1
|
Yang Q, Cai Y, Wang Z, Guo S, Qiu S, Zhang A. Understanding the physiological mechanisms and therapeutic targets of diseases: Lipidomics strategies. Life Sci 2025; 363:123411. [PMID: 39848598 DOI: 10.1016/j.lfs.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
As a pivotal branch of metabolomics, lipidomics studies global changes in lipid metabolism under different physiological and pathological conditions or drug interventions, discovers key lipid markers, and elaborates the associated lipid metabolism network. There are a considerable number of lipids in the host, which act on various functional networks such as metabolism and immune regulation. As an indispensable research method, lipidomics plays a key character in the analysis of lipid composition in organisms, the elaboration of the physiological mechanism of lipids, and the decoding of their character in the occurrence and development of diseases by exploring the character of lipids in the host environmental network. As an essential means of driving lipidomics research, High-throughput and High-resolution mass spectrometry is helpful in exploring disease phenotypic characteristics, diagnosing disease biomarkers, regulating related metabolic pathways, and discovering related active components. In this paper, we discuss the specific role of lipidomics in the analysis of disease diagnosis, prognosis and treatment, which is conducive to the realization of accurate and personalized medicine.
Collapse
Affiliation(s)
- Qiang Yang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Cai
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Sifan Guo
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| |
Collapse
|
2
|
Owusu SB, Russell E, Ekanayake AB, Tivanski AV, Petronek MS. Iron promotes isocitrate dehydrogenase mutant glioma cell motility. Free Radic Biol Med 2025; 226:109-116. [PMID: 39551451 DOI: 10.1016/j.freeradbiomed.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Enriched iron metabolic features such as high transferrin receptor (TfR) expression and high iron content are commonly observed in aggressive gliomas and can be associated with poor clinical responses. However, the underlying question of how iron contributes to tumor aggression remains elusive. Gliomas harboring isocitrate dehydrogenase (IDH) mutations account for a high percentage (>70 %) of recurrent tumors and cells with an acquired IDH mutation have been reported to have increased motility and invasion. This study aims to investigate how an acquired IDH mutation modulates iron metabolism and the implication(s) of iron on tumor cell growth. IDH mutant cells (U87R132H) grow significantly faster which is accompanied with increased TfR expression and iron uptake in vitro compared to wild-type U87 cells. This phenotype is retained in vivo. Biomechanically, U87R132H cells are significantly less stiff and supplementation with ferrous ammonium sulfate (Fe2+) augments membrane fluidity to drive U87R132H cells into a super motile state. These findings provide insight into how an acquired IDH mutation may be able to modulate iron metabolism, allowing iron to serve as a biomechanical driver of tumor progression.
Collapse
Affiliation(s)
- Stephenson Boakye Owusu
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, USA
| | - Emily Russell
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, USA
| | | | | | - Michael S Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
4
|
Ghayee HK, Costa KA, Xu Y, Hatch HM, Rodriguez M, Straight SC, Bustamante M, Yu F, Smagulova F, Bowden JA, Tevosian SG. Polyamine Pathway Inhibitor DENSPM Suppresses Lipid Metabolism in Pheochromocytoma Cell Line. Int J Mol Sci 2024; 25:10029. [PMID: 39337514 PMCID: PMC11432427 DOI: 10.3390/ijms251810029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pheochromocytomas (PCCs) are tumors arising from chromaffin cells in the adrenal medulla, and paragangliomas (PGLs) are tumors derived from extra-adrenal sympathetic or parasympathetic paraganglia; these tumors are collectively referred to as PPGL cancer. Treatment for PPGL primarily involves surgical removal of the tumor, and only limited options are available for treatment of the disease once it becomes metastatic. Human carriers of the heterozygous mutations in the succinate dehydrogenase subunit B (SDHB) gene are susceptible to the development of PPGL. A physiologically relevant PCC patient-derived cell line hPheo1 was developed, and SDHB_KD cells carrying a stable short hairpin knockdown of SDHB were derived from it. An untargeted metabolomic approach uncovered an overactive polyamine pathway in the SDHB_KD cells that was subsequently fully validated in a large set of human SDHB-mutant PPGL tumor samples. We previously reported that treatment with the polyamine metabolism inhibitor N1,N11-diethylnorspermine (DENSPM) drastically inhibited growth of these PCC-derived cells in culture as well as in xenograft mouse models. Here we explored the mechanisms underlying DENSPM action in hPheo1 and SDHB_KD cells. Specifically, by performing an RNAseq analysis, we have identified gene expression changes associated with DENSPM treatment that broadly interfere with all aspects of lipid metabolism, including fatty acid (FA) synthesis, desaturation, and import/uptake. Furthermore, by performing an untargeted lipidomic liquid chromatography-mass spectrometry (LC/MS)-based analysis we uncovered specific groups of lipids that are dramatically reduced as a result of DENSPM treatment. Specifically, the bulk of plasmanyl ether lipid species that have been recently reported as the major determinants of cancer cell fate are notably decreased. In summary, this work suggests an intersection between active polyamine and lipid pathways in PCC cells.
