1
|
Zhu H, Wang J, Niu K, Zhang Y, Zhang Y, Deng C, Huang P, Li D, Liu P, Lu J, Rosen J, Björk J, Cai J, Chi L, Li Q. Real-space investigations of on-surface intermolecular radical transfer reactions assisted by persistent radicals. SCIENCE ADVANCES 2025; 11:eadu9436. [PMID: 40446044 PMCID: PMC12124390 DOI: 10.1126/sciadv.adu9436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Synthesizing radicals that have both long lifetimes and high chemical reactivity remains a long-term challenge. Here, persistent phenyl radicals are successfully synthesized on Ag(111) by protecting the carbon radical site by designing the precursor molecule with suitable steric hindrance. As carbon-carbon coupling is prohibited, such radicals remain intact for longer than 6 hours at room temperature on Ag(111). Taking advantage of the long lifetimes, the as-synthesized radicals are directly characterized in the real space at the single-chemical-bond scale by means of bond-resolving scanning tunneling microscopy imaging. Accompanied by the excellent stability, the radicals exhibit high chemical reactivities and facilitate the intermolecular radical transfer reactions at extreme low temperature. The preparation of persistent radicals not only favors the characterization of a surface-stabilized radical in the real space but also aids in illuminating the detailed reaction pathways of subsequent radical-assisted reactions directly.
Collapse
Affiliation(s)
- Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Junbo Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Kaifeng Niu
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Dengyuan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Peinian Liu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
2
|
Rothe K, Alkorta M, Néel N, Frederiksen T, Kröger J. Chemical Activation of a Single Melamine Molecule via Isomerization Followed by Metalation with a Copper Atom. ACS NANO 2025; 19:9207-9215. [PMID: 40009866 PMCID: PMC11912577 DOI: 10.1021/acsnano.4c18832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Scanning probe methods have very successfully been used for inducing on-surface reactions and imaging with high resolution the reaction partners at the single-molecule level. However, the entire sequence of chemically activating an educt, identifying its reactive site, running a chemical reaction, and quantifying the involved forces and energies has been missing to date. Here, the organic molecule melamine adsorbed on Cu(100) serves as a single-molecule model system for activation via tautomerization and subsequent metalation with a single Cu atom. An atomic force microscope with a CO-decorated tip probes the most reactive intramolecular site of the tautomer, while a Cu-terminated tip transfers a single Cu atom to this site. Following the interaction between the mutually approached reaction partners up to the verge of chemical-bond formation enables access to the force and energy involved in the single-molecule metalation process. Total-energy calculations from density functional theory support the experimental findings and illustrate the structure of the reactants.
Collapse
Affiliation(s)
- Karl Rothe
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Manex Alkorta
- Centro de Física de Materiales (CSIC-UPV/EHU), E-20018 Donostia-San Sebastián, Spain
- Fisika Aplikatua Saila, University of the Basque Country (UPV/EHU), E-20018 Donostia-San Sebastián, Spain
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
3
|
Zhang Y, Fu B, Li N, Lu J, Cai J. Advancements in π-Magnetism and Precision Engineering of Carbon-Based Nanostructures. Chemistry 2024; 30:e202402765. [PMID: 39302066 DOI: 10.1002/chem.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The emergence of π-magnetism in low-dimensional carbon-based nanostructures, such as nanographenes (NGs), has captured significant attention due to their unique properties and potential applications in spintronics and quantum technologies. Recent advancements in on-surface synthesis under ultra-high vacuum conditions have enabled the atomically precise engineering of these nanostructures, effectively overcoming the challenges posed by their inherent strong chemical reactivity. This review highlights the essential concepts and synthesis methods used in studying NGs. It also outlines the remarkable progress made in understanding and controlling their magnetic properties. Advanced characterization techniques, such as scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM), have been instrumental in visualizing and manipulating these nanostructures, which highlighting their critical role in the field. The review underscores the versatility of carbon-based π-magnetic materials and their potential for integration into next-generation electronic devices. It also outlines future research directions aimed at optimizing their synthesis and exploring applications in cutting-edge technologies.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Nianqiang Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| |
Collapse
|
4
|
Odobesko A, Klees RL, Friedrich F, Hankiewicz EM, Bode M. Boosting spatial and energy resolution in STM with a double-functionalized probe. SCIENCE ADVANCES 2024; 10:eadq6975. [PMID: 39196925 PMCID: PMC11352829 DOI: 10.1126/sciadv.adq6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The scattering of superconducting pairs by magnetic impurities on a superconducting surface leads to pairs of sharp in-gap resonances known as Yu-Shiba-Rusinov (YSR) bound states. Similar to the interference of itinerant electrons scattered by defects in normal metals, these resonances reveal a periodic texture around the magnetic impurity. The wavelength of these resonances is, however, often too short to be resolved even by methods capable of atomic resolution, i.e., scanning tunneling microscopy (STM). We combine a CO molecule with a superconducting cluster pre-attached to an STM tip to maximize both spatial and energy resolution, thus demonstrating the superior properties of such double-functionalized probes by imaging the spatial distribution of YSR states. Our approach reveals rich interference patterns of the hybridized YSR states of two Fe atoms on Nb(110), previously inaccessible with conventional STM probes. This advancement extends the capabilities of STM techniques, providing insights into superconducting phenomena at the atomic scale.
