1
|
Ramli TC, Chen CJ, Wang HH, Tsao CY, Hsu IC, Ting HJ, Chen HY. Vapor Deposition of Polymer Structures: From 2D Surface Coatings and Surface Microstructures to 3D Building Blocks and Structural Monoliths. Macromol Rapid Commun 2025:e2401045. [PMID: 40415174 DOI: 10.1002/marc.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/10/2025] [Indexed: 05/27/2025]
Abstract
Vapor deposition of polymers offers precise control over polymerization, enabling the creation of uniform thin films, conformal coatings, and complex geometries. These methods produce pinhole-free films with tailored physical and chemical properties while addressing the limitations of conventional solution-based techniques. Recent advancements have extended polymer fabrication beyond thin films to include surface patterns, microstructures, and 3D architectures. This review provides an overview of vapor deposition methods, polymerization mechanisms, and processes for fabricating microstructures and 3D architectures. This review highlights the progress of vapor-deposited polymers, from simple coatings to complex, multifunctional structures. By integrating precise structural control with chemical versatility, these advancements open new opportunities for innovative material design and address the growing demands of modern applications.
Collapse
Affiliation(s)
| | - Chung-Ju Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Hsuan Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Yen Tsao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Chen Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hung-Jui Ting
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Ge Q, Zeng Q, Li S, Ji S. Improving the washability of conductive textiles by constructing a dually crosslinked polyvinyl alcohol network with silver nanowires. NANOSCALE 2025; 17:11520-11529. [PMID: 40237029 DOI: 10.1039/d5nr01022e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Conductive textiles, as an important platform for developing wearable electronic devices, often face challenges related to washing to remove dirt while retaining conductivity. It is still a great challenge to manufacture textiles with high conductivity, washability and uniformity in an efficient and economical way. Polyvinyl alcohol (PVA) containing numerous hydroxyl groups allowing easy modification and crosslinking is a promising candidate for conductive textile construction. Herein, a stable composite ink with PVA as the matrix and silver nanowires (AgNWs) as the conductive filler for screen printing on textile surfaces is proposed. The composite conductive network endows the fabric with the highest conductivity up to 2087 S cm-1 and a low percolation threshold of 0.025 mg cm-2 for AgNW mass loading. The printed conductive pattern shows high uniformity even for a line width as small as 500 μm on fabric. The resistance change of conductive textiles washed at 60 °C for 1 h is reduced from 500 000% to 40%, thanks to the cooperation of a physically and chemically dually crosslinked polymer network with a conductive AgNW network. The prepared outperforming conductive textiles and their potential for mass production of patterned fabric electrodes provide a basis for further development of smart fabrics and wearable electronics.
Collapse
Affiliation(s)
- Qianru Ge
- Auhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Qingyang Zeng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shuxin Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shulin Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, De Mulatier S, Matsuhisa N. Unperceivable Designs of Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502727. [PMID: 40317616 DOI: 10.1002/adma.202502727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Indexed: 05/07/2025]
Abstract
Wearable smart electronics are taking an increasing part of the consumer electronics market, with applications in advanced healthcare systems, entertainment, and Internet of Things. The advanced development of flexible, stretchable, and breathable electronic materials has paved the way to comfortable and long-term wearables. However, these devices can affect the wearer's appearance and draw attention during use, which may impact the wearer's confidence and social interactions, making them difficult to wear on a daily basis. Apart from comfort, one key condition for user acceptance is that these new technologies seamlessly integrate into our daily lives, remaining unperceivable to others. In this review, strategies to minimize the visual impact of wearable devices and make them more suitable for daily use are discussed. These new devices focus on being unperceivable when worn and comfortable enough that users almost forget their presence, reducing psychological discomfort while maintaining accuracy in signal collection. Materials selection is crucial for developing long-term and unperceivable wearable devices. Recent developments in these unperceivable electronic devices are also covered, including sensors, transistors, and displays, and mechanisms to achieve unperceivability are discussed. Finally, the potential applications are summarized and the remaining challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 1538904, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 1538505, Japan
| | - Séverine De Mulatier
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 1538904, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 1538505, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, 1538505, Japan
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 1538904, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 1538505, Japan
| |
Collapse
|
4
|
Weng Z, Farfan M, Williams E, Giridharan P, Schmid LG, Murphy D, Wang L, Mao W, Zhong Y. Ultrafast Binder-Free Corona Discharge-Enabled Automated Electrostatic Patterning (AEP) Technique. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23249-23262. [PMID: 40167244 DOI: 10.1021/acsami.4c22698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Patterning techniques have garnered extensive attention within the realm of printed electronics owing to their substantial contributions across multifarious applications. A plethora of printing methodologies have emerged to generate intricate 2D patterns, each designed to achieve distinct functionalities. However, most prevailing printing techniques necessitate the utilization of binders, meticulous formulation of ink, compatibility checks with printing nozzles, and rigorous cleaning processes when direct contact methods are employed, all of which consume significant time. This paper introduces an ultrafast binder-free method termed corona discharge-enabled automated electrostatic patterning (AEP), capable of printing sub-100 μm resolution patterns within a mere 2 s time frame. A comprehensive investigation into the mechanism underlying AEP is presented, elucidating its printing principles via theoretical derivations, COMSOL simulations, and high-speed camera observation. The manufacturing of high-quality flexible electronics has also been demonstrated. Because of the autopatterning and binder-free nature of AEP, it can significantly improve the manufacturing efficiency of printed electronics with the advantages of high sensitivity and elimination of the ink drying process and mask abrasion.