Collapse
Affiliation(s)
- Hans K. Ghayee
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
| | - Kaylie A. Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Yiling Xu
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
| | - Heather M. Hatch
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Mateo Rodriguez
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Shelby C. Straight
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Marian Bustamante
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Fahong Yu
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA;
| | - Fatima Smagulova
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), Campus Sante de Villejean—UMR_S 1085, F-35000 Rennes, France;
| | - John A. Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Sergei G. Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| |
Collapse
|
5
|
Tebbji F, Menon ACT, Khemiri I, St-Cyr DJ, Villeneuve L, Vincent AT, Sellam A. Small molecule inhibitors of fungal Δ(9) fatty acid desaturase as antifungal agents against Candida auris. Front Cell Infect Microbiol 2024; 14:1434939. [PMID: 39282497 PMCID: PMC11392922 DOI: 10.3389/fcimb.2024.1434939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Candida auris has emerged as a significant healthcare-associated pathogen due to its multidrug-resistant nature. Ongoing constraints in the discovery and provision of new antifungals create an urgent imperative to design effective remedies to this pressing global blight. Herein, we screened a chemical library and identified aryl-carbohydrazide analogs with potent activity against both C. auris and the most prevalent human fungal pathogen, C. albicans. SPB00525 [N'-(2,6-dichlorophenyl)-5-nitro-furan-2-carbohydrazide] exhibited potent activity against different strains that were resistant to standard antifungals. Using drug-induced haploinsufficient profiling, transcriptomics and metabolomic analysis, we uncovered that Ole1, a Δ(9) fatty acid desaturase, is the likely target of SPB00525. An analog of the latter, HTS06170 [N'-(2,6-dichlorophenyl)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide], had a superior antifungal activity against both C. auris and C. albicans. Both SPB00525 and HTS06170 act as antivirulence agents and inhibited the invasive hyphal growth and biofilm formation of C. albicans. SPB00525 and HTS06170 attenuated fungal damage to human enterocytes and ameliorate the survival of Galleria mellonella larvae used as systemic candidiasis model. These data suggest that inhibiting fungal Δ(9) fatty acid desaturase activity represents a potential therapeutic approach for treating fungal infection caused by the superbug C. auris and the most prevalent human fungal pathogen, C. albicans.
Collapse
Affiliation(s)
- Faiza Tebbji
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Anagha C T Menon
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Inès Khemiri
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Daniel J St-Cyr
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis Villeneuve
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Antony T Vincent
- Department of Animal Sciences, Université Laval, Quebec City, QC, Canada
- Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Oatman N, Gawali MV, Congrove S, Caceres R, Sukumaran A, Gupta N, Murugesan N, Arora P, Subramanian SV, Choi K, Abdel-Malek Z, Reisz JA, Stephenson D, Amaravadi R, Desai P, D’Alessandro A, Komurov K, Dasgupta B. A Multimodal Drug-Diet-Immunotherapy Combination Restrains Melanoma Progression and Metastasis. Cancer Res 2024; 84:2333-2351. [PMID: 38885087 PMCID: PMC11250569 DOI: 10.1158/0008-5472.can-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mruniya V. Gawali
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sunny Congrove
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Roman Caceres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Abitha Sukumaran
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Narmadha Murugesan
- Divisions of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | | | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
8
|
Terry AR, Hay N. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol Sci 2024; 45:537-551. [PMID: 38762377 PMCID: PMC11162322 DOI: 10.1016/j.tips.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells perturb lipid metabolic pathways for a variety of pro-tumorigenic functions, and deregulated cellular metabolism is a hallmark of cancer cells. Although alterations in lipid metabolism in cancer cells have been appreciated for over 20 years, there are no FDA-approved cancer treatments that target lipid-related pathways. Recent advances pertaining to cancer cell fatty acid synthesis (FAS), desaturation, and uptake, microenvironmental and dietary lipids, and lipid metabolism of tumor-infiltrating immune cells have illuminated promising clinical applications for targeting lipid metabolism. This review highlights emerging pathways and targets for tumor lipid metabolism that may soon impact clinical treatment.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Kula J, Kuter KZ. MUFA synthesis and stearoyl-CoA desaturase as a new pharmacological target for modulation of lipid and alpha-synuclein interaction against Parkinson's disease synucleinopathy. Neuropharmacology 2024; 249:109865. [PMID: 38342377 DOI: 10.1016/j.neuropharm.2024.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.
Collapse
Affiliation(s)
- Joanna Kula
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| | - Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| |
Collapse
|
10
|
Kim SI, Kim H, Dan K, Park H, Lee C, Kim HS, Chung HH, Kim J, Park NH, Han D, Lee M. Proteomic landscaping of high-grade serous ovarian carcinoma identifies stearoyl-CoA desaturase 5 as a potential predictive biomarker for poly(ADP-ribose) polymerase inhibitor response. Clin Transl Med 2024; 14:e1693. [PMID: 38720404 PMCID: PMC11079157 DOI: 10.1002/ctm2.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
| | - Hong‐Beom Park
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Jae‐Weon Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
- Department of MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Maria Lee
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
11
|
