1
|
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Ganguli-Indra G, Athar M, Indra AK, Reiter RJ, Kleszczyński K. Melatonin and the Skin: Current Progress and Perspectives for Human Health. J Invest Dermatol 2025; 145:1345-1360.e2. [PMID: 39918482 PMCID: PMC12103292 DOI: 10.1016/j.jid.2024.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 05/25/2025]
Abstract
Skin has the capacity to produce and metabolize melatonin into biologically active metabolites. These metabolites exert phenotypic activities through receptor-dependent and receptor-independent action, including direct antioxidant activity, interaction with regulatory proteins, and regulation of mitochondrial function. They can act on G-protein-coupled melatonin receptors (MT1 and MT2) as well as nuclear aryl hydrocarbon receptor and peroxisome proliferator-activated receptor γ receptors. These metabolic pathways, together with receptor- and nonreceptor-mediated phenotypic activities of its intermediates, has been identified as a cutaneous melatoninergic system. Its pharmacological modulation and topical application of melatonin or its metabolites can be used to prevent and treat skin disorders and cutaneous aging.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Cancer Chemoprevention Program, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, Alabama, USA.
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M Slominski
- Department of Medicine-Immunology/Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Informatics Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mohammad Athar
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, Alabama, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
2
|
Zhang F, Wang T, Wang W, Lv Y, Qu Y, Liu D, Sun X, Kong X, Wang C, Shi J. ZnO colludes with C. acnes in healing delay and Scar hyperplasia by barrier destruction. J Nanobiotechnology 2025; 23:404. [PMID: 40450290 DOI: 10.1186/s12951-025-03414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 06/03/2025] Open
Abstract
As an important component of sunscreen products for sensitive skin, the potential damage mechanism of ZnO nanoparticles on skin surface with barrier structure or function defect caused by Cutibacterium acnes (C. acnes) has not been elucidated, which poses a serious challenge for reasonable selection of sunscreen products for acne-infected skin. In this work, we demonstrated for the first time that C. acnes induced significant changes in the membrane permeability and intracellular pH of fibroblasts through lipase up-regulation and lipid peroxidation, promoting endocytosis and ionization of ZnO NPs. High amounts of Zn2 + further delayed acne wound healing and aggravated scar hyperplasia by intervening matrix metalloproteinase-9 (MMP-9) and TGF-β1/Smad pathway. MMP9 was confirmed to be the key target of ZnO in delaying acne wound healing by the wound regulatory effects of MMP9 agonist and MMP9 inhibitor. In summary, this work clarified the interaction mechanism between ZnO NPs and acne skins, providing guideline for the application of physical sunscreens for special skins.
Collapse
Affiliation(s)
- Fenglan Zhang
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266100, China
| | - Tianyi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266100, China
| | - Wenqiao Wang
- Department of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yaqian Lv
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingshan Qu
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Danping Liu
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyue Sun
- Talent Beauty Biotech (Qingdao) Co., Ltd, 330 Songling Road, Laoshan District, Qingdao, 266061, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, China.
| | - Changyuan Wang
- Department of Dermatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Jinsheng Shi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Riley N, Kasza I, Hermsmeyer IDK, Trautman ME, Barrett-Wilt G, Jain R, Simcox JA, Yen CLE, MacDougald OA, Lamming DW, Alexander CM. Dietary lipids are largely deposited in skin and rapidly affect insulating properties. Nat Commun 2025; 16:4570. [PMID: 40379673 PMCID: PMC12084621 DOI: 10.1038/s41467-025-59869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Skin is a regulatory hub for energy expenditure and metabolism, and alteration of lipid metabolism enzymes in skin impacts thermogenesis and obesogenesis in mice. Here we show that thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We find that skin is the largest target for dietary fat delivery, and that dietary triglyceride is assimilated by epidermis and dermal white adipose tissue, persisting for weeks after feeding. With caloric-restriction, mouse skins thin and assimilation of circulating lipids decreases. Using multi-modal lipid profiling, keratinocytes and sebocytes are implicated in lipid changes, which correlate with thermal function. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.
Collapse
Affiliation(s)
- Nick Riley
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Isabel D K Hermsmeyer
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | | | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, USA
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
4
|
Slominski RM, Raman C, Jetten AM, Slominski AT. Neuro-immuno-endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 2025:10.1038/s41574-025-01107-x. [PMID: 40263492 DOI: 10.1038/s41574-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro-immuno-endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body's homeostasis and allostasis to optimally respond to the changing environment.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veteran Administration Medical Center, Birmingham, AL, USA.
| |
Collapse
|
5
|
Cha J, Kim TG, Ryu JH. Conversation between skin microbiota and the host: from early life to adulthood. Exp Mol Med 2025; 57:703-713. [PMID: 40164684 PMCID: PMC12045987 DOI: 10.1038/s12276-025-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Host life is inextricably linked to commensal microbiota, which play a crucial role in maintaining homeostasis and immune activation. A diverse array of commensal microbiota on the skin interacts with the host, influencing the skin physiology in various ways. Early-life exposure to commensal microbiota has long-lasting effects, and disruption of the epidermal barrier or transient exposure to these microorganisms can lead to skin dysbiosis and inflammation. Several commensal skin microbiota have the potential to function as either commensals or pathogens, both influencing and being influenced by the pathogenesis of skin inflammatory diseases. Here we explore the impact of various commensal skin microbiota on the host and elucidate the interactions between skin microbiota and host systems. A deeper understanding of these interactions may open new avenues for developing effective strategies to address skin diseases.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lai Y, Fan M, Fan X, Chen J, Xiang LF, Ma Y. Progress on Multiomics Research on Acne Vulgaris: A Literature Review. J Invest Dermatol 2025:S0022-202X(25)00129-0. [PMID: 40146096 DOI: 10.1016/j.jid.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025]
Abstract
Acne vulgaris, a prevalent chronic inflammatory disease of the pilosebaceous unit, continues to present with a complex pathogenesis that is not fully understood. The advent of high-throughput sequencing technologies has revolutionized biomedical research, enabling the comprehensive use of multiomics analyses to study diseases with intricate mechanisms, such as acne. This review summarizes the progress in genomics, epigenomics, transcriptomics, proteomics, and metabolomics research on acne. By providing a comprehensive overview, we aim to enhance our understanding of acne pathogenesis and identify potential therapeutic targets that could inspire the prevention and treatment of acne.
Collapse
Affiliation(s)
- Yangfan Lai
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjie Fan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyao Fan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Leihong Flora Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Chen Y, Peng L, Li Y, Peng Y, Dai S, Han K, Xin J. Amplicon-based analysis reveals link between adolescent acne and altered facial skin microbiome induced by negative emotional states. Front Cell Infect Microbiol 2025; 15:1543616. [PMID: 40176988 PMCID: PMC11961944 DOI: 10.3389/fcimb.2025.1543616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The skin microbiome is integral to maintaining skin homeostasis and is involved in the pathogenesis of acne. Emerging evidence supporting the 'brain-skin axis' suggests that psychological stress may exacerbate acne. Both negative emotional states and acne are highly prevalent among adolescents. Although research has begun to explore this relationship, the role of the skin microbiome in adolescents experiencing emotional disturbances and acne remains poorly understood. Methods 166 adolescents aged 15-18 were divided into four distinct groups based on their emotional health and acne severity: no acne or negative emotions (NC), acne without negative emotions (NS), negative emotions without acne (YC), and acne with negative emotions (YS). Skin samples were collected from each participant's forehead and analyzed using high-throughput sequencing techniques, followed by comprehensive bioinformatics analyses to evaluate the microbial composition and diversity across the different groups. Results Adolescents with both acne and negative emotions exhibited significantly higher acne severity (IGA 2.675 ± 0.090) compared to the group with acne but without negative emotions (IGA 1.952 ± 0.136). Distinct microbial community patterns emerged among the groups, with acne-affected individuals displaying increased α-diversity. Additionally, negative emotions were associated with heightened β-diversity differences between acne-affected individuals. The predominant bacterial phyla identified were Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria, with Acinetobacter being more abundant, and Roseomonas and Cutibacterium being less prevalent in adolescents experiencing negative emotions. Conclusion This study revealed that the bacterial biomarkers of the disease change when acne is accompanied by negative emotions. Cutibacterium, Acinetobacter, and Roseomonas may be key contributors to acne exacerbation. These findings underscore the importance of considering both emotional and microbiological factors in the management of adolescent acne, particularly within the context of the brain-skin connection.
