1
|
Shi H, Xing G, Lin S, Zhang Y, Liang M, Wang W, Chen B, Xu X. Regulating the Liquid-to-Solid Transition of a Solvent-Coordinated Metal Halide for Low-Temperature-Processed Pixelated Scintillators. Inorg Chem 2025; 64:9386-9391. [PMID: 40340348 DOI: 10.1021/acs.inorgchem.5c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Embedding large-refractive-index metal halides into small-refractive-index matrices to create pixelated scintillators with a waveguide structure holds great promise for next-generation X-ray detectors. However, the fabrication of these pixelated scintillators remains challenging. Herein, a solvent compensation and seed-assisted method is developed to enable reversible liquid-to-solid transitions of a solvent-coordinated metal halide (SMH) while preserving its scintillation properties under a vacuum. This allows the SMH to be liquefied with good flowability at 90 °C and facilitates its vacuum infiltration into organic matrices with vertically aligned pores. Consequently, low-temperature-processed pixelated scintillators are reported for the first time which show good flexibility and effective light confinement, achieving a spatial resolution approaching the theoretical limit.
Collapse
Affiliation(s)
- Huaiyao Shi
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Guansheng Xing
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Shanxiao Lin
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yishi Zhang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Mingli Liang
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Huang Z, Cao Z, Chen YF, Zhu M. An Ultrastrong and Ultraflexible Wood Veneer via Fiber Interaction Enhancement and Defect Reduction. ACS NANO 2025; 19:17385-17392. [PMID: 40310257 DOI: 10.1021/acsnano.4c17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Natural wood veneer is a flexible and sustainable material with significant potential for various applications. However, there are more defects in wood veneer, leading to lower strength, and the strengthening strategies currently used for wood blocks do not work well when applied to wood veneer. In this study, we processed the fragile wood veneer into an ultrastrong and ultraflexible material with a tensile strength of 578.4 MPa and preserved its beautiful wood texture. This enhancement is achieved by reducing defects within the veneer through adding cellulose molecules between the wood cell fibers. The resulting wood veneer is exceedingly flexible compared to natural wood, with a bending radius as small as 0.2 mm, while retaining its strength. This flexibility allows the veneer to be wrapped around other materials and improves the mechanical properties. The wood veneer exhibits much lower signal attenuation compared to carbon fiber fabric composites due to its electromagnetic transparency. Moreover, the environmental impact of producing each kilogram of this veneer is less than that of the carbon fiber material. These ultrastrong, ultraflexible, and sustainable properties of the wood veneer can enrich the family of lightweight, high-strength materials and enable a wide range of applications.
Collapse
Affiliation(s)
- Zhonglei Huang
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Zhiru Cao
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yan-Feng Chen
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Mingwei Zhu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Liu R, Zhang Y, Liu W, Yu Z, Yu R, Yan H. Hyperbranched Polyborophosphate towards Transparent Epoxy Resin with Ultrahigh Toughness and Fire Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502839. [PMID: 40285585 DOI: 10.1002/smll.202502839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Inherent transparency makes epoxy resins ideal for aircraft windows, yet their brittleness and flammability remain challenges. Existing strategies for these issues often compromise transparency, with limited research on the mechanisms involved. Herein, a novel strategy is proposed for fabricating transparent epoxy resin by tuning the electrostatic potential distribution via hyperbranched polyborophosphate. Electron-deficient boron and relatively electron-rich phosphorus atoms work synergistically to increase the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap, preventing visible light absorption. Meanwhile, the hyperbranched structure facilitates polymer network interpenetration to reduce porosity for decreased light scattering. This synergy results in a nearly colorless material with over 80% transmittance at 550 nm even at 4 mm thickness, along with full-band UV shielding. Notably, the material demonstrates a 114.7% increase in impact toughness (45.2 kJ m-2) due to dual dynamic B─O and P─O linkages. Besides, it yields a limiting oxygen index of 33% and a V0 rating in the underwriter laboratories vertical burning test, along with significant reductions in heat, smoke, and toxic gas release. The outstanding performance makes it stand out compared to reported advanced transparent epoxy resins, highlighting the significance of this work.
Collapse
Affiliation(s)
- Rui Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yifeng Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wenyan Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhiyu Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruizhi Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
4
|
Wu J, Shen T, Li S, Wu Y, Cai L, Xia C. Sustainable transparent wood focusing on lignin decolorization methods, polymer impregnation techniques and applications in functional buildings: A review. Int J Biol Macromol 2025; 302:140554. [PMID: 39894125 DOI: 10.1016/j.ijbiomac.2025.140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The utilization of transparent wood as a potential composite derived from wood offers numerous advantages, including exceptional mechanical properties, lightweight, low thermal conductivity and immense potential for multifunctionality. Additionally, transparent wood demonstrates commendable performance in both thermal insulation and light transmission management, contributing to the reduction of energy consumption. This makes it an attractive option for buildings and related engineering elements. However, despite the successes achieved to date, further improvement is still required in terms of overall sustainability and functionality to meet the demands of advanced applications. This paper provides a comprehensive summary of the transparent wood preparation process, highlighting the efforts made to improve sustainability through various approaches. These strategies encompass using environmental-friendly chemicals or methods for lignin decolorization, substituting petroleum-based polymers with bio-based alternatives, and increasing the cellulose content through densification techniques. In addition, this paper presents the functionalization aspects of transparent wood such as chromism, heat shielding properties, ultraviolet shielding properties, luminescence, and fire-resistance, as well as its building applications. Finally, the challenges currently encountered in the development and application of transparent wood are discussed with an emphasis on the necessity for additional exploration and advancement in this area.
Collapse
Affiliation(s)
- Jiamin Wu
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianhao Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liping Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
5
|
Hai LV, Srikanth N, Le TDT, Park SH, Kim TH. Transparent Wood Fabrication and Applications: A Review. Molecules 2025; 30:1506. [PMID: 40286115 PMCID: PMC11990442 DOI: 10.3390/molecules30071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Wood cellulose is an abundant bio-based resource with diverse applications in construction, cosmetics, packaging, and the pulp and paper industries. Transparent wood (TW) is a novel, high-quality wood material with several advantages over traditional transparent materials (e.g., glass and plastic). These benefits include renewability, UV shielding, lightweight properties, low thermal expansion, reduced glare, and improved mechanical strength. TW has significant potential for various applications, including transparent roofs, windows, home lighting structures, electronic devices, home decoration, solar cells, packaging, smart packaging materials, and other high-value-added products. The mechanical properties of TW, such as tensile strength and optical transmittance, are typically up to 500 MPa (Young's modulus of 50 GPa) and 10-90%, respectively. Fabrication methods, wood types, and processing conditions significantly influence the mechanical and optical properties of TW. In addition, recent research has highlighted the feasibility of TW and large-scale production, making it an emerging research topic for future exploration. This review attempted to provide recent and updated manufacturing methods of TW as well as current and future applications. In particular, the effects of structural modification through various chemical pretreatment methods and impregnation methods using various polymers on the properties of TW biocomposites were also reviewed.
Collapse
Affiliation(s)
- Le Van Hai
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea; (L.V.H.); (T.D.T.L.); (S.H.P.)
| | - Narayanan Srikanth
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Tin Diep Trung Le
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea; (L.V.H.); (T.D.T.L.); (S.H.P.)
| | - Seung Hyeon Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea; (L.V.H.); (T.D.T.L.); (S.H.P.)
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea; (L.V.H.); (T.D.T.L.); (S.H.P.)
- Major in Advanced Materials and Semiconductor Engineering, School of Semiconductor Convergence Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Yang R, Yang X, Qi L, Meng X, Dai L, Jin X, Zhou J, Lu H, Xia C, Li J. Adhesive conductive wood-based hydrogel with high tensile strength as a flexible sensor. Carbohydr Polym 2025; 351:122954. [PMID: 39779042 DOI: 10.1016/j.carbpol.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Conductive hydrogels have promising applications for flexible strain sensors. However, most hydrogels have poor tensile strength and are susceptible to damage, significantly impeding their potential for further application. Wood has been used to reinforce hydrogels, significantly enhancing their strength and dimensional stability. However, wood-based hydrogels generally lack adhesive properties or exhibit low self-adhesion. To address this issue, we introduced acryloyloxyethyltrimethyl ammonium chloride (DAC) into the hydrogel network through graft aggregation. The resulting electrostatic interactions significantly enhanced the adhesion of the wood-based hydrogel up to 270 kPa (for glass) and concurrently strengthened its cohesion. The prepared novel wood-based hydrogel (WDDH) exhibited high tensile strength (3.38 MPa), low-swelling ratio (only 2 % longitudinal), and high tensile strain (274.40 %). When WDDH was used as the wearable strain sensor, it showed a gauge factor of approximately 4.94. The device effectively captured and detected human movements, including finger and joint flexion, walking patterns, and hydration habits. The objective of this research is to develop a wood-based hydrogel with enhanced mechanical strength, adhesive properties, and flexibility for use in wearable sensors. This study provides insight into the development of flexible sensor hydrogels with improved adhesion properties using biomass materials.