Yang M, Su Y, Xu K, Zheng H, Cai Y, Wen P, Yang Z, Liu L, Xu P. Develop a Novel Signature to Predict the Survival and Affect the Immune Microenvironment of Osteosarcoma Patients: Anoikis-Related Genes. J Immunol Res 2024; 2024:6595252. [PMID: 39431237 PMCID: PMC11491172 DOI: 10.1155/2024/6595252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Osteosarcoma (OS) represents a prevalent primary bone neoplasm predominantly affecting the pediatric and adolescent populations, presenting a considerable challenge to human health. The objective of this investigation is to develop a prognostic model centered on anoikis-related genes (ARGs), with the aim of accurately forecasting the survival outcomes of individuals diagnosed with OS and offering insights into modulating the immune microenvironment. Methods The study's training cohort comprised 86 OS patients sourced from The Cancer Genome Atlas database, while the validation cohort consisted of 53 OS patients extracted from the Gene Expression Omnibus database. Differential analysis utilized the GSE33382 dataset, encompassing three normal samples and 84 OS samples. Subsequently, the study executed gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses. Identification of differentially expressed ARGs associated with OS prognosis was carried out through univariate COX regression analysis, followed by LASSO regression analysis to mitigate overfitting risks and construct a robust prognostic model. Model accuracy was assessed via risk curves, survival curves, receiver operating characteristic curves, independent prognostic analysis, principal component analysis, and t-distributed stochastic neighbor embedding (t-SNE) analysis. Additionally, a nomogram model was devised, exhibiting promising potential in predicting OS patient prognosis. Further investigations incorporated gene set enrichment analysis to delineate active pathways in high- and low-risk groups. Furthermore, the impact of the risk prognostic model on the immune microenvironment of OS was evaluated through tumor microenvironment analysis, single-sample gene set enrichment analysis (ssGSEA), and immune infiltration cell correlation analysis. Drug sensitivity analysis was conducted to identify potentially effective drugs for OS treatment. Ultimately, the verification of the implicated ARGs in the model construction was conducted through the utilization of real-time quantitative polymerase chain reaction (RT-qPCR). Results The ARGs risk prognostic model was developed, comprising seven high-risk ARGs (CBS, MYC, MMP3, CD36, SCD, COL13A1, and HSP90B1) and four low-risk ARGs (VASH1, TNFRSF1A, PIP5K1C, and CTNNBIP1). This prognostic model demonstrates a robust capability in predicting overall survival among patients. Analysis of immune correlations revealed that the high-risk group exhibited lower immune scores compared to the low-risk group within our prognostic model. Specifically, CD8+ T cells, neutrophils, and tumor-infiltrating lymphocytes were notably downregulated in the high-risk group, alongside significant downregulation of checkpoint and T cell coinhibition mechanisms. Additionally, three immune checkpoint-related genes (CD200R1, HAVCR2, and LAIR1) displayed significant differences between the high- and low-risk groups. The utilization of a nomogram model demonstrated significant efficacy in prognosticating the outcomes of OS patients. Furthermore, tumor metastasis emerged as an independent prognostic factor, suggesting a potential association between ARGs and OS metastasis. Notably, our study identified eight drugs-Bortezomib, Midostaurin, CHIR.99021, JNK.Inhibitor.VIII, Lenalidomide, Sunitinib, GDC0941, and GW.441756-as exhibiting sensitivity toward OS. The RT-qPCR findings indicate diminished expression levels of CBS, MYC, MMP3, and PIP5K1C within the context of OS. Conversely, elevated expression levels were observed for CD36, SCD, COL13A1, HSP90B1, VASH1, and CTNNBIP1 in OS. Conclusion The outcomes of this investigation present an opportunity to predict the survival outcomes among individuals diagnosed with OS. Furthermore, these findings hold promise for progressing research endeavors focused on prognostic evaluation and therapeutic interventions pertaining to this particular ailment.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Litwiniuk-Kosmala M, Makuszewska M, Niemczyk K, Bartoszewicz R, Wojtas B, Gielniewski B. High-throughput RNA sequencing identifies the miRNA expression profile, target genes, and molecular pathways contributing to growth of sporadic vestibular schwannomas. Acta Neurochir (Wien) 2024; 166:71. [PMID: 38329606 DOI: 10.1007/s00701-024-05984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE To assess the differences in the miRNA expression profile between small (stage I Koos classification) and large solid vestibular schwannoma (VS) tumors, using the RNA-seq technique. METHODS Twenty tumor samples (10 small and 10 large tumors) were collected from patients operated for VS in a Tertiary Academic Center. Tumor miRNA expression was analyzed using high-throughput RNA sequencing (RNA-seq) technique, with NovaSeq 6000 Illumina system. Bioinformatics analysis was done using statistical software R. Gene enrichment and functional analysis was performed using miRTargetLink 2.0 and DIANA miRpath 3.0 online tools. RESULTS We identified 9 differentially expressed miRNAs in large VS samples: miR-7, miR-142 (-3p and -5p), miR-155, miR-342, miR-1269, miR-4664, and miR-6503 were upregulated, whereas miR-204 was significantly down-regulated in comparison to small VS samples. Gene enrichment analysis showed that the most enriched target genes were SCD, TMEM43, LMNB2, JARID2, and CCND1. The most enriched functional pathways were associated with lipid metabolism, along with signaling pathways such as Hippo and FOXO signaling pathway. CONCLUSION We identified a set of 9 miRNAs that are significantly deregulated in large VS in comparison to small, intracanalicular tumors. The functional enrichment analysis of these miRNAs suggests novel mechanisms, such as that lipid metabolism, as well as Hippo and FOxO signaling pathways that may play an important role in VS growth regulation.
Collapse
Affiliation(s)
| | - Maria Makuszewska
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Robert Bartoszewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
13
|
Guo Z, Huo X, Li X, Jiang C, Xue L. Advances in regulation and function of stearoyl-CoA desaturase 1 in cancer, from bench to bed. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2773-2785. [PMID: 37450239 DOI: 10.1007/s11427-023-2352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids. The expression of SCD1 is increased in many cancers, and the altered expression contributes to the proliferation, invasion, sternness and chemoresistance of cancer cells. Recently, more evidence has been reported to further support the important role of SCD1 in cancer, and the regulation mechanism of SCD1 has also been focused. Multiple factors are involved in the regulation of SCD1, including metabolism, diet, tumor microenvironment, transcription factors, non-coding RNAs, and epigenetics modification. Moreover, SCD1 is found to be involved in regulating ferroptosis resistance. Based on these findings, SCD1 has been considered as a potential target for cancer treatment. However, the resistance of SCD1 inhibition may occur in certain tumors due to tumor heterogeneity and metabolic plasticity. This review summarizes recent advances in the regulation and function of SCD1 in tumors and discusses the potential clinical application of targeting SCD1 for cancer treatment.
