1
|
Rainwater RR, Azevedo-Pouly AC, Waldrip ZJ, Hicks BH, Callais NA, Koss B, Storey AJ, Burdine L, Burdine MS. DNA-PKcs governs LAT-dependent signaling in CD4 + and CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641745. [PMID: 40161607 PMCID: PMC11952348 DOI: 10.1101/2025.03.06.641745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Formation of the immune synapse (IS) following T cell antigen recognition includes recruitment of the Linker for Activation of T cells (LAT). Once at the IS, LAT tyrosines are phosphorylated allowing it to serve as a scaffold for formation of the "signalosome", a multiprotein complex that drives TCR signaling. Here, we show that upon T cell activation, DNA dependent protein kinase catalytic subunit (DNA-PKcs) interacts with LAT and localizes to the IS. Inhibition of DNA-PKcs diminishes LAT localization at the IS. We identified two LAT serines phosphorylated by DNA-PKcs, S224 and S241, that impact LAT tyrosine phosphorylation, protein binding, and cytokine production. Using our mouse model designed to delete DNA-PKcs expression within mature CD4 + or CD8 + T cells, we show loss of DNA-PKcs results in T cells unable to control tumor growth or induce allogeneic graft rejection. These data bring to the forefront DNA-PKcs as a pivotal protein in T cell function.
Collapse
|
2
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
4
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Hallumi E, Shalah R, Lo WL, Corso J, Oz I, Beach D, Wittman S, Isenberg A, Sela M, Urlaub H, Weiss A, Yablonski D. Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. THE JOURNAL OF IMMUNOLOGY 2021; 206:2322-2337. [PMID: 33931484 DOI: 10.4049/jimmunol.2001053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.
Collapse
Affiliation(s)
- Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Samuel Wittman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amy Isenberg
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meirav Sela
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
7
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Chougule RA, Cordero E, Moharram SA, Pietras K, Rönnstrand L, Kazi JU. Expression of GADS enhances FLT3-induced mitogenic signaling. Oncotarget 2017; 7:14112-24. [PMID: 26895103 PMCID: PMC4924701 DOI: 10.18632/oncotarget.7415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling.
Collapse
Affiliation(s)
- Rohit A Chougule
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Sausan A Moharram
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| |
Collapse
|
10
|
Sukenik S, Frushicheva MP, Waknin-Lellouche C, Hallumi E, Ifrach T, Shalah R, Beach D, Avidan R, Oz I, Libman E, Aronheim A, Lewinson O, Yablonski D. Dimerization of the adaptor Gads facilitates antigen receptor signaling by promoting the cooperative binding of Gads to the adaptor LAT. Sci Signal 2017; 10:10/498/eaal1482. [PMID: 28951535 DOI: 10.1126/scisignal.aal1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate assembly of signalosomes centered on the adaptor protein LAT (linker of activated T cells) is required for antigen receptor signaling in T cells and mast cells. During signalosome assembly, members of the growth factor receptor-bound protein 2 (Grb2) family of cytosolic adaptor proteins bind cooperatively to LAT through interactions with its phosphorylated tyrosine (pTyr) residues. We demonstrated the Src homology 2 (SH2) domain-mediated dimerization of the Grb2 family member, Grb2-related adaptor downstream of Shc (Gads). Gads dimerization was mediated by an SH2 domain interface, which is distinct from the pTyr binding pocket and which promoted cooperative, preferential binding of paired Gads to LAT. This SH2 domain-intrinsic mechanism of cooperativity, which we quantified by mathematical modeling, enabled Gads to discriminate between dually and singly phosphorylated LAT molecules. Mutational inactivation of the dimerization interface reduced cooperativity and abrogated Gads signaling in T cells and mast cells. The dimerization-dependent, cooperative binding of Gads to LAT may increase antigen receptor sensitivity by reducing signalosome formation at incompletely phosphorylated LAT molecules, thereby prioritizing the formation of complete signalosomes.
Collapse
Affiliation(s)
- Sigalit Sukenik
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Cecilia Waknin-Lellouche
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Talia Ifrach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Reuven Avidan
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Evgeny Libman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Oded Lewinson
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
11
|
Protein kinase D regulates positive selection of CD4 + thymocytes through phosphorylation of SHP-1. Nat Commun 2016; 7:12756. [PMID: 27670070 PMCID: PMC5052653 DOI: 10.1038/ncomms12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. The three isoforms of protein kinase D (PKD) have important but often redundant roles in cell signalling. Here the authors show, by generating PKD2/3 double-deficient mice, that PKD is essential for TCR signalling in thymocytes, and identify SHP-1 as a PKD target critical for development of CD4+ T cells.
Collapse
|
12
|
Dufner A, Kisser A, Niendorf S, Basters A, Reissig S, Schönle A, Aichem A, Kurz T, Schlosser A, Yablonski D, Groettrup M, Buch T, Waisman A, Schamel WW, Prinz M, Knobeloch KP. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat Immunol 2015. [PMID: 26214742 DOI: 10.1038/ni.3230] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3β. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γδ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells.