Collapse
Affiliation(s)
- Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Xiaoqi Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linghui Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lili Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haiyang Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
7
|
Piao X, Wang T, Chen X, Wang G, Zhai X, Zhang K. Room-temperature phosphorescent transparent wood. Nat Commun 2025; 16:868. [PMID: 39833198 PMCID: PMC11747176 DOI: 10.1038/s41467-025-55990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BF2bdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization. The resultant PMMA has been found to interact with BF2bdk via dipole-dipole interactions and consequently enhance the intersystem crossing of BF2bdk excited states. The transparent wood matrix can provide a rigid environment for BF2bdk triplets and serve as oxygen barrier to suppress non-radiative decay and oxygen quenching. The prepared afterglow material has the characteristics of diverse composition, long afterglow emission lifetimes, and high photoluminescence quantum yield. This afterglow transparent wood also demonstrates potential application value in areas such as high mechanical strength, good hydrophobicity, and high cost-effectiveness.
Collapse
Affiliation(s)
- Xixi Piao
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Tengyue Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xuefeng Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xiangxiang Zhai
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
8
|
Mohan BVG, Shobhana VG, Boopathi NM. A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides. LUMINESCENCE 2025; 40:e70093. [PMID: 39844452 DOI: 10.1002/bio.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices. Previous reports indicate that luminescent fibres exhibit better photon concentrations of nearly 30%-33% higher than flat-plate polymeric waveguides. It is also verified that the photon in-out ratio increases by 3.44 times when the waveguide geometry is changed from planar to an equivalent area of fibre bundle with the same luminophore. Meanwhile, transparent wood (Twood) is gaining attention as a green alternative to acrylic sheets. The structure and function of transparent wood conforms well with the fibre-based waveguides of luminescent solar concentrators (LSCs). Therefore, it is intriguing to compare Twood with intrinsic micro fibrillary interior with fibre-based LSC as a natural alternative. This review provides an in-depth analysis, emphasizing the benefits and associated challenges in using cylindrical concentrators over planar LSCs. The paper collects and compares the phenomenon of light guiding of cylindrical and fibre-based LSCs with that of Twood. It is important to consider the key points discussed here while making a transition towards sustainable waveguides.
Collapse
Affiliation(s)
- Brindha V G Mohan
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - V G Shobhana
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - N Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Liza AA, Wang S, Zhu Y, Wu H, Guo L, Qi Y, Zhang F, Song J, Ren H, Guo J. Ultraviolet (UV) assisted fabrication and characterization of lignin containing cellulose nanofibrils (LCNFs) from wood residues. Int J Biol Macromol 2024; 283:137973. [PMID: 39581419 DOI: 10.1016/j.ijbiomac.2024.137973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the synergistic mechanism of lignin chromophore modifications via UV treatment and to analyze the effects of mechanical treatments on LCNF properties for future uses. The procedure involved two steps: first, lignin's chromophore modification via UV illumination, and then the ball milling process was proceeded for 1 h, followed by high-intensity ultrasonic for 15-135 min. Characterization included preserved lignin content percentage, FTIR, UV-vis NMR, and color analysis for UV-modified samples, and to access the influence of mechanical treatment on LCNF samples further yield, zeta potential analysis, XRD, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy were performed. LCNFs S-120 demonstrated a zeta potential of -21.7 mV, indicating enhanced stability compared to the S-135 sample (-10.95 mV). The S-120 sample also showed the highest yield (74.02 %) and TGA at 391 °C. In XRD analysis, the S-120 sample demonstrated the highest CrI 64.3 %, than the S-15 sample (48.2 %). Preserved lignin in the LCNFs led to a slight reduction in crystallinity across all samples but improved thermal stability for all the prepared LCNFs samples. The UV and ultrasonication improved the homogeneity and durability of the LCNF samples, enabling a process that may be used to industries.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shihao Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hao Wu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yungeng Qi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Liaoning Key Lab of Lignocellulose Chemistry and Bio Materials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257000, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
10
|
Yun Y, Liu W, Ning Y, Li J, Wang L. Fabricating a high-loading smart film to monitor pork freshness via adsorption of anthocyanins on simultaneously etched, anionized and bleached wood cell wall. Food Chem 2024; 460:140485. [PMID: 39047493 DOI: 10.1016/j.foodchem.2024.140485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
In this paper, wood cell walls were simultaneously roughened, carboxylated, and bleached via NaOH/H2O2 treatment and roughened-poplar film (RPF) was obtained. Compared with the untreated film, the carboxyl group content increased 8 times to 1.92 mmol/g, and the pore growth rate reached 11.24%. Afterwards, a pH-indicator wood film (CTA-RPF) was prepared by self-adsorption of anthocyanins on RPF. It rapidly changed from purple to green within 7 s in 0.25 mL of ammonia at 53% RH and the initial color could restore in the air. When anthocyanins adsorption capacity reached 1.95 mg/g, only 0.36 cm2 of the film could accurately indicate the quality change of 300 g pork. Currently, CTA-RPF is the smallest smart film that can track the maximum mass of pork after comparing with other researches, therefore, promising to be used as a smart indicator label to track the freshness of pork in real market circulation.
Collapse
Affiliation(s)
- Yalu Yun
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenhua Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Jian Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
11
|
Zhang S, Sun R, Wang J, Jiang Z, Liu M, Chen H, Hu Z, Zhan X, Gao F, Zhang Q. Enhancement of hybrid organohydrogels by interpenetrating crosslinking strategies for multi-source signal recognition over a wide temperature range. MATERIALS HORIZONS 2024; 11:6107-6116. [PMID: 39319678 DOI: 10.1039/d4mh00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
With substantial temperature differentials between summer and winter in polar regions, there exists a pressing necessity for flexible sensors capable of functioning across a broad temperature spectrum to facilitate the construction of a more intelligent human-machine interface. Nevertheless, developing flexible sensors resilient to extremely low temperatures remains a significant challenge. In this study, we present an organohydrogel capable of functioning ranging from ambient to -78 °C, enabling real-time monitoring of multi-source signals, including motion, physiology, speech, and pressure. We synthesize organohydrogel employing a singular methodology: interpenetrating network structures as matrix frameworks, dynamic hydrophobic linkages as the physical cross-linking points, and incorporating a bionic binder. H-Bonding and chain entanglement synergistic supramolecular interactions build the organohydrogel matrix with microphase-separated domains, which, together with the combination of binary solvents and inorganic salts, allows it to exhibit excellent properties, including large stretchability (≈1700%), high ionic conductivity (1.57 S m-1), admirable sensing sensitivity performance (gauge factor: GF = 6.47, S = 0.32 kPa-1), an exceptionally low-pressure detection threshold (≈1 Pa), enables wireless transmission of distress signals through human-machine interaction even at -78 °C, which makes it possible to use it in polar exploration and to give robots a "sense of touch" for a variety of deep-diving tasks.
Collapse
Affiliation(s)
- Shen Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Rui Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhiqin Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mingfang Liu
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Hua Chen
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Zhijun Hu
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
- Donghai Laboratory of Zhejiang University, Zhoushan, 316000, China
| | - Feng Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
- Donghai Laboratory of Zhejiang University, Zhoushan, 316000, China
| |
Collapse
|
12
|
Cai C, Yao G, Zhang Y, Zhang S, Li F, Tan Z, Dong S. Optically transparent and mechanically tough glass with impact resistance and flame retardancy enabled by covalent/supramolecular interactions. MATERIALS HORIZONS 2024; 11:5732-5739. [PMID: 39252527 DOI: 10.1039/d4mh00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Exploring glass materials beyond inorganic components represents a new direction in the development of artificial transparent materials. Inspired by the successes of polymeric and supramolecular glasses, we shifted our attention to the preparation of a transparent glass through the polymerization of low-molecular-weight monomers that are naturally tailored with noncovalent recognition motifs. In this work, an imidazolium unit bearing a vinyl group and a tetrafluoroborate counter anion was selected to construct an artificial glass. Experimental and theoretical investigations revealed that the cross-linking behavior of anions effectively transformed linear polymeric chains into three-dimensional networks. The polymeric-supramolecular glass exhibits a tough tensile strength (61.31 MPa), high Young's modulus (1.17 GPa), and good optical transparency (>90%), which are comparable to those of polymethyl methacrylate. Moreover, the obtained glass maintains excellent mechanical toughness and optical transparency over a wide temperature range (from -150 to 150 °C). The material shows a superior impact resistance (18.34 kJ m-2) and flame retardancy (V0 rating), which are barely achieved by supramolecular materials.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
13
|
Tan Y, Wang K, Gong S, Chen H, Dong Y, Gao Q, Liu C, Li J. Flexible, shape-editable wood-based functional materials with acetal linkages. Chem Commun (Camb) 2024; 60:12702-12705. [PMID: 39392457 DOI: 10.1039/d4cc03522d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A flexible, shape-editable transparent wood (ATW) composite containing acetal linkages was prepared simultaneously through free radical polymerization and addition reaction between vinyl ether bonds and hydroxyl groups. In this system, the anisotropic hierarchical structure of wood acted as a reinforced skeleton, the flexible chain segment ensured flexibility at room temperature, and the dynamic acetal bonds were responsible for the shape memory and editability under relatively mild conditions, verifying the expanding applications of functionalized wood-based materials.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Shanshan Gong
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Chen
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chengguo Liu
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Liang S, Ji Q, Wang R, Hu G, Li W, He L, Jiao Y, Singh T, Zhu H, Wang K, Fu Q, He W. Wood Cell Wall Nanoengineering toward Anisotropic, Strong, and Flexible Cellulosic Hydrogel Sensors. NANO LETTERS 2024. [PMID: 39373896 DOI: 10.1021/acs.nanolett.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Achieving highly ionic conductive hydrogels from natural wood remains challenging owing to their insufficient surface area and low number of active sites on the cell wall. This study proposes a viable strategy to design a strong and anisotropic wood-based hydrogel through cell wall nanoengineering. By manipulating the microstructure of the wood cell wall, a flexible cellulosic hydrogel is achieved through Schiff base bonding via the polyacrylamide and cellulose molecular chains. This results in excellent flexibility and mechanical properties of the wood hydrogel with tensile strengths of 22.3 and 6.1 MPa in the longitudinal and transverse directions, respectively. Moreover, confining aqueous salt electrolytes within the porous structure gives anisotropic ionic conductivities (19.5 and 6.02 S/m in the longitudinal and transverse directions, respectively). The wood-based hydrogel sensor has a favorable sensitivity and a stable working performance at a low temperature of -25 °C in monitoring human motions, thereby demonstrating great potential applications in wearable sensor devices.