Collapse
Affiliation(s)
- Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xianlong Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, 100191, China.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
14
|
Zhu KG, Yang J, Zhu Y, Zhu Q, Pan W, Deng S, He Y, Zuo D, Wang P, Han Y, Zhang HY. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism. Cell Death Dis 2023; 14:708. [PMID: 37903800 PMCID: PMC10616111 DOI: 10.1038/s41419-023-06220-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Lymph node metastasis (LNM) is the prominent route of gastric cancer dissemination, and usually leads to tumor progression and a dismal prognosis of gastric cancer. Although exosomal lncRNAs have been reported to be involved in tumor development, whether secreted lncRNAs can encode peptides in recipient cells remains unknown. Here, we identified an exosomal lncRNA (lncAKR1C2) that was clinically correlated with lymph node metastasis in gastric cancer in a VEGFC-independent manner. Exo-lncAKR1C2 secreted from gastric cancer cells was demonstrated to enhance tube formation and migration of lymphatic endothelial cells, and facilitate lymphangiogenesis and lymphatic metastasis in vivo. By comparing the metabolic characteristics of LN metastases and primary focuses, we found that LN metastases of gastric cancer displayed higher lipid metabolic activity. Moreover, exo-lncAKR1C2 encodes a microprotein (pep-AKR1C2) in lymphatic endothelial cells and promotes CPT1A expression by regulating YAP phosphorylation, leading to enhanced fatty acid oxidation (FAO) and ATP production. These findings highlight a novel mechanism of LNM and suggest that the microprotein encoded by exosomal lncAKR1C2 serves as a therapeutic target for advanced gastric cancer.
Collapse
Affiliation(s)
- Ke-Gan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Jiayu Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Yuehong Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Qihang Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Wen Pan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Siyu Deng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi He
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Duo Zuo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Peiyun Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Yueting Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Hai-Yang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Cui Y, Luo J, Bai N, Yu Z. Deltex E3 ubiquitin ligase 4 promotes thyroid cancer progression through stearoyl-CoA desaturase 1. Funct Integr Genomics 2023; 23:280. [PMID: 37612343 DOI: 10.1007/s10142-023-01215-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In this study, we aimed to explore the molecular role of Deltex E3 ubiquitin ligase 4 (DTX4) in thyroid cancer (TC) both in vitro and in vivo. The expression level of DTX4 in TC tissues was compared using The Cancer Genome Atlas (TCGA) database. We subsequently evaluated cell proliferation and migration in DTX4 knock down or DTX4 overexpression TC cell lines (TPC-1 and K1) by CCK-8, cell colony formation, and transwell assays. RNA sequencing and KEGG analysis were employed to identify potential genes that interact with DTX4. Our results showed that DTX4 was expressed at higher levels in both TC tissues and cells compared to normal controls. Knock down of DTX4 expression significantly inhibited TC cell progression in vitro. Furthermore, knockdown of endogenous DTX4 by shDTX4 markedly abrogated tumor growth, with significantly smaller tumor size and lower tumor weight in the shDTX4 group compared to the shCtrl group. Conversely, overexpression of DTX4 enhanced TC cell proliferation and migration. Through RNA sequencing, we identified 590 Differentially Expressed Genes (DEGs), with stearoyl-CoA desaturase 1 (SCD) ranking as the top gene. A positive correlation between DTX4 and SCD was observed in TC samples. Additionally, treatment with an SCD inhibitor, A939572, significantly rescued the enhanced growth effect induced by DTX4 overexpression. In conclusion, this study demonstrated that DTX4 promotes TC progression through SCD, indicating that the DTX4/SCD axis could be a promising target for TC therapy.
Collapse
Affiliation(s)
- Yitong Cui
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Luo
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Nanfang Bai
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhaoyan Yu
- Center for Integrative and Translational Medicine, Shandong Public Health Clinical Center, No.46, Lidong Road 250015, Jinan, 230601, Shandong, China.
| |
Collapse
|
16
|
Wang BY, Chang YY, Shiu LY, Lee YJ, Lin YW, Hsu YS, Tsai HT, Hsu SP, Su LJ, Tsai MH, Xiao JH, Lin JA, Chen CH. An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4030-4043. [PMID: 37664175 PMCID: PMC10468324 DOI: 10.1016/j.csbj.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for General Education, Ming Dao University, Changhua, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ju Lee
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wei Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Shen Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jing-Hong Xiao
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, Han Y, Chen Y, Oyang L, Lin J, Xia L, Peng M, Wu N, Tang Y, Li J, Liao Q, Zhou Y. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med 2023; 55:1357-1370. [PMID: 37394582 PMCID: PMC10394076 DOI: 10.1038/s12276-023-01020-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic reprogramming and epigenetic modifications are hallmarks of cancer cells. In cancer cells, metabolic pathway activity varies during tumorigenesis and cancer progression, indicating regulated metabolic plasticity. Metabolic changes are often closely related to epigenetic changes, such as alterations in the expression or activity of epigenetically modified enzymes, which may exert a direct or an indirect influence on cellular metabolism. Therefore, exploring the mechanisms underlying epigenetic modifications regulating the reprogramming of tumor cell metabolism is important for further understanding tumor pathogenesis. Here, we mainly focus on the latest studies on epigenetic modifications related to cancer cell metabolism regulations, including changes in glucose, lipid and amino acid metabolism in the cancer context, and then emphasize the mechanisms related to tumor cell epigenetic modifications. Specifically, we discuss the role played by DNA methylation, chromatin remodeling, noncoding RNAs and histone lactylation in tumor growth and progression. Finally, we summarize the prospects of potential cancer therapeutic strategies based on metabolic reprogramming and epigenetic changes in tumor cells.
Collapse
Affiliation(s)
- Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yuyu Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
19
|
Shen J, Wu G, Pierce BS, Tsai AL, Zhou M. Free ferrous ions sustain activity of mammalian stearoyl-CoA desaturase-1. J Biol Chem 2023:104897. [PMID: 37290533 PMCID: PMC10359943 DOI: 10.1016/j.jbc.2023.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center, and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity, and hence lipid metabolism.
Collapse
Affiliation(s)
- Jiemin Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Wu
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA.
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ah-Lim Tsai
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA.
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Sen U, Coleman C, Sen T. Stearoyl coenzyme A desaturase-1: multitasker in cancer, metabolism, and ferroptosis. Trends Cancer 2023; 9:480-489. [PMID: 37029018 DOI: 10.1016/j.trecan.2023.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Cancer progression is a highly balanced process and is maintained by a sequence of finely tuned metabolic pathways. Stearoyl coenzyme A desaturase-1 (SCD1), the fatty enzyme that converts saturated fatty acids into monounsaturated fatty acids, is a critical modulator of the fatty acid metabolic pathway. SCD1 expression is associated with poor prognosis in several cancer types. SCD1 triggers an iron-dependent cell death called ferroptosis and elevated levels of SCD1 protect cancer cells against ferroptosis. Pharmacological inhibition of SCD1 as monotherapy and in combination with chemotherapeutic agents shows promising antitumor potential in preclinical models. In this review, we summarize the role of SCD in cancer cell progression, survival, and ferroptosis and discuss potential strategies to exploit SCD1 inhibition in future clinical trials.