Collapse
Affiliation(s)
- Zijian Weng
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Marcelo Farfan
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Evan Williams
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Parinitha Giridharan
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Logan G Schmid
- Department of Biomedical Engineering, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, California 93407, United States
| | - David Murphy
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Long Wang
- Department of Civil and Environmental Engineering, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, California 93407, United States
| | - Wenbin Mao
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Ying Zhong
- Sauvage Laboratory for Smart Materials, School of Integrated Circuit, Harbin Institute of Technology (Shenzhen), University Town of Shenzhen, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Heydari Gharahcheshmeh M. Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:452. [PMID: 40137625 PMCID: PMC11944385 DOI: 10.3390/nano15060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Chemical vapor deposition (CVD) is a highly adaptable manufacturing technique used to fabricate high-quality thin films, making it essential across numerous industries. As materials fabrication processes progress, CVD has advanced to enable the precise deposition of both inorganic 2D materials, such as graphene and transition metal dichalcogenides, and high-quality polymeric thin films, offering excellent conformality and precise nanostructure control on a wide range of substrates. Conjugated conducting polymers have emerged as promising materials for next-generation electronic, optoelectronic, and energy storage devices due to their unique combination of electrical conductivity, optical transparency, ionic transport, and mechanical flexibility. Oxidative CVD (oCVD) involves the spontaneous reaction of oxidant and monomer vapors upon their adsorption onto the substrate surface, resulting in step-growth polymerization that commonly produces conducting or semiconducting polymer thin films. oCVD has gained significant attention for its ability to fabricate conjugated conducting polymers under vacuum conditions, allowing precise control over film thickness, doping levels, and nanostructure engineering. The low to moderate deposition temperature in the oCVD method enables the direct integration of conducting and semiconducting polymer thin films onto thermally sensitive substrates, including plants, paper, textiles, membranes, carbon fibers, and graphene. This review explores the fundamentals of the CVD process and vacuum-based manufacturing, while also highlighting recent advancements in the oCVD method for the fabrication of conjugated conducting and semiconducting polymer thin films.
Collapse
|
6
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
7
|
Kim J, Roh H, Moon S, Jeon C, Baek S, Cho W, Sim JY, Jeong U. Wireless breathable face mask sensor for spatiotemporal 2D respiration profiling and respiratory diagnosis. Biomaterials 2024; 309:122579. [PMID: 38670033 DOI: 10.1016/j.biomaterials.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Owing to air pollution and the pandemic outbreak, the need for quantitative pulmonary monitoring has greatly increased. The COVID-19 outbreak has aroused attention for comfortable wireless monitoring of respiratory profiles and more real-time diagnosis of respiratory diseases. Although respiration sensors have been investigated extensively with single-pixel sensors, 2D respiration profiling with a pixelated array sensor has not been demonstrated for both exhaling and inhaling. Since the pixelated array sensor allowed for simultaneous profiling of the nasal breathing and oral breathing, it provides essential respiratory information such as breathing patterns, respiration habit, breathing disorders. In this study, we introduced an air-permeable, stretchable, and a pixelated pressure sensor that can be integrated into a commercial face mask. The mask sensor showed a strain-independent pressure-sensing performance, providing 2D pressure profiles for exhalation and inhalation. Real-time 2D respiration profiles could monitor various respiratory behaviors, such as oral/nasal breathing, clogged nose, out-of-breath, and coughing. Furthermore, they could detect respiratory diseases, such as rhinitis, sleep apnea, and pneumonia. The 2D respiratory profiling mask sensor is expected to be employed for remote respiration monitoring and timely patient treatment.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Heesung Roh
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Sungmin Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Cheonhoo Jeon
- School of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi, 16890, South Korea
| | - Seunggoo Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Woosung Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| |
Collapse
|
8
|
Wu X, Liu Q, Zheng L, Lin S, Zhang Y, Song Y, Wang Z. Innervate Commercial Fabrics with Spirally-Layered Iontronic Fibrous Sensors Toward Dual-Functional Smart Garments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402767. [PMID: 38953387 PMCID: PMC11434216 DOI: 10.1002/advs.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N-1, superior thermal sensitivity of 34,400 Ω °C-1, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.