Collapse
Affiliation(s)
- Shuang Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gangzheng Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei He
- Institute of Forest Products, Jiangxi Academy of Forestry, No. 1629, Fenglin West Street, Nanchang Economic and Technological Development Zone, Jiangxi 330013, China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tripti Singh
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
- National Centre for Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hongfei Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiyin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
| | - Wen He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Chen S, Xu D, Yin H, Huang R, Qi W, Su R, Zhang K. Large-Scale Engineerable Films Tailored with Cellulose Nanofibrils for Lighting Management and Thermal Insulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401283. [PMID: 38924314 DOI: 10.1002/smll.202401283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Fibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.6% (glass-scale) are obtained by heat-assisted surface void packing without hydrophobization of nanocellulose. PCNF gel cakes serve here as templates for surface roughening, thereby resulting in a high haze (73.8%), and the roughened films can block heat transfer by increasing solar reflection in addition to a reduced thermal conduction. Additionally, obtained films can tune distribution of light from visible to near-infrared spectral range, enabling uniform colored lighting and inhibiting localized heating. Furthermore, an integrated simulation of lighting and cooling energy consumption in the case of office buildings shows that the film can reduce the total energy use by 19.2-38.1% under reduced lighting levels. Such a scalable and versatile engineering strategy provides an opportunity to endow nanocellulose-reinforced materials with tunable optical and thermal functionalities, moving their practical applications in green buildings forward.
Collapse
Affiliation(s)
- Shaohuang Chen
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Nanocomposites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Dan Xu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Nanocomposites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Huiting Yin
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, 315201, China
| | - Renliang Huang
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, 315201, China
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, 315201, China
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Nanocomposites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Kong L, Lu R, Wang Y, Ran Y, Jv J, Sui W, Peng Y. Transparent bamboo as a replacement for glass: Effects of lignin decolorisation methods on weatherability. Int J Biol Macromol 2024; 277:134470. [PMID: 39102914 DOI: 10.1016/j.ijbiomac.2024.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Transparent bamboo proved to be a promising substitute for glass due to its high light transmittance and excellent mechanical properties. Nevertheless, it was susceptible to outdoor weathering, which negatively affected its physical and mechanical properties. In this study, two decolorisation methods, namely the delignification method and the lignin modification method, were used to produce transparent bamboos with epoxy resin, referred to as DL-TB and LM-TB, respectively. The changes in surface color, optical and mechanical properties, wettability, thermal stability, and thermal insulation properties of transparent bamboo during accelerated UV weathering were evaluated. Additionally, the deterioration mechanism of DL-TB and LM-TB was investigated. The findings revealed that DL-TB demonstrated better transparency and mechanical properties than LM-TB, although it exhibited lower thermal insulation properties. Furthermore, DL-TB demonstrated enhanced color stability and higher hydrophobicity on weathered surfaces than LM-TB. Unexpectedly, the tensile properties of both two transparent bamboos significantly improved after weathering, especially for LM-TB, which was due to the EP post-curing and the formation of more hydrogen bonds between lignin and EP. These observations revealed that lignin played a key role in the photodegradation process of transparent bamboo, but further attempts should be made in future studies to improve its color stability.
Collapse
Affiliation(s)
- Lingfeng Kong
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Rouyi Lu
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Yujiao Wang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Yangyang Ran
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jiaxuan Jv
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Wanting Sui
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Yao Peng
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Chen F, Ritter M, Xu Y, Tu K, Koch SM, Yan W, Bian H, Ding Y, Sun J, Burgert I. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311966. [PMID: 38770995 DOI: 10.1002/smll.202311966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.
Collapse
Affiliation(s)
- Feng Chen
- Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials, Jianghan University, Wuhan, 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan, 430056, China
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Maximilian Ritter
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Yifan Xu
- Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials, Jianghan University, Wuhan, 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Kunkun Tu
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Sophie Marie Koch
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Wenqing Yan
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yong Ding
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Jianguo Sun
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Ingo Burgert
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| |
Collapse
|
18
|
Fang S, Hu YH. Emerging approaches of utilizing trees to produce advanced structural and functional materials. Chem Commun (Camb) 2024; 60:7663-7671. [PMID: 38963729 DOI: 10.1039/d4cc02658f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The global number of trees is approximately 3 trillion, covering 31% of the land area. Trees are considered a cheap, abundant, renewable, and environmentally friendly feedstock for producing advanced structural and functional materials toward a widespread application in sustainable energy and environment. In this highlight, we reveal the structure and composition of wood, leaves, and tree extracts, and then highlight the strategies to control their hierarchical structures and properties. Moreover, we provide an up-to-date overview of their emerging applications in sustainable buildings, ionic nanofluidics, batteries, capacitors, solar cells, environmental remediation, biodegradable packaging, and nanomaterial synthesis. Finally, we outline the challenges and opportunities in valorizing trees for creating a sustainable future.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| |
Collapse
|
19
|
Yang Y, Liu X, Wan C, Liu S, Li X, Zhu Y, Yang Z, Li L, Zhang Z, Zhou Z, Xie Y, Zhao X, Chai H, Wu Y. Powering the Future Green Buildings: Multifunctional Ultraviolet-Shielding Transparent Wood. ACS NANO 2024. [PMID: 39038287 DOI: 10.1021/acsnano.4c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Indoor UV damage is a serious problem that is often ignored. Common glasses cannot filter UV rays well and have fragility and environmental issues. UV-shielding transparent wood (TW) holds promise, yet striking the right balance between blocking UV rays and allowing sufficient visible-light transmission poses a challenge. The pronounced capillary force, fueled by persistent moisture and extractives in wood, alongside the existence of multiphase interfaces, collectively hinder the uniform penetration of polymers and the effective dispersion of nanomaterials within the wood skeleton. Here, we incorporate high-pressure supercritical CO2 fluid-assisted impregnation (HSCFI) into fabricating UV-shielding TW. The supercritical CO2 pretreatment efficiently eliminates moisture and refines wood structure by extracting polar substances, resulting in a prominent 52.4% increase in average water permeability. Subsequently, this HSCFI method facilitates the infiltration of methyl methacrylate (MMA) monomer and Ce-ZnO nanorods (NRDs) into the refined anhydrous wood, leveraging the excellent solvency of supercritical CO2 for MMA. The impregnation rate of PMMA undergoes a substantial increase from 34.5 to 59.1%. With the robust UV-blocking capability of Ce-ZnO NRDs, thanks to dual-valence Ce doping widening the ZnO energy gap via the Burstein-Moss effect and their unique photoactive microstructure featuring a solid prism with a sharp hexahedral pyramidal tip, along with intrinsic physical scattering/reflection actions, Ce-ZnO NRDs@TW achieves an impressive 99.6% UVA radiation blockage (the highest for TW) and maintains high visible-light transmission (83.2%). Furthermore, Ce-ZnO NRDs@TW presents favorable energy-saving, sound absorption, and antifungal abilities, making it a promising candidate for future green buildings.