Collapse
Affiliation(s)
- Utsav Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles Coleman
- The Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Huang G, Cierpicki T, Grembecka J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg Chem 2023; 135:106477. [PMID: 36989736 PMCID: PMC10718064 DOI: 10.1016/j.bioorg.2023.106477] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023]
Abstract
Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Fernández-García P, Malet-Engra G, Torres M, Hanson D, Rosselló CA, Román R, Lladó V, Escribá PV. Evolving Diagnostic and Treatment Strategies for Pediatric CNS Tumors: The Impact of Lipid Metabolism. Biomedicines 2023; 11:biomedicines11051365. [PMID: 37239036 DOI: 10.3390/biomedicines11051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.
Collapse
Affiliation(s)
- Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Gema Malet-Engra
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Derek Hanson
- Hackensack Meridian Health, 343 Thornall Street, Edison, NJ 08837, USA
| | - Catalina A Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Ramón Román
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| |
Collapse
|
23
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
25
|
Shen J, Wu G, Pierce BS, Tsai AL, Zhou M. Free ferrous ions sustain activity of mammalian stearoyl-CoA desaturase-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533000. [PMID: 36993326 PMCID: PMC10055294 DOI: 10.1101/2023.03.17.533000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid and the reaction is catalyzed by a diiron center, which is well-coordinated by conserved histidine residues and is thought to remain with enzyme. However, we find that SCD1 progressively loses its activity during catalysis and becomes fully inactive after nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center, and that the addition of free ferrous ions (Fe 2+ ) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe 2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe 2+ in cells could regulate SCD1 activity, and hence lipid metabolism.
Collapse
Affiliation(s)
- Jiemin Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Wu
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Brad S. Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ah-Lim Tsai
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
von Hanstein AS, Tsikas D, Lenzen S, Jörns A, Plötz T. Potentiation of Lipotoxicity in Human EndoC-βH1 β-Cells by Glucose is Dependent on the Structure of Free Fatty Acids. Mol Nutr Food Res 2023; 67:e2200582. [PMID: 36629272 DOI: 10.1002/mnfr.202200582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
SCOPE Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-βH1 β-cells. METHODS AND RESULTS β-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of β-cell dysfunction and death in the manifestation of T2DM.
Collapse
Affiliation(s)
- Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
27
|
Li G, Li X, Mahmud I, Ysaguirre J, Fekry B, Wang S, Wei B, Eckel-Mahan KL, Lorenzi PL, Lehner R, Sun K. Interfering with lipid metabolism through targeting CES1 sensitizes hepatocellular carcinoma for chemotherapy. JCI Insight 2023; 8:163624. [PMID: 36472914 PMCID: PMC9977307 DOI: 10.1172/jci.insight.163624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. In this study, we found that carboxylesterase 1 (CES1) is expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, lipidomic analyses indicated that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, the expression of SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the CES1-PPARα/γ-SCD axis sensitized HCC cells to cisplatin treatment. As a result, the growth of HCC xenograft tumors in NU/J mice was potently slowed by coadministration of cisplatin and CES1 inhibition. Our results, thus, suggest that CES1 is a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Gang Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuyue Wang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bo Wei
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Philip L. Lorenzi
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
28
|
Eyme KM, Sammarco A, Jha R, Mnatsakanyan H, Pechdimaljian C, Carvalho L, Neustadt R, Moses C, Alnasser A, Tardiff DF, Su B, Williams KJ, Bensinger SJ, Chung CY, Badr CE. Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models. Sci Transl Med 2023; 15:eabq6288. [PMID: 36652537 PMCID: PMC9942236 DOI: 10.1126/scitranslmed.abq6288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.
Collapse
Affiliation(s)
- Katharina M. Eyme
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095
| | - Roshani Jha
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Caline Pechdimaljian
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Litia Carvalho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115
| | - Rudolph Neustadt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Charlotte Moses
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Ahmad Alnasser
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | | | - Baolong Su
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Kevin J. Williams
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | | | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115,Correspondence:
| |
Collapse
|
29
|
Abstract
Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.
