1
|
Canavesi I, Viswakarma N, Epel B, McMillan A, Kotecha M. Accelerated EPR imaging using deep learning denoising. Magn Reson Med 2025; 94:436-446. [PMID: 40096518 PMCID: PMC12021571 DOI: 10.1002/mrm.30473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Trityl OXO71-based pulse electron paramagnetic resonance imaging (EPRI) is an excellent technique to obtain partial pressure of oxygen (pO2) maps in tissues. In this study, we used deep learning techniques to denoise 3D EPR amplitude and pO2 maps. METHODS All experiments were performed using a 25 mT EPR imager, JIVA-25®. The MONAI implementation of four neural networks (autoencoder, Attention UNet, UNETR, and UNet) was tested, and the best model (UNet) was then enhanced with joint bilateral filters (JBF). The training dataset was comprised of 227 3D images (56 in vivo and 171 in vitro), 159 images for training, 45 for validation, and 23 for testing. UNet with 1, 2, and 3 JBF layers was tested to improve image SNR, focusing on multiscale structural similarity index measure and edge sensitivity preservation. The trained algorithm was tested using acquisitions with 15, 30, and 150 averages in vitro with a sealed deoxygenated OXO71 phantom and in vivo with fibrosarcoma tumors grown in a hind leg of C3H mice. RESULTS We demonstrate that UNet with 2 JBF layers (UNet+JBF2) provides the best outcome. We demonstrate that using the UNet+JBF2 model, the SNR of 15-shot amplitude maps provides higher SNR compared to 150-shot pre-filter maps, both in phantoms and in tumors, therefore, allowing 10-fold accelerated imaging. We demonstrate that the trained algorithm improves SNR in pO2 maps. CONCLUSIONS We demonstrate the application of deep learning techniques to EPRI denoising. Higher SNR will bring the EPRI technique one step closer to clinics.
Collapse
Affiliation(s)
- Irene Canavesi
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL 60612, USA
| | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL 60612, USA
- Department of Radiation and Cellular Oncology, University of Chicago, IL 60637, USA
| | - Alan McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | |
Collapse
|
2
|
Thomson EA, Lee S, Xu H, Moeller H, Sands J, Lal RA, Annes JP, Poon AS. Intermittent Low-Magnitude Pressure Applied Across Macroencapsulation Devices Enables Physiological Insulin Delivery Dynamics. Diabetes 2025; 74:873-884. [PMID: 40029687 PMCID: PMC12097455 DOI: 10.2337/db24-0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cadaveric islet and stem cell-derived transplantation hold promise as treatments for type 1 diabetes. To tackle the issue of immunocompatibility, numerous cellular macroencapsulation techniques that use diffusion to transport insulin across an immunoisolating barrier have been developed. However, despite several devices progressing to human clinical trials, none have successfully attained physiological glucose control or insulin independence. Based on empirical evidence, macroencapsulation methods with multilayered, high islet surface density are incompatible with on-demand insulin delivery and physiological glucose regulation when solely reliant on diffusion. An additional driving force is essential to overcome the distance limit of diffusion. In this study, we present both theoretical evidence and experimental validation that applying pressure, at levels comparable to physiological diastolic blood pressure, significantly enhances insulin flux across immunoisolation membranes, increasing it by nearly three orders of magnitude. This significant enhancement in transport rate allows for precise, subminute regulation of both bolus and basal insulin delivery. By incorporating this technique with a pump-based extravascular system, we demonstrate the ability to rapidly reduce glucose levels in diabetic rodent models, replicating the timescale and therapeutic effect of subcutaneous insulin injection or infusion. This advance provides a potential path toward achieving insulin independence with islet macroencapsulation. ARTICLE HIGHLIGHTS Numerous islet macroencapsulation techniques use diffusion to transport insulin across an immunoisolating barrier. Despite some devices reaching clinical trials, none have achieved physiological glucose control or insulin independence. Empirical evidence shows that high-density islet macroencapsulation methods cannot achieve on-demand insulin delivery and glucose regulation with diffusion alone. An additional driving force is needed. Appling a subminute pressure at physiological levels can achieve on-demand insulin delivery from macroencapsulated islets and glucose regulation. Incorporating pressure-based enhancements in macroencapsulation systems could lead to successful clinical outcomes.
Collapse
Affiliation(s)
- Ella A. Thomson
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Sooyeon Lee
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Haixia Xu
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | | | - Joanna Sands
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Rayhan A. Lal
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA
| | - Justin P. Annes
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
- Safran ChEM-H, Stanford University, Stanford, CA
| | - Ada S.Y. Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
3
|
Wang X, Brielle S, Kenty-Ryu J, Korover N, Bavli D, Pop R, Melton DA. Improving cellular fitness of human stem cell-derived islets under hypoxia. Nat Commun 2025; 16:4787. [PMID: 40404627 PMCID: PMC12098657 DOI: 10.1038/s41467-025-59924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
Stem cell-derived islet cell therapy can effectively treat type 1 diabetes, but its efficacy is hindered by low oxygen supply post-transplantation, particularly in subcutaneous spaces and encapsulation devices, leading to cell dysfunction. The response to hypoxia and effective strategies to alleviate its detrimental effects remain poorly understood. Here, we show that β cells within stem cell-derived islets gradually undergo a decline in cell identity and metabolic function in hypoxia. This is linked to reduced expression of immediate early genes (EGR1, FOS, and JUN), which downregulates key β cell transcription factors. We further identified genes important for maintaining β cell fitness in hypoxia, with EDN3 as a potent player. Elevated EDN3 expression preserves β cell identity and function in hypoxia by modulating genes involved in β cell maturation, glucose sensing and regulation. These insights improve the understanding of hypoxia's impact on stem cell-derived islets, offering a potential intervention for clinical applications.
