan Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Minying Yang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Xiao H, Raza F, Li K, Song J, Zafar H, Yang S, Su J, Qiu M. Cell membrane derived biomimetic nanomedicine for precision delivery of traditional Chinese medicine in cancer therapy. J Control Release 2025; 383:113829. [PMID: 40355044 DOI: 10.1016/j.jconrel.2025.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The rapidly developing modern nanotechnology has brought new vitality to the application of traditional Chinese medicine (TCM), improving the pharmacokinetics and bioavailability of unmodified natural drugs. However, synthetic materials inevitably introduce incompatibilities. This has led to focusing on biomimetic drug delivery systems (DDS) based on biologically derived cell membranes. This "top-down" approach to nanomedicine preparation is simple and effective, as the inherited cell membranes and cell surface substances can mimic nature when delivering drugs back into the body, interacting similarly to the source cells at the biological interface. The concept of biologically derived TCM and biomimetic membranes aligns well with nature, the human body, and medicine, thereby enhancing the in vivo compatibility of TCM. This review focused on the recent progress using biomimetic membranes for TCM in cancer therapy, emphasizing the effective integration of biomimetic nanomedicine and TCM in applications such as cancer diagnosis, imaging, precision treatment, and immunotherapy. The review also provided potential suggestions on the challenges and prospects in this field.
Collapse
Affiliation(s)
- Hang Xiao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinpu Song
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Yang F, Lv J, Huang Y, Ma W, Yang Z. A supramolecular assembly strategy for the treatment of rheumatoid arthritis with ultrasound-augmented inflammatory microenvironment reprograming. Biomaterials 2025; 316:123006. [PMID: 39675142 DOI: 10.1016/j.biomaterials.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
As regulators and promotors of joint erosion, pro-inflammatory M1-like macrophages play pivotal roles in the pathogenesis of rheumatoid arthritis (RA). Here, we develop a supramolecular self-assembly (PCSN@MTX) of molybdenum (Mo) based polyoxometalate (POM), β-cyclodextrin (β-CD), and methotrexate (MTX), in which the MTX is loaded by host-guest interaction. PCSN@MTX shows inhibition of synovial M1-like macrophages polarization to alleviate RA. PCSN@MTX has demonstrated ultrasound (US) augmented catalytic behavior in consuming ROS and generating oxygen (O2) with accelerated conversion of Mo5+ to Mo6+ in the POM. In the collagen-induced arthritis mouse model, after systemical administration, the pH-responsive PCSN@MTX shows enhanced accumulation in the acidic joints by in-situ self-assembly. The host-guest complexation between MTX and β-CD is broken via US, achieving an on-demand burst release of MTX. The released MTX and ROS-scavenging synergistically facilitate the M1-to-M2 macrophage phenotype switching, which effectively alleviates RA disease progress under US irradiation. This study provides a paradigm for RA therapy with a promising US-augmented strategy.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Yanli Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
6
|
Yang A, Chen L, Tang S, Guo X, Su H, Jiang BP, Shen XC. Light/Ultrasound Dual Responsive Carbon Dots-Based Nanovaccines for Multimodal Activation Tumor Immunotherapy of Melanoma. Adv Healthc Mater 2025; 14:e2405194. [PMID: 40200897 DOI: 10.1002/adhm.202405194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Melanoma is a highly aggressive and metastatic tumor, and immunotherapy has become the current solution. However, conventional nanovaccines do not strongly activate T cell immune responses. Therefore, development of effective therapeutic nanovaccines to activate systemic antitumor immunity is urgently required. Herein, light/ultrasound (US) dual-responsive carbon dot-based nanovaccines (Cu-N-CDs@OVA) are designed using copper-nitrogen-coordinated carbon dots composited with ovalbumin. Under 650-nm laser irradiation, Cu-N-CDs@OVA exhibited superior photothermal ablation of primary tumors, induced immunogenic cell death and released antigens by phototherapy, facilitating the maturation of dendritic cells (DCs). More importantly, Cu-N-CDs@OVA stably penetrated and diffused upon US treatment, eradicating metastatic tumors and generating low-dose reactive oxygen species to activate DCs. By integrating with the model antigen OVA, the combined multimodal treatment promotes DC maturation to activate systematic antitumor immunity. This is the first example of a light/US dual-responsive therapeutic nanovaccine that provides a paradigm for the production of personalized nanovaccines against malignant tumors.
Collapse
Affiliation(s)
- Aijia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Li Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shunxin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hongqin Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
7
|
Li D, Zhang C, Xiong Q, Liu W, Tang Y, Liang L, Pu K, Duan H. Elongated Magnetic Nanorobots with Multi-Enzymatic Cascades for Active In Vivo Tumor Targeting and Enhanced Chemodynamic Therapy. ACS NANO 2025; 19:15040-15054. [PMID: 40223775 DOI: 10.1021/acsnano.5c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Targeted delivery of therapeutic agents to malignant tissues is crucial for enhancing clinical outcomes and reducing side effects. Magnetic nanorobots (MNRs) present a promising strategy for controlled delivery, leveraging external magnetic fields to achieve precise in vivo targeting. This work develops elongated MNRs comprising linearly arranged magnetic nanoparticles linked by metal-polyphenol complexes (MPCs) for magnetic-field-directed active tumor targeting and synergistic tumor therapy. The MNRs are created by assembling 30 nm Fe3O4 nanoparticles, tannic acid, and ferrous ions (Fe2+) under a uniform magnetic field, resulting in elongated chain-like structures fixed by MPCs, which also promotes peroxidase-like activity. These structures show a greater magnetic response than individual nanoparticles, offering flexibility in magnetic manipulation. The MPCs coating allows tailored surface modifications with glucose oxidase, copper ions (Cu2+), and human serum albumin (HSA), producing colloidally stable MNRs with a built-in multienzymatic cascade (MNRs@GOx/Cu/HSA) that consumes glucose, generates •OH, and depletes the antioxidant glutathione (GSH). Collectively, surface-engineered multifunctional MNRs demonstrate improved in vivo tumor targeting driven by external magnetic fields, leading to efficient localized chemodynamic therapy. The tailored structural and functional properties of the developed MNRs render them suitable for targeted cargo delivery, minimally invasive surgery, and localized treatments in disease sites.
Collapse
Affiliation(s)
- Di Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Qirong Xiong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Wylie Liu
- Raffles Institution, 1 Raffles Institution Lane, Singapore 575954, Singapore
| | - Yingwei Tang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
8
|
Deng W, Wang Y, Wang J, Su Y, Li M, Qu K, Wang Y, Li M. Leveraging Vitamin C to Augment Nanoenabled Photothermal Immunotherapy. ACS NANO 2025; 19:12982-12995. [PMID: 40138545 DOI: 10.1021/acsnano.4c17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Photothermal immunotherapy (PTI) is valuable for precise tumor targeting and immune activation. However, its efficacy is hindered by insufficient immune response, elevated antioxidant levels within tumor, and intrinsic tumor resistance mechanisms. This study introduces Vitamin C (VC), a widely available dietary nutrient, as an effective enhancer for PTI. High-dose VC induces oxidative imbalance in tumor cells, making them more susceptible to nanoenabled near-infrared-II photothermal therapy (NIR-II PTT) with the photosensitizer IR1080. The combination of VC and NIR-II PTT significantly amplifies antitumor immunity by upregulating CXCL16 expression and promoting CXCR6+ T cell infiltration. Clinical data reveal that higher CXCL16 and CXCR6 levels in human tumors correlate with improved survival and T cell infiltration, underscoring the translational potential of this approach. This study positions VC as a safe, accessible, and cost-effective dietary enhancer for PTI, reshaping the role of dietary nutrients in cancer therapy and offering a strategy for overcoming treatment resistance.