Collapse
Affiliation(s)
| | - Navdeep S. Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
30
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
31
|
Luo H, Wang X, Song S, Wang Y, Dan Q, Ge H. Targeting stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic cell death in esophageal squamous cell carcinoma. Oncoimmunology 2022; 11:2101769. [PMID: 35859734 PMCID: PMC9291654 DOI: 10.1080/2162402x.2022.2101769] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overcoming resistance to radiation is a major challenge in cancer treatment. Stearoyl-coa desaturase (SCD1) is the enzyme responsible for oleic acid (OA) and palmitoleic acid (POA) formation. Here, we provided evidence that targeting SCD1 was capable of inducing ferroptosis and immunogenic cell death (ICD), thereby improving the radiation sensitivity of esophageal squamous cell carcinoma (ESCC). ESCC cell lines with high SCD1 expression were treated with MF-438 (SCD1 inhibitor) to determine cell viability. Colony formation assay was performed to evaluate the radiation sensitization of SCD1 inhibitor. Tumor cell ferroptosis and ICD was analyzed in MF-438, radiation therapy (RT) and the combination treatment group. The potential molecular mechanisms underlying MF-438 as a novel radiation sensitizer in ESCC were explored. We concluded by assessing SCD1 as a prognostic factor in ESCC. MF-438 exhibited antitumor activity in ESCC cells. Our outcomes revealed significant improvement of radiation sensitivity by MF-438. Moreover, the combination treatment enhanced tumor cell ferroptosis and ICD. Further analyses revealed SCD1 conferred radiation resistance via alleviating ferroptosis in tumor cells; targeting SCD1 inhibited the biosynthesis of OA and POA, and improved radiation induced ferroptosis in ESCC cells. Clinical analysis indicated high expression of SCD1 was associated with unfavorable survival in patients of ESCC. In summary, our results demonstrated that MF-438 acted as a ferroptosis inducer. Targeting SCD1 conferred the immunogenicity of ferroptotic cancer cells and increased the effectiveness of RT in ESCC. SCD1 could be considered as a useful prognostic indicator of survival in ESCC.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Song
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinfu Dan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Wu C, Hu B, Wang L, Wu X, Gu H, Dong H, Yan J, Qi Z, Zhang Q, Chen H, Yu B, Hu S, Qian Y, Dong S, Li Q, Wang X, Long J. Assessment of stromal SCD-induced drug resistance of PDAC using 3D-printed zPDX model chips. iScience 2022; 26:105723. [PMID: 36590169 PMCID: PMC9794976 DOI: 10.1016/j.isci.2022.105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolism is extensively reprogrammed in pancreatic ductal adenocarcinoma (PDAC). Stearoyl-coenzyme A desaturase (SCD) is a critical lipid regulator that was unexplored in PDAC. Here, we characterized the existence of cancer-associated fibroblasts (CAFs) with high SCD expression, and revealed them as an unfavorable prognostic factor. Therefore, primary CAFs and pancreatic cancer cells were harvested and genetically labeled. The mixture of CAFs and cancer cells were co-injected into scd-/-; prkdc-/-, or hIGF1/INS-expressing zebrafish to generate patient-derived xenograft models (zPDX). The models were aligned in 3D-printed chips for semi-automatic drug administration and high-throughput scanning. The results showed that chaperoning of the SCD-high CAFs significantly improved the drug resistance of pancreatic cancer cells against gemcitabine and cisplatin, while the administration of SCD inhibitors neutralized the protective effect. Our studies revealed the prognostic and therapeutic value of stromal SCD in PDAC, and proposed the application of zPDX model chips for drug testing.
Collapse
Affiliation(s)
- Chuntao Wu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Beiyuan Hu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xia Wu
- Department of General Practice, Jing’an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’an Branch), Shanghai 200040, China
| | - Haitao Gu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hanguang Dong
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zihao Qi
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Huan Chen
- National Human Genetic Resources Sharing Service Platform (2005DKA21300), Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bo Yu
- Department of Pharmacy, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, China
| | - Sheng Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yu Qian
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Shuang Dong
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China,Corresponding author
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China,Corresponding author
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Corresponding author
| |
Collapse
|
33
|
Parik S, Fernández-García J, Lodi F, De Vlaminck K, Derweduwe M, De Vleeschouwer S, Sciot R, Geens W, Weng L, Bosisio FM, Bergers G, Duerinck J, De Smet F, Lambrechts D, Van Ginderachter JA, Fendt SM. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Front Oncol 2022; 12:988872. [PMID: 36338708 PMCID: PMC9635944 DOI: 10.3389/fonc.2022.988872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is a highly lethal grade of astrocytoma with very low median survival. Despite extensive efforts, there is still a lack of alternatives that might improve these prospects. We uncovered that the chemotherapeutic agent temozolomide impinges on fatty acid synthesis and desaturation in newly diagnosed glioblastoma. This response is, however, blunted in recurring glioblastoma from the same patient. Further, we describe that disrupting cellular fatty acid homeostasis in favor of accumulation of saturated fatty acids such as palmitate synergizes with temozolomide treatment. Pharmacological inhibition of SCD and/or FADS2 allows palmitate accumulation and thus greatly augments temozolomide efficacy. This effect was independent of common GBM prognostic factors and was effective against cancer cells from recurring glioblastoma. In summary, we provide evidence that intracellular accumulation of saturated fatty acids in conjunction with temozolomide based chemotherapy induces death in glioblastoma cells derived from patients.
Collapse
Affiliation(s)
- Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Francesca Lodi
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karen De Vlaminck
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Marleen Derweduwe
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Raf Sciot
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Wietse Geens
- Department of Neurosurgery, UZ Brussel, Jette, Belgium
| | - Linqian Weng
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
| | - Francesca Maria Bosisio
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| | | | - Frederick De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
34
|
Shen J, Wu G, Tsai AL, Zhou M. Transmembrane helices mediate the formation of a stable ternary complex of b 5R, cyt b 5, and SCD1. Commun Biol 2022; 5:956. [PMID: 36097052 PMCID: PMC9468158 DOI: 10.1038/s42003-022-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Mammalian cytochrome b5 (cyt b5) and cytochrome b5 reductase (b5R) are electron carrier proteins for membrane-embedded oxidoreductases. Both b5R and cyt b5 have a cytosolic domain and a single transmembrane (TM) helix. The cytosolic domains of b5R and cyt b5 contain cofactors required for electron transfer, but it is not clear if the TM helix has function beyond being an anchor to the membrane. Here we show that b5R and cyt b5 form a stable binary complex, and so do cyt b5 and stearoyl-CoA desaturase-1 (SCD1). We also show that b5R, cyt b5 and SCD1 form a stable ternary complex. We demonstrate that the TM helices are required for the assembly of stable binary and ternary complexes where electron transfer rates are greatly enhanced. These results reveal a role of the TM helix in cyt b5 and b5R, and suggest that an electron transport chain composed of a stable ternary complex may be a general feature in membrane-embedded oxidoreductases that require cyt b5 and b5R. The transmembrane domains of mammalian cytochrome b5 (cyt b5), cyt b5 reductase (b5R), and stearoyl-CoA desaturase-1 (SCD1) form stable binary complexes between cyt b5/b5R or cyt b5/SCD1 and a ternary complex, which enhance electron transfer rates.