Collapse
Affiliation(s)
- Yadong Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha 410000, P. R. China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yuan Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Liangli Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhe Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zaiyang Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yuzhong Xie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinpeng Zhao
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Huayun Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
20
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
21
|
Wang Y, Tang J, Peng Q, Yu H, Zhu X, Li H, Lan D. Processing natural bamboo into white bamboo through photocatalyzed lignin oxidation. Int J Biol Macromol 2024; 273:133052. [PMID: 38857732 DOI: 10.1016/j.ijbiomac.2024.133052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Scalable and highly efficient bamboo whitening remains a great challenge. Herein, an effective bamboo whitening strategy is proposed based on photocatalyzed oxidation, which involves H2O2 infiltration and UV illumination. The as-prepared white bamboo well maintains the nature structure of natural bamboo and demonstrates high whiteness and superior mechanical properties. The absorbance value is significantly decreased to 3.5 and the transmittance is increased to 0.04 % in UV-visible wavelength range due to the removal of light-absorbing chromospheres of lignin, resulting in a high whiteness when the UV illumination time is 8 h. In addition, the white bamboo displays a high tensile strength of 30 MPa and a high flexural strength of 36 MPa due to the well-preserved lignin units (lignin preservation is about 89 %). XRD patterns and analysis show that photocatalyzed oxidation has no effect on the crystal parameters of cellulose. Compared with the traditional bamboo whitening technology, our photocatalyzed oxidation strategy demonstrates significant advantage including chemical and time conservation, high efficiency, environment friendliness, and mechanical robustness. This highly efficient and environmentally friendly photocatalyzed oxidation strategy for the fabrication of white bamboo may pave the way of bamboo-based energy-efficient structural materials for engineering application.
Collapse
Affiliation(s)
- Youyong Wang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; Hubei Key Laboratory of Energy Storage and Power Battery, Hubei University of Automotive Technology, Shiyan 442002, China.
| | - Jing Tang
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Qianhui Peng
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Huilin Yu
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Xiufang Zhu
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Haifeng Li
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
22
|
Kim KW. Clearing techniques for deeper imaging of plants and plant-microbe interactions. Appl Microsc 2024; 54:5. [PMID: 38816666 PMCID: PMC11139840 DOI: 10.1186/s42649-024-00098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Plant cells are uniquely characterized by exhibiting cell walls, pigments, and phenolic compounds, which can impede microscopic observations by absorbing and scattering light. The concept of clearing was first proposed in the late nineteenth century to address this issue, aiming to render plant specimens transparent using chloral hydrate. Clearing techniques involve chemical procedures that render biological specimens transparent, enabling deep imaging without physical sectioning. Drawing inspiration from clearing techniques for animal specimens, various protocols have been adapted for plant research. These procedures include (i) hydrophobic methods (e.g., Visikol™), (ii) hydrophilic methods (ScaleP and ClearSee), and (iii) hydrogel-based methods (PEA-CLARITY). Initially, clearing techniques for plants were mainly utilized for deep imaging of seeds and leaves of herbaceous plants such as Arabidopsis thaliana and rice. Utilizing cell wall-specific fluorescent dyes for plants and fungi, researchers have documented the post-penetration behavior of plant pathogenic fungi within hosts. State-of-the-art plant clearing techniques, coupled with microbe-specific labeling and high-throughput imaging methods, offer the potential to advance the in planta characterization of plant microbiomes.
Collapse
Affiliation(s)
- Ki Woo Kim
- Department of Forest Ecology and Protection, Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
23
|
Wu M, Lin G, Li R, Liu X, Liu S, Zhao J, Xie W. Molecular-caged metal-organic frameworks for energy management. SCIENCE ADVANCES 2024; 10:eadl4449. [PMID: 38718124 PMCID: PMC11078190 DOI: 10.1126/sciadv.adl4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Metal-organic frameworks (MOFs) hold great promise for diverse applications when combined with polymers. However, a persistent challenge lies in the susceptibility of exposed MOF pores to molecule and polymer penetration, compromising the porosity and overall performance. Here, we design a molecular-caged MOF (MC-MOF) to achieve contracted window without sacrificing the MOF porosity by torsional conjugated ligands. These molecular cages effectively shield against the undesired molecule penetration during polymerization, thereby preserving the pristine porosity of MC-MOF and providing outstanding light and thermal management to the composites. The polymer containing 0.5 wt % MC-MOF achieves an 83% transmittance and an exceptional haze of 93% at 550 nanometers, coupled with remarkable thermal insulation. These MC-MOF/polymer composites offer the potential for more uniform daylighting and reduced energy consumption in sustainable buildings when compared to traditional glass materials. This work delivers a general method to uphold MOF porosity in polymers through molecular cage design, advancing MOF-polymer applications in energy and sustainability.
Collapse
Affiliation(s)
- Minghong Wu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gengye Lin
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Li
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Liu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shumei Liu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianqing Zhao
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
24
|
Pan N, Sheng X, Shi R, Jia H, Zhang J, Li N, Shi H, Wang B, Ping Q. Synthesis of lignin-based resin and fabrication of sustainable transparent wood based on bio-recycling concept. Int J Biol Macromol 2024; 268:131620. [PMID: 38631578 DOI: 10.1016/j.ijbiomac.2024.131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Transparent wood (TW) has attracted much attention in the field of energy saving building structural materials because of its high light transmittance, good thermal insulation performance and good toughness. However, the polymeric resins used in the present study to impregnate lignin-based wood templates are usually derived from petroleum-based chemical resources, which pose a fatal threat to human beings both in terms of consuming large amounts of resources and causing environmental pollution problems. It is therefore important to develop alternatives to petroleum-derived chemicals in renewable natural resources. Here, we report a green and sustainable TW production process based on the bio-recycling concept. Lignin-based sustainable resin (LSR) was prepared from waste lignin produced during delignification by polymerization of guaiacol. At the same time, according to FT-IR and NMR data analysis combined with previous studies, the synthesis mechanism of LSR was proposed, and this result provided a reference for bio-based resins made from biomass materials. The prepared lignin-based sustainable transparent wood (LSTW) has good light transmittance and good dimensional stability. In addition, the LSTW also shows good thermal insulation and indoor temperature regulation capabilities compared with the common glass.
Collapse
Affiliation(s)
- Nan Pan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueru Sheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ruisen Shi
- College of Materials Science and Engineering, Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, China
| | - Haiyuan Jia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Ping
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
25
|
Tang Q, Yuan X, Zou M, Zhang L, Chang L, Chen X, Zhang J, Zhou G, Gao K, Guo W, Chen Y. Mismatched Refractive Index Strategy for Fabricating Laser-Driven Wood Diffusers from Bulk Wood for Illumination Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306593. [PMID: 38174617 DOI: 10.1002/adma.202306593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Laser-diode-based solid-state lighting is primarily used in state-of-the-art illumination systems. However, these systems rely on light-converting inorganic phosphors, which have low quantum efficiencies and complex manufacturing conditions. In this study, a mismatched refractive index strategy is proposed to directly convert natural bulk wood into a laser-driven wood diffuser using a simple delignification and polymer infiltration method. The resulting material has the potential to be used in laser-driven diffuse illumination applications. The optical performance of the laser-driven wood diffuser is optimized by changing the density of natural wood. The optimal coefficient of illuminance variation of the wood diffuser is as low as 17.7%, which is significantly lower than that of commercial diffusers. The illuminance uniformity is larger than 0.9, which is significantly higher than the ISO requirements for indoor workplace lighting. The laser damage threshold is 7.9 J cm-2, which is considerably higher than those of the substrates of commercially available phosphors. Furthermore, the optimized wood diffuser exhibits outstanding mechanical properties, excellent thermal stability, tolerance to harsh environmental conditions, and low speckle contrast. These results show that the laser-driven wood diffuser is a promising laser-color converter that is suitable for indoor, long-distance outdoor, undersea, and other high-luminance laser lighting applications.
Collapse
Affiliation(s)
- Qiheng Tang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Xiao Yuan
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Miao Zou
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Lei Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Liang Chang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Xueqi Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Jie Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Guanwu Zhou
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Kezheng Gao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, P. R. China
| | - Wenjing Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| | - Yongping Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Haidian District, Beijing, 10091, P. R. China
| |
Collapse
|
26
|
Li M, Li X, Xu K, Qin A, Yan C, Xu Y, Shan D, Wang J, Xu M, Li X, Li B, Liu L. Construction and mechanism analysis of flame-retardant, energy-storage and transparent bio-based composites based on natural cellulose template. Int J Biol Macromol 2024; 263:130317. [PMID: 38387629 DOI: 10.1016/j.ijbiomac.2024.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
With the proposal of sustainable development strategy, bio-based energy storage transparent wood (TW) has shown broad application value in green buildings, cold chain transportation, and optoelectronic device fields. However, its application in most fields is limited due to its own flammability. In this study, epoxy resin, triethyl phosphate (TEP) and polyethylene glycol (PEG) were introduced into delignified balsa wood template by vacuum pressure impregnation, and bio-based TW/PEG/TEP integrating flame retardant, high strength and phase-change energy-storage performance was prepared. TW/PEG composites have no leakage during phase change process and their transparency is up to 95 %. Compared with TW/PEG, the shielding effect of char layer and the inhibition effect in condensed and gas phase significantly decrease the total heat release of TW/PEG/TEP. TW/PEG/TEP biocomposites still maintained a high enthalpy of phase change and a low peak melting temperature, which was conducive to its application around the area of low temperature phase change energy storage. In addition, the tensile strength of TW/PEG/TEP was nearly 4 times higher than that of DW, and its toughness was obviously enhanced. TW/PEG/TEP biocomposites conformed to the current concept of energy-saving and green development. It has the potential to replace traditional petrochemical-based materials and shows excellent application prospects in emerging fields.