Collapse
Affiliation(s)
- Wuxian Deng
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yiyuan Wang
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Junyu Wang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yitan Su
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601 Anhui, China
| | - Mingyang Li
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Kun Qu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yucai Wang
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601 Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027 Anhui, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027 Anhui, China
| |
Collapse
|
9
|
Li X, Wei H, Wei S, Wang Z, Qi J, Weng L. Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes. Mol Pharm 2025; 22:1210-1219. [PMID: 39874541 DOI: 10.1021/acs.molpharmaceut.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells. The ability of NK cells to recognize target cells was increased upon exposure to amoxicillin at low concentration (10 ng/mL). Additionally, the utilization of amoxicillin loaded in liposome (AMO@Liposome) for NK cell immunotherapy in a mouse breast cancer model resulted in an increased antitumor effect in comparison to without the treatment of AMO@Liposome. RNA transcriptome analysis showed that amoxicillin upregulated differential genes related to the synaptic vesicle cycle pathway and calcium signaling pathway, and FOSB, TNFRSF18, and H4C1 were identified as critical players. These studies suggest that the strategy of using amoxicillin in NK cell immunotherapy has potential applications in the field of tumor therapy.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huan Wei
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Siyuan Wei
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhixuan Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiachen Qi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
10
|
Ye Y, Liu N, Zeng Y, Guo Z, Wang X, Xu X. Aclacinomycin enhances the killing effect of allogeneic NK cells on acute myeloid leukemia cells by inducing immunogenic cell death. Front Immunol 2025; 16:1521939. [PMID: 40051630 PMCID: PMC11882597 DOI: 10.3389/fimmu.2025.1521939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Natural killer (NK) cells, which exert spontaneous cytotoxicity against infectious diseases and cancer, also play an important role in leukemia therapy. Despite the success of NK-based therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in these hematologic malignancies remains elusive. The aim of the present study was to investigate whether allogeneic NK cells combined with aclacinomycin (ACM) could enhance anti-leukemic functionality against an acute myeloid leukemia (AML) cell line and to clarify the underlying mechanism. Methods KG-1α and HL-60 AML cell lines were subjected to different treatments. The effects of different drug combinations on cytotoxicity, cell viability, and apoptotic status were examined. Results The results showed that the combination of ACM (40 nmol/l) and allogeneic NK cells (ratio 20:1) was significantly cytotoxic to AML cells and increased the apoptosis of AML cells, especially after 72 h of treatment. Subsequent analyses revealed that the expression of immunogenic cell death (ICD)-related molecules calreticulin, adenosine triphosphate, and high mobility group box 1, as well as NK cell effector production-perforin and granzyme B-was markedly increased in the combination treatment group. These findings suggest that ACM enhances the anti-leukemic activity of allogeneic NK cells through the ICD pathway. Discussion These results demonstrated that allogeneic NK cells had enhanced functional responses when stimulated with ACM in vitro, exhibiting superior effector cytokine production and cytotoxicity compared to the control, which contained conventional NK cells. In conclusion, the present study suggested that the combination of ACM and allogeneic NK cells is a promising therapeutic strategy against AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Aclarubicin/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Immunogenic Cell Death/drug effects
- Immunogenic Cell Death/immunology
- Cytotoxicity, Immunologic/drug effects
- Cell Line, Tumor
- HL-60 Cells
- Cell Survival/drug effects
- Antibiotics, Antineoplastic/pharmacology
Collapse
Affiliation(s)
- Yongbin Ye
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Ning Liu
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Internal Medicine Department, Tianyang People’s Hospital of Baise City, Baise, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Li X, Jiang YW, Tang WJ, Yue S, Wang W, Yao H, Xu J, Chen Z, Zhu JJ. Self-Regenerating Photothermal Agents for Tandem Photothermal and Thermodynamic Tumor Therapy. SMALL METHODS 2025; 9:e2400697. [PMID: 38824667 DOI: 10.1002/smtd.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.
Collapse
Affiliation(s)
- Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wen-Jing Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Junpeng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Li J, Zheng K, Lin L, Zhang M, Zhang Z, Chen J, Li S, Yao H, Liu A, Lin X, Liu G, Chen B. Reprogramming the Tumor Immune Microenvironment Through Activatable Photothermal Therapy and GSH depletion Using Liposomal Gold Nanocages to Potentiate Anti-Metastatic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407388. [PMID: 39359043 DOI: 10.1002/smll.202407388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Cancer immunotherapy offers significant clinical benefits for patients with advanced or metastatic tumors. However, immunotherapeutic efficacy is often hindered by the tumor microenvironment's high redox levels, leading to variable patient outcomes. Herein, a therapeutic liposomal gold nanocage (MGL) is innovatively developed based on photo-triggered hyperthermia and a releasable strategy by combining a glutathione (GSH) depletion to remodel the tumor immune microenvironment, fostering a more robust anti-tumor immune response. MGL comprises a thermosensitive liposome shell and a gold nanocage core loaded with maleimide. The flexible shell promotes efficient uptake by cancer cells, enabling targeted destruction through photothermal therapy while triggering immunogenic cell death and the maturation of antigen-presenting cells. The photoactivated release of maleimide depletes intracellular GSH, increasing tumor cell sensitivity to oxidative stress and thermal damage. Conversely, GSH reduction also diminishes immunosuppressive cell activity, enhances antigen presentation, and activates T cells. Moreover, photothermal immunotherapy decreases elevated levels of heat shock proteins in tumor cells, further increasing their sensitivity to hyperthermia. In summary, MGL elicited a robust systemic antitumor immune response through GSH depletion, facilitating an effective photothermal immunotherapeutic strategy that reprograms the tumor microenvironment and significantly inhibits primary and metastatic tumors. This approach demonstrates considerable translational potential and clinical applicability.
Collapse
Affiliation(s)
- Jiayi Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Kaifan Zheng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Luping Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Mengdi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Junyu Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Shaoguang Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Ailin Liu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| |
Collapse
|
13
|
Li S, Shang X, Lou H, Wang Z, Qiu Y, Xiang S, Yu F, Yuan H. Cascade Bilateral Regulation of Ferroptosis and Immune Activation Conducted by the Electron-Accepting-Inspired Glycopolymer-Based Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39569915 DOI: 10.1021/acsami.4c13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The immunosuppressive tumor environment, characterized by elevated redox levels, significantly impairs the effectiveness of oxidation and the immune response. Here, an electron-accepting-inspired glycopolymer-based nanoreactor (chitosan-grafted nitrobenzene nanoparticles) CNP employing hypoxia-activated group nitrobenzene was constructed to realize cascade bilateral regulation of ferroptosis and immune activation by intervening antioxidant systems. The as-prepared CNP could consume nicotinamide adenine dinucleotide phosphate (NADPH) in the hypoxia-response process, allowing it to be involved in the recycling of glutathione (GSH) and thioredoxin (Trx). This ultimately affects redox homeostasis, leading to reduced GSH levels, increased reactive oxygen species (ROS), and inhibition of (glutathione peroxidase 4) Gpx4. By taking advantage of the sensitivity difference between tumor cells and dendritic cells (DCs) to the ferroptosis inducer erastin (Er) based on varying xCT expression levels, we developed Er-loaded nanoparticles CNP/Er. These nanoparticles not only enhance ferroptosis in 4T1 cells through Gpx4 inhibition by CNP but also promote DC maturation by utilizing CNP's hypoxia-responsive mechanism to increase ROS levels. The CNP/Er was believed to be an ideal candidate for bilateral regulation of ferroptosis and immune activation in one nanoreactor.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuwei Shang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Haiya Lou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zixu Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yihe Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Shanshan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fangying Yu
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
14
|
Xu M, Ye Z, Liu J, Zhu S, Chen Y, Cai J, Chen Y, Wang L, Zhang L, Ye Q. A Novel Delivery System for the Combined Use of Natural Ingredients: The Preparation of Berberine Hydrochloride-Matrine Liposomes and Preliminary Exploration of Their Anti-Tumor Activity. Molecules 2024; 29:5210. [PMID: 39519850 PMCID: PMC11547310 DOI: 10.3390/molecules29215210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Berberine hydrochloride (BH) extracted from Coptis chinensis (CC) and Matrine (MT) separated from Sophora flavescens (SF) are alkaloids with potent anti-bacterial, anti-inflammatory, and anti-tumor effects. Motivated by the clinical practice of using CC and SF together, we aimed to demonstrate that the synergistic application of the natural compounds BH and MT could enhance therapeutic effects and minimize side effects. Two types of liposomes, liposomes containing only BH (BH-LP) and liposomes containing both BH and MT (BH-MT-LP), were successfully prepared via the reverse evaporation method. The liposome preparation process was optimized by single-factor screening and the Box-Behnken experimental design method. The results showed that the liposomes had particle sizes in the range of 222.7 to 235.4 nm, polydispersity indicated in the range of 11.8% to 23.3%, and zeta potentials in the range of -35.9 to -31.1 mv. BH-MT-LP showed superior anti-tumor activity against MDA-MB-231, HepG-2, and HGC-27 cells in vitro. The incorporation of MT effectively promoted the anti-tumor effect of BH, while the controlled release from liposomes further enhanced the therapeutic efficacy of BH. Furthermore, based on the flow cytometry results, we speculated that BH-MT-LP might promote apoptosis by blocking the G1 phase of cells and inducing cell death. In conclusion, BH-MT-LP provides evidence for the combined use of natural compounds as a stable, safe, and practical drug delivery system for the treatment of potential cancers. Meanwhile, the successful preparation for BH-MT-LP also provides a new approach to the combined use of traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhangkai Ye
- Xinjiang Normal University Business School, Xinjiang Normal University, Urumqi 830017, China;
| | - JunJing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangxi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zhang
- Chengdu Institute for Drug Control, Chengdu 610000, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.X.); (J.L.); (S.Z.); (Y.C.); (J.C.); (Y.C.); (L.W.)