Collapse
Affiliation(s)
- Jiemin Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Wu
- Division of Hematology-Oncology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ah-Lim Tsai
- Division of Hematology-Oncology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Ferreri C, Sansone A, Chatgilialoglu C, Ferreri R, Amézaga J, Burgos MC, Arranz S, Tueros I. Critical Review on Fatty Acid-Based Food and Nutraceuticals as Supporting Therapy in Cancer. Int J Mol Sci 2022; 23:ijms23116030. [PMID: 35682708 PMCID: PMC9181022 DOI: 10.3390/ijms23116030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023] Open
Abstract
Fatty acids have an important place in both biological and nutritional contexts and, from a clinical point of view, they have known consequences for diseases’ onset and development, including cancer. The use of fatty acid-based food and nutraceuticals to support cancer therapy is a multidisciplinary subject, involving molecular and clinical research. Knowledge regarding polyunsaturated fatty acids essentiality/oxidizability and the role of lipogenesis-desaturase pathways for cell growth, as well as oxidative reactivity in cancer cells, are discussed, since they can drive the choice of fatty acids using their multiple roles to support antitumoral drug activity. The central role of membrane fatty acid composition is highlighted for the application of membrane lipid therapy. As fatty acids are also known as biomarkers of cancer onset and progression, the personalization of the fatty acid-based therapy is also possible, taking into account other important factors such as formulation, bioavailability and the distribution of the supplementation. A holistic approach emerges combining nutra- and pharma-strategies in an appropriate manner, to develop further knowledge and applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the Hospital Pathway, Pitigliano Hospital, ASL Sudest Toscana, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Mercedes Caro Burgos
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| |
Collapse
|
36
|
Luo SD, Tsai HT, Chiu TJ, Li SH, Hsu YL, Su LJ, Tsai MH, Lee CY, Hsiao CC, Chen CH. Leptin Silencing Attenuates Lipid Accumulation through Sterol Regulatory Element-Binding Protein 1 Inhibition in Nasopharyngeal Carcinoma. Int J Mol Sci 2022; 23:5700. [PMID: 35628510 PMCID: PMC9146162 DOI: 10.3390/ijms23105700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Leptin is a crucial regulator of metabolism and energy homeostasis in mammals. Many studies have investigated the impacts of leptin on human cancers, such as proliferation and metastasis. However, the mechanisms underlying leptin-mediated regulation of lipid metabolism in nasopharyngeal carcinoma (NPC) remain incompletely understood. In the current study, leptin downregulation ameliorated lipid accumulation, triglyceride, and cholesterol levels. Mechanistically, diminished leptin by siRNA not only inhibited sterol regulatory element-binding protein 1 (SREBP1), a master regulator of lipid metabolism, at the mRNA and protein levels, but also reduced SREBP1 downstream target expressions, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1), in NPC cells. In addition, leptin expression could modulate the promoter activity of SREBP1. We also found that pharmacological inhibition of poly-ADP ribose polymerase-γ (PPAR-γ) resulted in increased SREBP1 expression in leptin-depleted NPC cells. Functionally, SREBP1 overexpression overcame the effects of leptin-silencing attenuated triglyceride level, cholesterol level and cell survival in NPC cells. Taken together, our results demonstrate that leptin is an important regulator of lipid metabolism in NPC cells and might could be a potential therapeutic target for treatment of NPC patients.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Hsin-Ting Tsai
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ya-Ling Hsu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Yi Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chang-Han Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
37
|
Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol 2022; 10:875318. [PMID: 35646898 PMCID: PMC9136290 DOI: 10.3389/fcell.2022.875318] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is one of the primary treatments for most human cancers. Despite great progress in cancer therapeutics, chemotherapy continues to be important for improving the survival of cancer patients, especially for those who has unresectable metastatic tumors or fail to respond to immunotherapy. However, intrinsic or acquired chemoresistance results in tumor recurrence, which remains a major obstacle in anti-cancer treatment. The high prevalence of chemoresistant cancer makes it urgent to deepen our understanding on chemoresistance mechanisms and to develop novel therapeutic strategies. Multiple mechanisms, including drug efflux, enhanced DNA damage reparability, increased detoxifying enzymes levels, presence of cancer stem cells (CSCs), epithelial mesenchymal transition (EMT), autophagy, ferroptosis and resistance to apoptosis, underlie the development of chemoresistance. Recently, accumulating evidence suggests that lipid metabolism alteration is closely related to drug resistance in tumor. Targeting lipid metabolism in combination with traditional chemotherapeutic drugs is a promising strategy to overcome drug resistance. Therefore, this review compiles the current knowledge about aberrant lipid metabolism in chemoresistant cancer, mainly focusing on aberrant fatty acid metabolism, and presents novel therapeutic strategies targeting altered lipid metabolism to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ruixue Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
38
|
Sun M, Chen X, Yang Z. Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta 2022; 1206:339761. [PMID: 35473873 PMCID: PMC9046687 DOI: 10.1016/j.aca.2022.339761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Irinotecan (Iri) is a key drug to treat metastatic colorectal cancer, but its clinical activity is often limited by de novo and acquired drug resistance. Studying the underlying mechanisms of drug resistance is necessary for developing novel therapeutic strategies. In this study, we used both regular and irinotecan-resistant (Iri-resistant) colorectal cell lines as models, and performed single cell mass spectrometry (SCMS) metabolomics studies combined with analyses from cytotoxicity assay, western blot, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), and reactive oxygen species (ROS). Our SCMS results indicate that Iri-resistant cancer cells possess higher levels of unsaturated lipids compared with the regular cancer cells. In addition, multiple protein biomarkers and their corresponding mRNAs of colon cancer stem cells are overexpressed in Iri-resistance cells. Particularly, stearoyl-CoA desaturase 1 (SCD1) is upregulated with the development of drug resistance in Iri-resistant cells, whereas inhibiting the activity of SCD1 efficiently increase their sensitivity to Iri treatment. In addition, we demonstrated that SCD1 directly regulates the expression of ALDH1A1, which contributes to the cancer stemness and ROS level in Iri-resistant cell lines.