Collapse
Affiliation(s)
- Xi Wang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Shlomi Brielle
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Jennifer Kenty-Ryu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, USA
| | - Nataly Korover
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Danny Bavli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, USA
| | - Ramona Pop
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Vertex Pharmaceuticals, Boston, USA.
| |
Collapse
|
4
|
Shang KM, Suzuki T, Kato H, Toyoda T, Tai YC, Komatsu H. Oxygen dynamics and delivery strategies to enhance beta cell replacement therapy. Am J Physiol Cell Physiol 2025; 328:C1667-C1684. [PMID: 40204281 DOI: 10.1152/ajpcell.00984.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Beta cell replacement therapy via pancreatic islet transplantation offers a promising treatment for type 1 diabetes as an alternative to insulin injections. However, posttransplantation oxygenation remains a critical challenge; isolated islets from donors lose vascularity and rely on slow oxygen diffusion for survival until revascularization occurs in the host tissue. This often results in significant hypoxia-induced acute graft loss. Overcoming the oxygenation barrier is crucial for advancing islet transplantation. This review is structured in three sections: the first examines oxygen dynamics in islet transplantation, focusing on factors affecting oxygen supply, including vascularity. It highlights oxygen dynamics specific to both transplant sites and islet grafts, with particular attention to extrahepatic sites such as subcutaneous tissue. The second section explores current oxygen delivery strategies, categorized into two main approaches: augmenting oxygen supply and enhancing effective oxygen solubility. The final section addresses key challenges, such as the lack of a clearly defined oxygen threshold for islet survival and the limited precision in measuring oxygen levels within small islet constructs. Recent advancements addressing these challenges are introduced. By deepening the understanding of oxygen dynamics and identifying current obstacles, this review aims to guide the development of innovative strategies for future research and clinical applications. These advancements are anticipated to enhance transplantation outcomes and bring us closer to a cure for type 1 diabetes.
Collapse
Affiliation(s)
- Kuang-Ming Shang
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States
| | - Tomoharu Suzuki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroyuki Kato
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States
| | - Taro Toyoda
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States
| | - Hirotake Komatsu
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
5
|
Rech Tondin A, Lanzoni G. Islet Cell Replacement and Regeneration for Type 1 Diabetes: Current Developments and Future Prospects. BioDrugs 2025; 39:261-280. [PMID: 39918671 PMCID: PMC11906537 DOI: 10.1007/s40259-025-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of insulin-producing beta cells in the pancreas, leading to insulin deficiency and chronic hyperglycemia. The main current therapeutic strategies for clinically overt T1D - primarily exogenous insulin administration combined with blood glucose monitoring - fail to fully mimic physiological insulin regulation, often resulting in suboptimal or insufficient glycemic control. Islet cell transplantation has emerged as a promising avenue for functionally replacing endogenous insulin production and achieving long-term glycemic stability. Here, we provide an overview of current islet replacement strategies, ranging from islet transplantation to stem cell-derived islet cell transplantation, and highlight emerging approaches such as immunoengineering. We examine the advancements in immunosuppressive protocols to enhance graft survival, innovative encapsulation, and immunomodulation techniques to protect transplanted islets, and the ongoing challenges in achieving durable and functional islet integration. Additionally, we discuss the latest clinical outcomes, the potential of gene editing technologies, and the emerging strategies for islet cell regeneration. This review aims to highlight the potential of these approaches to transform the management of T1D and improve the quality of life of individuals affected by this condition.
Collapse
Affiliation(s)
- Arthur Rech Tondin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Capuani S, Campa‐Carranza JN, Hernandez N, Chua CYX, Grattoni A. Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy. Adv Healthc Mater 2025; 14:e2304003. [PMID: 38215451 PMCID: PMC11239796 DOI: 10.1002/adhm.202304003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Cell delivery and encapsulation platforms are under development for the treatment of Type 1 Diabetes among other diseases. For effective cell engraftment, these platforms require establishing an immune-protected microenvironment as well as adequate vascularization and oxygen supply to meet the metabolic demands of the therapeutic cells. Current platforms rely on 1) immune isolating barriers and indirect vascularization or 2) direct vascularization with local or systemic delivery of immune modulatory molecules. Supported by experimental data, here a broadly applicable predictive computational model capable of recapitulating both encapsulation strategies is developed. The model is employed to comparatively study the oxygen concentration at different levels of vascularization, transplanted cell density, and spatial distribution, as well as with codelivered adjuvant cells. The model is then validated to be predictive of experimental results of oxygen pressure and local and systemic drug biodistribution in a direct vascularization device with local immunosuppressant delivery. The model highlights that dense vascularization can minimize cell hypoxia while allowing for high cell loading density. In contrast, lower levels of vascularization allow for better drug localization reducing systemic dissemination. Overall, it is shown that this model can serve as a valuable tool for the development and optimization of platform technologies for cell encapsulation.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of Science (UCAS)Beijing100049China
| | - Jocelyn Nikita Campa‐Carranza
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- School of Medicine and Health SciencesTecnologico de MonterreyMonterreyNL64710Mexico
| | - Nathanael Hernandez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of SurgeryHouston Methodist HospitalHoustonTX77030USA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
7
|
Canavesi I, Viswakarma N, Epel B, Kotecha M. In Vivo Mouse Abdominal Oxygen Imaging And Assessment of Subcutaneously Implanted Beta Cell Replacement Devices. Mol Imaging Biol 2025; 27:64-77. [PMID: 39633071 DOI: 10.1007/s11307-024-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions. Noninvasive in vivo oxygen imaging assessment of implanted BAP devices will provide the necessary feedback and improve the chances of success. Pulse-mode electron paramagnetic resonance (EPR) oxygen imaging (EPROI) using injectable trityl OX071 as the oxygen-sensitive agent is an excellent technique for obtaining partial oxygen pressure (pO2) maps in vitro and in vivo. In this study, our goal was to optimize in vivo mouse abdominal EPROI and demonstrate proof-of-concept pO2 imaging of subcutaneously implanted BAP devices. METHODS All EPROI experiments were performed using a 25 mT EPROI instrument, JIVA-25®. For in vivo EPROI experiments, trityl OX071, a whole-body mouse resonator (∅32 mm × 35 mm), C57BL6 mice, and the inversion recovery electron spin echo (IRESE) pulse sequence were utilized. We investigated the signal amplitude and pO2 in mouse abdomen region for intravenous (i.v.) and intraperitoneal (i.p.) injection methods with either only a single bolus (B) or bolus plus infusion (BI) for 72.2 mM OX071 and the effect of OX071 concentrations from 18 to 72.2 mM for the i.p.-B injection method. We also investigated the impact of animal respiratory rate on mouse abdominal pO2. Finally, we performed proof-of-concept pO2 imaging of two subcutaneously implanted BAP devices, OxySite and TheraCyte. At the end of the four-week study, the TheraCyte devices were extracted and analyzed for fibrosis, vascular differentiation, and immune cell infiltration. RESULTS We established that mouse abdominal pO2 remains stable irrespective of trityl injection methods, concentrations, imaging time, or animal breathing rate. We demonstrate that the i.p.-B and i.p.-BI methods are suitable for EPROI, and i.p.-B method provides higher signal amplitude compared to i.v.-BI and up to 75 min of imaging. An injection with a reduced trityl concentration and higher volume provides higher signal amplitude for i.p.-B method at the beginning. We also highlight the advantage of milder anesthesia for consistent, reliable mouse pO2 imaging. Finally, we demonstrate that EPROI could provide longitudinal noninvasive oxygen assessment of subcutaneously implanted BAP devices in vivo. CONCLUSIONS In vivo EPROI is a reliable technique for mouse abdominal oxygen imaging and longitudinal assessment of subcutaneously implanted BAP devices noninvasively. This work reports abdominal oxygen imaging in the mouse model and demonstrates its application for the assessment of BAP devices. Even though the application focus of this work was on cell therapy, the techniques developed will have a much broader use in the biomedical field.