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
15
|
Lin M, Lv X, Wang H, Shu L, Wang H, Zhang G, Sun J, Chen X. Coacervation-Driven Semipermeable Nanoreactors for Enzymatic Cascade-Mediated Cancer Combination Therapy with Enhanced Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407378. [PMID: 39235373 DOI: 10.1002/adma.202407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Utilizing enzyme cascades as a promising approach for targeted cancer therapies holds significant potential, yet its clinical effectiveness is substantially hindered by functional losses during delivery. Complex coacervation emerges as an intriguing strategy for designing functional nanoreactors. In this study, a noteworthy achievement is presented in the development of lactobionic acid-modified tumor microenvironment (TME)-responsive polyelectrolyte complex vesicles (HGS-PCVs) based on bioinspired homopolypeptoids, which serve as a facile, intelligent, and highly efficient nanoreactor tunable for glucose oxidase, hemoglobin, and sorafenib (SRF) to hepatic cancer cells. The TME-responsive permeability of HGS-PCVs enables the selective entry of glucose into their interior, triggering an enzymatic cascade reaction within the tumor. This intricate process generates toxic hydroxyl radicals while concurrently lowering the pH. Consequently, this pH shift enhances the SRF release, effectively promoting ferroptosis and apoptosis in the target cancer cells. Further, the administration of the HGS-PCVs not only initiates immunogenic cell death but also plays a crucial role in inducing the maturation of dendritic cells within lymph nodes. It stimulates an adaptive T-cell response, a crucial mechanism that contributes to impeding the growth of distant tumors in vivo, demonstrating the promising potential of PCVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xueli Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, P. R. China
| | - Lilei Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Helin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Guojing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
16
|
Cheng Y, Zhong W, Chen Y, Tan BSN, Zhao Y, Guo J, Ma M, Zhao Y. Bimetal-Biligand Frameworks for Spatiotemporal Nitric Oxide-Enhanced Sono-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408242. [PMID: 39225414 DOI: 10.1002/adma.202408242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy can trigger immunogenic cell death to augment immunotherapy, benefiting from its superior spatiotemporal selectivity and non-invasiveness. However, the practical applications of sonosensitizers are hindered by their low efficacy in killing cancer cells and activating immune responses. Here, two US Food and Drug Administration-approved drug ligands (ferricyanide and nitroprusside) and two types of metals (copper/iron) are selected to construct a bimetal-biligand framework (Cu[PBA-NO]). Through elaborate regulation of multiple metal/ligand coordination, the systemically administered Cu[PBA-NO] nanoagent shows sono-catalytic and NO release ability under ultrasound irradiation, which can be used for effective sono-immunotherapy. Moreover, Cu[PBA-NO] can downregulate intracellular glutathione levels that would destroy intracellular redox homeostasis and facilitate reactive oxygen species accumulation. The released tumor-associated antigens subsequently facilitate dendritic cell maturation within the tumor-draining lymph node, effectively initiating a T cell-mediated immune response and thereby bolstering the capacity to identify and combat cancer cells. This study paves a new avenue for the efficient cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Bian J, Xu Y, Sun M, Ma Z, Li H, Sun C, Xiong F, Zhao X, Yao W, Chen Y, Ma Y, Yao X, Ju S, Fan W. Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics. ACS NANO 2024; 18:26784-26798. [PMID: 39300974 DOI: 10.1021/acsnano.4c07403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Accurate imaging and precise treatment are critical to controlling the progression of pancreatic cancer. However, current approaches for pancreatic cancer theranostics suffer from limitations in tumor specificity and invasive surgery. Herein, a pancreatic cancer-specific phototheranostic modulator (AuHQ) dominated by aggregation-induced emission (AIE) luminogens-tethered gold nanoparticles is meticulously designed to facilitate prominent fluorescence-photoacoustic bimodal imaging-guided photothermal immunotherapy. Once reaching the pancreatic tumor microenvironment (TME), the peptide Ala-Gly-Phe-Ser-Leu-Pro-Ala-Gly-Cys (AGFSLPAGC) linkage within AuHQ can be specifically cleaved by the overexpressed enzyme Cathepsin E (CTSE), triggering the dual self-assembly of AuNPs and AIE luminogens. The aggregation of AuNPs mediated by enzymatic cleavage results in potentiated photothermal therapy (PTT) under near-infrared (NIR) laser irradiation, induced immunogenic cell death (ICD), and enhanced photoacoustic imaging. Simultaneously, AIE luminogen aggregates formed by hydrophobic interaction can generate AIE fluorescence, enabling real-time and specific fluorescence imaging of pancreatic cancer. Furthermore, coadministration of an indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor with AuHQ can address the limitations of PTT efficacy imposed by the immunosuppressive TME and leverage the synergistic potential to activate systemic antitumor immunity. Thus, this well-designed phototheranostic modulator AuHQ facilitates the intelligent enzymatic dual self-assembly of imaging and therapeutic agents, providing an efficient and precise approach for pancreatic cancer theranostics.