Collapse
Affiliation(s)
- Almut Dufner
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Agnes Kisser
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Sandra Niendorf
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Anja Basters
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anne Schönle
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Thorsten Kurz
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Andreas Schlosser
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Deborah Yablonski
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marcus Groettrup
- 1] Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland. [2] Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thorsten Buch
- 1] Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Germany. [2] Institute of Laboratory Animal Sciences, University of Zurich, Zurich, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wolfgang W Schamel
- 1] Department of Molecular Immunology, Faculty of Biology, and Center of Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany. [2] BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- 1] Institute of Neuropathology, University of Freiburg, Freiburg, Germany. [2] BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- 1] Institute of Neuropathology, University of Freiburg, Freiburg, Germany. [2] Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| |
Collapse
|
13
|
Devkota S, Joseph RE, Min L, Bruce Fulton D, Andreotti AH. Scaffold Protein SLP-76 Primes PLCγ1 for Activation by ITK-Mediated Phosphorylation. J Mol Biol 2015; 427:2734-47. [PMID: 25916191 DOI: 10.1016/j.jmb.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022]
Abstract
Activation of the phospholipase, PLCγ1, is critical for proper T cell signaling following antigen receptor engagement. In T cells, the Tec family kinase, interleukin-2-induced tyrosine kinase (ITK), phosphorylates PLCγ1 at tyrosine 783 (Y783) leading to activation of phospholipase function and subsequent production of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. In this work, we demonstrate that PLCγ1 can be primed for ITK-mediated phosphorylation on Y783 by a specific region of the adaptor protein, SLP-76. The SLP-76 phosphotyrosine-containing sequence, pY(173)IDR, does not conform to the canonical recognition motif for an SH2 domain yet binds with significant affinity to the C-terminal SH2 domain of PLCγ1 (SH2C). The SLP-76 pY(173) motif competes with the autoinhibited conformation surrounding the SH2C domain of PLCγ1 leading to exposure of the ITK recognition element on the PLCγ1 SH2 domain and release of the target tyrosine, Y783. These data contribute to the evolving model for the molecular events occurring early in the T cell activation process.
Collapse
Affiliation(s)
- Sujan Devkota
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Witsenburg JJ, Sinzinger MD, Stoevesandt O, Ruttekolk IR, Roth G, Adjobo-Hermans MJW, Brock R. A peptide-functionalized polymer as a minimal scaffold protein to enhance cluster formation in early T cell signal transduction. Chembiochem 2015; 16:602-10. [PMID: 25663649 DOI: 10.1002/cbic.201402622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/28/2022]
Abstract
In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.
Collapse
Affiliation(s)
- J Joris Witsenburg
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen (The Netherlands)
| | | | | | | | | | | | | |
Collapse
|
15
|
Bilal MY, Zhang EY, Dinkel B, Hardy D, Yankee TM, Houtman JCD. GADS is required for TCR-mediated calcium influx and cytokine release, but not cellular adhesion, in human T cells. Cell Signal 2015; 27:841-50. [PMID: 25636200 DOI: 10.1016/j.cellsig.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
Abstract
GRB2 related adaptor protein downstream of Shc (GADS) is a member of the GRB2 family of adaptors and is critical for TCR-induced signaling. The current model is that GADS recruits SLP-76 to the LAT complex, which facilitates the phosphorylation of SLP-76, the activation of PLC-γ1, T cell adhesion and cytokine production. However, this model is largely based on studies of disruption of the GADS/SLP-76 interaction and murine T cell differentiation in GADS deficient mice. The role of GADS in mediating TCR-induced signals in human CD4+ T cells has not been thoroughly investigated. In this study, we have suppressed the expression of GADS in human CD4+ HuT78 T cells. GADS deficient HuT78 T cells displayed similar levels of TCR-induced SLP-76 and PLC-γ1 phosphorylation but exhibited substantial decrease in TCR-induced IL-2 and IFN-γ release. The defect in cytokine production occurred because of impaired calcium mobilization due to reduced recruitment of SLP-76 and PLC-γ1 to the LAT complex. Surprisingly, both GADS deficient HuT78 and GADS deficient primary murine CD8+ T cells had similar TCR-induced adhesion when compared to control T cells. Overall, our results show that GADS is required for calcium influx and cytokine production, but not cellular adhesion, in human CD4+ T cells, suggesting that the current model for T cell regulation by GADS is incomplete.
Collapse
Affiliation(s)
- Mahmood Y Bilal
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Elizabeth Y Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Brittney Dinkel
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Daimon Hardy
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
16
|
Modulation of TCR responsiveness by the Grb2-family adaptor, Gads. Cell Signal 2014; 27:125-34. [PMID: 25452106 DOI: 10.1016/j.cellsig.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
T cell antigen receptor (TCR) signaling depends on three interacting adaptor proteins: SLP-76, Gads, and LAT. Their mechanisms of signaling have been extensively explored, with the aid of fortuitously isolated LAT- and SLP-76-deficient T cell lines, but no such tools were available for Gads, a Grb2-family adaptor that bridges the TCR-inducible interaction between SLP-76 and LAT. TALEN-directed genome editing was applied to disrupt the first coding exon of human Gads in the Jurkat T cell line. Gads was dispensable for TCR-induced phosphorylation of SLP-76, but was a dose-dependent amplifier of TCR-induced CD69 expression. Gads conferred responsiveness to weak TCR stimuli, leading to PLC-γ1 phosphorylation and calcium flux. TALEN-derived, Gads-deficient T cell lines provide a uniquely tractable genetic platform for exploring its regulatory features, such as Gads phosphorylation at T262, which we observed by mass spectrometry. Upon mutation of this site, TCR responsiveness and sensitivity to weak TCR stimuli were increased. This study demonstrates the feasibility of TALEN-based reverse genetics in Jurkat T cells, while enriching our understanding of Gads as a regulated modulator of TCR sensitivity.