Collapse
Affiliation(s)
- Irene Canavesi
- Oxygen Measurement Core, O2M Technologies, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, Chicago, IL, 60612, USA
| | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, Chicago, IL, 60612, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
8
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
9
|
Wang X, Zeng Z, Li D, Wang K, Zhang W, Yu Y, Wang X. Advancements and Challenges in Immune Protection Strategies for Islet Transplantation. J Diabetes 2025; 17:e70048. [PMID: 39829227 PMCID: PMC11744047 DOI: 10.1111/1753-0407.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic islet transplantation is a crucial treatment for managing type 1 diabetes (T1D) in clinical settings. However, the limited availability of human cadaveric islet donors and the need for ongoing administration of immunosuppressive agents post-transplantation hinder the widespread use of this treatment. Stem cell-derived islet organoids have emerged as an effective alternative to primary human islets. Nevertheless, implementing this cell replacement therapy still requires chronic immune suppression, which may result in life-long side effects. To address these challenges, innovations such as encapsulation devices, universal stem cells, and immunomodulatory strategies are being developed to mitigate immune rejection and prolong the function of the transplant. This review outlines the contemporary challenges in pancreatic β cell therapy, particularly immune rejection, and recent progress in immune-isolation devices, hypoimmunogenic stem cells, and immune regulation of transplants. A comprehensive evaluation of the advantages and limitations of these approaches will contribute to improved future clinical investigations. With these promising advancements, the application of pancreatic β cell therapy holds the potential to effectively treat T1D and benefit a larger population of T1D patients.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
| | - Ziyuan Zeng
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingClinical Stem Cell Research Center, Peking University Third Hospital, Peking UniversityBeijingChina
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingClinical Stem Cell Research Center, Peking University Third Hospital, Peking UniversityBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance co. Ltd.BeijingChina
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
- Institute of Advanced Clinical Medicine, Peking UniversityBeijingChina
| |
Collapse
|
10
|
Wang M, Cheng J, Xu W, Zhu D, Zhang W, Wen Y, Guan W, Jia J, Lu Z. Self-cleaning electrode for stable synthesis of alkaline-earth metal peroxides. NATURE NANOTECHNOLOGY 2025; 20:67-74. [PMID: 39468360 DOI: 10.1038/s41565-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Alkaline-earth metal peroxides (MO2, M = Ca, Sr, Ba) represent a category of versatile and clean solid oxidizers, while the synthesis process usually consumes excessive hydrogen peroxide (H2O2). Here we discover that H2O2 synthesized via two-electron electrochemical oxygen reduction (2e- ORR) on the electrode surface can be efficiently and durably consumed to produce high-purity MO2 in an alkaline environment. The crucial factor lies in the in-time detachment of in situ-generated MO2 from the self-cleaning electrode, where the solid products spontaneously detach from the electrode to solve the block issue. The self-cleaning electrode is achieved by constructing micro-/nanostructure of a highly active catalyst with appropriate surface modification. In experiments, an unprecedented accumulated selectivity (~99%) and durability (>1,000 h, 50 mA cm-2) are achieved for electrochemical synthesis of MO2. Moreover, the comparability of CaO2 and H2O2 for tetracycline degradation with hydrodynamic cavitation is validated in terms of their close efficacies (degradation efficiency of 87.9% and 93.6% for H2O2 and CaO2, respectively).