Collapse
Affiliation(s)
- Jiayi Bian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yingjie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Minghao Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Zerui Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaopeng Zhao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Wenjing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Wang Y, Yang R, Xie Y, Zhou XQ, Yang JF, Shi YY, Liu S. Comprehensive review of drug-mediated ICD inhibition of breast cancer: mechanism, status, and prospects. Clin Exp Med 2024; 24:230. [PMID: 39325106 PMCID: PMC11427550 DOI: 10.1007/s10238-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Collapse
Affiliation(s)
- Yang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Shanxi Province Cancer Hospital/Shanxi Hospital Afiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital, Afiliated to Shanxi Medical University, 030013, Shanxi, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Xi-Qiu Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jian-Feng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - You-Yang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
- Graduate School, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
19
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
20
|
Liang S, Wang J, Zhu W, Zhang L. Glutathione-responsive biodegradable nanohybrid for cancer photoacoustic imaging and gas-assisted photothermal therapy. Colloids Surf B Biointerfaces 2024; 245:114205. [PMID: 39241634 DOI: 10.1016/j.colsurfb.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Photothermal therapy (PTT), particularly in the near-infrared-II (NIR-II) range, has attracted widespread attention over the past years. However, the accompanied inflammatory responses can result in undesirable side effects and contribute to treatment ineffectiveness. Herein, we introduced a novel biodegradable nanoplatform (CuS/HMON-PEG) capable of PTT and hydrogen sulfide (H2S) generation, aimed at modulating inflammation for improved cancer treatment outcomes. The embedded ultrasmall copper sulphide (CuS) nanodots (1-2 nm) possessed favorable photoacoustic imaging (PAI) and NIR-II photothermal capabilities, rendering CuS/HMON-PEG an ideal phototheranostic agent. Upon internalization by 4T1 cancer cells, the hollow mesoporous organosilica nanoparticle (HMON) component could react with the overproduced glutathione (GSH) to produce H2S. In addition to the anticipated photothermal tumor ablation and H2S-induced mitochondrial dysfunction, the anti-inflammatory regulation was also been demonstrated by the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β). More importantly, the modulation of inflammation also promoted wound healing mediated by PTT. This work not only presents a H2S-based nanomodulator to boost NIR-II PTT but also provides insights into the construction of novel organic/inorganic hybrid nanosystems.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
21
|
Yang R, Di Y, Song X, Zhao H, Cheng Y, Lu C, Yang Y, Sun M, Zhou Z. Michael Addition-Based Neoadjuvant for Enhanced Cancer Immunotherapy. ACS NANO 2024. [PMID: 39052870 DOI: 10.1021/acsnano.4c08014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cancer immunotherapy suffers from inefficient antigen presentation owing to the limited endocytosis of antigen by dendritic cells (DCs) and dysfunction of DCs in the immunosuppressive tumor microenvironment (ITME). Here, we revealed that cinnamaldehyde-grafted polyethylenimine (PC) held the potential to serve as a neoadjuvant to modulate the above processes and thus potentiate immune responses. The PC neoadjuvant could capture the tumor antigen generated during chemotherapy to enhance the crosstalk between the antigen and DCs. Then, it depleted the intracellular glutathione by the in situ Michael addition reaction, which not only activated the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) pathway to promote DCs maturation but also triggered the antigen release. As a result, it significantly augmented antigen presentation with a 46% ratio of DCs maturation and a 53% ratio of CD8+ T cell infiltration in low immunogenic murine breast cancer.
Collapse
Affiliation(s)
- Ruoxi Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China
| | - Yongxiang Di
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China
| | - Xiaoning Song
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Huimin Zhao
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Yide Cheng
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Cunzhen Lu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Ying Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| |
Collapse
|
22
|
Gao Y, Huang D, Huang S, Li H, Xia B. Rational design of ROS generation nanosystems to regulate innate immunity of macrophages, dendrtical and natural killing cells for immunotherapy. Int Immunopharmacol 2024; 139:112695. [PMID: 39024751 DOI: 10.1016/j.intimp.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Innate immunity serves as the first line of host defense in the body against pathogenic infections or malignant diseases. Reactive oxygen species (ROS), as vital signaling mediators, can efficiently elicit innate immune responses to oxidative-related stress or damage. In the era of nanomedicine, various immunostimulatory nanosystems have been extensively designed and synthesized to elicit immune responses for the immunotherapy of cancer or infectious diseases. In this review, we emphasize that ROS derived from nanosystems regulates innate immune cells to potentiate immunotherapeutic efficacy, such as primarily dendritic cells, macrophages, or natural killer cells. Meanwhile, we also summarize the pathway of ROS generation triggered by exogenous nanosystems in innate immune cells of DCs, macrophages, and NK cells.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Di Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuodan Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| | - Bing Xia
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China; Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| |
Collapse
|
23
|
Cai X, Cai D, Wang X, Zhang D, Qiu L, Diao Z, Liu Y, Sun J, Cui D, Liu Y, Yin T. Manganese self-boosting hollow nanoenzymes with glutathione depletion for synergistic cancer chemo-chemodynamic therapy. Biomater Sci 2024; 12:3622-3632. [PMID: 38855985 DOI: 10.1039/d4bm00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chemodynamic therapy (CDT) has outstanding potential as a combination therapy to treat cancer. However, the effectiveness of CDT in the treatment of solid tumors is limited by the overexpression of glutathione (GSH) in the tumor microenvironment (TME). GSH overexpression diminishes oxidative stress and attenuates chemotherapeutic drug-induced apoptosis in cancer cells. To counter these effects, a synergistic CDT/chemotherapy cancer treatment, involving the use of a multifunctional bioreactor of hollow manganese dioxide (HMnO2) loaded with cisplatin (CDDP), was developed. Metal nanoenzymes that can auto-degrade to produce Mn2+ exhibit Fenton-like, GSH-peroxidase-like activity, which effectively depletes GSH in the TME to attenuate the tumor antioxidant capacity. In an acidic environment, Mn2+ catalyzed the decomposition of intra-tumor H2O2 into highly toxic ·OH as a CDT. HMnO2 with large pores, pore volume, and surface area exhibited a high CDDP loading capacity (>0.6 g-1). Treatment with CDDP-loaded HMnO2 increased the intratumor Pt-DNA content, leading to the up-regulation of γ-H2Aχ and an increase in tumor tissue damage. The decreased GSH triggered by HMnO2 auto-degradation protected Mn2+-generated ·OH from scavenging to amplify oxidative stress and enhance the efficacy of CDT. The nanoenzymes with encapsulated chemotherapeutic agents deplete GSH and remodel the TME. Thus, tumor CDT/chemotherapy combination therapy is an effective therapeutic strategy.
Collapse
Affiliation(s)
- Xinyi Cai
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Deng Cai
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Xiaozhen Wang
- Respiratory department, Tsinghua University Yuquan Hospital, Beijing, 100040, P. R. China
| | - Dou Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Long Qiu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Zhenying Diao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Yong Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Jianbo Sun
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Daxiang Cui
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, P. R. China.
| | - Yanlei Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ting Yin
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| |
Collapse
|
24
|
Ni H, Yu S, Qian S, Lu J, Feng J, Zhang J. Photothermal Particle-Loaded Panax Notoginseng Polysaccharide Cryogels As Personalized Tumor Vaccines. Biomacromolecules 2024; 25:4394-4405. [PMID: 38859583 DOI: 10.1021/acs.biomac.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Combination immunotherapy is being increasingly explored for cancer treatment, leading to various vector materials for the codelivery of immune agents and drugs. However, current tumor vaccines exhibit poor immunogenicity, severely compromising their therapeutic efficacy. Herein, an injectable hydrogel was developed based on dopamine (DA) and Panax notoginseng polysaccharide (PNPS) loaded with hair microparticles (HMPs) to enhance the immunogenicity of tumor vaccines. Photothermal effects of incorporated HMPs can trigger immunogenic cancer cell death and the release of abundant autologous tumor antigens, which are captured by catechol groups. Concomitant breakdown of PNPS recruits and activates dendritic cells (DCs). The macroporous structure of cryogels allows immune cell infiltration and interaction with antigens adsorbed on PNPS and DA cryogels (PD cryogels), thereby provoking potent cytotoxic T-cell responses. Hence, PD cryogels enabling cell infiltration and accelerated DC maturation may serve as a therapeutic vaccination platform against cancer.