Collapse
|
17
|
Xiong J, Parker BL, Yankee TM. The combined loss of Gads and CD127 reveals a novel function of Gads prior to TCRβ expression. Immunol Res 2014; 60:77-84. [PMID: 25037454 DOI: 10.1007/s12026-014-8556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Gads adaptor protein is an essential component of the T cell signaling complex critical for T cell receptor-mediated calcium mobilization. After expression of TCRβ in T cell precursors, Gads is required for optimal Bcl-2 expression and cell survival. Similarly, the IL-7 receptor chain CD127 is also necessary for optimal Bcl-2 expression and cell survival in TCRβ-expressing thymocytes. Based on these observations, we tested whether Gads and CD127 might regulate convergent or linear signaling pathways by crossing Gads(-/-) mice with CD127(-/-) mice. Thymi from Gads(-/-)CD127(-/-) mice were barely detectable and many of the thymocytes were within the DN1 population. By contrast, B cell development in the Gads(-/-)CD127(-/-) mice was comparable to that of CD127(-/-) mice, indicating that the combined loss of Gads and CD127 did not lead to a global deficit in hematopoiesis. Analysis of Lin(-)Sca-1(+)c-kit(+) bone marrow cells and bone marrow chimera experiments indicated that Gads(-/-)CD127(-/-) T cell precursors either failed to migrate into the thymus or survive in the thymus. These data demonstrate that Gads functions at a stage of T cell development that had not been previously described.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, 3025 WHW - MS 3029, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
18
|
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein-1 (CARMA1), a member of the membrane associated guanylate kinase (MAGUK) family of kinases, is essential for T lymphocyte activation and proliferation via T-cell receptor (TCR) mediated NF-κB activation. Recent studies suggest a broader role for CARMA1 regulating other T-cell functions as well as a role in non-TCR-mediated signaling pathways important for lymphocyte development and functions. In addition, CARMA1 has been shown to be an important component in the pathogenesis of several human diseases. Thus, comprehensively defining its mechanisms of action and regulation could reveal novel therapeutic targets for T-cell-mediated diseases and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Marly I Roche
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
19
|
Liu H, Thaker YR, Stagg L, Schneider H, Ladbury JE, Rudd CE. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation. J Biol Chem 2013; 288:29539-49. [PMID: 23935094 PMCID: PMC3795252 DOI: 10.1074/jbc.m112.424846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1–78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1–4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function.
Collapse
Affiliation(s)
- Hebin Liu
- From the Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Gillis LC, Berry DM, Minden MD, McGlade CJ, Barber DL. Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia. Leukemia 2013; 27:1666-76. [PMID: 23399893 PMCID: PMC4981500 DOI: 10.1038/leu.2013.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/29/2022]
Abstract
Philadelphia chromosome-positive leukemias, including chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (B-ALL), are driven by the oncogenic BCR-ABL fusion protein. Animal modeling experiments utilizing retroviral transduction and subsequent bone marrow transplantation have demonstrated that BCR-ABL generates both myeloid and lymphoid disease in mice receiving whole bone marrow transduced with BCR-ABL. Y177 of BCR-ABL is critical to the development of myeloid disease, and phosphorylation of Y177 has been shown to induce GRB2 binding to BCR-ABL, followed by activation of the Ras and phosphoinositide 3 kinase signaling pathways. We show that the GRB2-related adapter protein, GADS, also associates with BCR-ABL, specifically through Y177 and demonstrate that BCR-ABL-driven lymphoid disease requires Gads. BCR-ABL transduction of Gads(−/−) bone marrow results in short latency myeloid disease within 3–4 weeks of transplant, while wild-type mice succumb to both a longer latency lymphoid and myeloid diseases. We report that GADS mediates a unique BCR-ABL complex with SLP-76 in BCR-ABL-positive cell lines and B-ALL patient samples. These data suggest that GADS mediates lymphoid disease downstream of BCR-ABL through the recruitment of specific signaling intermediates.
Collapse
Affiliation(s)
- L C Gillis
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
22
|
Fuller DM, Zhu M, Koonpaew S, Nelson MI, Zhang W. The importance of the Erk pathway in the development of linker for activation of T cells-mediated autoimmunity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4005-13. [PMID: 22984075 DOI: 10.4049/jimmunol.1201380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of the transmembrane adaptor protein linker for activation of T cells (LAT) to regulate T cell development, activation, survival, and homeostasis depends upon phosphorylation of its multiple tyrosine residues. The mutation of tyrosine 136 on LAT abrogates its interaction with phospholipase C-γ1, causing severe ramifications on TCR-mediated signaling. Mice harboring this mutation, LATY136F mice, have significantly impaired thymocyte development; however, they rapidly develop a fatal lymphoproliferative disease marked by the uncontrolled expansion of Th2-skewed CD4(+) T cells, high levels of IgE and IgG1, and autoantibody production. In this study, we assessed the contribution of multiple signaling pathways in LATY136F disease development. The deletion of the critical signaling proteins Gads and RasGRP1 caused a further block in thymocyte development, but, over time, could not prevent CD4(+) T cell hyperproliferation. Also, restoring signaling through the NF-κB and NFAT pathways was unable to halt the development of disease. However, expression of a constitutively active Raf transgene enhanced lymphoproliferation, indicating a role for the Ras-MAPK pathway in LAT-mediated disease.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
23
|
Besin G, Yousefi M, Saba I, Klinck R, Pandolfi PP, Duplay P. Dok-1 overexpression promotes development of γδ natural killer T cells. Eur J Immunol 2012; 42:2491-504. [PMID: 22736313 DOI: 10.1002/eji.201242421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/18/2012] [Accepted: 05/24/2012] [Indexed: 11/07/2022]
Abstract
In T cells, two members of the Dok family, Dok-1 and Dok-2, are predominantly expressed. Recent evidence suggests that they play a negative role in T-cell signaling. In order to define whether Dok proteins regulate T-cell development, we have generated transgenic mice overexpressing Dok-1 in thymocytes and peripheral T cells. We show that overexpression of Dok-1 retards the transition from the CD4(-) CD8(-) to CD4(+) CD8(+) stage. Moreover, there is a specific expansion of PLZF-expressing Vγ1.1(+) Vδ6.3(+) T cells. This subset of γδ T cells acquires innate characteristics including rapid IL-4 production following stimulation and requiring SLAM-associated adaptor protein (SAP) for their development. Moreover, Dok-1 overexpression promotes the generation of an innate-like CD8(+) T-cell population that expresses Eomesodermin. Altogether, these findings identify a novel role for Dok-1 in the regulation of thymic differentiation and in particular, in the development of PLZF(+) γδ T cells.