Collapse
Affiliation(s)
- Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lifei Zheng
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Sijian Lin
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiqun Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangyang Song
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhuqing Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Lin HH, Liang HI, Luo SC. Modulating Surface Cation Concentration via Tuning the Molecular Structures of Ethylene Glycol-Functionalized PEDOT for Improved Alkaline Hydrogen Evolution Reaction. JACS AU 2024; 4:3070-3083. [PMID: 39211622 PMCID: PMC11350742 DOI: 10.1021/jacsau.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The sluggish catalytic kinetics of nonprecious metal-based electrocatalysts often hinder them from achieving efficient hydrogen evolution reactions (HERs). Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been promising materials for various electrochemical applications. Nevertheless, previous studies have demonstrated that PEDOT coatings can be detrimental to HER performance. In this study, we investigated the alkaline HER efficiency of nickel foam coated with three types of ethylene glycol (EG)-functionalized EDOT. Specifically, EDOT derivatives bearing hydroxyl (-OH) and methoxy (-OCH3) end groups on the EG side chain and molecules containing two EDOT units are interconnected via EG moieties. EG groups are selected due to their strong interaction with alkali metal cations. Intriguingly, improved HER performance is observed on all electrodes coated with EG-functionalized EDOTs. Electrochemical impedance spectroscopy, electrochemical quartz crystal microbalance with dissipation, and XPS analysis are employed to explore the origin of enhanced HER efficiency. The results suggest the EG moieties can induce locally concentrated ions near the electrode surface and facilitate water dissociation through noncovalent interactions. The influence of EG chain length is systematically investigated by synthesizing molecules with di-EG, tetra-EG, and hexa-EG functionalities. This study highlights the importance of molecular design in modifying electrode surface properties to promote alkaline HER.
Collapse
Affiliation(s)
- Hsun-Hao Lin
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-I Liang
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Cheng W, Zheng Z, Li X, Zhu Y, Zeng S, Zhao D, Yu H. A General Synthesis Method for Patterning PEDOT toward Wearable Electronics and Bioelectronics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0383. [PMID: 38779489 PMCID: PMC11109514 DOI: 10.34133/research.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
The conductive polymer poly-3,4-ethylenedioxythiophene (PEDOT), recognized for its superior electrical conductivity and biocompatibility, has become an attractive material for developing wearable technologies and bioelectronics. Nevertheless, the complexities associated with PEDOT's patterning synthesis on diverse substrates persist despite recent technological progress. In this study, we introduce a novel deep eutectic solvent (DES)-induced vapor phase polymerization technique, facilitating nonrestrictive patterning polymerization of PEDOT across diverse substrates. By controlling the quantity of DES adsorbed per unit area on the substrates, PEDOT can be effectively patternized on cellulose, wood, plastic, glass, and even hydrogels. The resultant patterned PEDOT exhibits numerous benefits, such as an impressive electronic conductivity of 282 S·m-1, a high specific surface area of 5.29 m2·g-1, and an extensive electrochemical stability range from -1.4 to 2.4 V in a phosphate-buffered saline. To underscore the practicality and diverse applications of this DES-induced approach, we present multiple examples emphasizing its integration into self-supporting flexible electrodes, neuroelectrode interfaces, and precision circuit repair methodologies.