Collapse
Affiliation(s)
- Minli Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhuan Cheng
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dandan Zhu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wuyong Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yingjie Wen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Wanbing Guan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Krishnan SR, Langer R, Anderson DG. Materials approaches for next-generation encapsulated cell therapies. MRS COMMUNICATIONS 2024; 15:21-33. [PMID: 39958992 PMCID: PMC11825545 DOI: 10.1557/s43579-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 02/18/2025]
Abstract
Transplanted cells can act as living drug factories capable of secreting therapeutic proteins in vivo, with applications in the treatment of Type 1 diabetes (T1D), blood borne disease, vision disorders, and degenerative neural disease, potentially representing functional cures for chronic conditions. However, attack from the host immune system represents a major challenge, requiring chronic immunosuppression to enable long-lived cell transplantation in vivo. Encapsulating cells in engineered biomaterials capable of excluding components of the host immune system while allowing for the transport of therapeutic proteins, oxygen, nutrients, metabolites, and waste products represents a potential solution. However, the foreign-body response can lead to isolation from native vasculature and hypoxia leading to cell death. In this prospective article, we highlight materials-based solutions to three important challenges in the field: (i) improving biocompatibility and reducing fibrosis; (ii) enhancing transport of secreted protein drugs and key nutrients and oxygen via engineered, semipermeable membranes; and (iii) improving oxygenation. These efforts draw on several disciplines in materials' research, including polymer science, surfaces, membranes, biomaterials' microfabrication, and flexible electronics. If successful, these efforts could lead to new therapies for chronic disease and are a rich space for both fundamental materials' discovery and applied translational science. Graphical Abstract
Collapse
Affiliation(s)
- Siddharth R. Krishnan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA USA
| |
Collapse
|
12
|
Jeon S, Heo J, Myung N, Shin JY, Kim MK, Kang H. High-Efficiency, Prevascularization-Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408329. [PMID: 39308296 PMCID: PMC11636157 DOI: 10.1002/adma.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Pancreatic islet macroencapsulation systems for subcutaneous transplantation have garnered significant attention as a therapy for Type I diabetes due to their minimal invasiveness and low complication rates. However, the low vascular density of subcutaneous tissue threatens the long-term survival of islets. To address this issue, prevascularized systems are introduced but various challenges remain, including system complexity and vascular-cell immunogenicity. Here, a novel prevasculature-free macroencapsulation system designed as a multilayer sheet, which ensures sufficient mass transport even in regions with sparse vasculature, is presented. Islets are localized in top/bottom micro-shell layers (≈300 µm thick) to maximize proximity to the surrounding host vasculature. These sheets, fabricated via bioprinting using rat islets and alginate-based bio-ink, double islet viability and optimize islet density, improving insulin secretion function by 240%. The subcutaneous transplantation of small islet masses (≈250 islet equivalent) into diabetic nude mice enable rapid (<1 day) recovery of blood glucose, which remain stable for >120 days. Additionally, antifibrotic drug-loaded multilayer sheets facilitate blood glucose regulation by rat islets at the subcutaneous sites of diabetic immunocompetent mice for >35 days. Thus, this macroencapsulation system can advance the treatment of Type I diabetes and is also effective for islet xenotransplantation in subcutaneous tissue.
Collapse
Affiliation(s)
- Seunggyu Jeon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Jun‐Ho Heo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Noehyun Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Ji Yeong Shin
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Min Kyeong Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| |
Collapse
|
13
|
Wang LH, Marfil-Garza BA, Ernst AU, Pawlick RL, Pepper AR, Okada K, Epel B, Viswakarma N, Kotecha M, Flanders JA, Datta AK, Gao HJ, You YZ, Ma M, Shapiro AMJ. Inflammation-induced subcutaneous neovascularization for the long-term survival of encapsulated islets without immunosuppression. Nat Biomed Eng 2024; 8:1266-1284. [PMID: 38052996 DOI: 10.1038/s41551-023-01145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.
Collapse
Affiliation(s)
- Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Rena L Pawlick
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kento Okada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- O2M Technologies, LLC, Chicago, IL, USA
| | | | | | | | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hong-Jie Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Huan Z, Li J, Guo J, Yu Y, Li L. Pancreatic islet cells in microfluidic-spun hydrogel microfibers for the treatment of diabetes. Acta Biomater 2024; 187:149-160. [PMID: 39222705 DOI: 10.1016/j.actbio.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Islet transplantation has been developed as an effective cell therapy strategy to treat the progressive life-threatening disease Type 1 diabetes (T1DM). To mimic the natural islets and achieve immune isolation, hydrogel encapsulation of multiple islet cell types is the current endeavor. Here, we present a microfiber loading with pancreatic α and β cells by microfluidic spinning for diabetes treatment. Benefiting from microfluidic technology, the cells could be controllably and continuously loaded in the alginate and methacrylated hyaluronic acid (Alg-HAMA) microfiber and maintained their high bioactivity. The resultant microfiber could then hold the capacity of dual-mode glucose responsiveness attributed to the glucagon and insulin secreted by the encapsulated pancreatic α and β cells. After transplantation into the brown adipose tissue (BAT), these cell-laden microfibers showed successful blood glucose control in rodents and avoided the occurrence of hypoglycemia. These results conceived that the multicellular microfibers are expected to provide new insight into artificial islet preparation, diabetes treatment, and regenerative medicine as well as tissue engineering. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Zhou X, Wang Y, Ji J, Zhang P. Materials Strategies to Overcome the Foreign Body Response. Adv Healthc Mater 2024; 13:e2304478. [PMID: 38666550 DOI: 10.1002/adhm.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| |
Collapse
|
16
|
Toftdal MS, Grunnet LG, Chen M. Emerging Strategies for Beta Cell Encapsulation for Type 1 Diabetes Therapy. Adv Healthc Mater 2024; 13:e2400185. [PMID: 38452393 DOI: 10.1002/adhm.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Diabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research. Strategies such as immunomodulatory materials and physical immunoshielding are investigated to reduce the immune response and improve the longevity of the encapsulated cells. Furthermore, oxygenating strategies, such as the use of oxygen-releasing biomaterials, are developed to improve oxygen diffusion and promote cell survival. Finally, yet importantly, promoting vascularization through the use of angiogenic growth factors and the incorporation of pre-vascularized materials are also explored to enhance nutrient and oxygen supply to the encapsulated cells. This review seeks to specifically highlight the emerging research strategies developed to overcome these challenges using micro and nanoscale biomaterial encapsulation devices. Continuously improving and refining these strategies make an advance toward realizing the improved therapeutic potential of the encapsulated beta cells.