Collapse
Affiliation(s)
- Artem Odobesko
- Physikalisches Institut, Experimentelle Physik II, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Raffael L. Klees
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany
| | - Felix Friedrich
- Physikalisches Institut, Experimentelle Physik II, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ewelina M. Hankiewicz
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Zhang SH, Yang J, Shao DF, Zhu JJ, Yang W, Chang K. Geometric Amplitude Accompanying Local Responses: Spinor Phase Information from the Amplitudes of Spin-Polarized STM Measurements. PHYSICAL REVIEW LETTERS 2024; 133:036204. [PMID: 39094154 DOI: 10.1103/physrevlett.133.036204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/30/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024]
Abstract
Solving the Hamiltonian of a system yields the energy dispersion and eigenstates. The geometric phase of the eigenstates generates many novel effects and potential applications. However, the geometric properties of the energy dispersion go unheeded. Here, we provide geometric insight into energy dispersion and introduce a geometric amplitude, namely, the geometric density of states (GDOS) determined by the Riemann curvature of the constant-energy contour. The geometric amplitude should accompany various local responses, which are generally formulated by the real-space Green's function. Under the stationary phase approximation, the GDOS simplifies the Green's function into its ultimate form. In particular, the amplitude factor embodies the spinor phase information of the eigenstates, favoring the extraction of the spin texture for topological surface states under an in-plane magnetic field through spin-polarized STM measurements. This work opens a new avenue for exploring the geometric properties of electronic structures and excavates the unexplored potential of spin-polarized STM measurements to probe the spinor phase information of eigenstates from their amplitudes.
Collapse
|
6
|
Bahari M, Zhang SB, Li CA, Choi SJ, Rüßmann P, Timm C, Trauzettel B. Helical Topological Superconducting Pairing at Finite Excitation Energies. PHYSICAL REVIEW LETTERS 2024; 132:266201. [PMID: 38996321 DOI: 10.1103/physrevlett.132.266201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Abstract
We propose helical topological superconductivity away from the Fermi surface in three-dimensional time-reversal-symmetric odd-parity multiband superconductors. In these systems, pairing between electrons originating from different bands is responsible for the corresponding topological phase transition. Consequently, a pair of helical topological Dirac surface states emerges at finite excitation energies. These helical Dirac surface states are tunable in energy by chemical potential and strength of band splitting. They are protected by time-reversal symmetry combined with crystalline twofold rotation symmetry. We suggest concrete materials in which this phenomenon could be observed.