Collapse
|
39
|
Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z, Tian X, Zhao X, Shi H, Li C, Hua J. Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4030-4043. [PMID: 35343224 DOI: 10.1021/acs.jafc.2c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Goat milk contains a rich source of nutrients, especially unsaturated fatty acids. However, the regulatory mechanism of milk fat and fatty acid synthesis remains unclear. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme catalyzing monounsaturated fatty acid synthesis and is essential for milk lipid metabolism. To explore milk lipid synthesis mechanism in vivo, SCD1-knockout goats were generated through CRISPR/Cas9 technology for the first time. SCD1 deficiency did not influence goat growth or serum biochemistry. Plasma phosphatidylcholines increased by lipidomics after SCD1 knockout in goats. Whole-blood RNA-seq indicated alterations in biosynthesis of unsaturated fatty acid synthesis, cAMP, ATPase activity, and Wnt signaling pathways. In SCD1-knockout goats, milk fat percentage and unsaturated fatty acid levels were reduced but other milk components were unchanged. Milk lipidomics revealed decreased triacylglycerols and diacylglycerols levels, and the differential abundance of lipids were enriched in glycerolipid, glycerophospholipids, and thermogenesis metabolism pathways. In milk fat globules, the expression levels of genes related to fatty acid and TAG synthesis including SREBP1 were reduced. ATP content and AMPK activity were promoted, and p-p70S6K protein level was suppressed in SCD1-knockout goat mammary epithelial cells, suggesting that SCD1 affected milk lipid metabolism by influencing AMPK-mTORC1/p70S6K-SREBP1 pathway. The integrative analysis of gene expression levels and lipidomics of milk revealed a crucial role of SCD1 in glycerolipids and glycerophospholipids metabolism pathways. Our observations indicated that SCD1 regulated the synthesis of milk fat and unsaturated fatty acid in goat by affecting lipid metabolism gene expression and lipid metabolic pathways. These findings would be essential for improving goat milk nutritional value which is beneficial to human health.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Geng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhimin Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiue Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Understanding Molecular Mechanisms of Phenotype Switching and Crosstalk with TME to Reveal New Vulnerabilities of Melanoma. Cells 2022; 11:cells11071157. [PMID: 35406721 PMCID: PMC8997563 DOI: 10.3390/cells11071157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.
Collapse
|
41
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
42
|
Hu X, Xiang J, Li Y, Xia Y, Xu S, Gao X, Qiao S. Inhibition of stearoyl-CoA desaturase 1 potentiates anti-tumor activity of amodiaquine in non-small cell lung cancer. Biol Pharm Bull 2022; 45:438-445. [PMID: 35110426 DOI: 10.1248/bpb.b21-00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD) 1 was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaolei Hu
- Cancer Institute, Xuzhou Medical University
| | | | - Yibo Li
- Cancer Institute, Xuzhou Medical University
| | - Yan Xia
- Cancer Institute, Xuzhou Medical University
| | - Siyuan Xu
- Cancer Institute, Xuzhou Medical University
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University
| |
Collapse
|
43
|
Pyrrolotriazinone as an Underexplored Scaffold in Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14121275. [PMID: 34959675 PMCID: PMC8705011 DOI: 10.3390/ph14121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Heterocyclic amino derivatives have been extensively synthesized and validated as potent bioactive compounds, and nowadays, numerous marketed drugs share these scaffolds, from very simple structures (monoamino, monocyclic compounds) to much more complex molecules (polycyclic derivatives with two or more nitrogen atoms within the (fused) rings). In a constant quest for new chemical entities in drug discovery, a few novel heterocycles have emerged in recent years as promising building blocks for the obtainment of bioactive modulators. In this context, pyrrolotriazinones have attracted attention, and some show promising biological activities. Here, we offer an extensive review of pyrrolo[2,1-f][1,2,4]triazin-4(1H)-one and pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one, describing their biological properties en route to drug discovery.
Collapse
|
44
|
Modulation of SCD1 activity in hepatocyte cell lines: evaluation of genomic stability and proliferation. Mol Cell Biochem 2021; 476:3393-3405. [PMID: 33954906 DOI: 10.1007/s11010-021-04167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Stearoyl-CoA desaturase (SCD) is a central lipogenic enzyme for the synthesis of monounsaturated fatty acids (MUFA). SCD1 overexpression is associated with a genetic predisposition to hepatocarcinogenesis in mice and rats. This work hypothesized possible roles of SCD1 to genomic stability, lipogenesis, cell proliferation, and survival that contribute to the malignant transformation of non-tumorigenic liver cells. Therefore, HepG2 tumor cells were treated with the SCD1 inhibitor (CAY10566) to ensure a decrease in proliferation/survival, as confirmed by a lipidomic analysis that detected an efficient decrease in the concentration of MUFA. According to that, we switched to a model of normal hepatocytes, the HepaRG cell line, where we: (i) overexpressed SCD1 (HepaRG-SCD1 clones), (ii) inhibited the endogenous SCD1 activity with CAY10566, or (iii) treated with two monounsaturated (oleic OA and/or palmitoleic PA) fatty acids. SCD1 overexpression or MUFA stimulation increased cell proliferation, survival, and the levels of AKT, phospho-AKT(Ser473), and proliferating cell nuclear antigen (PCNA) proteins. By contrast, opposite molecular and cellular responses were observed in HepaRG cells treated with CAY10566. To assess genomic stability, HepaRG-SCD1 clones were treated with ionizing radiation (IR) and presented reduced levels of DNA damage and higher survival at doses of 5 Gy and 10 Gy compared to parental cells. In sum, this work suggests that modulation of SCD1 activity not only plays a role in cell proliferation and survival, but also in maintaining genomic stability, and therefore, contributes to a better understanding of this enzyme in molecular mechanisms of hepatocarcinogenesis projecting SCD1 as a potential translational target.
Collapse
|
45
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|