Collapse
Affiliation(s)
- Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Zihao Zheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Xiaona Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Suqing Zeng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Dawei Zhao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education,
Shenyang University of Chemical Technology, Shenyang, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Wang M, Wang X, He Z, Liu Z, Chen R, Wang K, Wu J, Han J, Zhao S, Chen Y, Liu J. Stretchable, Washable, and Anti-Ultraviolet i-Textile-Based Wearable Device for Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13052-13059. [PMID: 38414333 DOI: 10.1021/acsami.3c18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Smart textiles with multifunction and highly stable performance are essential for their application in wearable electronics. Despite the advancement of various smart textiles through the decoration of conductive materials on textile surfaces, improving their stability and functionality remains a challenging topic. In this study, we developed an ionic textile (i-textile) with air permeability, water resistance, UV resistance, and sensing capabilities through in situ photopolymerization of ionogel onto the textile surface. The i-textile presents air permeability comparable to that of bare textile while possessing enhanced UV resistance. Remarkably, the i-textile maintains excellent electrical properties after washing 20 times or being subjected to 300 stretching cycles at 30% tension. When applied to human joint motion detection, the i-textile-based sensors can effectively distinguish joint motion based on their sensitivity and response speed. This research presents a novel method for developing smart textiles that further advances wearable electronics.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xuerong Wang
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jicai Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jikun Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shulin Zhao
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuhui Chen
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
13
|
Wang Y, Zhao WB, Li FK, Chang SL, Cao Q, Guo R, Song SY, Liu KK, Shan CX. Engineering Sizable and Broad-Spectrum Antibacterial Fabrics through Hydrogen Bonding Interaction and Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8321-8332. [PMID: 38330195 DOI: 10.1021/acsami.3c15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Long-lasting and highly efficient antibacterial fabrics play a key role in public health occurrences caused by bacterial and viral infections. However, the production of antibacterial fabrics with a large size, highly efficient, and broad-spectrum antibacterial performance remains a great challenge due to the complex processes. Herein, we demonstrate sizable and highly efficient antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction between surface groups of ZnO nanoparticles and fabric fibers. The production process can be carried out at room temperature and achieve a production rate of 300 × 1 m2 within 1 h. Under both visible light and dark conditions, the bactericidal rate against Gram-positive (S. aureus), Gram-negative (E. coli), and multidrug-resistant (MRSA) bacteria can reach an impressive 99.99%. Furthermore, the fabricated ZnO nanoparticle-decorated antibacterial fabrics (ZnO@fabric) show high stability and long-lasting antibacterial performance, making them easy to develop into variable antibacterial blocks for protection suits.
Collapse
Affiliation(s)
- Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Chen Z, Qu C, Yao J, Zhang Y, Xu Y. Two-Stage Micropyramids Enhanced Flexible Piezoresistive Sensor for Health Monitoring and Human-Computer Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7640-7649. [PMID: 38303602 DOI: 10.1021/acsami.3c18788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
High-performance flexible piezoresistive sensors are becoming increasingly essential in various novel applications such as health monitoring, soft robotics, and human-computer interaction. The evolution of the interfacial contact morphology determines the sensing properties of piezoresistive devices. The introduction of microstructures enriches the interfacial contact morphology and effectively boosts the sensitivity; however, the limited compressibility of conventional microstructures leads to rapid saturation of the sensitivity in the low-pressure range, which hinders their application. Herein, we present a flexible piezoresistive sensor featuring a two-stage micropyramid array structure, which effectively enhances the sensitivity while widening the sensing range. Owing to the synergistic enhancement effect resulting from the sequential contact of micropyramids of various heights, the devices demonstrate remarkable performance, including boosting sensitivity (30.8 kPa-1) over a wide sensing range (up to 200 kPa), a fast response/recovery time (75/50 ms), and an ultralong durability of 15,000 loading-unloading cycles. As a proof of concept, the sensor is applied to detect human physiological and motion signals, further demonstrating a real-time spatial pressure distribution sensing system and a game control system, showing great potential for applications in health monitoring and human-computer interaction.
Collapse
Affiliation(s)
- Zhihao Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Changming Qu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Jingjing Yao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yuanlong Zhang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yun Xu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| |
Collapse
|
15
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
16
|
Baek J, Shan Y, Mylvaganan M, Zhang Y, Yang X, Qin F, Zhao K, Song HW, Mao H, Lee S. Mold-Free Manufacturing of Highly Sensitive and Fast-Response Pressure Sensors Through High-Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304070. [PMID: 37463430 DOI: 10.1002/adma.202304070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
A new manufacturing paradigm is showcased to exclude conventional mold-dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold-free manufacturing leverages high-resolution 3D-printed multiscale microstructures as the substrate and a gas-phase conformal polymer coating technique to complete the mold-free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D-printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4-ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa-1 ) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure-of-merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost-effective manufacturing manner.