Collapse
Affiliation(s)
- Yu Chen
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Lixia Peng
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
- Department of Dermatology, Nanfang Hospital Taihe Branch, Guangzhou, China
| | - Yueying Li
- Department of Dermatology, Nanfang Hospital Taihe Branch, Guangzhou, China
| | - Yusheng Peng
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Siqi Dai
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Kai Han
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| |
Collapse
|
8
|
Gao P, Xiao X, Zhou Z, Zhang H, Subramanian R, Sinsawat A, Gu X. A Triple-Precursor Blend as a Topical Solution to Protect the Skin Against Environmental Damage. BIOLOGY 2025; 14:266. [PMID: 40136522 PMCID: PMC11939934 DOI: 10.3390/biology14030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
The epidermis acts as the body's primary defense, relying on components like lipids, HA and GSH for skin barrier function, hydration and resistance to oxidative stress. However, limitations in the topical application of these biomolecules call for novel approaches. This study investigates the efficacy of Pro-GHL, a blend of free fatty acids, acetylglucosamine and GSH amino acid precursors (GAPs), designed to replenish skin lipids, HA and GSH through de novo biosynthesis. Using primary human keratinocytes, Pro-GHL demonstrated superior antioxidant and anti-inflammatory capacities compared to each individual component under the challenge of UVB or blue light. In 3D skin equivalent models (EpiKutis®), Pro-GHL enhanced skin barrier function. In addition, Pro-GHL prevented the development of pigmentation in pigmented 3D skin equivalent models (MelaKutis®) subjected to UVB irradiation or Benzo[a]pyrene exposure. Together, these results highlight Pro-GHL's potential as a novel, effective and comprehensive skincare approach to fortify the skin's defense system from within and prevent the accumulation of tissue damage in response to extrinsic stressors.
Collapse
Affiliation(s)
- Ping Gao
- Unilever R&D Shanghai, 66 Lin Xin Road, Shanghai 202305, China; (P.G.)
| | - Xue Xiao
- Unilever R&D Shanghai, 66 Lin Xin Road, Shanghai 202305, China; (P.G.)
| | - Zhuang Zhou
- Unilever R&D Shanghai, 66 Lin Xin Road, Shanghai 202305, China; (P.G.)
| | - Hong Zhang
- Unilever R&D Shanghai, 66 Lin Xin Road, Shanghai 202305, China; (P.G.)
| | | | - Anuchai Sinsawat
- Unilever Thai Holdings Ltd., 411 Srinakarin Road, Suanluang, Bangkok 10250, Thailand
| | - Xuelan Gu
- Unilever R&D Shanghai, 66 Lin Xin Road, Shanghai 202305, China; (P.G.)
| |
Collapse
|
9
|
Bi O, Caballero‐Lima D, Sikkink S, Westgate G, Kauser S, Elies J, Thornton MJ. Do Melanocytes Have a Role in Controlling Epidermal Bacterial Colonisation and the Skin Microbiome? Exp Dermatol 2025; 34:e70071. [PMID: 40051134 PMCID: PMC11885897 DOI: 10.1111/exd.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
In addition to producing melanin to protect epidermal keratinocytes against DNA damage, melanocytes may have important roles in strengthening innate immunity against pathogens. We have developed a functional, pigmented, human full-thickness 3D skin equivalent to determine whether the presence of melanocytes impacts epidermal bacterial growth and regulates the expression of genes involved in the immune response. We introduced primary epidermal melanocytes to construct a 3-cell full-thickness skin equivalent with primary dermal fibroblasts and epidermal keratinocytes. Immunohistochemistry verified the appropriate ratio and spatial organisation of melanocytes. Alpha-MSH induced melanogenesis, confirming an appropriate physiological response. We compared this 3-cell skin equivalent with the 2-cell version without melanocytes in response to inoculation with 3 species of bacteria: Staphylococcus epidermidis, Corynebacterium striatum, and Cutibacterium acnes. There was a significant decrease in the colonisation of bacteria in the skin equivalents containing functional melanocytes. There was increased expression of immune-response genes (S100A9, DEFB4A, IL-4R) following microorganism exposure; however, there were marked differences between the unpigmented and pigmented skin equivalents. This physiologically relevant human 3D-skin equivalent opens up new avenues for studying complex skin pigmentation disorders, melanoma, and UV damage, as well as the rapidly evolving field of the skin microbiome and the balance between commensal and pathogenic species.
Collapse
Affiliation(s)
- Omera Bi
- Centre for Skin Sciences, Faculty of Life ScienceUniversity of BradfordBradfordUK
- Labskin UK, York Biotech CampusSand HuttonUK
| | | | - Stephen Sikkink
- Centre for Skin Sciences, Faculty of Life ScienceUniversity of BradfordBradfordUK
| | - Gill Westgate
- Centre for Skin Sciences, Faculty of Life ScienceUniversity of BradfordBradfordUK
| | - Sobia Kauser
- Centre for Skin Sciences, Faculty of Life ScienceUniversity of BradfordBradfordUK
| | - Jacobo Elies
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | - M. Julie Thornton
- Centre for Skin Sciences, Faculty of Life ScienceUniversity of BradfordBradfordUK
| |
Collapse
|
10
|
Shao L, Huang J, Li Y, Ma L, Niu Y, Jiang W, Yuan C, Bai T, Yang S. Antioxidant Activities of the Cell-Free Supernatant of a Potential Probiotic Cutibacterium acnes Strain CCSM0331, Isolated From a Healthy Skin. J Cosmet Dermatol 2025; 24:e70105. [PMID: 40071444 PMCID: PMC11897930 DOI: 10.1111/jocd.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits. However, the metabolite components and mechanisms of C. acnes exerting antioxidant activity are not yet clear. This study aimed to analyze the potential antioxidant effects of C. acnes cell-free supernatant and the mechanisms. METHODS The antioxidant effects were evaluated by measuring the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS) radicals, and hydroxyl radicals, as well as the effects on ROS levels in menadione-induced primary human keratinocytes in vitro. Additionally, western blot analysis was performed to assess the antioxidant effects of the C. acnes CCSM0331 cell-free supernatant (CFS). RESULTS C. acnes CCSM0331 was isolated from the facial skin of healthy individuals. This strain, classified as type II, is associated with healthy skin. The CFS of strain CCSM0331 contained various short-chain fatty acids (SCFAs), glutathione peroxidase (GSH-Px), and total superoxide dismutase(T-SOD), exhibiting strong DPPH and ABTS radical scavenging capabilities, thus demonstrating substantial antioxidant activity. In a reactive oxygen species model induced by menadione in primary human keratinocytes, the addition of 5% of the fermentation supernatant from this strain significantly reduced ROS levels, indicating a notable ROS-scavenging effect. Western blot analysis further confirmed that the CCSM0331 fermentation supernatant activated the expression of Nrf-2 and HO-1 proteins, thereby activating the Nrf-2 oxidative stress pathway and exerting antioxidant effects. CONCLUSION C. acnes CCSM0331 is a promising skin probiotic with notable antioxidant properties. The activity of this strain exhibited significant free radical scavenging activity, suggesting its potential application in the development of antiaging products. This study provides theoretical support for the screening of functional skin bacteria or skin probiotics.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Jieyan Huang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yan Li
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Laiji Ma
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yujie Niu
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Wen Jiang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Chunying Yuan
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Tianming Bai
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Suzhen Yang
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| |
Collapse
|
11
|
Chen YE. A genetic toolbox for engineering C. acnes. Cell Syst 2025; 16:101199. [PMID: 39978310 DOI: 10.1016/j.cels.2025.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Cutibacterium acnes is a highly prevalent and abundant skin bacterium that lives deep in the hair follicle, a unique site for host access. Thus, it is a prime target to engineer. This study introduces a genetic toolbox for C. acnes, which will enable basic science and therapeutic bioengineering.