Collapse
Affiliation(s)
- Haifeng Ni
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Shijie Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Sunxiang Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jie Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
25
|
Babanyinah GK, Bhadran A, Polara H, Wang H, Shah T, Biewer MC, Stefan MC. Maleimide functionalized polycaprolactone micelles for glutathione quenching and doxorubicin delivery. Chem Sci 2024; 15:9987-10001. [PMID: 38966382 PMCID: PMC11220601 DOI: 10.1039/d4sc01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
High glutathione production is known to be one of the defense mechanisms by which many cancer cells survive elevated oxidative stress. By explicitly targeting glutathione in these cancer cells and diminishing its levels, oxidative stress can be intensified, ultimately triggering apoptosis or programmed cell death. Herein, we developed a novel approach by creating maleimide-functionalized polycaprolactone polymers, specifically using 2,3-diiodomaleimide functionality to reduce the level of glutathione in cancer cells. Polycaprolactone was chosen to conjugate the 2,3-diiodomaleimide functionality due to its biodegradable and biocompatible properties. The amphiphilic block copolymer was synthesized using PEG as a macroinitiator to make corresponding polymeric micelles. The resulting 2,3-diiodomaleimide-conjugated polycaprolactone micelles effectively quenched glutathione, even at low concentrations (0.01 mg mL-1). Furthermore, we loaded these micelles with the anticancer drug doxorubicin (DOX), which exhibited pH-dependent drug release. We obtained a loading capacity (LC) of 3.5% for the micelles, one of the highest LC reported among functional PCL-based micelles. Moreover, the enhanced LC doesn't affect their release profile. Cytotoxicity experiments demonstrated that empty and DOX-loaded micelles inhibited cancer cell growth, with the DOX-loaded micelles displaying the highest cytotoxicity. The ability of the polymer to quench intracellular GSH was also confirmed. This approach of attaching maleimide to polycaprolactone polymers shows promise in depleting elevated glutathione levels in cancer cells, potentially improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| |
Collapse
|
26
|
Huang Z, Song J, Huang S, Wang S, Shen C, Song S, Lian J, Ding Y, Gong Y, Zhang Y, Yuan A, Hu Y, Tan C, Luo Z, Wang L. Phase and Defect Engineering of MoSe 2 Nanosheets for Enhanced NIR-II Photothermal Immunotherapy. NANO LETTERS 2024; 24:7764-7773. [PMID: 38864366 DOI: 10.1021/acs.nanolett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, People's Republic of China
| | - Jingrun Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shengheng Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Simin Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Jianhui Lian
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yankui Ding
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
27
|
Liu Y, Wang X, Feng H, Li X, Yang R, Zhang M, Du Y, Liu R, Luo M, Li Z, Liu B, Wang J, Wang W, An F, Niu F, He P. Glutathione-depleting Liposome Adjuvant for Augmenting the Efficacy of a Glutathione Covalent Inhibitor Oridonin for Acute Myeloid Leukemia Therapy. J Nanobiotechnology 2024; 22:299. [PMID: 38812031 PMCID: PMC11137913 DOI: 10.1186/s12951-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyan Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Ruimin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zhiyi Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jincheng Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
28
|
Deng H, Li X, Pan L, Tang M, Wang B, Zhang Y, Zhang H, Kong X, Wang S, Zhu W. GSH-Responsive Liposomes with Heat Shock Protein Regulatory Ability for Efficient Photodynamic/Photothermal Combined Therapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25788-25798. [PMID: 38716694 DOI: 10.1021/acsami.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.
Collapse
Affiliation(s)
- Hairui Deng
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xianan Li
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lingfeng Pan
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Mengcheng Tang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Beibei Wang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yongjia Zhang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Han Zhang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiangdong Kong
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wei Zhu
- College of Textiles Science and Engineering (International silk institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
29
|
Cao J, Hong K, Lv C, Jiang W, Chen Q, Wang R, Wang Y. Reduction-sensitive polymeric carrier for the targeted delivery of a quinazoline derivative for enhanced generation of reactive oxygen species against cancer. Biomater Sci 2024; 12:2626-2638. [PMID: 38526801 DOI: 10.1039/d3bm02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors and the development of effective therapeutics against HCC is urgently needed. A novel quinazoline derivative 04NB-03 (Qd04) has been proved to be highly effective against HCC without obvious toxic side-effects. However, the poor water solubility and low bioavailability in vivo severely limit its clinical application. In addition, Qd04 kills tumor cells by inducing an accumulation of endogenous reactive oxygen species (ROS), which is highly impeded by the overexpression of glutathione (GSH) in tumor cells. Herein, we designed a disulfide cross-linked polyamino acid micelle to deliver Qd04 for HCC therapy. The disulfide linkage not only endowed a tumor-targeted delivery of Qd04 by responding to tumor cell GSH but also depleted GSH to achieve increased levels of ROS generation, which improved the therapeutic efficiency of Qd04. Both in vitro and in vivo results demonstrated that the synthesized nanodrug exerted good anti-hepatoma effects, which provided a potential application for HCC therapy in clinics.
Collapse
Affiliation(s)
- Jianrong Cao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Keze Hong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Chengqi Lv
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Weiting Jiang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Qi Chen
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Rongze Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Liu J, Yang T, Zhang H, Weng L, Peng X, Liu T, Cheng C, Zhang Y, Chen X. Intelligent nanoreactor coupling tumor microenvironment manipulation and H 2O 2-dependent photothermal-chemodynamic therapy for accurate treatment of primary and metastatic tumors. Bioact Mater 2024; 34:354-365. [PMID: 38269307 PMCID: PMC10806208 DOI: 10.1016/j.bioactmat.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
Tumor microenvironment (TME), as the "soil" of tumor growth and metastasis, exhibits significant differences from normal physiological conditions. However, how to manipulate the distinctions to achieve the accurate therapy of primary and metastatic tumors is still a challenge. Herein, an innovative nanoreactor (AH@MBTF) is developed to utilize the apparent differences (copper concentration and H2O2 level) between tumor cells and normal cells to eliminate primary tumor based on H2O2-dependent photothermal-chemodynamic therapy and suppress metastatic tumor through copper complexation. This nanoreactor is constructed using functionalized MSN incorporating benzoyl thiourea (BTU), triphenylphosphine (TPP), and folic acid (FA), while being co-loaded with horseradish peroxidase (HRP) and its substrate ABTS. During therapy, the BTU moieties on AH@MBTF could capture excessive copper (highly correlated with tumor metastasis), presenting exceptional anti-metastasis activity. Simultaneously, the complexation between BTU and copper triggers the formation of cuprous ions, which further react with H2O2 to generate cytotoxic hydroxyl radical (•OH), inhibiting tumor growth via chemodynamic therapy. Additionally, the stepwise targeting of FA and TPP guides AH@MBTF to accurately accumulate in tumor mitochondria, containing abnormally high levels of H2O2. As a catalyst, HRP mediates the oxidation reaction between ABTS and H2O2 to yield activated ABTS•+. Upon 808 nm laser irradiation, the activated ABTS•+ performs tumor-specific photothermal therapy, achieving the ablation of primary tumor by raising the tissue temperature. Collectively, this intelligent nanoreactor possesses profound potential in inhibiting tumor progression and metastasis.
Collapse
Affiliation(s)
- Jie Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Handan Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| |
Collapse
|
31
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
32
|
Liu J, Zhang Y, Yang B, Jia Y, Liu RT, Ding L, Shen Z, Chen X. Synergistic Glutathione Depletion and STING Activation to Potentiate Dendritic Cell Maturation and Cancer Vaccine Efficacy. Angew Chem Int Ed Engl 2024; 63:e202318530. [PMID: 38196070 DOI: 10.1002/anie.202318530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.