Collapse
Affiliation(s)
- Mixue Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xu Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Kai Xu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ao Qin
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chentao Yan
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yue Xu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Depeng Shan
- State Grid Heilongjiang Electric Power Company Limited, Harbin 150040, China
| | - Jinlong Wang
- State Grid Heilongjiang Electric Power Company Limited, Harbin 150040, China
| | - Miaojun Xu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Xiaoli Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Bin Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lubin Liu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
27
|
Liu X, Ji X, Zhu R, Gu J, Liang J. A Microphase-Separated Design toward an All-Round Ionic Hydrogel with Discriminable and Anti-Disturbance Multisensory Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309508. [PMID: 38190548 DOI: 10.1002/adma.202309508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Stretchable ionic hydrogels with superior all-round properties that can detect multimodal sensations with excellent discriminability and robustness against external disturbances are highly required for artificial electronic skinapplications. However, some critical material parameters exhibit intrinsic tradeoffs with each other for most ionic hydrogels. Here, a microphase-separated hydrogel is demonstrated by combining three strategies: (1) using of a low crosslinker/monomer ratio to obtain highly entangled polymer chains as the first network; (2) the introduction of zwitterions into the first network; (3) the synthesis of an ultrasoft polyelectrolyte as the second network. This all-round elastic ionic hydrogel exhibits a low Young's modulus (< 60 kPa), large stretchability (> 900%), high resilience (> 95%), unique strain-stiffening behavior, excellent fatigue tolerance, high ionic conductivity (> 2.0 S m⁻1), and anti-freezing capability, which have not been achieved before. These properties allow the ionic hydrogel to operate as a stretchable multimodal sensor that can detect and decouple multiple stimuli (temperature, pressure, and proximity) with excellent discriminability, high sensitivity, and strong sensing-robustness against strains or temperature perturbations. The ionic hydrogel sensor exhibits great potential for intelligent electronic skin applications such as reliable health monitoring and accurate object identification.
Collapse
Affiliation(s)
- Xue Liu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyi Ji
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Rongjie Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jianfeng Gu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jiajie Liang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
28
|
Tan Y, Wang K, Dong Y, Gong S, Lu Y, Shi SQ, Li J. Programmable and Shape-Color Synchronous Dual-Response Wood with Thermal Stimulus. ACS NANO 2024; 18:6718-6730. [PMID: 38277220 DOI: 10.1021/acsnano.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Stimuli-responsive materials exhibit huge potential in sensors, actuators, and electronics; however, their further development for reinforcement, visualization, and biomass-incorporation remains challenging. Herein, based on the impregnation of thermochromic microcapsule (TCM)-doped dynamic covalent vitrimers, a programmable shape-color dual-responsive wood (SRW-TC) was demonstrated with robust anisotropic structures and exchangeable covalent adaptable networks. Under mild conditions, the resultant SRW-TC displays feasible shape memorability and programmability, resulting from the rigidity-flexibility shift induced by the glass-transition temperature (34.99 °C) and transesterification reaction triggered by the topology freezing transition temperature (149.62 °C). Furthermore, the obtained SRW-TC possesses satisfactory mechanical performance (tensile strength of 45.70 MPa), thermal insulation (thermal conductivity of 0.27 W/m K), anisotropic light management, and benign optical properties (transmittance of 51.73% and haze of 99.67% at 800 nm). Importantly, the incorporation of compatible TCM enables SRW-TC to visualize shape memory feasibility and rigidity/flexibility switching and respond to the external thermal stimulus through the thermal-induced shape-color synchronous dual-responsiveness, which successfully demonstrates the applications of sensing temperature, grasping objects, encrypting/decoding icon messages, and so on. The proposed facile and highly effective strategy could serve as a guideline for developing high-performance multifunctional wood composite with promising intelligent applications in performance visualization, environmental sensing, materials interactivity, information dual-encryption, local precision shape and color regulation, etc.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Gong
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
29
|
Zhou T, Zhou J, Feng Q, Yang Q, Jin Y, Li D, Xu Z, Chen C. Mechanically strong, hydrostable, and biodegradable all-biobased transparent wood films with UV-blocking performance. Int J Biol Macromol 2024; 255:128188. [PMID: 37977473 DOI: 10.1016/j.ijbiomac.2023.128188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Petroleum-based plastics are useful but they pose a great threat to the environment and human health. It is highly desirable yet challenging to develop sustainable structural materials with excellent mechanical and optical properties for plastic replacement. Here, we report a simple and efficient method to manufacture high-performance all-biobased structural materials from cellulosic wood skeleton (WS) and gelatin via oxidation and densification. Specifically, gelatin was grafted to the oxidized cellulose wood skeletons (DAWS) and then physically crosslinked via Tannic acid (TA), resulting in a significant enhancement of the material properties. Notably, only a mild pressure was applied during the drying process to form a densified TA/Gelatin/transparent wood film(TWF). The developed TA/Gelatin/TWF (thickness:100 ± 12 μm) exhibited a desirable combination of high strength (∼154.59 MPa), light transmittance (86.2 % at 600 nm), low haze (16.7 %), high water stability (wet strength: ∼130.13 MPa) and ultraviolet blocking efficacy which surpass most of the petroleum-based plastics. In addition, due to the all bio-based origins (wood and gelatin), TA/Gelatin/TWF are easily biodegradable under natural conditions, leading to less impact on the environment. These findings would hold promises for exploring high-quality all bio-based wood composites as eco-friendly alternatives to substitute plastics with wide applications, e.g. anti-counterfeiting, UV protection, and flexible electricals.
Collapse
Affiliation(s)
- Tong Zhou
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Zhou
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Quanling Yang
- College of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yongcan Jin
- College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Dagang Li
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Bian Y, Teng Y, Chen S, Tang K, Zhao L, Fu L, Gu S. Farming on the Ocean via Desalination (FOOD). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21104-21112. [PMID: 38054477 DOI: 10.1021/acs.est.3c05887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Today, agricultural irrigation consumes the largest amount of freshwater globally, while humans are threatened by water scarcity. To eliminate the trade-off between hunger and thirst, here, we show off-grid maritime agriculture based on a floating solar-driven agro-desalination wooden dome. In this dome, part of the visible light is transmitted for photosynthesis, and the remaining solar energy drives solar desalination, providing enough water (>4 mm day-1) for irrigation. Based on this water-food synergy, the stages of germination and growth are demonstrated. This technology can, to a large extent, support food security and sustainable agriculture and, in principle, be used to create self-circulation systems at sea to help humans survive weather extremes such as floods and droughts.
Collapse
Affiliation(s)
- Yue Bian
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Research School of Physics, Australian National University, Acton 2601, Australia
| | - Yan Teng
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Si Chen
- School of the Environment, Nanjing University, Nanjing 210093, China
| | - Kun Tang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijuan Zhao
- School of the Environment, Nanjing University, Nanjing 210093, China
| | - Lan Fu
- Research School of Physics, Australian National University, Acton 2601, Australia
| | - Shulin Gu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Zhang M, Xue J, Zhang R, Zhang W, Peng Y, Wang M, Cao J. Mycelium Composite with Hierarchical Porous Structure for Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302827. [PMID: 37403285 DOI: 10.1002/smll.202302827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Indexed: 07/06/2023]
Abstract
High-performance porous materials with a low carbon footprint provide sustainable alternatives to petroleum-based lightweight foams and can help meet carbon neutrality goals. However, these materials generally face a trade-off between thermal management capabilities and structural strength. Here, a mycelium composite with a hierarchical porous structure, including both macro- and microscale pores, produced from multiple and advanced mycelial networks (elastic modulus of 1.2 GPa) binding loosely distributed sawdust is demonstrated. The morphological, biological, and physicochemical properties of the filamentous mycelium and composites are discussed in terms of how they are influenced by the mycelial system of the fungi and the way they interact with the substrate. The composite shows a porosity of 0.94, a noise reduction coefficient of 0.55 at a frequency range of 250-3000 Hz (for a 15 mm thick sample), a thermal conductivity of 0.042 W m-1 K-1 , and an energy absorption of 18 kJ m-3 at 50% strain. It is also hydrophobic, repairable, and recyclable. It is expected that the hierarchical porous structural composite with excellent thermal and mechanical properties can make a significant impact on the future development of highly sustainable alternatives to lightweight plastic foams.