Collapse
Affiliation(s)
- Y Erin Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Liu K, Deng S, Zhou Y, Xu B, Zhang Y, Li W, Liu X, Yao X. Crosstalk Between the Skin Environment and Microbial Community in Immune-Related Skin Diseases. Clin Rev Allergy Immunol 2025; 68:16. [PMID: 39954089 DOI: 10.1007/s12016-025-09029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
The skin surface hosts diverse skin microbiota, including bacteria, fungi, and viruses. Intricate interactions between the skin microenvironment and microbial community are crucial for maintaining cutaneous homeostasis. This review explores the bidirectional relationship between the skin ecosystem and its microbiota. The skin microenvironment is shaped by a combination of intrinsic factors, dominated by sweat glands and pilosebaceous units, and external factors, such as UV radiation and personal care products, which create distinct niches that influence microbial colonization patterns across different skin regions. The skin microbiome, in turn, modulates the physical, chemical, immunological, and microbial barriers of the skin. We also discuss the alterations in this crosstalk in various immune-related skin conditions such as atopic dermatitis, psoriasis, rosacea, hidradenitis suppurativa, skin cancer, and aging. Understanding these interactions is vital for developing targeted microbiome-based therapies for various skin disorders. Further researches are needed to deepen insights into the microbial roles and their therapeutic potentials in skin health and disease.
Collapse
Affiliation(s)
- Kecheng Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Shuting Deng
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Wei Li
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, Shanghai, 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
13
|
Wu Y, Liu X, Zhang L, Wang P, Zhang H, Yan J, Yan Y, Liu P, Zhao J, Zeng Q, Wang X. The 5-Aminolevulinic Acid Photodynamic Therapy Modulates Lipid Production by Protein Kinase B/JunD-Mediated NR4A1 Activation in the Treatment of Acne Vulgaris. J Invest Dermatol 2025:S0022-202X(25)00090-9. [PMID: 39922453 DOI: 10.1016/j.jid.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025]
Abstract
Severe acne vulgaris is a prevalent chronic inflammatory skin condition affecting individuals worldwide, with abnormal sebaceous gland function closely linked to its pathogenesis. The 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is an effective and safe treatment for severe acne; however, the mechanisms underlying its effects remain unclear. In this study, we first noted a decrease in lipid production after ALA-PDT in patients with acne, acne-like mouse models, and the human immortalized sebocyte cell line XL-i-20. Through RNA sequencing, we identified significant upregulation of the transcription factor NR4A1 after ALA-PDT. Further confirmation of NR4A1 upregulation and its nuclear translocation under ALA-PDT was obtained in vitro and in vivo. Both the knockdown and overexpression of NR4A1 were shown to reverse or enhance the suppressive effect of ALA-PDT on lipid production. The following findings suggest that ALA-PDT inhibits protein kinase B signaling pathway, resulting in the activation of JunD, which subsequently enhances NR4A1 transcription and facilitates its inhibitory effect on lipid production. Overall, our findings highlight the crucial role of NR4A1 in regulating sebaceous lipids, elucidate the mechanism through which ALA-PDT treats acne, and lay the groundwork for enhancing the clinical applications of ALA-PDT.
Collapse
Affiliation(s)
- Yun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
14
|
Ko HJ, Park S, Shin E, Kim J, Lee GS, Lee YJ, Park SM, Lee J, Hyun CG. Poly-γ-Glutamic Acid from a Novel Bacillus subtilis Strain: Strengthening the Skin Barrier and Improving Moisture Retention in Keratinocytes and a Reconstructed Skin Model. Int J Mol Sci 2025; 26:983. [PMID: 39940752 PMCID: PMC11817278 DOI: 10.3390/ijms26030983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
A novel Bacillus subtilis HB-31 strain was isolated from Gotjawal Wetland in Jeju Island, Republic of Korea. A mucus substance produced by this strain was identified as high-molecular-weight poly-γ-glutamic acid (γ-PGA) using NMR, Fourier transform infrared spectroscopy, and size-exclusion chromatography/multi-angle light scattering analyses. We evaluated whether γ-PGA strengthened the skin barrier using keratinocytes and a reconstructed skin model. In keratinocytes, γ-PGA treatment dose-dependently increased the mRNA expression of skin barrier markers, including filaggrin, involucrin, loricrin, serine palmitoyl transferase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase. γ-PGA also enhanced hyaluronic acid synthesis by upregulating hyaluronic acid synthase-1, -2, and -3 mRNA levels and promoted aquaporin 3 expression, which is involved in skin hydration. In the reconstructed skin model, topical application of 1% γ-PGA elevated filaggrin, involucrin, CD44, and aquaporin 3 expression, compared to the control. These results suggest that the newly isolated HB-31 can be used as a commercial production system of high-molecular-weight γ-PGA, which can serve as an effective ingredient for strengthening the skin barrier and improving moisture retention. Further research is needed to explore the long-term effects of γ-PGA on skin health and its application in treating skin conditions.
Collapse
Affiliation(s)
- Hyun-Ju Ko
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Chungbuk, Republic of Korea; (H.-J.K.); (S.P.); (E.S.); (S.M.P.)
| | - SeoA Park
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Chungbuk, Republic of Korea; (H.-J.K.); (S.P.); (E.S.); (S.M.P.)
| | - Eunjin Shin
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Chungbuk, Republic of Korea; (H.-J.K.); (S.P.); (E.S.); (S.M.P.)
| | - Jinhwa Kim
- R&D Center, ItsHanbul, 62, 547, Daeseong-ro, Samseong-myeon, Eumseong-gun 27651, Chungbuk, Republic of Korea; (J.K.); (G.S.L.)
| | - Geun Soo Lee
- R&D Center, ItsHanbul, 62, 547, Daeseong-ro, Samseong-myeon, Eumseong-gun 27651, Chungbuk, Republic of Korea; (J.K.); (G.S.L.)
| | - Ye-Jin Lee
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Jeju-do, Republic of Korea;
| | - Sung Min Park
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Chungbuk, Republic of Korea; (H.-J.K.); (S.P.); (E.S.); (S.M.P.)
| | - Jungno Lee
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Chungbuk, Republic of Korea; (H.-J.K.); (S.P.); (E.S.); (S.M.P.)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Jeju-do, Republic of Korea;
| |
Collapse
|
15
|
Zhang L, Huang Y, Zhu W. The Therapeutic Mechanisms of Huayu Quban Capsule in Treating Acne Vulgaris Are Uncovered Through Network Pharmacology and Molecular Docking. J Cosmet Dermatol 2025; 24:e16632. [PMID: 39552028 PMCID: PMC11743294 DOI: 10.1111/jocd.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To uncover how the Huayu Quban (HYQB) capsule treats acne vulgaris (AV) through the use of network pharmacology and molecular docking technology. METHODS The traditional Chinese medicine system pharmacology database (TCMSP) was used to identify the components and potential targets of HYQB capsule. Targets related to AV were identified by screening the GeneCards, Disease Gene Network (DisGeNET) and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network between targets of active ingredients and AV targets was built using the STRING database. Cytoscape3.7.2 software was used to create the visualization network for the 'herb-component-target' and identify the key targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized for functional enrichment analysis of the primary targets. Subsequently, molecular docking technology was employed to confirm the interaction between key components and core targets. RESULTS The technique discovered 50 different active substances and 270 associated therapeutic targets in the HYQB capsule as well as predicting 70 targets for treating acne vulgaris. Cytoscape hubba plug-in identified 19 key target genes, with the top 5 being TNF, IL1B, CCL2, SIRT1, IFNG, and IL10. Analysis of KEGG pathways revealed significant enrichment of immune-related pathways, including TNF and IL-17 signaling pathways, among the target genes. The HYQB capsule also involves lipid and atherosclerosis, Th17 cell differentiation, and the AGE-RAGE signaling pathway in diabetic complication signaling pathways. Molecular docking results showed that quercetin, luteolin, kaempferol, and wogonin, the core components of HYQB, had good binding ability with the first 4 core targets. CONCLUSIONS The HYQB capsule may have a synergistic effect on inhibiting sebaceous adipogenesis and sebum cell differentiation and play an effect on AV through anti-inflammatory and antioxidant effects of different signaling pathways.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| | - Yu Huang
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese MedicineKunshanChina
| |
Collapse
|
16
|
Xu J, Huang S, Fu Z, Zheng W, Luo W, Zhuang N, Liu L, He R, Yang F. Effects of Light and Laser Therapies on the Microecosystem of Sebaceous Glands in Acne Treatment. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70005. [PMID: 39754335 DOI: 10.1111/phpp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Acne vulgaris (acne) is one of the most common skin diseases with complex pathogenesis. Numerous studies have shown that the microecosystem of sebaceous glands and Cutibacterium acnes play key roles in its pathogenesis. Antibiotics targeting C. acnes have been widely used in acne treatment, but the growing prevalence of antibiotic resistance has become alarming. Further research into the microecosystem of sebaceous glands and the role of specific C. acnes phylotypes in acne pathogenesis has led to a paradigm shift in acne treatment. Currently, non-antibiotic therapies such as light therapy and laser therapy are becoming increasingly popular, opening up new opportunities in acne management. METHODS Studies on the microecosystem of sebaceous glands associated with acne and the effects of light and laser therapies on the microecosystem in acne treatment were retrieved from the PubMed database. RESULTS Dysbiosis of the microecosystem of the pilosebaceous unit is closely related to the pathogenesis of acne. Light and laser therapies have an impact on the microecosystem of the pilosebaceous unit in acne treatment. CONCLUSIONS Light and laser therapies are the popular alternative options in acne treatment. The mechanisms of their effect on the microecosystem of sebaceous glands are not completely clear and require further research, especially for laser therapy.