Collapse
Affiliation(s)
| | | | - Chang-An Li
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Germany
| | | | | | | | | |
Collapse
|
7
|
Zhao Z, Zhang T, Yue S, Wang P, Bao Y, Zhan S. Spin Polarization: A New Frontier in Efficient Photocatalysis for Environmental Purification and Energy Conversion. Chemphyschem 2024; 25:e202300726. [PMID: 38059760 DOI: 10.1002/cphc.202300726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Karan S, Huang H, Ivanovic A, Padurariu C, Kubala B, Kern K, Ankerhold J, Ast CR. Tracking a spin-polarized superconducting bound state across a quantum phase transition. Nat Commun 2024; 15:459. [PMID: 38212303 PMCID: PMC10784290 DOI: 10.1038/s41467-024-44708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
The magnetic exchange coupling between magnetic impurities and a superconductor induce so-called Yu-Shiba-Rusinov (YSR) states which undergo a quantum phase transition (QPT) upon increasing the exchange interaction beyond a critical value. While the evolution through the QPT is readily observable, in particular if the YSR state features an electron-hole asymmetry, the concomitant change in the ground state is more difficult to identify. We use ultralow temperature scanning tunneling microscopy to demonstrate how the change in the YSR ground state across the QPT can be directly observed for a spin-1/2 impurity in a magnetic field. The excitation spectrum changes from featuring two peaks in the doublet (free spin) state to four peaks in the singlet (screened spin) ground state. We also identify a transition regime, where the YSR excitation energy is smaller than the Zeeman energy. We thus demonstrate a straightforward way for unambiguously identifying the ground state of a spin-1/2 YSR state.
Collapse
Affiliation(s)
- Sujoy Karan
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
| | - Haonan Huang
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Alexander Ivanovic
- Institute for Complex Quantum Systems and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Ciprian Padurariu
- Institute for Complex Quantum Systems and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Björn Kubala
- Institute for Complex Quantum Systems and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
- Institute for Quantum Technologies, German Aerospace Center (DLR), Wilhelm-Runge-Straße 10, 89081, Ulm, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Joachim Ankerhold
- Institute for Complex Quantum Systems and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Christian R Ast
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
| |
Collapse
|
9
|
Marques CA, Cahlík A, Zengin B, Kurosawa T, Natterer FD. Vacuum cleaving of superconducting niobium tips to optimize noise filtering and with adjustable gap size for scanning tunneling microscopy. MethodsX 2023; 11:102483. [PMID: 38034321 PMCID: PMC10685302 DOI: 10.1016/j.mex.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Superconducting (SC) tips for scanning tunneling microscopy (STM) can enhance a wide range of surface science studies because they offer exquisite energy resolution, allow the study of Josephson tunneling, or provide spatial contrast based on the local interaction of the SC tip with the sample. The appeal of a SC tip is also practical. An SC gap can be used to characterize and optimize the noise of a low-temperature apparatus. Unlike typical samples, SC tips can be made with less ordered materials, such as from SC polycrystalline wires or by coating a normal metal tip with a superconductor. Those recipes either require additional laboratory infrastructure or are carried out in ambient conditions, leaving an oxidized tip behind. Here, we revisit the vacuum cleaving of an Nb wire to prepare fully gapped tips in an accessible one-step procedure. To show their utility, we measure the SC gap of Nb on Au(111) to determine the base temperature of our microscope and to optimize its RF filtering. The deliberate coating of the Nb tip with Au fully suppresses the SC gap and we show how sputtering with Ar+ ions can be used to gradually recover the gap, promising tunability for tailored SC gaps sizes. • Oxide free superconducting STM tips • RF filter optimization.
Collapse
Affiliation(s)
- Carolina A. Marques
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Aleš Cahlík
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Berk Zengin
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Tohru Kurosawa
- Department of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Fabian D. Natterer
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
10
|
van Driel D, Wang G, Bordin A, van Loo N, Zatelli F, Mazur GP, Xu D, Gazibegovic S, Badawy G, Bakkers EPAM, Kouwenhoven LP, Dvir T. Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices. Nat Commun 2023; 14:6880. [PMID: 37898657 PMCID: PMC10613242 DOI: 10.1038/s41467-023-42026-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/27/2023] [Indexed: 10/30/2023] Open
Abstract
Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.