Collapse
Affiliation(s)
- Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Ye Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Bowei Yang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Center, Center for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
33
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
34
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
35
|
Ko MJ, Yoo W, Min S, Zhang YS, Joo J, Kang H, Kim DH. Photonic control of image-guided ferroptosis cancer nanomedicine. Coord Chem Rev 2024; 500:215532. [PMID: 38645709 PMCID: PMC11027759 DOI: 10.1016/j.ccr.2023.215532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Photonic nanomaterials, characterized by their remarkable photonic tunability, empower a diverse range of applications, including cutting-edge advances in cancer nanomedicine. Recently, ferroptosis has emerged as a promising alternative strategy for effectively killing cancer cells with minimizing therapeutic resistance. Novel design of photonic nanomaterials that can integrate photoresponsive-ferroptosis inducers, -diagnostic imaging, and -synergistic components provide significant benefits to effectively trigger local ferroptosis. This review provides a comprehensive overview of recent advancements in photonic nanomaterials for image-guided ferroptosis cancer nanomedicine, offering insights into their strengths, constraints, and their potential as a future paradigm in cancer treatment.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Cambridge, MA 02139, USA
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
36
|
Peng L, Yu F, Shen R, Zhou W, Wang D, Jiang Q, Meng T, Wang J, Hu F, Yuan H. Glutathione Consumptive Dual-Sensitive Lipid-Composite Nanoparticles Induce Immunogenic Cell Death for Enhanced Breast Tumor Therapy. Mol Pharm 2024; 21:113-125. [PMID: 38081040 DOI: 10.1021/acs.molpharmaceut.3c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Although chemotherapy remains the standard therapy for tumor treatment, serious side effects can occur because of nontargeted distribution and damage to healthy tissues. Hollow mesoporous silica nanoparticles (HMSNs) modified with lipids offer potential as delivery systems to improve therapeutic outcomes and reduce adverse effects. Herein, we synthesized HMSNs with integrated disulfide bonds (HMSN) for loading with the chemotherapeutic agent oxaliplatin (OXP) which were then covered with the synthesized hypoxia-sensitive lipid (Lip) on the surface to prepare the dual-sensitive lipid-composite nanoparticles (HMSN-OXP-Lip). The empty lipid-composite nanoparticles (HMSN-Lip) would consume glutathione (GSH) in cells because of the reduction of disulfide bonds in HMSN and would also inhibit GSH production because of NADPH depletion driven by Lip cleavage. These actions contribute to increased levels of ROS that induce the immunogenic cell death (ICD) effect. Simultaneously, HMSN-Lip would disintegrate in the presence of high concentrations of GSH. The lipid in HMSN-OXP-Lip could evade payload leakage during blood circulation and accelerate the release of the OXP in the tumor region in the hypoxic microenvironment, which could significantly induce the ICD effect to activate an immune response for an enhanced therapeutic effect. The tumor inhibitory rate of HMSN-OXP-Lip was almost twice that of free OXP, and no apparent side effects were observed. This design provides a dual-sensitive and efficient strategy for tumor therapy by using lipid-composite nanoparticles that can undergo sensitive drug release and biodegradation.
Collapse
Affiliation(s)
- Lijun Peng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyu Shen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
37
|
Song J, Tang C, Wang Y, Ba J, Liu K, Gao J, Chang J, Kang J, Yin L. Multifunctional nanoparticles for enhanced sonodynamic-chemodynamic immunotherapy with glutathione depletion. Nanomedicine (Lond) 2024; 19:145-161. [PMID: 38270976 DOI: 10.2217/nnm-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Aim: This study aimed to develop a sonodynamic-chemodynamic nanoparticle functioning on glutathione depletion in tumor immunotherapy. Materials & methods: The liposome-encapsulated 2,2-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and copper-cysteine nanoparticles, AIPH/Cu-Cys@Lipo, were synthesized with a one-pot method. 4T1 cells were injected into female BALB/c mice for modeling. Results: AIPH/Cu-Cys@Lipo was well synthesized. It generated alkyl radicals upon ultrasound stimulation. AIPH/Cu-Cys@Lipo promoted the generation of -OH via a Fenton-like reaction. Both in vitro and in vivo experiments verified that AIPH/Cu-Cys@Lipo significantly inhibited tumor development by decreasing mitochondrial membrane potential, activating CD4+ and CD8+ T cells and promoting the expression of IL-2 and TNF-α. Conclusion: AIPH/Cu-Cys@Lipo provides high-quality strategies for safe and effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Cong Tang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yun Wang
- Xuzhou Central Hospital, Xuzhou, Jiangsu Province, 221009, China
| | - Junli Ba
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Kairui Liu
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinwei Gao
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Linling Yin
- Department of stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| |
Collapse
|
38
|
Yue Z, Wang R, Li J, Tang M, Yang L, Gu H, Wang X, Sun T. Recent Advances in Polyoxometalate Based Nanoplatforms Mediated Reactive Oxygen Species Cancer Therapy. Chem Asian J 2023; 18:e202300749. [PMID: 37755123 DOI: 10.1002/asia.202300749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
The potential of reactive oxygen species (ROS) cancer therapy in tumor treatment has been greatly enhanced by the introduction of catalytically superior polyoxometalate (POM)-based nanoplatforms, mainly composed of atomic clusters consisting of pre-transition metals and oxygen. These nanoplatforms have unique advantages, such as Fenton activity at neutral pH, induction of cellular ferroptosis instead of just apoptosis, and sensitivity to external field stimulation. However, there are also inevitable challenges such as neutralization of ROS by the antioxidant system of the tumor microenvironment (TME), hypoxia, and limited hydrogen peroxide concentrations. This review article aims to provide an overview of recent research advancements in POM-based nanoplatforms for ROS therapy from the perspective of chemical reactions and biological processes, addressing endogenous and exogenous factors that affect the antitumor efficacy. Endogenous factors include the mechanism of ROS generation by POM, the impact of pH and antioxidant systems on POM, and the various manners of tumor cell death. Exogenous stimuli mainly include light, heat, X-rays, and electricity. The article analyzes the specific mechanisms of action of each influencing factor in the first two sections, concluding with the limitations of the present study and some possible directions for future research.
Collapse
Affiliation(s)
- Zhengya Yue
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Runjie Wang
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Jialun Li
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Minglu Tang
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Li Yang
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Hao Gu
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Hongwei Road, Harbin, 150040, PR China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
39
|
Huang Y, Huang Y, Wang Z, Yu S, Johnson HM, Yang Y, Li M, Li J, Deng Y, Liang K. Engineered Bio-Heterojunction with Infection-Primed H 2 S Liberation for Boosted Angiogenesis and Infectious Cutaneous Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304324. [PMID: 37434331 DOI: 10.1002/smll.202304324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Photodynamic therapy (PDT) acts as a powerful weapon against infectious diseases for its enormous antimicrobial activity that quickly elicits storms of reactive oxygen species (ROS). Nevertheless, redundant ROS during treatment inevitably bring detriments in revascularization. To address this dilemma, an innovative P-N bio-heterojunction (bio-HJ) material consisting of p-type copper sulfide (p-CuS), n-type bismuth sulfide (n-Bi2 S3 ), and lactate oxidase (LOx) for effective treatment of recalcitrant infectious wounds by promoting angiogenesis is devised. LOx exhausts lactic acid accumulated in infection environment and converts it to hydrogen peroxide (H2 O2 ), which subsequently yields bactericidal hydroxyl radicals (·OH) via Fenton-like reactions. Ultimately, the P-N bio-HJs exert synergistic photothermal, photodynamic, and chemodynamic effects for rapid bacterial annihilation. Moreover, in vitro and RNA-seq analyses reveal that the crafted bio-HJs dramatically expedite the proliferation of L929 cells and promote angiogenesis by up-regulating angiogenic gene expression in hypoxia-inducible factor-1 (HIF-1) signaling pathway, which may ascribe to the evolution of H2 S in response to the infection microenvironment. Critically, results of in vivo experiments have authenticated that the bio-HJs significantly boost healing rates of full-thickness wounds by slaughtering bacteria, elevating angiogenesis, and promoting cytothesis. As envisioned, this work furnishes a novel tactic for the effective treatment of bacteria-invaded wound using H2 S-liberating P-N bio-HJs.