Collapse
Affiliation(s)
- Mette Steen Toftdal
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Lars Groth Grunnet
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
17
|
Shaw MA, Poncelet M, Viswakarma N, Vallerini GP, Hameed S, Gluth TD, Geldenhuys WJ, Hoblitzell EH, Eubank TD, Epel B, Kotecha M, Driesschaert B. SOX71, A Biocompatible Succinyl Derivative of the Triarylmethyl Radical OX071 for In Vivo Quantitative Oxygen Mapping Using Electron Paramagnetic Resonance. Mol Imaging Biol 2024; 26:542-552. [PMID: 37945971 PMCID: PMC11078887 DOI: 10.1007/s11307-023-01869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071. PROCEDURES SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz). The biocompatibility of SOX71 was tested in vitro and in vivo in mice. A pharmacokinetic study was performed to determine the best time frame for EPR imaging. Finally, a proof-of-concept EPR oxygen imaging was performed on a mouse model of a fibrosarcoma tumor. RESULTS SOX71 was synthesized in one step from OX071. SOX71 exhibits a narrow line EPR spectrum with a peak-to-peak linewidth of 66 mG, similar to OX071. SOX71 does not bind to albumin nor show cell toxicity for the concentrations tested up to 5 mM. No toxicity was observed after systemic delivery via intraperitoneal injection in mice at twice the dose required for EPR imaging. After the injection, the probe is readily absorbed into the bloodstream, with a peak blood concentration half an hour, post-injection. Then, the probe is quickly cleared by the kidney with a half-life of ~ 45 min. SOX71 shows long relaxation times under anoxic condition (T1e = 9.5 µs and T2e = 5.1 µs; [SOX71] = 1 mM in PBS at 37 °C, pO2 = 0 mmHg, 720 MHz). Both the relaxation rates R1e and R2e show a decreased sensitivity to pO2, leading to twice longer relaxation times under room air conditions (pO2 = 159 mmHg) compared to OX071. This is ideal for oxygen imaging in samples with a wide range of pO2. Both the relaxation rates R1e and R2e show a decreased sensitivity to self-relaxation compared to OX071, with a negligible effect of the probe concentration on R1e. SOX71 was successfully applied to image oxygen in a tumor. CONCLUSION SOX71, a succinylated derivative of OX071 was synthesized, characterized, and applied for in vivo EPR tumor oxygen imaging. SOX71 is highly biocompatible, and shows decreased sensitivity to oxygen and self-relaxation. This first report suggests that SOX71 is superior to OX071 for absolute oxygen mapping under a broad range of pO2 values.
Collapse
Affiliation(s)
- Misa A Shaw
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | | | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Emily H Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Mrignayani Kotecha
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA.
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA.
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
Epel B, Viswakarma N, Sundramoorthy SV, Pawar NJ, Kotecha M. Oxygen Imaging of a Rabbit Tumor Using a Human-Sized Pulse Electron Paramagnetic Resonance Imager. Mol Imaging Biol 2024; 26:403-410. [PMID: 37715089 DOI: 10.1007/s11307-023-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO2 ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology. EPROI utilizes the linear relationship between the relaxation rates of the injectable OX071 trityl spin probe and the partial oxygen pressure (pO2). However, most of the EPROI studies have been limited to mouse models of solid tumors because of the instrument-size limitations. The purpose of this work was to develop a human-sized 9-mT (250 MHz resonance frequency, 60 cm bore size) pulse EPROI instrument and evaluate its performance with rabbit VX-2 tumor oxygen imaging. METHODS A New Zealand white rabbit with a 3.2-cm VX-2 tumor in the calf muscle was imaged using the human-sized EPROI instrument and a 2.25-in. ID volume coil. The animal received a ~8-min intravenous injection of OX071 (5.2 mL total volume at 72 mM concentration) and, after 75 min, an intratumoral injection (120 μL total at 5 mM OX071 concentration) and underwent EPROI. At the end of the experiments, MRI was performed using a preclinical 9.4-T MRI system to outline the tumor boundaries. RESULTS For the first time, a human-sized pulse EPROI instrument with a 60-cm bore size/250-MHz frequency was built and evaluated using rabbit tumor oxygen imaging. For the first time, the systemic IV injection of the oxygen-sensitive trityl OX071 spin probe was used for an animal of this size. The resulting EPROI image from the IV injection showed complete tumor coverage. The image obtained after intratumoral injection showed localized coverage in the upper lobe of the tumor, demonstrating the need for improved intratumoral injection protocol. CONCLUSIONS This study demonstrates the performance of the world's first human-sized pulse EPROI instrument. It also demonstrates that the EPROI of larger animals can be performed using the systemic injection of a manageable amount of the spin probe. This brings EPROI one step closer to clinical applications in cancer therapies. Oxygen imaging is a platform technology, and the instrument and techniques developed here will also be useful for other clinical applications.
Collapse
Affiliation(s)
- Boris Epel
- O2M Technologies, LLC, Chicago, IL, 60612, USA.
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA.
| | | | | | | | | |
Collapse
|
19
|
Li T, Murley GA, Liang X, Chin RL, de la Cerda J, Schuler FW, Pagel MD. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Mol Imaging Biol 2024; 26:448-458. [PMID: 38869818 PMCID: PMC11830149 DOI: 10.1007/s11307-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.
Collapse
Affiliation(s)
- Tianzhe Li
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Grace A Murley
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Renee L Chin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
20
|
Trask L, Ward NA, Tarpey R, Beatty R, Wallace E, O'Dwyer J, Ronan W, Duffy GP, Dolan EB. Exploring therapy transport from implantable medical devices using experimentally informed computational methods. Biomater Sci 2024; 12:2899-2913. [PMID: 38683198 DOI: 10.1039/d4bm00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.
Collapse
Affiliation(s)
- Lesley Trask
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Niamh A Ward
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Ronan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
21
|
Liu Z, Zhou X, Chen Y, Ni Y, Zhu Z, Cao W, Chen K, Yan Y, Ji J, Zhang P. Fibrous capsule-resistant, controllably degradable and functionalizable zwitterion-albumin hybrid hydrogels. Biomater Sci 2024; 12:468-478. [PMID: 38086632 DOI: 10.1039/d3bm01783d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Foreign body response (FBR) represents an immune-mediated cascade reaction capable of inducing the rejection of foreign implants, thereby compromising their in vivo performance. Pure zwitterionic hydrogels have demonstrated the ability to resist long-term FBR, owing to their outstanding antifouling capabilities. However, achieving such a robust anti-FBR effect necessitates stringent requirements concerning the purity of zwitterionic materials, which constrains their broader functional applications. Herein, we present a biocompatible, controllably degradable, and functionalizable zwitterion-albumin hybrid hydrogel. The zwitterionic hydrogel crosslinked with serum albumin exhibits controllable degradation and excels in preventing the adsorption of various proteins and adhesion of cells and bacteria. Moreover, the hydrogel significantly alleviates the host's FBR compared with PEG hydrogels and particularly outperforms PEG-based cross-linker crosslinked zwitterionic hydrogels in reducing collagen encapsulation when subcutaneously implanted into mice. The zwitterion-albumin hybrid hydrogel shows potential as a functionalizable anti-FBR material in the context of implantable materials and biomedical devices.