Collapse
Affiliation(s)
- Gilles Besin
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 2011; 4:ra83. [PMID: 22155787 DOI: 10.1126/scisignal.2002105] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
25
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
26
|
Zhang EY, Parker BL, Yankee TM. Gads regulates the expansion phase of CD8+ T cell-mediated immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:4579-89. [PMID: 21411729 DOI: 10.4049/jimmunol.1001604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gads adaptor protein is critical for TCR-mediated Ca(2+) mobilization. We investigated the effect of Gads deficiency on the proliferation of CD8(+) T cells following peptide stimulation and in the context of infection with an intracellular pathogen. We stimulated CD8(+) T cells from Gads(+/+) OT-I and Gads(-/-) OT-I mice with cognate Ag (SIINFEKL) or altered peptide ligand. In vitro experiments revealed that Gads was required for optimal proliferation of CD8(+) T cells. This defect was most evident at the early time points of proliferation and when low doses of Ag were used as stimuli. Cell cycle analysis demonstrated that Gads(-/-) CD8(+) T cells had impaired TCR-mediated exit from the G(0) phase of the cell cycle. Furthermore, Gads(-/-) CD8(+) T cells had delayed expression of c-myc and CD69 upon the stimulation with SIINFEKL. We then investigated how Gads deficiency would impact CD8(+) T cell-mediated immunity in the context of infection with an intracellular pathogen. At early time points, Gads(+/+) and Gads(-/-) CD8(+) T cells proliferated to a similar extent, despite the fact that expression of CD69 and CD25 was reduced in the absence of Gads. After 5 d postinfection, Gads was required to sustain the expansion phase of the immune response; the peak response of Gads(-/-) cells was significantly lower than for Gads(+/+) cells. However, Gads was not required for the differentiation of naive CD8(+) T cells into memory cells. We conclude that the primary function of Gads is to regulate the sensitivity of the TCR to Ag ligation.
Collapse
Affiliation(s)
- Elizabeth Yan Zhang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
27
|
Tanase CA. Histidine domain-protein tyrosine phosphatase interacts with Grb2 and GrpL. PLoS One 2010; 5:e14339. [PMID: 21179510 PMCID: PMC3002266 DOI: 10.1371/journal.pone.0014339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/25/2010] [Indexed: 12/02/2022] Open
Abstract
Background Histidine domain-protein tyrosine phosphatase (HD-PTP) plays a key role in vesicle trafficking and biogenesis. Although it is a large protein with at least five distinct structural domains, only a few of its interactors are presently known, and the significance of these interactions is largely obscure. Methodology and Results In this study we performed a yeast two-hybrid screening using a human colon cDNA library and found that Grb2 and GrpL are binding partners of HD-PTP. Co-immunoprecipitation, pull-down and immunocytochemistry experiments confirmed the interactions. We also discovered that the central proline-rich and histidine-rich domain of HD-PTP is responsible for these interactions. Significance The interaction of HD-PTP with two adapters of the Grb2 family, essential for numerous signaling pathways, suggests that HD-PTP might be important for signaling through a plethora of receptors.
Collapse
|
28
|
Zou T, May RM, Koretzky GA. Understanding signal integration through targeted mutations of an adapter protein. FEBS Lett 2010; 584:4901-9. [PMID: 20965179 PMCID: PMC3008419 DOI: 10.1016/j.febslet.2010.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
Abstract
Immunoreceptor engagement leads to the activation of multiple second messenger cascades, and integration of these pathways requires proper function of a number of adapter proteins. Although adapters possess no intrinsic enzymatic function, they nucleate the formation of multi-molecular protein complexes to support downstream signaling. Since adapters contain functionally distinct domains, intense investigation has been devoted to understanding how these regions act to integrate signals. This review describes the evolution of studies investigating one of these adapters, the SH2 domain-containing leukocyte protein of 76 kDa. Through utilizing biochemical, genetic and imaging techniques, a model has emerged describing how this adapter regulates signals resulting in complex immune responses.
Collapse
Affiliation(s)
- Tao Zou
- Abramson Family Cancer Research Institute and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca M. May
- Abramson Family Cancer Research Institute and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Huo J, Xu S, Lam KP. Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem 2010; 285:11827-35. [PMID: 20178987 DOI: 10.1074/jbc.m109.072744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fas apoptosis inhibitory molecule (FAIM) has been demonstrated to confer resistance to Fas-induced apoptosis of lymphocytes and hepatocytes in vitro and in vivo. Here, we show that FAIM is up-regulated in thymocytes upon T cell receptor (TCR) engagement and that faim(-/-) thymocytes are highly susceptible to TCR-mediated apoptosis with increased activation of caspase-8 and -9. Furthermore, injection of anti-CD3 antibodies leads to augmented depletion of CD4(+)CD8(+) T cells in the thymus of faim(-/-) mice compared with wild-type control, suggesting that FAIM plays a role in thymocyte apoptosis. Cross-linking of the TCR on faim(-/-) thymocytes leads to an elevated protein level of the orphan nuclear receptor Nur77, which plays a role in thymocyte apoptosis. Interestingly, in the absence of FAIM, there are reduced ubiquitination and degradation of the Nur77 protein. Faim(-/-) thymocytes also exhibit a defective TCR-induced activation of Akt whose activity we now show is required for Nur77 ubiquitination. Further analyses utilizing FAIM-deficient primary thymocytes and FAIM-overexpressing DO-11.10 T cells indicate that FAIM acts upstream of Akt during TCR signaling and influences the localization of Akt to lipid rafts, hence affecting its activation. Taken together, our study defined a TCR-induced FAIM/Akt/Nur77 signaling axis that is critical for modulating the apoptosis of developing thymocytes.
Collapse
Affiliation(s)
- Jianxin Huo
- Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | | | | |
Collapse
|
30
|
Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 2009; 231:225-40. [PMID: 19754900 DOI: 10.1111/j.1600-065x.2009.00817.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.