Collapse
Affiliation(s)
- Mingchang Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Xue
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Runhua Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wenliang Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yao Peng
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Mingzhi Wang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jinzhen Cao
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
32
|
Du Y, Liu S, Li Y, Chen X, Ho TC, Chao LC, Tso CY. Perovskite-Coated Thermochromic Transparent Wood: A Novel Material for Smart Windows in Energy-Efficient and Sustainable Buildings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49665-49677. [PMID: 37847175 DOI: 10.1021/acsami.3c11706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Transparent wood (TW) has emerged as a sustainable alternative to conventional glass as an energy-efficient window glazing material owing to its exceptional optical transparency and superior mechanical and thermal performances. However, it is challenging to develop the TW-based color-switching smart windows with both high optical performance and mechanical strengths. In this work, an optically switchable and mechanically robust perovskite-coated thermochromic transparent wood (PTTW) is developed for use as smart windows to achieve an effective solar modulation and thermal management. PTTW exhibits a substantial solar modulation ability Δτsol of 21.6% and a high clear-state luminous transmittance τlum of 78.0%, which enable an efficient thermal regulation while ensuring high visual clarity. PTTW also offers enhanced mechanical properties (i.e., tensile strength σtens = 71.4 MPa and flexural strength σflex = 93.1 MPa) and improved thermal properties [i.e., thermal conductivity K = 0.247 W/(m·K) and heat capacity C = 1.69 J/(g·°C)] compared to glass-based smart windows, as well as excellent performance stability (i.e., 200 heating-cooling cycles), manifesting its applicability in real building scenarios. In addition, PTTW also demonstrates a remarkable thermal-regulating performance (i.e., 5.44 °C indoor air temperature regulation) and an energy-saving potential (i.e., 12.9% heating, ventilation, and air conditioning energy savings) in Hong Kong. Overall, this study contributes to the progression toward energy-efficient and sustainable buildings.
Collapse
Affiliation(s)
- Yuwei Du
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Sai Liu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xu Chen
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Luke Christopher Chao
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
33
|
Yu S, Zhou Y, Gan M, Chen L, Xie Y, Zhong Y, Feng Q, Chen C. Lignocellulose-Based Optical Biofilter with High Near-Infrared Transmittance via Lignin Capturing-Fusing Approach. RESEARCH (WASHINGTON, D.C.) 2023; 6:0250. [PMID: 37869743 PMCID: PMC10585486 DOI: 10.34133/research.0250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Near-infrared (NIR) transparent optical filters show great promise in night vision and receiving windows. However, NIR optical filters are generally prepared by laborious, environmentally unfriendly processes that involve metal oxides or petroleum-based polymers. We propose a lignin capturing-fusing approach to manufacturing optical biofilters based on molecular collaboration between lignin and cellulose from waste agricultural biomass. In this process, lignin is captured via self-assembly in a cellulose network; then, the lignin is fused to fill gaps and hold the cellulose fibers tightly. The resulting optical biofilter featured a dense structure and smooth surface with NIR transmittance of ~90%, ultralow haze of close to 0%, strong ultraviolet-visible light blocking (~100% at 400 nm and 57.58% to 98.59% at 550 nm). Further, the optical biofilter has comprehensive stability, including water stability, solvent stability, thermal stability, and environmental stability. Because of its unique properties, the optical biofilter demonstrates potential applications in the NIR region, such as an NIR-transmitting window, NIR night vision, and privacy protection. These applications represent a promising route to produce NIR transparent optical filters starting from lignocellulose biomass waste.
Collapse
Affiliation(s)
- Shixu Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yifang Zhou
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Meixue Gan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yuning Zhong
- Hubei Open University, Wuhan 430074, China
- Hubei Open University, Wuhan 430074, China
| | - Qinghua Feng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- Hubei Open University, Wuhan 430074, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
- Hubei Open University, Wuhan 430074, China
| |
Collapse
|
34
|
Anish MC, Pandey KK, Kumar R. Transparent wood composite prepared from two commercially important tropical timber species. Sci Rep 2023; 13:14915. [PMID: 37689764 PMCID: PMC10492833 DOI: 10.1038/s41598-023-42242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
Transparent wood (TW) has garnered significant global attention due to its unique properties. In this study, TW composites were fabricated using two timber species of different density classes: Ailanthus triphysa (common name: Ailanthus wood) and Hevea brasiliensis (common name: Rubberwood). Sodium hydroxide (NaOH) and Hydrogen peroxide-based alkali method was used to modify the lignin in these veneer samples, producing a white cellulose template with a fully intact hierarchical cell structure. Subsequently, a cost-effective thermosetting unsaturated polyester resin (UPR) was infiltrated into the redesigned framework and polymerized to create rigid nanostructured transparent composites. High optical haze (of 94% and 89%) and favourable light transmittance of 59 and 55 percent were exhibited by the UPR-TW composites made from rubberwood and ailanthus wood, respectively. TW was characterised using Scanning electron microscopy and Fourier-transform infrared spectroscopy. The mechanical properties of TW were measured and compared with those of natural wood and pure-polymer. Furthermore, the anisotropic light diffusion behaviour displayed by TW in accordance with the fibre orientation indicates the utility of material as a potential light shaping device. Therefore, a cost-effective and commercially viable strategy to fabricate multipurpose TW composites using a combination of lesser-known timber species (LKTS) and UPR resin was successfully demonstrated.
Collapse
Affiliation(s)
- M C Anish
- Institute of Wood Science and Technology, Bengaluru, Karnataka, India.
- Department of Forest Products and Utilization, College of Forestry, Kerala Agricultural University, Thrissur, Kerala, India.
| | - Krishna K Pandey
- Institute of Wood Science and Technology, Bengaluru, Karnataka, India
| | - Rakesh Kumar
- Institute of Wood Science and Technology, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Chen C, Zhou T, Wan Z, Xu Z, Jin Y, Li D, Rojas OJ. Insulative Biobased Glaze from Wood Laminates Obtained by Self-Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301472. [PMID: 37218011 DOI: 10.1002/smll.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The combination of optical transparency and mechanical strength is a highly desirable attribute of wood-based glazing materials. However, such properties are typically obtained by impregnation of the highly anisotropic wood with index-matching fossil-based polymers. In addition, the presence of hydrophilic cellulose leads to a limited water resistance. Herein, this work reports on an adhesive-free lamination that uses oxidation and densification to produce transparent all-biobased glazes. The latter are produced from multilayered structures, free of adhesives or filling polymers, simultaneously displaying high optical clarity and mechanical strength, in both dry and wet conditions. Specifically, high values of optical transmittance (≈85.4%), clarity (≈20% with low haze) at a thickness of ≈0.3 mm, and highly isotropic mechanical strength and water resistance (wet strength of ≈128.25 MPa) are obtained for insulative glazes exhibiting low thermal conductivity (0.27 W m-1 K-1 , almost four times lower than glass). The proposed strategy results in materials that are systematically tested, with the leading effects of self-adhesion induced by oxidation rationalized by ab initio molecular dynamics simulation. Overall, this work demonstrates wood-derived materials as promising solutions for energy-efficient and sustainable glazing applications.
Collapse
Affiliation(s)
- Chuchu Chen
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
- College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Tong Zhou
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yongcan Jin
- College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Dagang Li
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
36
|
Ji Z, Zhao J, Feng S, Zhu F, Yu W, Ye Y, Zheng Q. Insight into the Charge-Ratio-Tuned Solar Vapor Generation of Polyion Complex Hydrogel/Coal Powder Composites. Polymers (Basel) 2023; 15:polym15112449. [PMID: 37299246 DOI: 10.3390/polym15112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Solar-driven water purification has been deemed a promising technology to address the issue of clean water scarcity. However, traditional solar distillers often suffer from low evaporation rates under natural sunlight irradiation, while the high costs of the fabrication of photothermal materials further hinders their practical applications. Here, through the harnessing of the complexation process of oppositely charged polyelectrolyte solutions, a polyion complex hydrogel/coal powder composite (HCC)-based highly efficient solar distiller is reported. In particular, the influence of the charge ratio of polyanion-to-polycation on the solar vapor generation performance of HCC has been systematically investigated. Together with a scanning electron microscope (SEM) and the Raman spectrum method, it is found that a deviation from the charge balance point not only alters the microporous structure of HCC and weakens its water transporting capabilities, but also leads to a decreased content of activated water molecules and enlarges the energy barrier of water evaporation. As a result, HCC prepared at the charge balance point exhibits the highest evaporation rate of 3.12 kg m-2 h-1 under one sun irradiation, with a solar-vapor conversion efficiency as high as 88.83%. HCC also exhibits remarkable solar vapor generation (SVG) performance for the purification of various water bodies. In simulated seawater (3.5 wt% NaCl solutions), the evaporation rate can be as high as 3.22 kg m-2 h-1. In acid and alkaline solutions, HCCs are capable of maintaining high evaporation rates of 2.98 and 2.85 kg m-2 h-1, respectively. It is anticipated that this study may provide insights for the design of low-cost next-generation solar evaporators, and broaden the practical applications of SVG for seawater desalination and industrial wastewater purification.
Collapse
Affiliation(s)
- Zhiteng Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianhang Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shanhao Feng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Wenwen Yu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
37
|
Wang S, Li L, Zha L, Koskela S, Berglund LA, Zhou Q. Wood xerogel for fabrication of high-performance transparent wood. Nat Commun 2023; 14:2827. [PMID: 37198187 DOI: 10.1038/s41467-023-38481-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Optically transparent wood has been fabricated by structure-retaining delignification of wood and subsequent infiltration of thermo- or photocurable polymer resins but still limited by the intrinsic low mesopore volume of the delignified wood. Here we report a facile approach to fabricate strong transparent wood composites using the wood xerogel which allows solvent-free infiltration of resin monomers into the wood cell wall under ambient conditions. The wood xerogel with high specific surface area (260 m2 g-1) and high mesopore volume (0.37 cm3 g-1) is prepared by evaporative drying of delignified wood comprising fibrillated cell walls at ambient pressure. The mesoporous wood xerogel is compressible in the transverse direction and provides precise control of the microstructure, wood volume fraction, and mechanical properties for the transparent wood composites without compromising the optical transmittance. Transparent wood composites of large size and high wood volume fraction (50%) are successfully prepared, demonstrating potential scalability of the method.