Collapse
Affiliation(s)
- Zuolong Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Kexin Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Yu Yan
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, P. R. China
| |
Collapse
|
22
|
Tinklepaugh J, Mamrak NE. Imaging in Type 1 Diabetes, Current Perspectives and Directions. Mol Imaging Biol 2023; 25:1142-1149. [PMID: 37934378 DOI: 10.1007/s11307-023-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune-mediated attack of insulin-producing beta cells in the pancreas, leading to reliance on exogenous insulin to control a patient's blood glucose levels. As progress is being made in understanding the pathophysiology of the disease and how to better develop therapies to treat it, there is an increasing need for monitoring technologies to quantify beta cell mass and function throughout T1D progression and beta cell replacement therapy. Molecular imaging techniques offer a possible solution through both radiologic and non-radiologic means including positron emission tomography, magnetic resonance imaging, electron paramagnetic resonance imaging, and spatial omics. This commentary piece outlines the role of molecular imaging in T1D research and highlights the need for further applications of such methodologies in T1D.
Collapse
Affiliation(s)
- Jay Tinklepaugh
- Research Department, JDRF, 200 Vesey Street, New York, NY, USA
| | | |
Collapse
|
23
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
24
|
Lee I, Surendran A, Fleury S, Gimino I, Curtiss A, Fell C, Shiwarski DJ, Refy O, Rothrock B, Jo S, Schwartzkopff T, Mehta AS, Wang Y, Sipe A, John S, Ji X, Nikiforidis G, Feinberg AW, Hester J, Weber DJ, Veiseh O, Rivnay J, Cohen-Karni T. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat Commun 2023; 14:7019. [PMID: 37945597 PMCID: PMC10636048 DOI: 10.1038/s41467-023-42697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.
Collapse
Affiliation(s)
- Inkyu Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Samantha Fleury
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ian Gimino
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander Curtiss
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Blaine Rothrock
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Seonghan Jo
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tim Schwartzkopff
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam Sipe
- Department of Material Science and Engineering, The Pennsylvania State University, State College, PA, USA
| | - Sharon John
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Georgios Nikiforidis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Josiah Hester
- Interactive Computing and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Douglas J Weber
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Kotecha M, Wang L, Hameed S, Viswakarma N, Ma M, Stabler C, Hoesli CA, Epel B. In vitro oxygen imaging of acellular and cell-loaded beta cell replacement devices. Sci Rep 2023; 13:15641. [PMID: 37730815 PMCID: PMC10511476 DOI: 10.1038/s41598-023-42099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA.
| | - Longhai Wang
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Cherie Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, H3C 0C5, Canada
| | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
26
|
Liao D, Liu C, Chen S, Liu F, Li W, Shangguan D, Shi Y. Recent advances in immune checkpoint inhibitor-induced type 1 diabetes mellitus. Int Immunopharmacol 2023; 122:110414. [PMID: 37390646 DOI: 10.1016/j.intimp.2023.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
As a new group of anticancer drugs, immune checkpoint inhibitors (ICIs) have exhibited favorable antitumor efficacy in numerous malignant tumors. Anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) are three kinds of ICIs widely used in clinical practice. However, ICI therapy (monotherapy or combination therapy) is always accompanied by a unique toxicity profile known as immune-related adverse events (irAEs) affecting multiple organs. The endocrine glands are common targets of irAEs induced by ICIs, which cause type 1 diabetes mellitus (T1DM) when the pancreas is affected. Although the incidence rate of ICI-induced T1DM is rare, it will always lead to an irreversible impairment of β-cells and be potentially life-threatening. Hence, it is vital for endocrinologists and oncologists to obtain a comprehensive understanding of ICI-induced T1DM and its management. In our present manuscript, we have reviewed the epidemiology, pathology and mechanism, diagnosis, management, and treatments of ICI-induced T1DM.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| |
Collapse
|
27
|
Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 2023; 30:530-548. [PMID: 37146579 PMCID: PMC10167558 DOI: 10.1016/j.stem.2023.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized stem cell-derived islets (SC-islets) need to be manufactured at scale. Furthermore, successful SC-islet replacement strategies should prevent significant cell loss immediately following transplantation and avoid long-term immune rejection. This review highlights the most recent advances in the generation and characterization of highly functional SC-islets as well as strategies to ensure graft viability and safety after transplantation.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA.
| | - Matthew Ishahak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
28
|
Zaeifi D, Azarnia M. Promoting β-cells function by the recapitulation of in vivo microenvironmental differentiation signals. Cell Tissue Res 2023:10.1007/s00441-023-03773-7. [PMID: 37140683 DOI: 10.1007/s00441-023-03773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
The study aims to transdifferentiate rat bone marrow-derived mesenchymal stem cells (BM-MSCs) more efficiently into islet-like cells and encapsulate and transplant them with vital properties like stability, proliferation, and metabolic activity enhanced for the treatment of T1DM. Trans-differentiation of BM-MCs into islet-like cells induced by high glucose concentration combined with Nicotinamide, ꞵ-Mercaptoethanol, ꞵ-Cellulin, and IGF-1. Glucose challenge assays and gene expression profiles were used to determine functionality. Microencapsulation was performed using the vibrating nozzle encapsulator droplet method with a 1% alginate concentration. Encapsulated ꞵ-cells were cultured in a fluidized-bed bioreactor with 1850 μL/min fluid flow rates and a superficial velocity of 1.15 cm/min. The procedure was followed by transplanting transdifferentiated cells into the omentum of streptozotocin (STZ)-induced diabetic Wistar rats. Changes in weight, glucose, insulin, and C-peptide levels were monitored for 2 months after transplantation. PDX1, INS, GCG, NKx2.2, NKx6.1, and GLUT2 expression levels revealed the specificity of generated β-cells with higher viability (about 20%) and glucose sensitivity about twofold more. The encapsulated β-cells decreased the glucose levels in STZ-induced rats significantly (P < 0.05) 1 week after transplantation. Also, the weight and levels of insulin and C-peptide reached the control group. In contrast to the treated, the sham group displayed a consistent decline in weight and died when loss reached > 20% at day ~ 55. The coated cells secrete significantly higher amounts of insulin in response to glucose concentration changes. Enhanced viability and functionality of β-cells can be achieved through differentiation and culturing, a promising approach toward insulin therapy alternatives.