Collapse
Affiliation(s)
- Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
31
|
|
32
|
Reeve JL, Zou W, Liu Y, Maltzman JS, Ross FP, Teitelbaum SL. SLP-76 couples Syk to the osteoclast cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2009; 183:1804-12. [PMID: 19592646 DOI: 10.4049/jimmunol.0804206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The capacity of the osteoclast (OC) to resorb bone is dictated by cytoskeletal organization, which in turn emanates from signals derived from the alpha(v)beta(3) integrin and c-Fms. Syk is key to these signals and, in other cells, this tyrosine kinase exerts its effects via intermediaries including the SLP adaptors, SLP-76 and BLNK (B cell linker). Thus, we asked whether these two SLP proteins regulate OC function. We find BLNK-deficient OCs are normal, whereas cytoskeletal organization of those lacking SLP-76 is delayed, thus modestly reducing bone resorption in vitro. Cytoskeletal organization and bone resorption are more profoundly arrested in cultured OCs deficient in BLNK and SLP-76 double knockout (DKO) phenotypes. In contrast, stimulated bone resorption in vivo is inhibited approximately 40% in either SLP-76(-/-) or DKO mice. This observation, taken with the fact that DKO OCs are rescued by retroviral transduction of only SLP-76, indicates that SLP-76 is the dominant SLP family member in the resorptive process. We also find SLP-76 is phosphorylated in a Syk-dependent manner. Furthermore, in the absence of the adaptor protein, integrin-mediated phosphorylation of Vav3, the OC cytoskeleton-organizing guanine nucleotide exchange factor, is abrogated. In keeping with a central role of SLP-76/Vav3 association in osteoclastic resorption, retroviral transduction of SLP-76, in which the Vav binding site is disrupted (3YF), fails to normalize the cytoskeleton of DKO OCs and the resorptive capacity of the cells. Finally, c-Fms-activated Syk also exerts its OC cytoskeleton-organizing effect in a SLP-76/Vav3-dependent manner.
Collapse
Affiliation(s)
- Jennifer L Reeve
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bezman NA, Baker RG, Lenox LE, Jordan MS, Koretzky GA. Cutting edge: rescue of pre-TCR but not mature TCR signaling in mice expressing membrane-targeted SLP-76. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5183-7. [PMID: 19380761 PMCID: PMC2727718 DOI: 10.4049/jimmunol.0802176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) organizes signaling from immunoreceptors, including the platelet collagen receptor, the pre-TCR, and the TCR, and is required for T cell development. In this study we examine a mouse in which wild-type SLP-76 is replaced with a mutant constitutively targeted to the cell membrane. Membrane-targeted SLP-76 (MTS) supports ITAM signaling in platelets and from the pre-TCR. Signaling from the mature TCR, however, is defective in MTS thymocytes, resulting in failed T cell differentiation. Defective thymic selection by MTS is not rescued by a SLP-76 mutant whose localization is restricted to the cytosol. Thus, fixed localization of SLP-76 reveals differential requirements for the subcellular localization of signaling complexes downstream of the pre-TCR vs mature TCR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Gene Knock-In Techniques
- Gene Targeting
- Humans
- Jurkat Cells
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Natalie A. Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Rebecca G. Baker
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Laurie E. Lenox
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Dalheimer SL, Zeng L, Draves KE, Hassaballa A, Jiwa NN, Parrish TD, Clark EA, Yankee TM. Gads-deficient thymocytes are blocked at the transitional single positive CD4+ stage. Eur J Immunol 2009; 39:1395-404. [PMID: 19337995 PMCID: PMC2768049 DOI: 10.1002/eji.200838692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Positive selection of T-cell precursors is the process by which a diverse T-cell repertoire is established. Positive selection begins at the CD4(+)CD8(+) double positive (DP) stage of development and involves at least two steps. First, DP thymocytes down-regulate CD8 to become transitional single positive (TSP) CD4(+) thymocytes. Then, cells are selected to become either mature single positive CD4(+) or mature single positive CD8(+) thymocytes. We sought to define the function of Gads during the two steps of positive selection by analyzing a Gads-deficient mouse line. In Gads(+/+) mice, most TSP CD4(+) thymocytes are TCR(hi)Bcl-2(hi)CD69(+), suggesting that essential steps in positive selection occurred in the DP stage. Despite that Gads(-/-) mice could readily generate TSP CD4(+) thymocytes, many Gads(-/-) TSP CD4(+) cells were TCR(lo)Bcl-2(lo)CD69(-), suggesting that Gads(-/-) cells proceeded to the TSP CD4(+) stage prior to being positively selected. These data suggest that positive selection is not a prerequisite for the differentiation of DP thymocytes into TSP CD4(+) thymocytes. We propose a model in which positive selection and differentiation into the TSP CD4(+) stage are separable events and Gads is only required for positive selection.
Collapse
Affiliation(s)
- Stacy L. Dalheimer
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ling Zeng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Kevin E. Draves
- Departments of Microbiology and Immunology, University of Washington, Seattle, WA 98195
| | - Ashraf Hassaballa
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Nasheena N. Jiwa
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Torrey D. Parrish
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Edward A. Clark
- Departments of Microbiology and Immunology, University of Washington, Seattle, WA 98195
| | - Thomas M. Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
35
|
The importance of Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons sterile-alpha motif domain in thymic selection and T-cell activation. Blood 2009; 114:74-84. [PMID: 19401562 DOI: 10.1182/blood-2008-09-177832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76) is a cytosolic adaptor protein essential for thymocyte development and T-cell activation. It contains a sterile-alpha motif (SAM) domain, 3 phosphotyrosine motifs, a proline-rich region, and a Src homology 2 domain. Whereas the other domains have been extensively studied, the role of the SAM domain in SLP-76 function is not known. To understand the function of this domain, we generated SLP-76 knockin mice with the SAM domain deleted. Analysis of these mice showed that thymocyte development was partially blocked at the double-positive to single-positive transition. Positive and negative thymic selection was also impaired. In addition, we analyzed T-cell receptor (TCR)-mediated signaling in T cells from these mutant mice. TCR-mediated inositol 1,4,5-triphosphate production, calcium flux, and extracellular signal-regulated kinase activation were decreased, leading to defective interleukin-2 production and proliferation. Moreover, despite normal association between Gads and SLP-76, TCR-mediated formation of SLP-76 microclusters was impaired by the deletion of the SAM domain. Altogether, our data demonstrated that the SAM domain is indispensable for optimal SLP-76 signaling.