Collapse
Affiliation(s)
- Yiling Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
Li J, Han X, Gao S, Yan Y, Li X, Wang H. Tumor microenvironment-responsive DNA-based nanomedicine triggers innate sensing for enhanced immunotherapy. J Nanobiotechnology 2023; 21:382. [PMID: 37858171 PMCID: PMC10585899 DOI: 10.1186/s12951-023-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Lack of proper innate sensing inside the tumor microenvironment could reduce both innate and adaptive immunity, which remains a critical cause of immunotherapy failure in various tumor treatments. Double-stranded DNA (dsDNA) has been evidenced to be a promising immunostimulatory agent to induce type I interferons (IFN-Is) production for innate immunity activation through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, yet the unsatisfactory delivery and susceptibility to nuclease degradation hindered its feasibility for further clinical applications. Herein, we report on the constructed tumor microenvironment-responsive DNA-based nanomedicine loaded by dendritic mesoporous organosilica nanoparticles (DMONs), which provide efficient delivery of dsDNA to induce intratumoral IFN-Is production for triggering innate sensing for enhanced anti-tumor immunotherapy. Extensive in vitro and in vivo evaluations have demonstrated the dramatic IFN-Is production induced by dsDNA@DMONs in both immune cells and tumor cells, which facilitates dendritic cells (DCs) maturation and T cells activation for eliciting the potent innate immune and adaptive immune responses. Desirable biosafety and marked therapeutic efficacy with a tumor growth inhibition (TGI) of 51.0% on the murine B16-F10 melanoma model were achieved by the single agent dsDNA@DMONs. Moreover, dsDNA@DMONs combined with anti-PD-L1 antibody further enhanced the anti-tumor efficacy and led to almost complete tumor regression. Therefore, this work highlighted the immunostimulatory DNA-based nanomedicine as a promising strategy for overcoming the resistance to immunotherapy, by promoting the IFN-Is production for innate immunity activation and remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyu Han
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanshan Gao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yumeng Yan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
41
|
Wu R, Liu Z, Huang Y, Huang L, Wang J, Ding H, Wang Z, Li Q, Zhu C, Liu L, Zhang L, Feng G. Hollow Cobalt Sulfide Nanospheres with Highly Enzyme-like Antibacterial Activities to Accelerate Infected Wound Healing. Bioconjug Chem 2023; 34:1902-1913. [PMID: 37775152 DOI: 10.1021/acs.bioconjchem.3c00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The emergence of nanozymes presents a promising alternative to antibiotics for reactive oxygen species-mediated broad-spectrum antimicrobial purposes, but nanozymes still face challenges of low therapeutic efficiency and poor biocompatibility. Herein, we creatively prepared a novel kind of hollow cobalt sulfide (CoS) nanospheres with a unique mesoporous structure that is able to provide numerous active sites for enzyme-like reactions. The results revealed that 50 μg/mL of CoS nanospheres exhibited strong peroxidase- and oxidase-like activities under physiological conditions with the assistance of a low concentration of hydrogen peroxide (H2O2, 100 μM) while possessing highly efficient GSH-depletion ability, which endowed CoS nanospheres with triple enzyme-like properties to combat bacterial infections. The in vitro experiments demonstrated that the CoS nanozyme displayed significant antibacterial effects against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The in vivo implantation showed that the synthesized CoS effectively eliminated bacteria and promoted the recovery of infected wounds in rats while exhibiting a low cytotoxicity. This study provides a promising treatment strategy to accelerate infected wound healing.
Collapse
Affiliation(s)
- Ruibang Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Leizhen Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Juehan Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hong Ding
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhe Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ce Zhu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
42
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
43
|
Li G, Zhang J, Zhang S, Teng L, Sun F. Multifunctional nanoadjuvant-driven microenvironment modulation for enhanced photothermal immunotherapy in breast cancer. J Control Release 2023; 362:309-324. [PMID: 37634552 DOI: 10.1016/j.jconrel.2023.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Intracellular redox imbalance, achieved by exploiting the tumor microenvironment (TME), has emerged as a promising strategy for cancer therapy. In this study, we developed a multifunctional nanoadjuvant, termed GITFe/Z-HA, by modified a metal-organic backbone Fe/ZIF-8 with hyaluronic acid (HA) targeting. The nanocarriers were loaded with glucose oxidase (Gox), neoindocyanine green (IR820) and tilazamine (TPZ). This design aimed to achieve a cascade reaction within tumor cells, mediated by Gox, Fe3+, and IR820, which consumes intrinsic glucose and oxygen, leading to an elevated production of reactive oxygen species (ROS). This cascade reaction creates a hypoxic environment conducive for TPZ to exert its therapeutic action. Consequently, the combination of photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy demonstrates a good synergistic effect. Moreover, the imbalanced ROS/glutathione (GSH) induced by this treatment approach, along with PTT, promote immunogenic cell death (ICD). This ICD triggers the release of damage-related molecular patterns and CD8+ lymphocyte infiltration sensitizes the immune checkpoint blockade (αPD-L1) response, thereby eliciting a systemic anti-tumor immune response. Collectively, this comprehensive treatment regimen, driven by environmentally stimulated multiple pathways, overcomes the limitations of single therapeutic modalities, thereby improving tumor outcomes. Additionally, these findings provide valuable insights for strategies aimed at modulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jingbo Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Shixin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lesheng Teng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
44
|
Liang H, Lu Q, Yang J, Yu G. Supramolecular Biomaterials for Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2023; 6:0211. [PMID: 37705962 PMCID: PMC10496790 DOI: 10.34133/research.0211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Cancer immunotherapy has achieved tremendous successful clinical results and obtained historic victories in tumor treatments. However, great limitations associated with feeble immune responses and serious adverse effects still cannot be neglected due to the complicated multifactorial etiology and pathologic microenvironment in tumors. The rapid development of nanomedical science and material science has facilitated the advanced progress of engineering biomaterials to tackle critical issues. The supramolecular biomaterials with flexible and modular structures have exhibited unparalleled advantages of high cargo-loading efficiency, excellent biocompatibility, and diversiform immunomodulatory activity, thereby providing a powerful weapon for cancer immunotherapy. In past decades, supramolecular biomaterials were extensively explored as versatile delivery platforms for immunotherapeutic agents or designed to interact with the key moleculars in immune system in a precise and controllable manner. In this review, we focused on the crucial role of supramolecular biomaterials in the modulation of pivotal steps during tumor immunotherapy, including antigen delivery and presentation, T lymphocyte activation, tumor-associated macrophage elimination and repolarization, and myeloid-derived suppressor cell depletion. Based on extensive research, we explored the current limitations and development prospects of supramolecular biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Liang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingqing Lu
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jie Yang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry,
Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
45
|
Tian H, Li Y, Lin J, Zhu F, Hou Z, Wang P, Liu X. Programmed Nanoreactors Boost Immune Response through ROS Cascade Amplification along with RNS Storm. ACS MATERIALS LETTERS 2023; 5:2542-2555. [DOI: 10.1021/acsmaterialslett.3c00676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Haina Tian
- Key Laboratory of Biomedical Engineering of Fujian Province & Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, Xiamen University, Xiamen 361005, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fukai Zhu
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian 363000, P. R. China
| | - Zhenqing Hou
- Key Laboratory of Biomedical Engineering of Fujian Province & Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, Xiamen University, Xiamen 361005, China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
46
|
Xiao H, Li X, Li B, Yang S, Qin J, Han S, Ren J, Shuai X. Nanodrug Inducing Autophagy Inhibition and Mitochondria Dysfunction for Potentiating Tumor Photo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300280. [PMID: 37060227 DOI: 10.1002/smll.202300280] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Anticancer immunotherapy is hampered by the poor tumor immunogenicity and immunosuppressive tumor microenvironment (TME). Herein, a liposome nanodrug co-encapsulating doxycycline hydrochloride (Doxy) and chlorin e6 (Ce6) to simultaneously induce autophagy inhibition and mitochondria dysfunction for potentiating tumor photo-immunotherapy is developed. Under near infrared laser irradiation, Ce6 generates cytotoxic reactive oxygen species (ROS) and elicits robust photodynamic therapy (PDT)-induced immunogenic cell death (ICD) for immunosuppressive TME remodeling. In addition, Doxy induced mitochondria dysfunction, which increases ROS generation and enhances PDT to exert more potent killing effect and more powerful ICD. Meanwhile, Doxy increases MHC-I expression on tumor cells surface by efficient autophagy inhibition, leading to more efficient antigen presentation and CTLs recognition to increase tumor immunogenicity. The nanodrugs elicit remarkable antitumor therapy by combining Ce6-mediated PDT and Doxy-induced autophagy inhibition and mitochondria dysfunction. The developed nanodrugs represent a highly efficient strategy for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Nanomedicine Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoxia Li
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bo Li
- Nanomedicine Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuguang Yang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingya Qin
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Jie Ren
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xintao Shuai
- Nanomedicine Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
47
|
Zhou M, Wang J, Pan J, Wang H, Huang L, Hou B, Lai Y, Wang F, Guan Q, Wang F, Xu Z, Yu H. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy. Nat Commun 2023; 14:3593. [PMID: 37328484 PMCID: PMC10275881 DOI: 10.1038/s41467-023-39035-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
The immune-excluded tumors (IETs) show limited response to current immunotherapy due to intrinsic and adaptive immune resistance. In this study, it is identified that inhibition of transforming growth factor-β (TGF-β) receptor 1 can relieve tumor fibrosis, thus facilitating the recruitment of tumor-infiltrating T lymphocytes. Subsequently, a nanovesicle is constructed for tumor-specific co-delivery of a TGF-β inhibitor (LY2157299, LY) and the photosensitizer pyropheophorbide a (PPa). The LY-loaded nanovesicles suppress tumor fibrosis to promote intratumoral infiltration of T lymphocytes. Furthermore, PPa chelated with gadolinium ion is capable of fluorescence, photoacoustic and magnetic resonance triple-modal imaging-guided photodynamic therapy, to induce immunogenic death of tumor cells and elicit antitumor immunity in preclinical cancer models in female mice. These nanovesicles are further armored with a lipophilic prodrug of the bromodomain-containing protein 4 inhibitor (i.e., JQ1) to abolish programmed death ligand 1 expression of tumor cells and overcome adaptive immune resistance. This study may pave the way for nanomedicine-based immunotherapy of the IETs.