Collapse
Affiliation(s)
- Shennan Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Lengwan Li
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Li Zha
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Salla Koskela
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Lars A Berglund
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden.
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.
| |
Collapse
|
38
|
Zhai Y, Li S, Li J, Liu S, James TD, Sessler JL, Chen Z. Room temperature phosphorescence from natural wood activated by external chloride anion treatment. Nat Commun 2023; 14:2614. [PMID: 37147300 PMCID: PMC10162966 DOI: 10.1038/s41467-023-37762-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
Producing afterglow room temperature phosphorescence (RTP) from natural sources is an attractive approach to sustainable RTP materials. However, converting natural resources to RTP materials often requires toxic reagents or complex processing. Here we report that natural wood may be converted into a viable RTP material by treating with magnesium chloride. Specifically, immersing natural wood into an aqueous MgCl2 solution at room temperature produces so-called C-wood containing chloride anions that act to promote spin orbit coupling (SOC) and increase the RTP lifetime. Produced in this manner, C-wood exhibits an intense RTP emission with a lifetime of ~ 297 ms (vs. the ca. 17.5 ms seen for natural wood). As a demonstration of potential utility, an afterglow wood sculpture is prepared in situ by simply spraying the original sculpture with a MgCl2 solution. C-wood was also mixed with polypropylene (PP) to generate printable afterglow fibers suitable for the fabrication of luminescent plastics via 3D printing. We anticipate that the present study will facilitate the development of sustainable RTP materials.
Collapse
Affiliation(s)
- Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China.
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, A5300, Austin, TX, USA.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
39
|
Zhang Z, Qing Y, Wang D, Li L, Wu Y. N-Doped Carbon Fibers Derived from Porous Wood Fibers Encapsulated in a Zeolitic Imidazolate Framework as an Electrode Material for Supercapacitors. Molecules 2023; 28:molecules28073081. [PMID: 37049844 PMCID: PMC10095649 DOI: 10.3390/molecules28073081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Developing highly porous and conductive carbon electrodes is crucial for high-performance electrochemical double-layer capacitors. We provide a method for preparing supercapacitor electrode materials using zeolitic imidazolate framework-8 (ZIF-8)-coated wood fibers. The material has high nitrogen (N)-doping content and a specific surface area of 593.52 m2 g-1. When used as a supercapacitor electrode, the composite exhibits a high specific capacitance of 270.74 F g-1, with an excellent capacitance retention rate of 98.4% after 10,000 cycles. The symmetrical supercapacitors (SSCs) with two carbon fiber electrodes (CWFZ2) showed a high power density of 2272.73 W kg-1 (at an energy density of 2.46 W h kg-1) and an energy density of 4.15 Wh kg-1 (at a power density of 113.64 W kg-1). Moreover, the SSCs maintained 81.21% of the initial capacitance after 10,000 cycles at a current density of 10 A g-1, which proves that the SSCs have good cycle stability. The excellent capacitance performance is primarily attributed to the high conductivity and N source provided by the zeolite imidazole framework. Because of this carbon material's unique structural features and N-doping, our obtained CWFZ2 electrode material could be a candidate for high-performance supercapacitor electrode materials.
Collapse
Affiliation(s)
- Zhen Zhang
- Hunan Provincial Collaborative Innovation Center for High-Efficiency Utilization of Wood and Bamboo Resources, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Forestry Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yan Qing
- Hunan Provincial Collaborative Innovation Center for High-Efficiency Utilization of Wood and Bamboo Resources, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Delong Wang
- Datang Hubei New Energy Division, Huanggang 438000, China
| | - Lei Li
- Hunan Provincial Collaborative Innovation Center for High-Efficiency Utilization of Wood and Bamboo Resources, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- Hunan Provincial Collaborative Innovation Center for High-Efficiency Utilization of Wood and Bamboo Resources, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
40
|
Chutturi M, Gillela S, Yadav SM, Wibowo ES, Sihag K, Rangppa SM, Bhuyar P, Siengchin S, Antov P, Kristak L, Sinha A. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161067. [PMID: 36565890 DOI: 10.1016/j.scitotenv.2022.161067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The uncertainties of the environment and the emission levels of nonrenewable resources have compelled humanity to develop sustainable energy savers and sustainable materials. One of the most abundant and versatile bio-based structural materials is wood. Wood has several promising advantages, including high toughness, low thermal conductivity, low density, high Young's modulus, biodegradability, and non-toxicity. Furthermore, while wood has many ecological and structural advantages, it does not meet optical transparency requirements. Transparent wood is ideal for use in various industries, including electronics, packaging, automotive, and construction, due to its high transparency, haze, and environmental friendliness. As a necessary consequence, current research on developing fine wood is summarized in this review. This review begins with an explanation of the history of fine wood. The concept and various synthesis strategies, such as delignification, refractive index measurement methods, and transparent lumber polymerization, are discussed. Approaches and techniques for the characterization of transparent wood are outlined, including microscopic, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. Furthermore, the characterization, physical properties, mechanical properties, optical properties, and thermal conductivity of transparent wood are emphasized. Eventually, a brief overview of the various applications of fine wood is presented. The present review summarized the first necessary actions toward future transparent wood applications.
Collapse
Affiliation(s)
- Mahesh Chutturi
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Swetha Gillela
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Sumit Manohar Yadav
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India; Centre of Advanced Materials, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Eko Setio Wibowo
- Research Center for Biomaterials, National Research and Innovation of Indonesia, Cibinong 16911, Indonesia; Department of Wood and Paper Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kapil Sihag
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Sanjay Mavinkere Rangppa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), 10800 Bangkok, Thailand
| | - Prakash Bhuyar
- International College (MJU-IC), Maejo University, Chiang Mai 50290, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), 10800 Bangkok, Thailand
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Arijit Sinha
- Department of Wood Science and Engineering, Oregon State University, 234 Richardson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
41
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
42
|
Zou H, Meng X, Zhao X, Qiu J. Hofmeister Effect-Enhanced Hydration Chemistry of Hydrogel for High-Efficiency Solar-Driven Interfacial Desalination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207262. [PMID: 36366909 DOI: 10.1002/adma.202207262] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Solar-driven water evaporation technology holds great potential for mitigating the global water scarcity due to its high energy conversion efficiency. Lowering the vaporization enthalpy of water is key to boost the performance of solar-driven desalination. Herein, a highly hydratable hydrogel (PMH) network, consisting of modified needle coke as photothermal material and polyvinyl alcohol (PVA) as hydratable matrix, is crafted via simple physical cross-linking method. When capitalizing on the PMH as evaporator for 3.5 wt% NaCl solution, a high evaporation rate of 3.18 kg m-2 h-1 under one sun illumination is deliver ed, unexpectedly outperforming that in pure water (2.53 kg m-2 h-1 ). More importantly, the PMH shows a robust desalination durability, thus enabling a self-cleaning system. Further investigations reveal that the outstanding evaporation performance of PMH in brine roots in its hydrability tuned by chaotropic Cl- , wherein the Cl- can mediate the hydration chemistry of PVA in PMH and suppress related crystallinity, thus contributing to the increased content of intermediate water and the lowered vaporization enthalpy of brine. This work first scrutinizes the Hofmeister effect on the evaporation behavior of PMH evaporator in brine and provides insights for high-efficiency solar-driven interfacial desalination.
Collapse
Affiliation(s)
- Hongqi Zou
- State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangtong Meng
- State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhao
- State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jieshan Qiu
- State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
43
|
Han X, Ding L, Tian Z, Song Y, Xiong R, Zhang C, Han J, Jiang S. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. Int J Biol Macromol 2023; 224:1236-1243. [PMID: 36550788 DOI: 10.1016/j.ijbiomac.2022.10.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In order to reduce the dependence on fossil energy products, natural fiber/polymer hybrid composites have been increasingly researched. The high price of the quartz optical fibers and glass optical fibers has greatly inspired researchers to engage in the research on polymer optical fibers. Herein, transparent fibers based on plant fibers were innovatively prepared for the first time by delignification and impregnating epoxy diluted with acetone. The epoxy improved the thermal stability of the fiber without deteriorating its mechanical properties, and also endowed the fiber with the property of transparency. The tensile strength of transparent fibers of three diameters were 34.5, 58.6 and 100.3 MPa, respectively and the corresponding Young's modulus reached 1.1, 1.7 and 2.3 GPa, respectively. In addition, the light-conducting properties of transparent fibers were displayed with a green laser and the fibers displayed good light transmission along the fiber growth direction. Transparent fibers are expected to be used in optical fibers because of their high thermal stability, good mechanical properties and light-conducting properties.