Collapse
|
36
|
Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc Natl Acad Sci U S A 2008; 106:528-33. [PMID: 19098101 DOI: 10.1073/pnas.0805981105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
T lymphocytes play a key role in adaptive immunity and are activated by interactions of their T cell receptors (TCR) with peptides (p) derived from antigenic proteins bound to MHC gene products. The repertoire of T lymphocytes available in peripheral organs is tuned in the thymus. Immature T lymphocytes (thymocytes) interact with diverse endogenous peptides bound to MHC in the thymus. TCR expressed on thymocytes must bind weakly to endogenous pMHC (positive selection) but must not bind too strongly to them (negative selection) to emerge from the thymus. Negatively selecting pMHC ligands bind TCR with a binding affinity that exceeds a sharply defined (digital) threshold. In contrast, there is no sharp threshold separating positively selecting ligands from those that bind too weakly to elicit a response. We describe results of computer simulations and experiments, which suggest that the contrast between the characters of the positive and negative selection thresholds originates in differences in the way in which Ras proteins are activated by ligands of varying potency. The molecular mechanism suggested by our studies generates hypotheses for how genetic aberrations may dampen the digital negative selection response, with concomitant escape of autoimmune T lymphocytes from the thymus.
Collapse
|
37
|
Hughes CE, Auger JM, McGlade J, Eble JA, Pearce AC, Watson SP. Differential roles for the adapters Gads and LAT in platelet activation by GPVI and CLEC-2. J Thromb Haemost 2008; 6:2152-9. [PMID: 18826392 PMCID: PMC2710801 DOI: 10.1111/j.1538-7836.2008.03166.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/25/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND The adapter proteins SLP-76 and LAT have been shown to play critical roles in the activation of PLCgamma2 in platelets downstream of GPVI/FcRgamma and the C-type lectin receptor CLEC-2. SLP-76 is constitutively associated with the adapter Gads in platelets, which also binds to tyrosine phosphorylated LAT, thereby providing a potential pathway of regulation of SLP-76. OBJECTIVE In the present study, we have compared the role of Gads alongside that of LAT following activation of the major platelet glycoprotein receptors using mice deficient in the two adapter proteins. RESULTS Gads was found to be required for the efficient onset of aggregation and secretion in response to submaximal stimulation of GPVI and CLEC-2, but to be dispensable for activation following stronger stimulation of the two receptors. Gads was also dispensable for spreading induced through integrin alpha(IIb)beta(3) or the GPIb-IX-V complex. Further, Gads plays a negligible role in aggregate formation on collagen at an arteriolar rate of shear. In stark contrast, platelets deficient in the adapter LAT exhibit a marked decrease in aggregation and secretion following activation of GPVI and CLEC-2, and are unable to form stable aggregates on collagen at arteriolar shear. CONCLUSIONS The results demonstrate that Gads plays a key role in linking the adapter LAT to SLP-76 in response to weak activation of GPVI and CLEC-2 whereas LAT is required for full activation over a wider range of agonist concentrations. These results reveal the presence of a Gads-independent pathway of platelet activation downstream of LAT.
Collapse
Affiliation(s)
- C E Hughes
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Ludwig L, Oswald F, Hoang-Vu C, Dralle H, Hildt E, Schmid RM, Karges W. Expression of the Grb2-related RET adapter protein Grap-2 in human medullary thyroid carcinoma. Cancer Lett 2008; 275:194-7. [PMID: 19027225 DOI: 10.1016/j.canlet.2008.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 11/18/2022]
Abstract
Inappropriate signaling of the RET receptor tyrosine kinase causes different forms of human thyroid malignancy. We have previously identified the adaptor Grap-2 as RET binding protein. To verify involvement of Grap-2 in RET oncogenic signaling we performed sequence and expression analysis of Grap-2 in 15 human MTC samples. All tumors displayed marked Grap-2 mRNA and protein expression without a linear correlation. Beyond one conservative base pair substitution we detected no further alteration in genomic Grap-2 sequence. Consistent Grap-2 expression suggests a specific role for this adaptor in human MTC, while qualitative alterations do not appear to influence RET signaling.
Collapse
Affiliation(s)
- Leopold Ludwig
- Department of Internal Medicine II, Klinikum rechts der Isar, University of Munich, Ismaningerstrasse 22, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yamasaki S, Takase-Utsugi M, Ishikawa E, Sakuma M, Nishida K, Saito T, Kanagawa O. Selective impairment of FcepsilonRI-mediated allergic reaction in Gads-deficient mice. Int Immunol 2008; 20:1289-97. [PMID: 18664516 DOI: 10.1093/intimm/dxn085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gads is a Grb2-like adaptor protein expressed in hematopoietic cells. We demonstrated that mast cells from Gads(-/-) mice have selective functional defects. Bone marrow-derived mast cells from Gads(-/-) mice failed to induce Ca(2+) mobilization, degranulation and cytokine production upon cross-linking of FcepsilonRI. In vivo passive cutaneous anaphylaxis was also greatly impaired in Gads(-/-) mice. In contrast, Gads was dispensable for Toll-like receptor-mediated cytokine production in mast cells. Accordingly, mast cell-dependent resistance to acute peritoneal bacterial infection is not reduced in Gads(-/-) mice in vivo. Moreover, mature T and B cell responses and antibody production upon immunization were apparently normal in Gads(-/-) mice. Thus, inhibition of Gads in vivo would suppress the IgE-mediated allergic reaction with minimum adverse effects on both innate and acquired immune responses, and Gads could be an ideal target for the control of allergic responses.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Moran O, Roessle MW, Mariuzza RA, Dimasi N. Structural features of the full-length adaptor protein GADS in solution determined using small-angle X-ray scattering. Biophys J 2008; 94:1766-72. [PMID: 17993503 PMCID: PMC2242750 DOI: 10.1529/biophysj.107.116590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/18/2007] [Indexed: 11/18/2022] Open
Abstract
The Grb2-related adaptor protein GADS plays a central role during the initial phases of signal transduction in T lymphocytes. GADS possesses N- and C-terminal Src homology 3 (SH3) domains flanking a central Src homology 2 (SH2) domain and a 126-residue region rich in glutamine and proline residues, presumed to be largely unstructured. The SH2 domain of GADS binds the adaptor protein LAT; the C-terminal SH3 domain pairs GADS to the adaptor protein SLP-76, whereas the function of the central region is unknown. High-resolution three-dimensional models are available for the isolated SH2 and C-terminal SH3 domains in complex with their respective binding partners, LAT and SLP-76. However, in part because of its intrinsic instability, there is no structural information for the entire GADS molecule. Here, we report the low-resolution structure of full-length GADS in solution using small-angle x-ray scattering (SAXS). Based on the SAXS data, complemented by gel filtration experiments, we show that full-length GADS is monomeric in solution and that its overall structural parameters are smaller than those expected for a protein with a long unstructured region. Ab initio and rigid body modeling of the SAXS data reveal that full-length GADS is a relatively compact molecule and that the potentially unstructured region retains a significant degree of structural order. The biological function of GADS is discussed based on its overall structure.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
| | - Manfred W. Roessle
- European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Roy A. Mariuzza
- Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, 20870 Rockville, Maryland
| | | |
Collapse
|
41
|
Lucas JA, Felices M, Evans JW, Berg LJ. Subtle defects in pre-TCR signaling in the absence of the Tec kinase Itk. THE JOURNAL OF IMMUNOLOGY 2008; 179:7561-7. [PMID: 18025201 DOI: 10.4049/jimmunol.179.11.7561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.