Collapse
Affiliation(s)
- Jiaoxiong Xu
- Department of Dermatology and Burn, Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Shengbo Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
- Department of Dermatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Foshan, Guangdong, China
| | - Zhengzheng Fu
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wanting Luo
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Niangqiao Zhuang
- Department of Dermatology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Liuhong Liu
- Department of Dermatology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatoma, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Fang Yang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Lesiak A, Paprocka P, Wnorowska U, Mańkowska A, Król G, Głuszek K, Piktel E, Spałek J, Okła S, Fiedoruk K, Durnaś B, Bucki R. Significance of host antimicrobial peptides in the pathogenesis and treatment of acne vulgaris. Front Immunol 2024; 15:1502242. [PMID: 39744637 PMCID: PMC11688235 DOI: 10.3389/fimmu.2024.1502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e., genetically distinct bacterial subgroups that play different roles in skin health and disease) diversity of the predominant skin bacterial commensal - Cutinbacterium acnes. Like in other dysbiotic disorders, an elevated expression of endogenous antimicrobial peptides (AMPs) is a hallmark of AV. AMPs, such as human β-defensins, cathelicidin LL-37, dermcidin, or RNase-7, due to their antibacterial and immunomodulatory properties, function as the first line of defense and coordinate the host-microbiota interactions. Therefore, AMPs are potential candidates for pharmaceutical prophylaxis or treating this condition. This study outlines the current knowledge regarding the importance of AMPs in AV pathomechanism in light of recent transcriptomic studies. In particular, their role in improving the tight junctions (TJs) skin barrier by activating the fundamental cellular proteins, such as PI3K, GSK-3, aPKC, and Rac1, is discussed. We hypothesized that the increased expression of AMPs and their patterns in AV act as a compensatory mechanism to protect the skin with an impaired permeability barrier. Therefore, AMPs could be key determinants in regulating AV development and progression, linking acne-associated immune responses and metabolic factors, like insulin/IGF-1 and PI3K/Akt/mTOR/FoxO1 signaling pathways or glucotoxicity. Research and development of anti-acne AMPs are also addressed.
Collapse
Affiliation(s)
- Agata Lesiak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Paulina Paprocka
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Angelika Mańkowska
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Clinical Microbiology, Holy-Cross Oncology Center of Kielce, Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
18
|
Lv L, Yan X, Zhou M, He H, Jia Y. Circadian Rhythms of Skin Surface Lipids and Physiological Parameters in Healthy Chinese Women Reveals Circadian Changes in Skin Barrier Function. BIOLOGY 2024; 13:1031. [PMID: 39765698 PMCID: PMC11673904 DOI: 10.3390/biology13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Circadian rhythms are driven by the biological clock, an endogenous oscillator that generates approximately 24 h cycles in mammals. The circadian regulation of the lipid metabolism plays a crucial role in overall metabolic health. An analysis of the correlation between the skin's physiological parameters and skin lipids can provide a better insight into the rhythmic changes in skin condition. OBJECTIVES The aim was to reveal how skin surface lipids (SSLs) participate in the regulation of circadian rhythms in the skin and the importance of the circadian oscillation of facial lipid molecules in maintaining epidermal homeostasis. METHODS Changes in SSLs were assessed using UPLC-QTOF-MS. The skin's physiological parameters were quantified using non-invasive instruments. Multivariate data analysis was employed to evaluate the differences. RESULTS Both skin surface lipids and physiological parameters exhibited certain circadian variation patterns. Four major lipid classes (fatty acids, glycerophospholipids, prenol lipids, saccharolipids) exhibited circadian rhythmic trends, with seven lipid subclasses contributing most significantly to the overall patterns observed. Among the physiological parameters assessed, sebum secretion, transepidermal water loss, moisture measurement value, and skin surface temperature exhibited sinusoidal circadian rhythms. Further analysis revealed significant correlations between fatty acids and saccharolipids with moisture measurement values, and between glycerolipids and pH value. In addition, lipids closely associated with the barrier such as unsaturated fatty acids and ceramide chain lengths correlated significantly with moisture measurement values. CONCLUSIONS Through correlation analysis, the study elucidates the influence of diurnal fluctuations in skin surface lipids on skin barrier function. These findings hold significant implications for understanding skin barrier impairment associated with circadian rhythm disruptions.
Collapse
Affiliation(s)
- Lanxing Lv
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.L.); (X.Y.); (M.Z.)
- Key Laboratory of Cosmetic of China National Light Industry, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- International School of Cosmetics, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoxi Yan
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.L.); (X.Y.); (M.Z.)
- Key Laboratory of Cosmetic of China National Light Industry, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- International School of Cosmetics, Beijing Technology and Business University, Beijing 100048, China
| | - Mingyue Zhou
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.L.); (X.Y.); (M.Z.)
- Key Laboratory of Cosmetic of China National Light Industry, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- International School of Cosmetics, Beijing Technology and Business University, Beijing 100048, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.L.); (X.Y.); (M.Z.)
- Key Laboratory of Cosmetic of China National Light Industry, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- International School of Cosmetics, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.L.); (X.Y.); (M.Z.)
- Key Laboratory of Cosmetic of China National Light Industry, School of Light industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- International School of Cosmetics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Xu D, Wu Y. Ectoin attenuates cortisone-induced skin issues by suppression GR signaling and the UVB-induced overexpression of 11β-HSD1. J Cosmet Dermatol 2024; 23:4303-4314. [PMID: 39222375 PMCID: PMC11626367 DOI: 10.1111/jocd.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Accelerated pace of modern work and lifestyles subject individuals to various external and psychological stressors, which, in turn, can trigger additional stress through visible signs of fatigue, hair loss, and obesity. As the primary stress hormone affecting skin health, cortisol connects to the glucocorticoid receptor (GR) to aggravate skin issues induced by stress. This activation depends on the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in skin cells, which locally converts cortisone-produced by the central and peripheral hypothalamic-pituitary-adrenal axis-into its active form. METHODS Our study delves deeper into stress's adverse effects on the skin, including the disruption of keratinocyte structural proteins, the loss of basement membrane proteins, and the degradation of collagen. RESULTS Remarkably, we discovered that Ectoin, an amino acid derivative obtained from halophilic bacteria, is capable of mitigating the inhibitory impacts of cortisone on the expression of cutaneous functional proteins, including involucrin, loricrin, laminin-5, and claudin-1. Moreover, Ectoin reduces the suppressive effect of stress on collagen and hyaluronic acid synthesis by impeding GR signal transduction. Additionally, Ectoin counterbalances the UVB-induced overexpression of 11β-HSD1, thereby diminishing the concentration of endogenous glucocorticoids. CONCLUSION Our findings illuminate the significant potential of Ectoin as a preventative agent against stress-induced skin maladies.