Collapse
Affiliation(s)
- David van Driel
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Guanzhong Wang
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Alberto Bordin
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Nick van Loo
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Francesco Zatelli
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Grzegorz P Mazur
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Di Xu
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Sasa Gazibegovic
- Department of Applied Physics, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - Ghada Badawy
- Department of Applied Physics, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Department of Applied Physics, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - Leo P Kouwenhoven
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands
| | - Tom Dvir
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands.
| |
Collapse
|
11
|
Schneider L, Beck P, Rózsa L, Posske T, Wiebe J, Wiesendanger R. Probing the topologically trivial nature of end states in antiferromagnetic atomic chains on superconductors. Nat Commun 2023; 14:2742. [PMID: 37173332 PMCID: PMC10182033 DOI: 10.1038/s41467-023-38369-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Spin chains proximitized by s-wave superconductors are predicted to enter a mini-gapped phase with topologically protected Majorana modes (MMs) localized at their ends. However, the presence of non-topological end states mimicking MM properties can hinder their unambiguous observation. Here, we report on a direct method to exclude the non-local nature of end states via scanning tunneling spectroscopy by introducing a locally perturbing defect on one of the chain's ends. We apply this method to particular end states observed in antiferromagnetic spin chains within a large minigap, thereby proving their topologically trivial character. A minimal model shows that, while wide trivial minigaps hosting end states are easily achieved in antiferromagnetic spin chains, unrealistically large spin-orbit coupling is required to drive the system into a topologically gapped phase with MMs. The methodology of perturbing candidate topological edge modes in future experiments is a powerful tool to probe their stability against local disorder.
Collapse
Affiliation(s)
- Lucas Schneider
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Philip Beck
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Levente Rózsa
- Department of Physics, University of Konstanz, D-78457, Konstanz, Germany
- Department of Theoretical Solid State Physics, Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525, Budapest, Hungary
- Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Thore Posske
- I. Institute for Theoretical Physics, University of Hamburg, D-22607, Hamburg, Germany
- Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Jens Wiebe
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany.
| | | |
Collapse
|
12
|
Ayani CG, Calleja F, Ibarburu IM, Casado Aguilar P, Nazriq NKM, Yamada TK, Garnica M, Vázquez de Parga AL, Miranda R. Switchable molecular functionalization of an STM tip: from a Yu-Shiba-Rusinov Tip to a Kondo tip. NANOSCALE 2022; 14:15111-15118. [PMID: 36205255 DOI: 10.1039/d1nr08227b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work we fabricate and characterize a functionalized superconducting (SC) Nb tip of a scanning tunnelling microscope (STM). The tip is functionalized with a Tetracyanoquinodimethane molecule (TCNQ) that accepts charge from the tip and develops a magnetic moment. As a consequence, in scanning tunnelling spectroscopy (STS), sharp, bias symmetric sub-gap states identified as Yu-Shiba-Rusinov (YSR) bound states appear against the featureless density of states of a metallic graphene on Ir(111) sample. Although the coupling regime of the magnetic impurity with the SC tip depends on the initial absorption configuration of the molecule, the interaction strength between the SC tip and the charged TCNQ molecule can be reversibly controlled by tuning the tip-sample distance. The controlled transition from one coupling regime to the other allows us to verify the relation between the energy scales of the two competing many-body effects for the functionalized tip. Quenching the SC state of the Nb tip with a magnetic field switches abruptly from a tip dominated by the YSR bound states to a Kondo tip.
Collapse
Affiliation(s)
- Cosme G Ayani
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
| | - Fabian Calleja
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
| | - Ivan M Ibarburu
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
| | - Pablo Casado Aguilar
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
| | - Nana K M Nazriq
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Toyo K Yamada
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Manuela Garnica
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
- Instituto 'Nicolás Cabrera', Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amadeo L Vázquez de Parga
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Cantoblanco 28049, Madrid, Spain
- Instituto 'Nicolás Cabrera', Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
- IMDEA-Nanociencia, Calle Faraday 9, Cantoblanco 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Cantoblanco 28049, Madrid, Spain
- Instituto 'Nicolás Cabrera', Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Goedecke JJ, Schneider L, Ma Y, That KT, Wang D, Wiebe J, Wiesendanger R. Correlation of Magnetism and Disordered Shiba Bands in Fe Monolayer Islands on Nb(110). ACS NANO 2022; 16:14066-14074. [PMID: 36001503 PMCID: PMC9527798 DOI: 10.1021/acsnano.2c03965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) magnet-superconductor hybrid systems are intensively studied due to their potential for the realization of 2D topological superconductors with Majorana edge modes. It is theoretically predicted that this quantum state is ubiquitous in spin-orbit-coupled ferromagnetic or skyrmionic 2D spin-lattices in proximity to an s-wave superconductor. However, recent examples suggest that the requirements for topological superconductivity are complicated by the multiorbital nature of the magnetic components and disorder effects. Here, we investigate Fe monolayer islands grown on a surface of the s-wave superconductor with the largest gap of all elemental superconductors, Nb, with respect to magnetism and superconductivity using spin-resolved scanning tunneling spectroscopy. We find three types of islands which differ by their reconstruction inducing disorder, the magnetism and the subgap electronic states. All three types are ferromagnetic with different coercive fields, indicating diverse exchange and anisotropy energies. On all three islands, there is finite spectral weight throughout the substrate's energy gap at the expense of the coherence peak intensity, indicating the formation of Shiba bands overlapping with the Fermi energy. A strong lateral variation of the spectral weight of the Shiba bands signifies substantial disorder on the order of the substrate's pairing energy with a length scale of the period of the three different reconstructions. There are neither signs of topological gaps within these bands nor of any kind of edge modes. Our work illustrates that a reconstructed growth mode of magnetic layers on superconducting surfaces is detrimental for the formation of 2D topological superconductivity.