Collapse
Affiliation(s)
- Jinwook Baek
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Yujie Shan
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Mitesh Mylvaganan
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Yuxuan Zhang
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Xixian Yang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Fei Qin
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Han Wook Song
- Center for Mass and Related Quantities, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Huachao Mao
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Sunghwan Lee
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Luo Y, Zhao L, Luo G, Dong L, Xia Y, Li M, Li Z, Wang K, Maeda R, Jiang Z. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. MICROSYSTEMS & NANOENGINEERING 2023; 9:113. [PMID: 37719415 PMCID: PMC10504313 DOI: 10.1038/s41378-023-00593-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
Flexible electronics have demonstrated various strategies to enhance the sensory ability for tactile perception and wearable physiological monitoring. Fibrous microstructures have attracted much interest because of their excellent mechanical properties and fabricability. Herein, a structurally robust fibrous mat was first fabricated by electrospinning, followed by a sequential process of functionalization utilizing ultrasonication treatment and in situ polymerization growth. Electrospun polyurethane (PU) microfibers were anchored with multi-walled carbon nanotubes (MWCNTs) to form conductive paths along each fiber by a scalable ultrasonic cavitation treatment in an MWCNT suspension. After, a layer of poly(3,4-ethylene dioxythiophene) (PEDOT) was grown on the surface of PU fibers decorated with MWCNTs to enhance the conductive conjunctions of MWCNTs. Due to the superior electromechanical behaviors and mechanical reinforcement of PEDOT, the PEDOT/MWCNT@PU mat-based device exhibits a wide working range (0-70 kPa), high sensitivity (1.6 kPa-1), and good mechanical robustness (over 18,000 cycles). The PEDOT/MWCNT@PU mat-based sensor also demonstrates a good linear response to different temperature variations because of the thermoelectricity of the PEDOT/MWCNT composite. This novel strategy for the fabrication of multifunctional fibrous mats provides a promising opportunity for future applications for high-performance wearable devices.
Collapse
Affiliation(s)
- Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yong Xia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Ziping Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kaifei Wang
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ryutaro Maeda
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Wang C, He T, Zhou H, Zhang Z, Lee C. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 2023; 9:17. [PMID: 37528436 PMCID: PMC10394931 DOI: 10.1186/s42234-023-00118-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
The fourth industrial revolution has led to the development and application of health monitoring sensors that are characterized by digitalization and intelligence. These sensors have extensive applications in medical care, personal health management, elderly care, sports, and other fields, providing people with more convenient and real-time health services. However, these sensors face limitations such as noise and drift, difficulty in extracting useful information from large amounts of data, and lack of feedback or control signals. The development of artificial intelligence has provided powerful tools and algorithms for data processing and analysis, enabling intelligent health monitoring, and achieving high-precision predictions and decisions. By integrating the Internet of Things, artificial intelligence, and health monitoring sensors, it becomes possible to realize a closed-loop system with the functions of real-time monitoring, data collection, online analysis, diagnosis, and treatment recommendations. This review focuses on the development of healthcare artificial sensors enhanced by intelligent technologies from the aspects of materials, device structure, system integration, and application scenarios. Specifically, this review first introduces the great advances in wearable sensors for monitoring respiration rate, heart rate, pulse, sweat, and tears; implantable sensors for cardiovascular care, nerve signal acquisition, and neurotransmitter monitoring; soft wearable electronics for precise therapy. Then, the recent advances in volatile organic compound detection are highlighted. Next, the current developments of human-machine interfaces, AI-enhanced multimode sensors, and AI-enhanced self-sustainable systems are reviewed. Last, a perspective on future directions for further research development is also provided. In summary, the fusion of artificial intelligence and artificial sensors will provide more intelligent, convenient, and secure services for next-generation healthcare and biomedical applications.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
19
|
Mostafavi AH, Mishra AK, Gallucci F, Kim JH, Ulbricht M, Coclite AM, Hosseini SS. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J Appl Polym Sci 2023. [DOI: 10.1002/app.53720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
| | - Ajay Kumar Mishra