Collapse
Affiliation(s)
- Dailin Xu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| | - Yue Wu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| |
Collapse
|
20
|
Li Z, Zhao Y. Evidence of a Causal Relationship Between Body Mass Index and Immune-Mediated and Inflammatory Skin Diseases and Biomarkers: A Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2024; 17:2659-2667. [PMID: 39606276 PMCID: PMC11600962 DOI: 10.2147/ccid.s496066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Aim Increasing observational studies are revealing a positive correlation between body mass index (BMI) and the risk of Immune-mediated and Inflammatory Skin Diseases (IMID), however the causal relationship is not yet definite. Objective The aim of the study was to conduct a two-sample Mendelian randomization (TSMR) to explore the potential causality between BMI, and IMID and biomarkers. Methods The summary statistics for BMI (n = 322,154), at genome-wide significant level, were derived from the Genetic Investigation of Anthropometric Traits consortium (GIANT). The outcome data for IMID (Psoriasis, vitiligo, Atopic dermatitis (AD), acne, Bullous diseases, Dermatitis herpetiformis, Systemic lupus erythematosus (SLE), Alopecia Areata (AA), Hidradenitis suppurativa (HS) and Systemic sclerosis), and biomarkers were obtained from genome-wide association studies (GWAS). The TSMR analyses were performed in four methods, including inverse variance weighted (IVW) method, MR-Egger regression, the weighted median estimator (WME) and simple mode. Results The IVW analysis showed that the per standard deviation (SD) increase in BMI increased a 57% risk of psoriasis. We also observed the suggestive evidence of a causal relationship between BMI and AD and HS. This analysis did not support causality of Vitiligo, Acne, Bullous pemphigoid, Dermatitis herpetiformis, SLE, AA and Systemic sclerosis. The higher risk of BMI may be explained by higher levels of Triglycerides, C-reactive protein (CRP), Interleukin 6, Erythrocyte sedimentation rate (ESR) and Neutrophil count. The high-density lipoprotein (HDL) has an inverse relationship with BMI. No influences were defined for Total cholesterol, low-density lipoprotein (LDL), Rheumatoid factor (RF), Basophil count and Eosinophil count. Conclusion Our two-sample MR analysis proved the causal evidence for the associations between BMI and IMID, including psoriasis, AD and HS, which might be related to the elevated expression of biomarkers, including Triglycerides, CRP, Interleukin 6, ESR and neutrophil count.
Collapse
Affiliation(s)
- Zhaoyi Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 31000, People’s Republic of China
| | - Yibin Zhao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 31000, People’s Republic of China
| |
Collapse
|
21
|
Kim I, Jung DR, Kim RH, Lee D, Jung Y, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Cho YS, Shin JH. Complete genome of single locus sequence typing D1 strain Cutibacterium acnes CN6 isolated from healthy facial skin. BMC Genom Data 2024; 25:94. [PMID: 39501144 PMCID: PMC11539642 DOI: 10.1186/s12863-024-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Cutibacterium acnes is a Gram-positive bacterium commonly found on human skin, particularly in sebaceous areas. While it is typically considered a commensal, specific strain types based on single locus sequence typing (SLST) have been associated with pathogenic conditions or healthy skin. Recently, SLST D1 strains, part of phylotype IA1, have received attention for their potential benefits related to skin health. However, their genetic characteristics remain underexplored. Therefore, the whole genome of C. acnes CN6, an SLST D1 strain isolated from the facial skin of a healthy individual, was sequenced to expand the understanding of SLST D1 strains and identify genomic features that may support skin health. DATA DESCRIPTION The whole genome sequencing of C. acnes CN6 was conducted using MinION reads based on de novo assembly, revealing a single circular complete chromosome. With the length of 2,550,458 bp and G + C content of 60.04%, the genome contains 2,492 genes, including 2,433 CDSs, 9 rRNAs, 46 tRNAs, 4 ncRNAs, and 134 pseudo genes. Previously predicted virulence proteins of C. ances were detected in the genome. Genome comparation with 200 C. acnes strains isolated from healthy facial skin revealed SLST D1 strain-specific genes and a unique variant of the znuC gene in D1 strains.
Collapse
Affiliation(s)
- Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dokyung Lee
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | | | | | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea.
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
22
|
Nguyen UT, Salamzade R, Sandstrom S, Swaney MH, Townsend L, Wu SY, Cheong JA, Sardina JA, Ludwikoski I, Rybolt M, Wan H, Carlson C, Zarnowski R, Andes D, Currie C, Kalan L. Large-scale investigation for antimicrobial activity reveals novel defensive species across the healthy skin microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621544. [PMID: 39574598 PMCID: PMC11580923 DOI: 10.1101/2024.11.04.621544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The human skin microbiome constitutes a dynamic barrier that can impede pathogen invasion by producing antimicrobial natural products. Gene clusters encoding for production of secondary metabolites, biosynthetic gene clusters (BGCs), that are enriched in the human skin microbiome relative to other ecological settings, position this niche as a promising source for new natural product mining. Here, we introduce a new human microbiome isolate collection, the EPithelial Isolate Collection (EPIC). It includes a large phylogenetically diverse set of human skin-derived bacterial strains from eight body sites. This skin collection, consisting of 980 strains is larger and more diverse than existing resources, includes hundreds of rare and low-abundance strains, and hundreds of unique BGCs. Using a large-scale co-culture screen to assess 8,756 pairwise interactions between skin-associated bacteria and potential pathogens, we reveal broad antifungal activity by skin microbiome members. Integrating 287 whole isolate genomes and 268 metagenomes from sampling sites demonstrates that while the distribution of BGC types is stable across body sites, specific gene cluster families (GCFs), each predicted to encode for a distinct secondary metabolite, can substantially vary. Sites that are dry or rarely moist harbor the greatest potential for discovery of novel bioactive metabolites. Among our discoveries are four novel bacterial species, three of which exert significant and broad-spectrum antifungal activity. This comprehensive isolate collection advances our understanding of the skin microbiomes biosynthetic capabilities and pathogen-fighting mechanisms, opening new avenues towards antimicrobial drug discovery and microbiome engineering.
Collapse
Affiliation(s)
- Uyen Thy Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liz Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sherrie Y. Wu
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J.Z. Alex Cheong
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph A. Sardina
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackinnley Rybolt
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitlin Carlson
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Robert Zarnowski
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron Currie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
24
|
Qi F, Xu Y, Zheng B, Li Y, Zhang J, Liu Z, Wang X, Zhou Z, Zeng D, Lu F, Zhang C, Gan Y, Hu Z, Wang G. The Core-Shell Microneedle with Probiotic Extracellular Vesicles for Infected Wound Healing and Microbial Homeostasis Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401551. [PMID: 39109958 DOI: 10.1002/smll.202401551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Indexed: 11/21/2024]
Abstract
Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yujie Xu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Bowen Zheng
- Center of Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, 314408, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyang Zhou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chunhua Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| |
Collapse
|
25
|
Martínez-Ortega JI, Mut Quej JE, Franco González S. Malassezia Folliculitis: Pathogenesis and Diagnostic Challenges. Cureus 2024; 16:e73429. [PMID: 39664138 PMCID: PMC11633069 DOI: 10.7759/cureus.73429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Malassezia folliculitis (MF) is a fungal infection that often presents with pruritic follicular papules and pustules, primarily affecting the upper body. Due to its clinical similarity to bacterial folliculitis, misdiagnosis and delayed treatment are common. In this report, we present the case of a 16-year-old male who developed persistent pruritic papules on his upper back and chest, initially misdiagnosed as bacterial folliculitis. Following ineffective antibiotic treatment, mycological analysis confirmed Malassezia as the causative pathogen. This case emphasizes the importance of considering fungal etiologies in folliculitis, particularly in patients with recurrent or treatment-resistant symptoms. The patient's condition improved significantly following antifungal therapy, underscoring the need for accurate diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Jesús Iván Martínez-Ortega
- Dermatology, Dermatology Institute of Jalisco, Zapopan, MEX
- Histology, Autonomous University of Nuevo Leon, Faculty of Medicine, Monterrey, MEX
| | - Jacqueline E Mut Quej
- Internal Medicine, Regional General Hospital No. 12 IMSS Lic. Benito Juárez, Merida, MEX
| | | |
Collapse
|
26
|
Jung Y, Kim I, Jung DR, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Shin JH, Cho YS. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms 2024; 12:2179. [PMID: 39597568 PMCID: PMC11596587 DOI: 10.3390/microorganisms12112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle formation, and altered barrier function. The skin microbiome significantly impacts this process. Here, we investigated the effects of decreased Cutibacterium acnes abundance and increase in other skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided into younger (20-29 years) and older (60-75 years) groups. Metagenomic sequencing and skin assessments showed that the older group exhibited decreased C. acnes dominance and increased microbial diversity, correlating with reduced skin elasticity and increased wrinkles. In the younger age group, the enriched pathways included zeatin biosynthesis, distinct biotin metabolism pathways, and cofactor and vitamin metabolism in the younger age group, whereas pathways related to lipid metabolism, energy metabolism, and responses to environmental stressors, including UV damage and pollution, were enriched in the older group, according to functional analysis results. Network analysis indicated higher microbial connectivity in the younger group, suggesting a more stable community, whereas the older group's community displayed higher modularity, indicating more independent and specialized clusters. This study enhances our understanding of the impact of skin microbiome changes on skin aging, particularly the anti-aging effects of C. acnes. Future research should focus on the physiological mechanisms of skin microbiota on skin aging and explore therapeutic potentials to enhance skin health.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jun-Hwan Jang