Collapse
Affiliation(s)
- Julia J. Goedecke
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | - Lucas Schneider
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | | - Khai Ton That
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | | - Jens Wiebe
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | |
Collapse
|
14
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
15
|
Alcón I, Calogero G, Papior N, Antidormi A, Song K, Cummings AW, Brandbyge M, Roche S. Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport. J Am Chem Soc 2022; 144:8278-8285. [PMID: 35476458 PMCID: PMC9100647 DOI: 10.1021/jacs.2c02178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent progress in the on-surface synthesis and characterization of nanomaterials is facilitating the realization of new carbon allotropes, such as nanoporous graphenes, graphynes, and 2D π-conjugated polymers. One of the latest examples is the biphenylene network (BPN), which was recently fabricated on gold and characterized with atomic precision. This gapless 2D organic material presents uncommon metallic conduction, which could help develop innovative carbon-based electronics. Here, using first principles calculations and quantum transport simulations, we provide new insights into some fundamental properties of BPN, which are key for its further technological exploitation. We predict that BPN hosts an unprecedented spin-polarized multiradical ground state, which has important implications for the chemical reactivity of the 2D material under practical use conditions. The associated electronic band gap is highly sensitive to perturbations, as seen in finite temperature (300 K) molecular dynamics simulations, but the multiradical character remains stable. Furthermore, BPN is found to host in-plane anisotropic (spin-polarized) electrical transport, rooted in its intrinsic structural features, which suggests potential device functionality of interest for both nanoelectronics and spintronics.
Collapse
Affiliation(s)
- Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.,Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Gaetano Calogero
- CNR Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale, Strada VIII, 5, Catania 95121, Italy
| | - Nick Papior
- Computing Center, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Aleandro Antidormi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Kenan Song
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Aron W Cummings
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.,Center for Nanostructured Graphene (CNG), Kongens Lyngby DK-2800, Denmark
| | - Stephan Roche
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08070, Spain
| |
Collapse
|
16
|
Liebhaber E, Rütten LM, Reecht G, Steiner JF, Rohlf S, Rossnagel K, von Oppen F, Franke KJ. Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor. Nat Commun 2022; 13:2160. [PMID: 35443753 PMCID: PMC9021194 DOI: 10.1038/s41467-022-29879-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic adatom chains on surfaces constitute fascinating quantum spin systems. Superconducting substrates suppress interactions with bulk electronic excitations but couple the adatom spins to a chain of subgap Yu-Shiba-Rusinov (YSR) quasiparticles. Using a scanning tunneling microscope, we investigate such correlated spin-fermion systems by constructing Fe chains adatom by adatom on superconducting NbSe2. The adatoms couple entirely via the substrate, retaining their quantum spin nature. In dimers, we observe that the deepest YSR state undergoes a quantum phase transition due to Ruderman-Kittel-Kasuya-Yosida interactions, a distinct signature of quantum spins. Chains exhibit coherent hybridization and band formation of the YSR excitations, indicating ferromagnetic coupling. Longer chains develop separate domains due to coexisting charge-density-wave order of NbSe2. Despite the spin-orbit-coupled substrate, we find no signatures of Majoranas, possibly because quantum spins reduce the parameter range for topological superconductivity. We suggest that adatom chains are versatile systems for investigating correlated-electron physics and its interplay with topological superconductivity.