Collapse
Affiliation(s)
- Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Paez-Mayorga J, Campa-Carranza JN, Capuani S, Hernandez N, Liu HC, Chua CYX, Pons-Faudoa FP, Malgir G, Alvarez B, Niles JA, Argueta LB, Shelton KA, Kezar S, Nehete PN, Berman DM, Willman MA, Li XC, Ricordi C, Nichols JE, Gaber AO, Kenyon NS, Grattoni A. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat Commun 2022; 13:7951. [PMID: 36572684 PMCID: PMC9792517 DOI: 10.1038/s41467-022-35629-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of the Chinese Academy of Sciences (UCAS), Shijingshan, Beijing, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Gulsah Malgir
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bella Alvarez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jean A Niles
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Lissenya B Argueta
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah Kezar
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Dora M Berman
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Xian C Li
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Norma S Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
30
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
31
|
Ernst AU, Wang LH, Worland SC, Marfil-Garza BA, Wang X, Liu W, Chiu A, Kin T, O'Gorman D, Steinschneider S, Datta AK, Papas KK, James Shapiro AM, Ma M. A predictive computational platform for optimizing the design of bioartificial pancreas devices. Nat Commun 2022; 13:6031. [PMID: 36229614 PMCID: PMC9561707 DOI: 10.1038/s41467-022-33760-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The delivery of encapsulated islets or stem cell-derived insulin-producing cells (i.e., bioartificial pancreas devices) may achieve a functional cure for type 1 diabetes, but their efficacy is limited by mass transport constraints. Modeling such constraints is thus desirable, but previous efforts invoke simplifications which limit the utility of their insights. Herein, we present a computational platform for investigating the therapeutic capacity of generic and user-programmable bioartificial pancreas devices, which accounts for highly influential stochastic properties including the size distribution and random localization of the cells. We first apply the platform in a study which finds that endogenous islet size distribution variance significantly influences device potency. Then we pursue optimizations, determining ideal device structures and estimates of the curative cell dose. Finally, we propose a new, device-specific islet equivalence conversion table, and develop a surrogate machine learning model, hosted on a web application, to rapidly produce these coefficients for user-defined devices.
Collapse
Affiliation(s)
- Alexander U Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Scott C Worland
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | | | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Wanjun Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Alan Chiu
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Tatsuya Kin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Doug O'Gorman
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | | | - Ashim K Datta
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Gao D, Ernst AU, Wang X, Wang L, Liu W, Ma M. Engineering a Hierarchical Biphasic Gel for Subcutaneous Vascularization. Adv Healthc Mater 2022; 11:e2200922. [PMID: 35894816 DOI: 10.1002/adhm.202200922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/09/2022] [Indexed: 01/27/2023]
Abstract
Implanted cell-containing grafts require a robust and functional vasculature to supply oxygen and nutrients, as well as clear metabolic waste products. However, it remains challenging to fabricate tunable, vascular-promoting scaffolds without incorporating additional biologics. Here, a biphasic gel consisting of a highly porous aerogel and a degradable fibrin hydrogel for inducing vascularization is presented. The highly porous (>90%) and stable aerogel is assembled from short microfibers by being dispersed in an aqueous solution that can be 3D printed into various configurations. The biphasic gel demonstrates good compression-resistance: 70.30% Young's modulus is recovered over 20 cycles of 65% compression under water. Furthermore, it is confirmed that tissue cells and blood vessels can penetrate a thick (≈3 mm) biphasic gel in the subcutaneous space of mice. Finally, the biphasic gel doubles the vascular ingrowth compared to a composite of a commercial surgical polyester felt and a fibrin hydrogel upon subcutaneous implantation in mice after 4 weeks. The design of this biphasic gel may advance the development of vascularized scaffolds.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Longhai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.,Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
35
|
Huang H, Shang Y, Li H, Feng Q, Liu Y, Chen J, Dong H. Co-transplantation of Islets-Laden Microgels and Biodegradable O 2-Generating Microspheres for Diabetes Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38448-38458. [PMID: 35980755 DOI: 10.1021/acsami.2c07215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic islets transplantation is an optimal alternative to exogenous insulin injection for long-term effective type 1 diabetes treatment. However, direct islets transplantation without any protection can induce cell necrosis due to severe host immune rejection. Insufficient O2 supply induced by the lack of capillary network at the early stage of islets transplantation is another critical constraint limiting islets survival and insulin-secretion function. In this paper, we design a novel co-transplantation system composed of islets-laden nanocomposite microgels and O2-generating microspheres. In particular, nanocomposite microgels confer the encapsulated islets with simultaneous physical protection and chemical anti-inflammation/immunosuppression by covalently anchoring rapamycin-loaded cyclodextrin nanoparticles to microgel network. Meanwhile, O2-generating microspheres prepared by blending inorganic peroxides in biodegradable polycaprolactone and polylactic acid can generate in situ O2 gas and thus avoid hypoxia environment around transplanted islets. In vivo therapeutic effect of diabetic mice proves the reversion of the high blood glucose level back to normoglycemia and superior glucose tolerance for at least 90 days post co-transplantation. In brief, the localized drug and oxygen codelivery, as well as physical protection provided by our co-transplantation system, has the potential to overcome to a large extent the inflammatory, hypoxia, and host immune rejection after islets transplantation. This new strategy may have wider application in other cell replacement therapies.