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jun-Tae Bae
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| |
Collapse
|
27
|
Ito T, Nakamura Y. The skin barrier and microbiome in infantile atopic dermatitis development: can skincare prevent onset? Int Immunol 2024; 36:579-584. [PMID: 38887075 DOI: 10.1093/intimm/dxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Atopic dermatitis (AD), a prevalent Th2-dominant skin disease, involves complex genetic and environmental factors, including mutations in the Filaggrin gene and dysbiosis of skin microbiota characterized by an increased abundance of Staphylococcus aureus. Our recent findings emphasize the pivotal role of the skin barrier's integrity and microbial composition in infantile AD and allergic diseases. Early skin dysbiosis predisposes infants to AD, suggesting targeted skincare practices as a preventive strategy. The effects of skincare interventions, particularly the application of moisturizers with the appropriate molar concentration of ceramides, cholesterol, and fatty acids, play a crucial role in restoring the skin barrier. Notably, our study revealed that appropriate skincare can reduce Streptococcus abundance while supporting Cutibacterium acnes presence, thus directly linking skincare practices to microbial modulation in neonatal skin. Despite the mixed outcomes of previous Randomized Controlled Trials on the efficacy of moisturizers in AD prevention, our research points to the potential of skincare intervention as a primary preventive method against AD by minimizing the impact of genetic and environmental factors. Furthermore, our research supports the notion that early aggressive management of eczema may reduce the incidence of food allergies, highlighting the necessity for multifaceted prevention strategies that address both the skin barrier and immune sensitization. By focusing on repairing the skin barrier and adjusting the skin's microbiome from birth, we propose a novel perspective on preventing infantile AD and allergic diseases, opening new avenues for future studies, and practices in allergy prevention.
Collapse
Affiliation(s)
- Tomoka Ito
- Department of Dermatology, The University of Osaka, Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yuumi Nakamura
- Department of Dermatology, The University of Osaka, Graduate School of Medicine, Osaka 565-0871, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Liu Y, Chen Y, Batzorig U, Li J, Fernández-Méndez C, Mahapatra S, Li F, Sam S, Dokoshi T, Hong SP, Nakatsuji T, Gallo RL, Sen GL. The transcription regulators ZNF750 and LSD1/KDM1A dampen inflammation on the skin's surface by silencing pattern recognition receptors. Immunity 2024; 57:2296-2309.e5. [PMID: 39353440 PMCID: PMC11464168 DOI: 10.1016/j.immuni.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (TLR3, IFIH1/MDA5, and DDX58/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of TLR3. Our findings explain how the skin's surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.
Collapse
Affiliation(s)
- Ye Liu
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Uyanga Batzorig
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, Department of Dermatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Celia Fernández-Méndez
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Samiksha Mahapatra
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Fengwu Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Shebin Sam
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Seung-Phil Hong
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea
| | - Teruaki Nakatsuji
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Richard L Gallo
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
29
|
Riley N, Kasza I, Hermsmeyer IDK, Trautman ME, Barrett-Wilt G, Jain R, Simcox JA, Yen CLE, MacDougald OA, Lamming DW, Alexander CM. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. RESEARCH SQUARE 2024:rs.3.rs-3957002. [PMID: 38464106 PMCID: PMC10925457 DOI: 10.21203/rs.3.rs-3957002/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Skin has been shown to be a regulatory hub for energy expenditure and metabolism: mutations of skin lipid metabolism enzymes can change the rate of thermogenesis and susceptibility to diet-induced obesity. However, little is known about the physiological basis for this function. Here we show that the thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We found that skin was the largest target in a mouse body for dietary fat delivery, and that dietary triglyceride was assimilated both by epidermis and by dermal white adipose tissue. Skin from mice calorie-restricted for 3 weeks did not take up circulating lipids and showed a highly depleted stratum corneum. Dietary triglyceride acyl groups persist in skin for weeks after feeding. Using multi-modal lipid profiling, we have implicated both keratinocytes and sebocytes in the altered lipids which correlate with thermal function. In response to high fat feeding, wax diesters and ceramides accumulate, and triglycerides become more saturated. In contrast, in response to the dramatic loss of adipose tissue that accompanies restriction of the branched chain amino acid isoleucine, skin becomes more heat-permeable, resisting changes induced by Western diet feeding, with a signature of depleted signaling lipids. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.
Collapse
Affiliation(s)
- Nick Riley
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
| | | | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital, Madison
| | | | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison
- Howard Hughes Medical Institute, University of Wisconsin-Madison
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison
| | | | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital, Madison
| | | |
Collapse
|
30
|
Shafiuddin M, Prather GW, Huang WC, Anton JR, Martin AL, Sillart SB, Tang JZ, Vittori MR, Prinsen MJ, Ninneman JJ, Manithody C, Henderson JP, Aleem AW, Ilagan MXG, McCoy WH. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613542. [PMID: 39345635 PMCID: PMC11429735 DOI: 10.1101/2024.09.18.613542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( Cutibacterium ), and a single species within that genus ( C. acnes ) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections. Author Summary The longer humans live, the more they require internal "replacement parts," like prosthetic joints. Increased placement of these and other medical devices has increased their complications, which frequently are infections caused by microbes that live on humans. One of these microbes is Cutibacterium acnes , which dominates 25% of human skin. It appears that when humans domesticated cattle, a C. acnes ancestor adapted from living in cows to living on people. One of these adaptations was RoxP, a protein only found in Cutibacterium and carried by all C. acnes . Here, we describe our extensive characterization of RoxP. We found that distantly related RoxP conserve high stability at the low pH found on human skin. They also conserve the ability to bind heme, a source of iron used by microbes when they infect humans. As a part of this work, we developed tests that measure RoxP to identify C. acnes growth. In a clinic or hospital, these tests could allow a doctor to rapidly identify C. acnes infections, which would improve patient outcomes and lower healthcare costs. This work has helped us better understand how C. acnes adapted to live on humans and to identify C. acnes infections of medical devices.
Collapse
|
31
|
Ferček I, Ozretić P, Tambić-Andrašević A, Trajanoski S, Ćesić D, Jelić M, Geber G, Žaja O, Paić J, Lugović-Mihić L, Čivljak R. Comparison of the Skin Microbiota in the Periocular Region between Patients with Inflammatory Skin Diseases and Healthy Participants: A Preliminary Study. Life (Basel) 2024; 14:1091. [PMID: 39337875 PMCID: PMC11433335 DOI: 10.3390/life14091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
(1) Background: Periocular or periorbital dermatitis is a common term for all inflammatory skin diseases affecting the area of skin around the eyes. The clear etiopathogenesis of periocular dermatitis is still not fully understood. Advances in molecular techniques for studying microorganisms living in and on our bodies have highlighted the microbiome as a possible contributor to disease, as well as a promising diagnostic marker and target for innovative treatments. The aim of this study was to compare the composition and diversity of the skin microbiota in the periocular region between healthy individuals and individuals affected by the specific entity of periocular dermatitis. (2) Methods: A total of 35 patients with periocular dermatitis and 39 healthy controls were enrolled in the study. After a skin swab from the periocular region was taken from all participants, DNA extraction and 16S rRNA gene amplicon sequencing using Illumina NovaSeq technology were performed. (3) Results: Staphylococcus and Corynebacterium were the most abundant bacterial genera in the microbiota of healthy skin. Analysis of alpha diversity revealed a statistically significant change (p < 0.05) in biodiversity based on the Faith's PD index between patients and healthy individuals. We did not observe changes in beta diversity. The linear discriminant analysis effect size (LEfSe) revealed that Rothia, Corynebacterium, Bartonella, and Paracoccus were enriched in patients, and Anaerococcus, Bacteroides, Porphyromonas, and Enhydrobacter were enriched in healthy controls. (4) Conclusions: According to the results obtained, we assume that the observed changes in the bacterial microbiota on the skin, particularly Gram-positive anaerobic cocci and skin commensals of the genus Corynebacterium, could be one of the factors in the pathogenesis of the investigated inflammatory diseases. The identified differences in the microbiota between healthy individuals and patients with periocular dermatitis should be further investigated.