- College of Medicine and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Division of Nanomaterials Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry Eindhoven University of Technology Eindhoven MB The Netherlands
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II Universität Duisburg‐Essen Essen Germany
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Graz Austria
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
- Department of Chemical Engineering Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
20
|
Lee J, So H. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. MICROSYSTEMS & NANOENGINEERING 2023; 9:44. [PMID: 37033109 PMCID: PMC10076430 DOI: 10.1038/s41378-023-00509-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/01/2023] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, a flexible pressure sensor is fabricated using polydimethylsiloxane (PDMS) with a concentric circle pattern (CCP) obtained through a fused deposition modeling (FDM)-type three-dimensional (3D) printer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active layer. Through layer-by-layer additive manufacturing, the CCP surface is generated from a thin cone model with a rough surface by the FDM-type 3D printer. A novel compression method is employed to convert the cone shape into a planar microstructure above the glass transition temperature of a polylactic acid (PLA) filament. To endow the CCP surface with conductivity, PDMS is used to replicate the compressed PLA, and PEDOT:PSS is coated by drop-casting. The size of the CCP is controlled by changing the printing layer height (PLH), which is one of the 3D printing parameters. The sensitivity increases as the PLH increases, and the pressure sensor with a 0.16 mm PLH exhibits outstanding sensitivity (160 kPa-1), corresponding to a linear pressure range of 0-0.577 kPa with a good linearity of R 2 = 0.978, compared to other PLHs. This pressure sensor exhibits stable and repeatable operation under various pressures and durability under 6.56 kPa for 4000 cycles. Finally, monitoring of various health signals such as those for the wrist pulse, swallowing, and pronunciation of words is demonstrated as an application. These results support the simple fabrication of a highly sensitive, flexible pressure sensor for human health monitoring.
Collapse
Affiliation(s)
- Jihun Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Hongyun So
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
21
|
Deng P, Wang Y, Yang R, He Z, Tan Y, Chen Z, Liu J, Li T. Self-Powered Smart Textile Based on Dynamic Schottky Diode for Human-Machine Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207298. [PMID: 36782105 PMCID: PMC10104626 DOI: 10.1002/advs.202207298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The growing demand for sustained self-powered devices with multifunctional sensing networks is one of the main challenges for smart textiles, which are the critical elements for the future Internet of Things (IoT) and Point of Care (POC). Here, cellulose-based smart textile is integrated with dynamic Schottky diode (DSD) to generate sustained power source (current density of 8.9 mA m⁻2 ) for self-powered built-in sensing network. In response to normal and shear motions, a pressure sensor with a sensitivity of 0.12 KPa⁻1 and an impact sensor are demonstrated, respectively. The woven structure of the textile contributes to signal amplification, which can also form a matrix of sensing elements for distributed sensing. The proposed strategy of fabricating self-powered and multifunctional sensing networks with smart textiles shows tremendous potential for future intelligent society.
Collapse
Affiliation(s)
- Pengfei Deng
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Yanbin Wang
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Ruizhe Yang
- Department of Mechanical and Aerospace EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14260USA
- RENEW (Research and Education in EnergyEnvironment and Water) InstituteUniversity at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Zijian He
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Yuanqiu Tan
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Zhihong Chen
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jun Liu
- Department of Mechanical and Aerospace EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14260USA
- RENEW (Research and Education in EnergyEnvironment and Water) InstituteUniversity at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Tian Li
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
22
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 335] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
23
|