Collapse
Affiliation(s)
- Mengxue Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxin Wang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Jiaxing Pan
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Hou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengyang Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
48
|
Liu Y, Hu D, Gao D, Gong P, Zheng H, Sun M, Sheng Z. Engineered apoptotic bodies hitchhiking across the blood-brain barrier achieved a combined photothermal-chemotherapeutic effect against glioma. Theranostics 2023; 13:2966-2978. [PMID: 37284458 PMCID: PMC10240828 DOI: 10.7150/thno.80632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Glioma as a highly lethal tumor is difficult to treat since the blood-brain barrier (BBB) restricts drug delivery into the brain. It remains a huge need for developing strategies allowing drug passage across the BBB with high efficacy. Methods: Herein, we engineered drug-loaded apoptotic bodies (Abs) loaded with doxorubicin (Dox) and indocyanine green (ICG) to cross the BBB for the treatment of glioma. The confocal laser scanning microscopy was used to characterize the structure and evaluate the hitchhiking effect of the Abs. The in vivo BBB-crossing ability and photothermal-chemotherapeutic effect of the drug-loaded Abs were investigated in mice orthotopic glioma model. Results: Engineered Abs loaded with Dox and ICG were successfully prepared. The Abs were phagocytized by macrophages, actively penetrate the BBB in vitro and in vivo utilizing the hitchhiking effect. The whole in vivo process was visualized by near-infrared fluorescence signal with a signal-to-background ratio of 7 in a mouse model of orthotopic glioma. The engineered Abs achieved a combined photothermal-chemotherapeutic effect, leading to a median survival time of 33 days in glioma-bearing mice compared to 22 days in the control group. Conclusions: This study presents engineered drug carriers with the ability to hitchhike across the BBB, providing new opportunities for the treatment of glioma.
Collapse
Affiliation(s)
- Yu Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| |
Collapse
|
49
|
Patel U, Rathnayake K, Singh N, Hunt EC. Dual Targeted Delivery of Liposomal Hybrid Gold Nano-Assembly for Enhanced Photothermal Therapy against Lung Carcinomas. ACS APPLIED BIO MATERIALS 2023; 6:1915-1933. [PMID: 37083301 DOI: 10.1021/acsabm.3c00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The delivery and accumulation of therapeutic drugs into cancer cells without affecting healthy cells are a major challenge for antitumor therapy. Here, we report the synthesis of a liposomal hybrid gold nano-assembly with enhanced photothermal activity for lung cancer treatment. The core components of the nano-assembly include gold nanorods coated with a mesoporous silica shell that offers an excellent drug-loading surface for encapsulation of doxorubicin. To enhance the photothermal capacity of nano-assembly, IR 780 dye was loaded inside a thermo-sensitive liposome, and then, the core nano-assembly was wrapped within the liposome, and GE-11 peptide and folic acid were conjugated onto the surface of the liposome to give the final nano-assembly [(GM@Dox) LI]-PF. The dual targeting approach of [(GM@Dox) LI]-PF leads to enhanced cellular uptake and improves the accumulation of nano-assemblies in cancer cells that overexpress the epidermal growth factor receptor and folate. The exposure of near-infrared laser irradiation can trigger photothermal-induced structural disruption of the nano-assembly, which allows for the precise and controllable release of Dox at targeted sites. Additionally, chemo-photothermal therapy was shown to be 11 times more effective in cancer cell treatment when compared to Dox alone. Our systematic study suggests that the nano-assemblies facilitate the cancer cells undergoing apoptosis via an intrinsic mitochondrial pathway that can be directly triggered by the chemo-photothermal treatment. This study offers an appealing candidate that holds great promise for synergistic cancer treatment.
Collapse
Affiliation(s)
- Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Nirupama Singh
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Emily C Hunt
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
50
|
Tahaghoghi-Hajghorbani S, Yazdani M, Nikpoor AR, Hatamipour M, Ajami A, Jaafari MR, Badiee A, Rafiei A. Targeting the tumor microenvironment by liposomal Epacadostat in combination with liposomal gp100 vaccine. Sci Rep 2023; 13:5802. [PMID: 37037839 PMCID: PMC10086071 DOI: 10.1038/s41598-023-31007-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) pathway has vital role in cancer immune escape and its upregulation leads to immunosuppressive environment which is associated with poor prognosis and progression in various cancers like melanoma. Previously, we showed the antitumoral efficacy of nanoliposomal form of Epacadostat (Lip-EPA), as an IDO1 inhibitor. Herein, we used Lip-EPA as a combination approach with liposomal gp100 (Lip-gp100) anti-cancer vaccine in melanoma model. Here, we showed that B16F10 tumor express IDO1 so using Lip-EPA will enhance the efficacy of vaccine therapy. The biodistribution of ICG-labelled liposomal form of EPA showed the remarkable accumulation of drug at tumor site. In an in vivo study, Lip-EPA enhanced the antitumor efficacy of Lip-gp100 in which the IDO mRNA expression was decreased (~ fourfold) in tumor samples. Also, we identified a significant increase in the number of infiltrated T lymphocytes (p < 0.0001) with enhanced in interferon gamma (IFN-γ) production (p < 0.0001). Additionally, Lip-EPA + Lip-gp100 significantly modulated intratumoral regulatory T cells which altogether resulted in the highest delay in tumor growth (TGD = 56.54%) and increased life span (ILS > 47.36%) in treated mice. Our study demonstrated that novel combination of Lip-EPA and Lip-gp100 was effective treatment with capability of being used in further clinical studies.
Collapse
Affiliation(s)
- Sahar Tahaghoghi-Hajghorbani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|