Collapse
Affiliation(s)
- Iva Ferček
- Department of Ophthalmology, Zabok General Hospital and Croatian Veterans’ Hospital, 49210 Zabok, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Arjana Tambić-Andrašević
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University Graz, 8010 Graz, Austria;
| | - Diana Ćesić
- Department of Dermatology and Venereology, Medikol Clinic, 10000 Zagreb, Croatia;
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Goran Geber
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Orjena Žaja
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Pediatrics, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Josipa Paić
- Department of Ophthalmology and Optometry, Šibenik General Hospital, 22000 Šibenik, Croatia;
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Rok Čivljak
- Department for Respiratory Infections, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Nemes-Nikodém É, Gyurok GP, Dunai ZA, Makra N, Hofmeister B, Szabó D, Sótonyi P, Hidi L, Szappanos Á, Kovács G, Ostorházi E. Relationship between Gut, Blood, Aneurysm Wall and Thrombus Microbiome in Abdominal Aortic Aneurysm Patients. Int J Mol Sci 2024; 25:8844. [PMID: 39201529 PMCID: PMC11354423 DOI: 10.3390/ijms25168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Previous research confirmed gut dysbiosis and translocation of selected intestinal bacteria into the vessel wall in abdominal aortic aneurysm patients. We studied the stool, blood, thrombus and aneurysm microbiomes of 21 abdominal aortic aneurysm patients using 16S rRNA sequencing. Our goals were to determine: 1. whether the microbiome characteristic of an aneurysm differs from that of a healthy vessel, 2. whether bacteria detectable in the aneurysm are translocated from the gut through the bloodstream, 3. whether the enzymatic activity of the aneurysm microbiome can contribute to the destruction of the vessel wall. The abundance of Acinetobacter, Burkholderia, Escherichia, and Sphingobium in the aneurysm samples was significantly higher than that in the microbiome of healthy vessels, but only a part of these bacteria can come from the intestine via the blood. Environmental bacteria due to the oral cavity or skin penetration route, such as Acinetobacter, Sphingobium, Enhydrobacter, and Aquabacterium, were present in the thrombus and aneurysm with a significantly higher abundance compared to the blood. Among the enzymes of the microbiome associated with the healthy vessel wall, Iron-chelate-transporting ATPase and Polar-amino-acid-transporting ATPase have protective effects. In addition, bacterial Peptidylprolyl isomerase activity found in the aneurysm has an aggravating effect on the formation of aneurysm.
Collapse
Affiliation(s)
- Éva Nemes-Nikodém
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Gergő Péter Gyurok
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | | | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Bálint Hofmeister
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Dóra Szabó
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary;
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - László Hidi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - Ágnes Szappanos
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1023 Budapest, Hungary
| | - Gergely Kovács
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - Eszter Ostorházi
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
33
|
Xu Y, Gan Y, Qi F, Lu X, Zhang X, Zhang J, Wang H, Li Y, Zhou Z, Wang X, Zeng D, Lu F, Zhang C, Cheng B, Hu Z, Wang G. Innate lymphoid cell-based immunomodulatory hydrogel microspheres containing Cutibacterium acnes extracellular vesicles for the treatment of psoriasis. Acta Biomater 2024; 184:296-312. [PMID: 38871203 DOI: 10.1016/j.actbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.
Collapse
Affiliation(s)
- Yujie Xu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaofei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunhua Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
34
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
35
|
Yu T, Xu X, Liu Y, Wang X, Wu S, Qiu Z, Liu X, Pan X, Gu C, Wang S, Dong L, Li W, Yao X. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024; 32:1129-1146.e8. [PMID: 38936370 DOI: 10.1016/j.chom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqiang Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Liu
- 01life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoyu Pan
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
36
|
Yu J. Are perinatal antibiotics responsible for atopic dermatitis? The debate rages on. Br J Dermatol 2024; 191:7-8. [PMID: 38036306 DOI: 10.1093/bjd/ljad477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/29/2024] [Indexed: 12/02/2023]
Affiliation(s)
- JiaDe Yu
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
38
|
Kim S, Cho M, Jung ES, Sim I, Woo YR. Investigating Distinct Skin Microbial Communities and Skin Metabolome Profiles in Atopic Dermatitis. Int J Mol Sci 2024; 25:5211. [PMID: 38791249 PMCID: PMC11121500 DOI: 10.3390/ijms25105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by genetic predisposition, environmental factors, immune dysregulation, and skin barrier dysfunction. The skin microbiome and metabolome play crucial roles in modulating the skin's immune environment and integrity. However, their specific contributions to AD remain unclear. We aimed to investigate the distinct skin microbial communities and skin metabolic compounds in AD patients compared to healthy controls (HCs). Seven patients with AD patients and seven HCs were enrolled, from whom skin samples were obtained for examination. The study involved 16S rRNA metagenomic sequencing and bioinformatics analysis as well as the use of gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) to detect metabolites associated with AD in the skin. We observed significant differences in microbial diversity between lesional and non-lesional skin of AD patients and HCs. Staphylococcus overgrowth was prominent in AD lesions, while Cutibacterium levels were decreased. Metabolomic analysis revealed elevated levels of several metabolites, including hypoxanthine and glycerol-3-phosphate in AD lesions, indicating perturbations in purine metabolism and energy production pathways. Moreover, we found a positive correlation between hypoxanthine and glycerol-3-phosphate and clinical severity of AD and Staphylococcus overgrowth. These findings suggest potential biomarkers for monitoring AD severity. Further research is needed to elucidate the causal relationships between microbial dysbiosis, metabolic alterations, and AD progression, paving the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Dermatology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minah Cho
- Department of Dermatology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Sung Jung
- HEM Pharma Inc., Suwon 16229, Gyeonggi, Republic of Korea; (E.S.J.)
| | - Inseon Sim
- HEM Pharma Inc., Suwon 16229, Gyeonggi, Republic of Korea; (E.S.J.)
| | - Yu Ri Woo
- Department of Dermatology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
39
|
Ho M, Nguyen HN, Van Hoang M, Bui TTT, Vu BQ, Dinh THT, Vo HTM, Blaydon DC, Eldirany SA, Bunick CG, Bui CB. Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients. Hum Genomics 2024; 18:38. [PMID: 38627868 PMCID: PMC11022333 DOI: 10.1186/s40246-024-00603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there is increased interest in the skin microbiome; therefore, we hypothesized that CI patients likely exhibit an abnormal profile of epidermal microbes because of their various underlying skin barrier defects. Among recruited individuals of Southeast Asian ethnicity, we performed skin meta-genomics (i.e., whole-exome sequencing to capture the entire multi-kingdom profile, including fungi, protists, archaea, bacteria, and viruses), comparing 36 CI patients (representing seven subtypes) with that of 15 CI age-and gender-matched controls who had no family history of CI. RESULTS This case-control study revealed 20 novel and 31 recurrent pathogenic variants. Microbiome meta-analysis showed distinct microbial populations, decreases in commensal microbiota, and higher colonization by pathogenic species associated with CI; these were correlated with increased production of inflammatory cytokines and Th17- and JAK/STAT-signaling pathways in peripheral blood mononuclear cells. In the wounds of CI patients, we identified specific changes in microbiota and alterations in inflammatory pathways, which are likely responsible for impaired wound healing. CONCLUSIONS Together, this research enhances our understanding of the microbiological, immunological, and molecular properties of CI and should provide critical information for improving therapeutic management of CI patients.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Huynh-Nga Nguyen
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Minh Van Hoang
- Vietnam Vascular Anomalies Center, University Medical Center 3, Ho Chi Minh, Vietnam
| | | | - Bao-Quoc Vu
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Truc Huong Thi Dinh
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Hoa Thi My Vo
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Diana C Blaydon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Sherif A Eldirany
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Christopher G Bunick
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA.
| | - Chi-Bao Bui
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam.