Collapse
Affiliation(s)
- Julie A Lucas
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
42
|
Ramsey K, Luckashenak N, Koretzky GA, Clements JL. Impaired thymic selection in mice expressing altered levels of the SLP-76 adaptor protein. J Leukoc Biol 2007; 83:419-29. [PMID: 17965338 DOI: 10.1189/jlb.0507297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intracellular signaling initiated by ligation of the TCR influences cell fate at multiple points during the lifespan of a T cell. This is especially evident during thymic selection, where the nature of TCR-dependent signaling helps to establish a MHC-restricted, self-tolerant T cell repertoire. The Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) adaptor protein is a required intermediate in multiple signaling pathways triggered by TCR engagement, several of which have been implicated in dictating the outcome of thymic selection (e.g., intracellular calcium flux and activation of ERK family MAPKs). To determine if thymocyte maturation and selection at later stages of development are sensitive to perturbations in SLP-76 levels, we analyzed these crucial events using several transgenic (Tg) lines of mice expressing altered levels of SLP-76 in the thymus. In Tg mice expressing low levels of SLP-76 in preselection thymocytes, the CD4:CD8 ratio in the thymus and spleen was skewed in a manner consistent with impaired selection and/or maturation of CD4+ thymocytes. Low SLP-76 expression also correlated with reduced CD5 expression on immature thymocytes, consistent with reduced TCR signaling potential. In contrast, reconstitution of SLP-76 at higher levels resulted in normal thymic CD5 expression and CD4:CD8 ratios in the thymus and periphery. It is curious that thymic deletion of TCR-Tg (HY) thymocytes was markedly impaired in both lines of Tg-reconstituted SLP-76-/- mice. Studies using chimeric mice indicate that the defect in deletion of HY+ thymocytes is intrinsic to the developing thymocyte, suggesting that maintenance of sufficient SLP-76 expression from the endogenous locus is a key element in the selection process.
Collapse
Affiliation(s)
- Kimberley Ramsey
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
43
|
Jordan MS, Maltzman JS, Kliche S, Shabason J, Smith JE, Obstfeld A, Schraven B, Koretzky GA. In vivo disruption of T cell development by expression of a dominant-negative polypeptide designed to abolish the SLP-76/Gads interaction. Eur J Immunol 2007; 37:2961-72. [PMID: 17823979 DOI: 10.1002/eji.200636855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multi-molecular complexes nucleated by adaptor proteins play a central role in signal transduction. In T cells, one central axis consists of the assembly of several signaling proteins linked together by the adaptors linker of activated T cells (LAT), Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), and Grb2-related adaptor downstream of Shc (Gads). Each of these adaptors has been shown to be important for normal T cell development, and their proper sub-cellular localization is critical for optimal function in cell lines. We previously demonstrated in Jurkat T cells and a rat basophilic leukemic cell line that expression of a 50-amino acid polypeptide identical to the site on SLP-76 that binds to Gads blocks proper localization of SLP-76 and SLP-76-dependent signaling events. Here we extend these studies to investigate the ability of this polypeptide to inhibit TCR-induced integrin activity in Jurkat cells and to inhibit in vivo thymocyte development and primary T cell function. These data provide evidence for the in vivo function of a dominant-negative peptide based upon the biology of SLP-76 action and suggest the possibility of therapeutic potential of targeting the SLP-76/Gads interaction.