Collapse
Affiliation(s)
- Hanhao Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yulian Shang
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
36
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
37
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
38
|
Viswakarma N, Siddiqui E, Patel S, Hameed S, Schreiber W, Swartz HM, Epel B, Kotecha M. In Vivo Partial Oxygen Pressure Assessment in Subcutaneous and Intraperitoneal Sites Using Imaging of Solid Oxygen Probe. Tissue Eng Part C Methods 2022; 28:264-271. [PMID: 35509263 DOI: 10.1089/ten.tec.2022.0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to assess the natural partial oxygen pressure (pO2) of subcutaneous (SC) and intraperitoneal (IP) sites in mice to determine their relative suitability as sites for placement of implants. The pO2 measurements were performed using oxygen imaging of solid probes using lithium phthalocyanine (LiPc) as the oxygen sensitive material. LiPc is a water-insoluble crystalline probe whose spin-lattice and spin-spin relaxation rates (R1 and R2) are sensitive to the local oxygen concentration. To facilitate direct in vivo oxygen imaging, we prepared a solid probe containing encapsulated LiPc crystals in polydimethylsiloxane (PDMS), an oxygen-permeable and bioinert polymer. Although LiPc-PDMS or similar probes have been used in repeated spectroscopic or average oxygen measurements using continuous wave electron paramagnetic resonance (EPR) since the late 1990s and now have advanced to clinical applications, they have not been used for pulse EPR oxygen imaging. One LiPc-PDMS probe of 2 mm diameter and 10 mm length was implanted in SC or IP sites (left or right side) in each animal. The pO2 imaging of implanted LiPc-PDMS probes was performed weekly for 6 weeks using O2M preclinical 25 mT oxygen imager, JIVA-25™, using the pulse inversion recovery electron spin echo method. At week 6, the probes were recovered, and histological examinations were performed. We report in this study, first-ever solid probe oxygen imaging of implanted devices and pO2 assessment of SC and IP sites.
Collapse
Affiliation(s)
- Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Eliyas Siddiqui
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Sonny Patel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | | | | | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA.,Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
39
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
40
|
S. A. F, K. S. C, L. D, M. G, S. P, R. L. L, C. A. H. Engineering Vascularized Islet Macroencapsulation Devices: An in vitro Platform to Study Oxygen Transport in Perfused Immobilized Pancreatic Beta Cell Cultures. Front Bioeng Biotechnol 2022; 10:884071. [PMID: 35519615 PMCID: PMC9061948 DOI: 10.3389/fbioe.2022.884071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Islet encapsulation devices serve to deliver pancreatic beta cells to type 1 diabetic patients without the need for chronic immunosuppression. However, clinical translation is hampered by mass transport limitations causing graft hypoxia. This is exacerbated in devices relying only on passive diffusion for oxygenation. Here, we describe the application of a cylindrical in vitro perfusion system to study oxygen effects on islet-like clusters immobilized in alginate hydrogel. Mouse insulinoma 6 islet-like clusters were generated using microwell plates and characterized with respect to size distribution, viability, and oxygen consumption rate to determine an appropriate seeding density for perfusion studies. Immobilized clusters were perfused through a central channel at different oxygen tensions. Analysis of histological staining indicated the distribution of viable clusters was severely limited to near the perfusion channel at low oxygen tensions, while the distribution was broadest at normoxia. The results agreed with a 3D computational model designed to simulate the oxygen distribution within the perfusion device. Further simulations were generated to predict device performance with human islets under in vitro and in vivo conditions. The combination of experimental and computational findings suggest that a multichannel perfusion strategy could support in vivo viability and function of a therapeutic islet dose.
Collapse
Affiliation(s)
- Fernandez S. A.
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Champion K. S.
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Danielczak L.
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Gasparrini M.
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | - Paraskevas S.
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Leask R. L.
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Hoesli C. A.
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
- *Correspondence: Hoesli C. A.,
| |
Collapse
|
41
|
Wang LH, Ernst AU, An D, Datta AK, Epel B, Kotecha M, Ma M. A bioinspired scaffold for rapid oxygenation of cell encapsulation systems. Nat Commun 2021; 12:5846. [PMID: 34615868 PMCID: PMC8494927 DOI: 10.1038/s41467-021-26126-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/18/2021] [Indexed: 01/13/2023] Open
Abstract
Inadequate oxygenation is a major challenge in cell encapsulation, a therapy which holds potential to treat many diseases including type I diabetes. In such systems, cellular oxygen (O2) delivery is limited to slow passive diffusion from transplantation sites through the poorly O2-soluble encapsulating matrix, usually a hydrogel. This constrains the maximum permitted distance between the encapsulated cells and host site to within a few hundred micrometers to ensure cellular function. Inspired by the natural gas-phase tracheal O2 delivery system of insects, we present herein the design of a biomimetic scaffold featuring internal continuous air channels endowed with 10,000-fold higher O2 diffusivity than hydrogels. We incorporate the scaffold into a bulk hydrogel containing cells, which facilitates rapid O2 transport through the whole system to cells several millimeters away from the device-host boundary. A computational model, validated by in vitro analysis, predicts that cells and islets maintain high viability even in a thick (6.6 mm) device. Finally, the therapeutic potential of the device is demonstrated through the correction of diabetes in immunocompetent mice using rat islets for over 6 months.
Collapse
Affiliation(s)
- Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | | | - Duo An
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ashim Kumar Datta
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | | | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
42
|
Ghasemi A, Akbari E, Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front Bioeng Biotechnol 2021; 9:662084. [PMID: 34513805 PMCID: PMC8427138 DOI: 10.3389/fbioe.2021.662084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation provides a promising strategy in treating type 1 diabetes as an autoimmune disease, in which damaged β-cells are replaced with new islets in a minimally invasive procedure. Although islet transplantation avoids the complications associated with whole pancreas transplantations, its clinical applications maintain significant drawbacks, including long-term immunosuppression, a lack of compatible donors, and blood-mediated inflammatory responses. Biomaterial-assisted islet transplantation is an emerging technology that embeds desired cells into biomaterials, which are then directly transplanted into the patient, overcoming the aforementioned challenges. Among various biomaterials, hydrogels are the preferred biomaterial of choice in these transplants due to their ECM-like structure and tunable properties. This review aims to present a comprehensive overview of hydrogel-based biomaterials that are engineered for encapsulation of insulin-secreting cells, focusing on new hydrogel design and modification strategies to improve β-cell viability, decrease inflammatory responses, and enhance insulin secretion. We will discuss the current status of clinical studies using therapeutic bioengineering hydrogels in insulin release and prospective approaches.
Collapse
Affiliation(s)
| | | | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
43
|
Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:732431. [PMID: 34589059 PMCID: PMC8473744 DOI: 10.3389/fendo.2021.732431] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fritz Cayabyab
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Lina R. Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
44
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|