- Department of Microbiology, City Children's Hospital, Ho Chi Minh, Vietnam.
- School of Medicine, Vietnam National University, Ho Chi Minh, Vietnam.
| |
Collapse
|
40
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
41
|
Huynh FD, Damiani G, Bunick CG. Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution. Antibiotics (Basel) 2024; 13:268. [PMID: 38534703 DOI: 10.3390/antibiotics13030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hidradenitis suppurativa (HS), or acne inversa, is a chronic inflammatory dermatological condition characterized by painful and recurrent nodules and purulent abscesses. HS can have a devastating impact on the quality of life of patients. This condition is commonly localized to the axilla, groin, perineal, and inframammary regions, and can develop fistulas and sinus tracts over time. Its pathogenesis remains elusive and is best characterized at the moment as multi-factorial. Additionally, questions remain about the role of cutaneous dysbiosis as a primary HS trigger or as a secondary perturbation due to HS inflammation. This article features works in relation to HS and its interplay with bacterial microflora. We address current treatment approaches and their impact on HS-related bacteria, as well as areas of therapeutic innovation. In the future, disease-modifying or remittive therapy will likely combine an advanced/targeted anti-inflammatory approach with one that effectively modulates cutaneous and deep tissue dysbiosis.
Collapse
Affiliation(s)
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Italian Centre of Precision Medicine and Chronic Inflammation, 20122 Milan, Italy
| | - Christopher G Bunick
- Department of Dermatology and Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
43
|
Du S, Tong X, Leung MHY, Betts RJ, Woo AC, Bastien P, Misra N, Aguilar L, Clavaud C, Lee PKH. Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus-host interactions. THE ISME JOURNAL 2024; 18:wrae218. [PMID: 39450991 PMCID: PMC11549919 DOI: 10.1093/ismejo/wrae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in polluted air influences the composition of the skin microbiome, which in turn is associated with altered skin phenotypes. However, the interactions between PAH exposure and viromes are unclear. This study aims to elucidate how PAH exposure affects the composition and function of skin viruses, their role in shaping the metabolism of bacterial hosts, and the subsequent effects on skin phenotype. We analyzed metagenomes from cheek skin swabs collected from 124 Chinese women in our previous study and found that the viruses associated with the two microbiome cutotypes had distinct diversities, compositions, functions, and lifestyles following PAH exposure. Moreover, exposure to high concentrations of PAHs substantially increased interactions between viruses and certain biodegrading bacteria. Under high-PAH exposure, the viruses were enriched in xenobiotic degradation functions, and there was evidence suggesting that the insertion of bacteriophage-encoded auxiliary metabolic genes into hosts aids biodegradation. Under low-PAH exposure conditions, the interactions followed the "Piggyback-the-Winner" model, with Cutibacterium acnes being "winners," whereas under high-PAH exposure, they followed the "Piggyback-the-Persistent" model, with biodegradation bacteria being "persistent." These findings highlight the impact of air pollutants on skin bacteria and viruses, their interactions, and their modulation of skin health. Understanding these intricate relationships could provide insights for developing targeted strategies to maintain skin health in polluted environments, emphasizing the importance of mitigating pollutant exposure and harnessing the potential of viruses to help counteract the adverse effects.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Ren’ai Road, Suzhou, 215123, P. R. China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard J Betts
- L’Oréal Research and Innovation, Raffles Quay, North Tower, 048583, Singapore
| | - Anthony C Woo
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Philippe Bastien
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Namita Misra
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Luc Aguilar
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| |
Collapse
|
44
|
Liu S, Luo XH, Liu YF, Zouboulis CC, Shi G. Emodin exhibits anti-acne potential by inhibiting cell growth, lipogenesis, and inflammation in human SZ95 sebocytes. Sci Rep 2023; 13:21576. [PMID: 38062074 PMCID: PMC10703917 DOI: 10.1038/s41598-023-48709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Emodin, a natural anthraquinone derivative, possesses anti-proliferative and anti-inflammatory properties in skin diseases. However, little information is available on the efficacy of emodin in treating acne vulgaris (acne). This study aims to investigate the protective effects and potential mechanisms of emodin as an anti-acne agent. In vitro, SZ95 sebocytes was chose to establish an acneigenic cellular model. We found that emodin effectively inhibited proliferation, induced cell cycle arrest and apoptosis of SZ95 sebocytes in a dose-dependent manner. To evaluate the lipid-lowering potential of emodin, we examined the levels of lipid contents and lipogenic transcription factors, and found that both lipid production and protein expression of PPARγ, LXR α/β, and SREBP-1 were decreased after treatment with emodin. Furthermore, our results revealed that emodin inhibited sebaceous lipogenesis induced by insulin-like growth factor 1 (IGF-1), which was accompanied by a potent inhibition of the phosphoinositide-3-kinase (PI3K)/Akt/forkhead box protein O1 (FoxO1) pathway. In detail, emodin augmented the inhibitory effect of isotretinoin and PI3K inhibitor LY294002, while attenuating the activation of IGF-1 on PI3K/Akt/FoxO1 pathway. In addition, emodin could decrease the secretion of pro-inflammatory cytokines IL-6 and IL-8, and suppress the expression of NLRP3, capase-1, IL-1β, and IL-18 in SZ95 sebocytes exposed to Cutibacterium acnes. Overall, our study provides preliminary evidence supporting the anti-growth, anti-lipogenic and anti-inflammatory properties of emodin, indicating the potential therapeutic application of emodin for acne treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Hua Luo
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Feng Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
45
|
Alqam ML, Jones BC, Hitchcock TM. Topical Application of Skin Biome Care Regimen Containing Live Cultures and Ferments of Cutibacterium acnes defendens strain XYCM42 and the Impact on Clinical Outcomes Following Microneedle-induced Skin Remodeling. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:18-30. [PMID: 38125668 PMCID: PMC10729805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background The skin, our body's largest organ, hosts a complex microbiome that plays a pivotal role in maintaining health and protecting against pathogens. Even slight disruptions to this delicate balance can influence skin health and disease. Among the diverse microbial community, Cutibacterium acnes (C. acnes) subspecies defendens is known for its positive contribution to skin health. However, the interaction between living microbe probiotics and wound healing after aesthetic procedures, such as microneedling, remains unexplored. Methods Our study included 40 participants with acne scars who underwent four microneedling sessions spaced three weeks apart. They were randomly assigned to Group 1, receiving a regimen with live C. acnes defendens strain XYCM42, or Group 2, following a conventional skincare routine with a cleanser, moisturizer, and sunscreen. Our study assessed various endpoints, including the Clinician's Global Aesthetic Improvement Scale (CGAIS), clinical safety, improvement in acne scars using Goodman and Baron's Qualitative and Quantitative Acne Scars Grading Scale and Subject's Global Aesthetic Improvement Scale (SGAIS). Results Our analysis of live and photo grading data for CGAIS unveiled a statistically significant difference between the two groups, with Group 1 (XYCM42-based regimen) showing remarkable improvement. A similar positive trend was observed in the photo grading for CGAIS. Additionally, participant diaries indicated that Group 1 experienced a faster decline in posttreatment parameters, including erythema, swelling, burning/tingling, and itching. Conclusion Integrating a microbiome-optimized, probiotic XYCM42-based regimen with microneedling demonstrated a high safety profile and enhanced treatment outcomes. These findings mark a milestone in aesthetic dermatology, supporting innovative microbiome-based approaches to improve skin health and aesthetics.
Collapse
Affiliation(s)
- Mona L Alqam
- Dr. Alqam is with Medical and Clinical Affairs, Crown Laboratories in Dallas, Texas
| | - Brian C Jones
- Dr. Jones is with Research and Development, Crown Laboratories in Dallas, Texas
| | - Thomas M Hitchcock
- Dr. Hitchcock is Chief Science Officer, Crown Laboratories Dallas in Dallas, Texas
| |
Collapse
|
46
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|