Collapse
Affiliation(s)
- Martha S Jordan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zeng L, Dalheimer SL, Yankee TM. Gads-/- mice reveal functionally distinct subsets of TCRbeta+ CD4-CD8- double-negative thymocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1013-21. [PMID: 17617593 DOI: 10.4049/jimmunol.179.2.1013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCRbeta expression in CD4(-)CD8(-) double-negative (DN) thymocytes induces signaling pathways that promote survival and proliferation, as well as differentiation into CD4(+)CD8(+) double-positive thymocytes. The signaling pathways that regulate survival, proliferation, and differentiation remain unclear. We used Gads-deficient mice to investigate the signaling pathways that regulate these cell fates. During this investigation, we focused on TCRbeta(+) DN thymocytes and found that there are at least three functionally distinct subsets of TCRbeta(+) DN thymocytes: TCRbeta(+) DN3E, TCRbeta(+) DN3L, and TCRbeta(+) DN4. Survival and proliferation of TCRbeta(+) DN3E were independent of Gads, but survival and proliferation of TCRbeta(+) DN3L cells were Gads dependent. Likewise, expression of Bcl-2 in TCRbeta(+) DN3E cells was Gads independent, but Gads was necessary for Bcl-2 expression in TCRbeta(+) DN3L cells. Bcl-2 expression was not dependent on Gads in TCRbeta(+) DN4 cells, but proliferation of TCRbeta(+) DN4 cells was Gads dependent. Gads was not required for the differentiation of DN thymocytes into DP thymocytes. In fact, Gads(-/-) DN3E cells differentiated into DP thymocytes more readily than wild-type cells. We conclude that signaling pathways required to initiate TCRbeta-induced survival and proliferation are distinct from the pathways that maintain survival and proliferation. Furthermore, signaling pathways that promote survival and proliferation may slow differentiation.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
45
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Yamasaki S, Ishikawa E, Sakuma M, Kanagawa O, Cheng AM, Malissen B, Saito T. LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol Cell Biol 2007; 27:4406-15. [PMID: 17420272 PMCID: PMC1900065 DOI: 10.1128/mcb.02109-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Kambayashi T, Koretzky GA. Proximal signaling events in FcɛRI-mediated mast cell activation. J Allergy Clin Immunol 2007; 119:544-52; quiz 553-4. [PMID: 17336609 DOI: 10.1016/j.jaci.2007.01.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/04/2007] [Accepted: 01/12/2007] [Indexed: 01/10/2023]
Abstract
Mast cells are central mediators of allergic diseases. Their involvement in allergic reactions is largely dependent on activation through the specific receptor for IgE (Fc epsilon RI). Cross-linking of Fc epsilon RI on mast cells initiates a cascade of signaling events that eventually results in degranulation, cytokine/chemokine production, and leukotriene release, contributing to allergic symptomology. Because of the importance of IgE in allergy, much focus has been placed on deciphering the signaling events that take place downstream of Fc epsilon RI. Studies have identified spleen tyrosine kinase as a key proximal regulator of Fc epsilon RI-mediated signaling. In this review, we discuss the multiple pathways that diverge from spleen tyrosine kinase with emphasis on the role of adapter molecules to orchestrate these signaling events. Understanding the molecular mechanisms underlying mast cell activation ideally will provide insights into the development of novel therapeutics to control allergic disease.
Collapse
Affiliation(s)
- Taku Kambayashi
- Department of Pathology, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
48
|
Seet BT, Berry DM, Maltzman JS, Shabason J, Raina M, Koretzky GA, McGlade CJ, Pawson T. Efficient T-cell receptor signaling requires a high-affinity interaction between the Gads C-SH3 domain and the SLP-76 RxxK motif. EMBO J 2007; 26:678-89. [PMID: 17235283 PMCID: PMC1794392 DOI: 10.1038/sj.emboj.7601535] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 12/04/2006] [Indexed: 11/08/2022] Open
Abstract
The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.
Collapse
Affiliation(s)
- Bruce T Seet
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics. University of Toronto, Toronto, Ontario, Canada
| | - Donna M Berry
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan S Maltzman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Shabason
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Raina
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tony Pawson
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics. University of Toronto, Toronto, Ontario, Canada
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Room 1084, Toronto, Ontario, Canada M5G 1X5. Tel: +1 416 586 4800 ext 8262; Fax: +1 416 586 8869; E-mail:
| |
Collapse
|
49
|
Trampont P, Zhang L, Ravichandran KS. ShcA mediates the dominant pathway to extracellular signal-regulated kinase activation during early thymic development. Mol Cell Biol 2006; 26:9035-44. [PMID: 16982683 PMCID: PMC1636838 DOI: 10.1128/mcb.00988-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.
Collapse
Affiliation(s)
- Paul Trampont
- Carter Immunology Center, MR4-4072D, Box 801386, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
50
|
Souabni A, Jochum W, Busslinger M. Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood 2006; 109:281-9. [PMID: 16968900 DOI: 10.1182/blood-2006-03-009670] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Four of 9 PAX transcription factor genes have been associated with chromosomal translocations in human tumors, although their oncogenic potential has not yet been demonstrated in transgenic mouse models. The B-lymphoidPAX5 gene participates in the generation of the t(9;14)(p13;q32) translocation in germinal center B cells, which leads to deregulated PAX5 expression under the control of the immunoglobulin heavy-chain (IgH) locus in a subset of B-cell non-Hodgkin lymphomas. Here we reconstructed a human t(9;14) translocation in a knock-in mouse by inserting a PAX5 minigene into the IgH locus. The IgHP5ki allele, which corresponds to a germline rather than somatic mutation, is activated in multipotent hematopoietic progenitors and is subsequently expressed in dendritic cells (DCs) and in natural killer (NK), T, and B cells. Ectopic Pax5 expression interferes with normal T-cell development and causes immature T-lymphoblastic lymphomas in IgHP5ki/+ and IgHP5ki/P5ki mice. Aggressive T-cell lymphomas develop even faster in IkPax5/+ mice expressing Pax5 from the Ikaros locus. Pax5 expression in thymocytes activates B-cell–specific genes and represses T-lymphoid genes, suggesting that Pax5 contributes to lymphomagenesis by deregulating the T-cell gene-expression program. These data identify Pax5 as a potent oncogene and demonstrate that the T-lymphoid lineage is particularly sensitive to the oncogenic action of Pax5.
Collapse
MESH Headings
- Alleles
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bone Marrow Transplantation
- Cell Differentiation/genetics
- Cell Lineage
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Embryonal Carcinoma Stem Cells
- Gene Expression Regulation, Neoplastic
- Humans
- Ikaros Transcription Factor/genetics
- Immunoglobulin Heavy Chains/genetics
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mutagenesis, Insertional
- Neoplasm Transplantation
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- PAX5 Transcription Factor/genetics
- PAX5 Transcription Factor/physiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Promoter Regions, Genetic
- Radiation Chimera
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Translocation, Genetic
Collapse
Affiliation(s)
- Abdallah Souabni
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|