Kim DH, Lee HJ, Park D, Yim JH, Choi HK. Fabrication of a nanoscale 2D PEDOT pattern via the combination of colloidal lithography and vapor phase polymerization for application in transparent, highly sensitive bending sensors. NANOSCALE 2023; 15:4620-4627. [PMID: 36776102 DOI: 10.1039/d2nr07104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in flexible, stretchable, and wearable electronics have necessitated the development of more diverse and complex device structures; high-resolution patterning strategies for conducting polymers are therefore urgently required to enable the fabrication of these devices. In this study, we report a nanoscale patterning strategy for conductive polymer films that utilizes a combination of vapor phase polymerization (VPP) and colloidal lithography. Here, hemispherical non-close-packed colloidal crystals are used as an effective lithographic mask for patterning oxidants on a substrate; subsequently, two-dimensional honeycomb-structured porous poly(3,4-ethylenedioxythiophene) (PEDOT) films are fabricated via VPP using the prepatterned oxidant. The resulting films closely resemble the morphology of the preceding oxidant structure; furthermore, the film porosity can be altered by adjusting the polymerization time. These patterned PEDOT films exhibit high transparency owing to the presence of voids, and high electrical sensitivity to bending stresses, which were concentrated in the narrow-patterned area. As the described fabrication methods are facile and reliable, this approach therefore provides an effective route for the fabrication of various conducting polymer frameworks in the micro- to nanoscale range.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Ho Joon Lee
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Daedong Park
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Jin-Heong Yim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Hong Kyoon Choi
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| |
Collapse
|
24
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Wang Z, Ding J, Guo R. Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4789-4798. [PMID: 36648209 DOI: 10.1021/acsami.2c19100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of flexible electronics, a large amount of electronic waste is becoming a global concern. Because of the biodegradable and environment-friendly properties, cellulose paper as flexible substrates is an alternative pathway to effectively address the electronic pollution. Recently, paper-based piezoresistive pressure sensors with a simple structure and easy signal detection have been widely used in health monitoring, soft robots, and so forth. However, the low sensitivity and narrow working range of paper-based sensors limit their practical applications. Here, an all paper-based piezoresistive pressure sensor is successfully constructed by assembling a bottom electrode with a screen-printed interdigital Cu electrode on paper and a top sensing electrode. The top electrode is simply fabricated using a one-step impregnation method to coat a thin poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer on air-laid paper. The constructed all-paper sensor displays a maximum sensitivity of 768.07 kPa-1, a wide detection range (up to 250 kPa), and excellent cycle stability (5000 cycles). Furthermore, the sensor can clearly respond from low pressure (such as wrist pulse) to high pressure (finger tapping). The outstanding performance can be attributed to the surface and interface design of rough and fiber-structured paper and the high conductivity of copper and PEDOT:PSS. Finally, based on the printing technology, array sensors are fabricated to identify spatial pressure distributions, demonstrating the capability of low-cost and large-area fabrication for the practical production applications. This printable all-paper sensor with excellent sensing performance exhibits great potential for use in new-generation green and portable electronics.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, Xi'an Shiyou University, Xi'an 710065, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Jijun Ding
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, Xi'an Shiyou University, Xi'an 710065, China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, Shandong 264006, China
| |
Collapse
|
26
|
Song Y, Tang J, Qi Y, Zhang J, Li Y, Wang F. A review on the dominating factor for the conductivity enhancement of PEDOTs: The affinity of polyanion shell toward post-processing reagents? POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Alhashmi Alamer F, Althagafy K, Alsalmi O, Aldeih A, Alotaiby H, Althebaiti M, Alghamdi H, Alotibi N, Saeedi A, Zabarmawi Y, Hawsawi M, Alnefaie MA. Review on PEDOT:PSS-Based Conductive Fabric. ACS OMEGA 2022; 7:35371-35386. [PMID: 36249401 PMCID: PMC9557891 DOI: 10.1021/acsomega.2c01834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
This article reviews conductive fabrics made with the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), their fabrication techniques, and their applications. PEDOT:PSS has attracted interest in smart textile technology due to its relatively high electrical conductivity, water dispersibility, ease of manufacturing, environmental stability, and commercial availability. Several methods apply PEDOT:PSS to textiles. They include polymerization of the monomer, coating, dyeing, and printing methods. In addition, several studies have shown the conductivity of fabrics with the addition of PEDOT:PSS. The electrical properties of conductive textiles with a certain sheet resistance can be reduced by several orders of magnitude using PEDOT:PSS and polar solvents as secondary dopants. In addition, several studies have shown that the flexibility and durability of textiles coated with PEDOT:PSS can be improved by creating a composite with other polymers, such as polyurethane, which has high flexibility and extensibility. This improvement is due to the stronger bonding of PEDOT:PSS to the fabrics. Sensors, actuators, antennas, interconnectors, energy harvesting, and storage devices have been developed with PEDOT:PSS-based conductive fabrics.