Collapse
Affiliation(s)
- Eva Liebhaber
- Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Lisa M Rütten
- Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gaël Reecht
- Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Jacob F Steiner
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sebastian Rohlf
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
| | - Kai Rossnagel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | | |
Collapse
|
17
|
Schneider L, Beck P, Neuhaus-Steinmetz J, Rózsa L, Posske T, Wiebe J, Wiesendanger R. Precursors of Majorana modes and their length-dependent energy oscillations probed at both ends of atomic Shiba chains. NATURE NANOTECHNOLOGY 2022; 17:384-389. [PMID: 35256768 PMCID: PMC9018407 DOI: 10.1038/s41565-022-01078-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
Isolated Majorana modes (MMs) are highly non-local quantum states with non-Abelian exchange statistics, which localize at the two ends of finite-size 1D topological superconductors of sufficient length. Experimental evidence for MMs is so far based on the detection of several key signatures: for example, a conductance peak pinned to the Fermi energy or an oscillatory peak splitting in short 1D systems when the MMs overlap. However, most of these key signatures were probed only on one of the ends of the 1D system, and firm evidence for an MM requires the simultaneous detection of all the key signatures on both ends. Here we construct short atomic spin chains on a superconductor-also known as Shiba chains-up to a chain length of 45 atoms using tip-assisted atom manipulation in scanning tunnelling microscopy experiments. We observe zero-energy conductance peaks localized at both ends of the chain that simultaneously split off from the Fermi energy in an oscillatory fashion after altering the chain length. By fitting the parameters of a low-energy model to the data, we find that the peaks are consistent with precursors of MMs that evolve into isolated MMs protected by an estimated topological gap of 50 μeV in chains of at least 35 nm length, corresponding to 70 atoms.
Collapse
Affiliation(s)
- Lucas Schneider
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Philip Beck
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | - Levente Rózsa
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Thore Posske
- I. Institute for Theoretical Physics, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee, Hamburg, Germany
| | - Jens Wiebe
- Department of Physics, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
18
|
Brinker S, Küster F, Parkin SSP, Sessi P, Lounis S. Anomalous excitations of atomically crafted quantum magnets. SCIENCE ADVANCES 2022; 8:eabi7291. [PMID: 35080983 PMCID: PMC8791613 DOI: 10.1126/sciadv.abi7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
High-energy resolution spectroscopic studies of quantum magnets proved extremely valuable in accessing magnetodynamics quantities, such as energy barriers, magnetic interactions, and lifetime of excited states. Here, we investigate a previously unexplored flavor of low-energy spin excitations for quantum spins coupled to an electron bath. In sharp contrast to the usual tunneling signature of two steps symmetrically centered around the Fermi level, we find a single step in the conductance. Combining time-dependent and many-body perturbation theories, magnetic field-dependent tunneling spectra are explained as the result of an interplay between weak magnetic anisotropy energy, magnetic interactions, and Stoner-like electron-hole excitations that are strongly dependent on the magnetic states of the nanostructures. The results are rationalized in terms of a noncollinear magnetic ground state and the dominance of ferro- and antiferromagnetic interactions. The atomically crafted nanomagnets offer an appealing model for the exploration of electrically pumped spin systems.
Collapse
Affiliation(s)
- Sascha Brinker
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich D-52425, Germany
| | - Felix Küster
- Max Planck Institute of Microstructure Physics, Halle 06120, Germany
| | | | - Paolo Sessi
- Max Planck Institute of Microstructure Physics, Halle 06120, Germany
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich D-52425, Germany
- Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany
| |
Collapse
|
19
|
Küster F, Brinker S, Lounis S, Parkin SSP, Sessi P. Long range and highly tunable interaction between local spins coupled to a superconducting condensate. Nat Commun 2021; 12:6722. [PMID: 34795233 PMCID: PMC8602442 DOI: 10.1038/s41467-021-26802-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
Interfacing magnetism with superconducting condensates is rapidly emerging as a viable route for the development of innovative quantum technologies. In this context, the development of rational design strategies to controllably tune the interaction between magnetic moments is crucial. Here we address this problem demonstrating the possibility of tuning the interaction between local spins coupled through a superconducting condensate with atomic scale precision. By using Cr atoms coupled to superconducting Nb, we use atomic manipulation techniques to precisely control the relative distance between local spins along distinct crystallographic directions while simultaneously sensing their coupling by scanning tunneling spectroscopy. Our results reveal the existence of highly anisotropic interactions, lasting up to very long distances, demonstrating the possibility of crossing a quantum phase transition by acting on the direction and interatomic distance between spins. The high tunability provides novel opportunities for the realization of topological superconductivity and the rational design of magneto-superconducting interfaces.