Collapse
Affiliation(s)
- Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linhu Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
44
|
Wang Y, Wang T, Liu Y, Geng HZ, Zhang L. Environment-friendly AgNWs/Ti 3C 2T x transparent conductive film based on natural fish gelatin for degradable electronics. Front Chem 2022; 10:973115. [PMID: 35991595 PMCID: PMC9388723 DOI: 10.3389/fchem.2022.973115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, the electronic waste (E-waste) has become the most serious environmental trouble because of the iteration of electronic products. Transparent conductive films (TCFs) are the key component of flexible electronic devices, so the development of devices based on degradable TCFs has become an important way to alleviate the problem of E-waste. Gelatin, one of the most prevalent natural biomacromolecules, has drawn increasing attention due to its good film-forming ability, superior biocompatibility, excellent degradability, and commercial availability at a relatively low cost, but has few applications in flexible electronics. Here, we report a method for preparing flexible TCF based on naturally degradable material-fish gelatin, in which silver nanowires and Ti3C2Tx flakes were used as conductive fillers. The obtained TCF has low roughness (RMS roughness = 5.62 nm), good photoelectric properties (Rs = 25.2 Ω/sq., T = ca.85% at 550 nm), strong interfacial adhesion and good degradability. Moreover, the film showed excellent application in the field of EMI shielding and green light OLED device. We believe that these TCFs will shine in the smart wearable field in the future.
Collapse
Affiliation(s)
- Yuzhou Wang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, China
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, China
- Sinopec Petroleum Engineering Zhongyuan Corporation, Zhengzhou, China
| | - Yan Liu
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hong-Zhang Geng
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Lianzhong Zhang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Facile and green synthesis of nanocellulose with the assistance of ultraviolet light irradiation for high-performance quasi-solid-state zinc-ion batteries. J Colloid Interface Sci 2022; 628:1-9. [PMID: 35908426 DOI: 10.1016/j.jcis.2022.07.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Benefiting from excellent mechanical properties, large surface area, rich hydroxyl groups, good sustainability, etc., nanocellulose is highly promising for various applications. However, intense chemical treatment and long-term processing are usually required to fabricate nanocellulose. Herein, a new synthesis method of nanocellulose is developed by using ultraviolet light irradiation-assisted delignification and subsequent sonification. This method is more cost-effective, time-saving, and environmentally benign compared to most of previously reported synthesis methods of nanocellulose. The obtained nanocellulose contains a small amount of lignin, which is unfavorable for high-temperature stability and optimal transparency. However, a small amount of lignin is beneficial to mechanical properties and in-water stability. With this nanocellulose, flexible MnO2 cathode film and hydrogel electrolyte are constructed and a quasi-solid-state zinc-ion battery is assembled. The battery exhibits 233.3 mAh g-1 after 1000 cycles at 1 A g-1 and 20 ℃. And more than half of that capacity can be maintained at -20 ℃. The battery also possesses great rate capability and good endurance to external forces. This work provides new insights into the synthesis and application of nanocellulose.
Collapse
|
46
|
Ultraviolet-Assisted Modified Delignified Wood with High Transparency. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The substrate of solar cells with high haze, transparent, flexible, green and low coatings will be needed in the future. This paper reports a method for ultraviolet-assisted delignification of wood in an alkaline solution environment to improve the transmittance of “transparent wood”. Scanning electron microscope (SEM), X-ray diffraction image (XRD), Fourier transform infrared (FTIR) spectroscopy and transmittance-haze and chemical composition analysis were used to explore the mechanisms underlying the effect of ultraviolet-assisted lignin modification on the optical properties of “transparent wood”. The results show that UV-assisted delignification accelerates the rate of removal of lignin and chromogenic groups, which in turn improves the optical properties of the “transparent wood”, with UV-assisted lignin modification for 2 h increasing the light transmission of the “transparent wood” by 20%. UV-assisted delignification for 4 h and impregnation resulted in “transparent wood” with a transparency of 71% and a haze of 90%. This report provides a rapid and easy method to prepare high-quality “transparent wood”. The “transparent wood” with high transmittance and high haze is a potential candidate for transparent solar substrates. Meanwhile, this method is enlightening for high quality, fast and green preparation of other derived functional materials based on lignin wood.
Collapse
|
47
|
Van Hai L, Pham DH, Kim J. Effect of Bleaching and Hot-Pressing Conditions on Mechanical Properties of Compressed Wood. Polymers (Basel) 2022; 14:polym14142901. [PMID: 35890678 PMCID: PMC9322156 DOI: 10.3390/polym14142901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
This paper reports on multiple stage bleaching and its effect on the mechanical and swelling properties of compressed wood (CW). The natural wood specimen was bleached with NaClO2 in five steps and three hot-pressing conditions. Their effects were investigated in morphologies: lignin content, alpha-cellulose content, compression ratio, mechanical properties, swelling and, water contact angle. After compression, the wood specimens became dense and the most porous structures collapsed. The lignin content decreased as the bleaching steps progressed, and the highest alpha-cellulose content was observed at the third bleaching step. This CW showed the best mechanical properties: bending strength was 240.1 ± 35.7 MPa, and Young’s modulus was 23.08 ± 0.89 Gpa. The CW swelling decreased as the bleaching step progressed, and was associated with the density decrease and the compression ratio increase with the bleaching step. The B3 is an optimum bleaching step that accounts for the best mechanical properties, which might be associated with the highest alpha-cellulose content.
Collapse
Affiliation(s)
- Le Van Hai
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100 Inha-ro, Michuhol-ku, Incheon 22212, Korea; (L.V.H.); (D.H.P.)
- Pulp and Paper Dept, Phutho College of Industry and Trade, Phongchau, Phuninh, Phutho 290000, Vietnam
| | - Duc Hoa Pham
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100 Inha-ro, Michuhol-ku, Incheon 22212, Korea; (L.V.H.); (D.H.P.)
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100 Inha-ro, Michuhol-ku, Incheon 22212, Korea; (L.V.H.); (D.H.P.)
- Correspondence: ; Tel.: +82-32-874-7325
| |
Collapse
|
48
|
Li K, Zhao L, Ren J, He B. Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures. Molecules 2022; 27:molecules27134167. [PMID: 35807412 PMCID: PMC9268594 DOI: 10.3390/molecules27134167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, densified wood was prepared by hot pressing after partial lignin and hemicellulose were removed through alkaline solution cooking. The tensile strength and elastic modulus of densified wood were improved up to 398.5 MPa and 22.5 GPa as compared with the original wood, and the characterization of its supramolecular structures showed that the crystal plane spacing of the densified wood decreased, the crystallite size increased, and the maximum crystallinity (CI) of cellulose increased by 15.05%; outstandingly, the content of O(6)H⋯O(3′) intermolecular H-bonds increased by approximately one-fold at most. It was found that the intermolecular H-bond content was significantly positively correlated with the tensile strength and elastic modulus, and accordingly, their Pearson correlation coefficients were 0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. This work provides a supramolecular explanation for the enhancement of tensile strength of densified wood.
Collapse
|
49
|
Jiang Y, Wang Z, Zhou L, Jiang S, Liu X, Zhao H, Huang Q, Wang L, Chen G, Wang S. Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. Int J Biol Macromol 2022; 206:264-276. [PMID: 35240206 DOI: 10.1016/j.ijbiomac.2022.02.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Transparent lignocellulose nanopaper (LNP) has been demonstrated to be a promising candidate light-management material for next-generation optical engineering applications. Similar to its role in plant cell walls, lignin serves as a vital functional component in LNP matrices. However, its intrinsic light absorption property renders LNP undesirable for a range of optical management systems. Here, a highly efficient, controllable and ecofriendly lignin modification strategy is developed for modulating the optical performance of LNPs by taking advantage of the beneficial synergistic effect of H2O2 and UV light in selectively eliminating lignin chromophores. The obtained lignin-modified LNP features not only a high visible light transmittance (89%) but also a high haze (90%) and excellent UV-shielding capacity, owing to the well-preserved lignin aromatic skeleton structures after lignin modification. Furthermore, patterning is easily achieved on hot-pressing-induced densified LNPs through a selective lignin modification approach, which endows LNPs with intriguing optical designability. Benefitting from the multifunctionality of lignin components for nanopaper matrices, patterned LNPs demonstrate outstanding water and thermal stability, barrier properties, durability and biodegradability, which are of great significance for practical applications. Furthermore, we demonstrate the great applicability of this optically designable and multifunctional LNP as a light-management material for energy efficient buildings by highlighting its attractive sun- and indoor- light managing effects, effective thermal insulation, as well as superior durability for long-term use. In combination with its efficient, ecofriendly and controllable production, this novel high-performing LNP holds great potential in many other applications that require light-management structural materials, such as optoelectronic and sensing devices.
Collapse
Affiliation(s)
- Yan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zehai Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lin Zhou
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xiuyu Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Daxue Road 158, Nanning 530006, PR China; Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, PR China.
| | - Hui Zhao
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Daxue Road 158, Nanning 530006, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, PR China
| | - Lijun Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| |
Collapse
|
50
|
Sonne C, Xia C, Lam SS. Is engineered wood China's way to carbon neutrality? JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|