Collapse
Affiliation(s)
- Fahad Alhashmi Alamer
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Khalid Althagafy
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Omar Alsalmi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Asal Aldeih
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Hissah Alotaiby
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Manal Althebaiti
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Haifa Alghamdi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Najlaa Alotibi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Ahmad Saeedi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Yusra Zabarmawi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Mohammed Hawsawi
- Department
of Chemistry, Faculty of Applied
Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Modhi A. Alnefaie
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
- Department
of Physics, College of Sciences and Arts, Shaqra University, Sajiir, Riyadh 17649, Saudi Arabia
| |
Collapse
|
28
|
Qian S, Liu M, Dou Y, Fink Y, Yan W. A 'Moore's law' for fibers enables intelligent fabrics. Natl Sci Rev 2022; 10:nwac202. [PMID: 36684517 PMCID: PMC9843301 DOI: 10.1093/nsr/nwac202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Fabrics are an indispensable part of our everyday life. They provide us with protection, offer privacy and form an intimate expression of ourselves through their esthetics. Imparting functionality at the fiber level represents an intriguing path toward innovative fabrics with a hitherto unparalleled functionality and value. The fiber technology based on thermal drawing of a preform, which is identical in its materials and geometry to the final fiber, has emerged as a powerful platform for the production of exquisite fibers with prerequisite composition, geometric complexity and control over feature size. A 'Moore's law' for fibers is emerging, delivering higher forms of function that are important for a broad spectrum of practical applications in healthcare, sports, robotics, space exploration, etc. In this review, we survey progress in thermally drawn fibers and devices, and discuss their relevance to 'smart' fabrics. A new generation of fabrics that can see, hear and speak, sense, communicate, harvest and store energy, as well as store and process data is anticipated. We conclude with a critical analysis of existing challenges and opportunities currently faced by thermally drawn fibers and fabrics that are expected to become sophisticated platforms delivering value-added services for our society.
Collapse
Affiliation(s)
| | | | - Yuhai Dou
- Institute for Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Yan
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Liu L, Ni Y, Mao J, Li S, Ng KH, Chen Z, Huang J, Cai W, Lai Y. Flexible and Highly Conductive Textiles Induced by Click Chemistry for Sensitive Motion and Humidity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37878-37886. [PMID: 35948056 DOI: 10.1021/acsami.2c06937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, multifunctional sensors have aroused widespread concerns owing to their vital roles in the healthcare area. However, there are still significant challenges in the fabrication of functionalized integrated devices. In this work, hydrophobic-hydrophilic patterns are constructed on polyester-spandex-blended knitted fabric surface by the chemical click method, enabling accurate deposition of functionalized materials for sensitive and stable motion and humidity sensing. Representatively, a conductive silver nanowire (Ag NW) network was deliberately deposited on only the designated hydrophilic fabric surface to realize accurate, repeatable, and stable motion sensing. Such a Ag NWs sensor recorded a low electrical resistance (below 60 Ω), stable resistance cycling response (over 2000 cycles), and fast response time to humidity (0.46 s) during the sensing evaluation. In addition to experimental sensing, real human motions, such as mouth-opening and joint-flexing (wrist and neck), could also be detected using the same sensor. Similar promising outputs were also obtained over the humidity sensor fabricated over the same chemical click method, except the sensing material was replaced with polydopamine-modified carboxylated carbon nanotubes. The resultant sensor exhibits excellent sensitivity to not only experimentally adjusted environment humidity but also to the moisture content of breath and skin during daily activities. On top of all these, both sensors were fabricated over highly flexible fabric that offers high wearability, promising great application potential in the field of healthcare monitoring.
Collapse
Affiliation(s)
- Lexin Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
30
|
Liu H, Guo L, Hu S, Peng F, Zhang X, Yang H, Sui X, Dai Y, Zhou P, Qi H. Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34049-34058. [PMID: 35844183 DOI: 10.1021/acsami.2c07670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multifunctional cotton textiles that are highly breathable are desirable in a broad range of applications. However, it is still a big challenge to scale up production of such multifunctional cotton textiles. Herein, we developed a simple, scalable, and benign strategy to fabricate highly breathable multifunctional cotton textiles via mild surface modification. The 1,4-dihydropyridine (DHP) ring and gentamycin sulfate (GS) molecules were firmly attached to the cellulose chains under room temperature via a one-pot method. The resulting modified cotton textile showed integrated performances with bright fluorescence, good antibacterial behavior, hydrophobic behavior (contact angle of 134°), and UV-blocking (UPF being up to 69.2), which are very stable toward washing and various solvents. There is no obvious change in the whiteness, thermal stability, and mechanical performance of cotton fabrics after the surface modification. What's more, the air permeability of the modified cotton fabric was up to 31.3 (cm3/cm2)/s. This study not only focuses on the materials design and large-scale fabrication but also provides stable and multifunctional cotton textiles with broad application prospects for many fields.
Collapse
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoli Zhang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Hongying Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yamin Dai
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Peiwen Zhou
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
31
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|