Collapse
Affiliation(s)
- Felix Küster
- Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
| | - Sascha Brinker
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, Jülich, D-52425, Germany
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, Jülich, D-52425, Germany.
- Faculty of Physics, University of Duisburg-Essen and CENIDE, Duisburg, 47053, Germany.
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, Halle, 06120, Germany.
| | - Paolo Sessi
- Max Planck Institute of Microstructure Physics, Halle, 06120, Germany.
| |
Collapse
|
20
|
Lászlóffy A, Palotás K, Rózsa L, Szunyogh L. Electronic and Magnetic Properties of Building Blocks of Mn and Fe Atomic Chains on Nb(110). NANOMATERIALS 2021; 11:nano11081933. [PMID: 34443761 PMCID: PMC8401957 DOI: 10.3390/nano11081933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
We present results for the electronic and magnetic structure of Mn and Fe clusters on Nb(110) surface, focusing on building blocks of atomic chains as possible realizations of topological superconductivity. The magnetic ground states of the atomic dimers and most of the monatomic chains are determined by the nearest-neighbor isotropic interaction. To gain physical insight, the dependence on the crystallographic direction as well as on the atomic coordination number is analyzed via an orbital decomposition of this isotropic interaction based on the spin-cluster expansion and the difference in the local density of states between ferromagnetic and antiferromagnetic configurations. A spin-spiral ground state is obtained for Fe chains along the [11¯0] direction as a consequence of the frustration of the isotropic interactions. Here, a flat spin-spiral dispersion relation is identified, which can stabilize spin spirals with various wave vectors together with the magnetic anisotropy. This may lead to the observation of spin spirals of different wave vectors and chiralities in longer chains instead of a unique ground state.
Collapse
Affiliation(s)
- András Lászlóffy
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, H-1525 Budapest, Hungary;
- Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
| | - Krisztián Palotás
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, H-1525 Budapest, Hungary;
- Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| | - Levente Rózsa
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany;
| | - László Szunyogh
- Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|
21
|
Spin-orbit coupling induced splitting of Yu-Shiba-Rusinov states in antiferromagnetic dimers. Nat Commun 2021; 12:2040. [PMID: 33795672 PMCID: PMC8016932 DOI: 10.1038/s41467-021-22261-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic atoms coupled to the Cooper pairs of a superconductor induce Yu-Shiba-Rusinov states (in short Shiba states). In the presence of sufficiently strong spin-orbit coupling, the bands formed by hybridization of the Shiba states in ensembles of such atoms can support low-dimensional topological superconductivity with Majorana bound states localized on the ensembles’ edges. Yet, the role of spin-orbit coupling for the hybridization of Shiba states in dimers of magnetic atoms, the building blocks for such systems, is largely unexplored. Here, we reveal the evolution of hybridized multi-orbital Shiba states from a single Mn adatom to artificially constructed ferromagnetically and antiferromagnetically coupled Mn dimers placed on a Nb(110) surface. Upon dimer formation, the atomic Shiba orbitals split for both types of magnetic alignment. Our theoretical calculations attribute the unexpected splitting in antiferromagnetic dimers to spin-orbit coupling and broken inversion symmetry at the surface. Our observations point out the relevance of previously unconsidered factors on the formation of Shiba bands and their topological classification. The influence of spin-orbit coupling on the hybridization of Shiba states in dimers of magnetic atoms on superconducting surfaces remains unexplored. Here, the authors reveal a splitting of atomic Shiba orbitals due to spin-orbit coupling and broken inversion symmetry in antiferromagnetically coupled Mn dimers placed on a Nb(110) surface.
Collapse
|