1
|
Wang L, Chen X, Pollock NR, Villafuerte Gálvez JA, Alonso CD, Wang D, Daugherty K, Xu H, Yao J, Chen Y, Kelly CP, Cao Y. Metagenomic analysis reveals distinct patterns of gut microbiota features with diversified functions in C. difficile infection (CDI), asymptomatic carriage and non-CDI diarrhea. Gut Microbes 2025; 17:2505269. [PMID: 40366862 PMCID: PMC12080279 DOI: 10.1080/19490976.2025.2505269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Clostridioides difficile infection (CDI) has been recognized as a leading cause of healthcare-associated infections and a considerable threat to public health globally. Increasing evidence suggests that the gut microbiota plays a key role in the pathogenesis of CDI. The taxonomic composition and functional capacity of the gut microbiota associated with CDI have not been studied systematically. Here, we performed a comprehensive shotgun metagenomic sequencing in a well-characterized human cohort to reveal distinct patterns of gut microbiota and potential functional features associated with CDI. Fecal samples were collected from 104 inpatients, including : (1) patients with clinically significant diarrhea and positive nucleic acid amplification testing (NAAT) and received CDI treatment (CDI, n = 47); (2) patients with positive stool NAAT but without diarrhea (Carrier, n = 17); (3) patients with negative stool NAAT but with diarrhea (Diarrhea, n = 14); and (4) patients with negative stool NAAT and without diarrhea (Control, n = 26). Downstream statistical analyses (including alpha and beta diversity analysis, differential abundance analysis, correlation network analysis, and potential functional analysis) were then performed. The gut microbiota in the Control group showed higher Chao1 index (p < 0.05), while Shannon index at KEGG module level was higher in CDI than in Carrier and Control (p < 0.05). Beta diversity for species composition differed significantly between CDI vs Carrier/Control cohorts (p < 0.05). Microbial Linear discriminant analysis Effect Size and ANCOM analysis both identified 8 species (unclassified_f_Enterobacteriaceae, Veillonella_parvula, unclassified_g_Klebsiella and etc.) were enriched in CDI, Enterobacter_aerogenes was enriched in Diarrhea, Collinsella_aerofaciens, Collinsella_sp_4_8_47FAA, Collinsella_tanakaei and Collinsella_sp_CAG_166 were enriched in Control (LDA >3.0, adjusted p < 0.05). Correlation network complexity was higher in CDI with more negative correlations than in other three cohorts. Modules involved in iron complex transport system (M00240) was enriched in CDI, ABC-2 type transport system (M00254), aminoacyl-tRNA biosynthesis (M00359), histidine biosynthesis (M00026) and inosine monophosphate biosynthesis (M00048) were enriched in Carrier, ribosome (M00178 and M00179) was enriched in Diarrhea, fluoroquinolone resistance (M00729) and aminoacyl-tRNA biosynthesis (M00360) were enriched in Control (LDA > 2.5, adjusted p < 0.05). Resistance functions of acriflavine and glycylcycline were enriched in CDI, while resistance function of bacitracin was enriched in Carrier (LDA > 3.0, adjusted p < 0.05), and the contributions of phylum and species to resistance functions differed among the four groups. Our results reveal alterations of gut microbiota composition and potential functions among four groups of differential colonization/infection status of Clostridioides difficile. These findings support the potential roles of gut microbiota and their potential functions in the pathogenesis of CDI.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nira R. Pollock
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Javier A. Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carolyn D. Alonso
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
He M, Zhang H, Luo Z, Duan X, Zhao F, Su P, Zeng Z, Zhou L, Chen C, Qiu J. Causal link between gut microbiota and obsessive-compulsive disorder: A two-sample Mendelian randomization analysis. J Affect Disord 2025; 379:852-860. [PMID: 40056996 DOI: 10.1016/j.jad.2025.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Previous studies have indicated a potential link between the gut microbiota and obsessive-compulsive disorder (OCD). However, the exact causal relationship remains uncertain. In this study, we employed a two-sample Mendelian randomization (MR) analysis to evaluate the causal connection between gut microbiota and OCD. METHODS We collected Genome-Wide Association Study (GWAS) summary data on gut microbiota (n = 18, 340) and OCD (n = 199, 169), using single nucleotide polymorphisms (SNPs) as the instrumental variable. SNPs with an F-statistic of <10 were deemed weak instrumental variables and subsequently excluded. The MR analysis was conducted using five methods: inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode. Heterogeneity and pleiotropy were assessed using Cochran's Q-test and MR Egger intercept test, while sensitivity analysis was performed using a leave-one-out approach. RESULTS The IVW analysis revealed that at the phylum level, Proteobacteria (OR = 0.545, 95%CI: 0.347-0.855, P = 0.008) served as a protective factor for OCD, whereas at the order level, Bacillales (OR = 1.327, 95%CI: 1.032-1.707, P = 0.027) was identified as a risk factor. At the family level, Ruminococcaceae (OR = 0.570, 95%CI: 0.354-0.918, P = 0.021) also acted as a protective factor. At the genus level, Bilophila (OR = 0.623, 95%CI: 0.425-0.911, P = 0.015) was a protective factor, while Eubacterium ruminantium group (OR = 1.347, 95%CI: 1.012-1.794, P = 0.041) and Lachnospiraceae UCG001 (OR = 1.384, 95%CI: 1.003-1.910, P = 0.048) were identified risk factors. Reverse MR analysis showed no significant causal relationship between OCD and the gut microbiota, with no significant heterogeneity or horizontal pleiotropy observed. CONCLUSION Our analysis suggested that specific gut microbiota might have a causal relationship with OCD, revealing potential intervention strategies for the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Mingjie He
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zheng Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Peng Su
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
3
|
Duan Y, She H, Jing L, Duan L, Zheng J, Shao Y, Che Y, Shi Y, Guo C, Zhao W, Yang T, Yang L. Investigating the impact of fecal contamination on antibiotic resistance genes in urban environments using host-associated molecular indicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126296. [PMID: 40274216 DOI: 10.1016/j.envpol.2025.126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistome of gut microbiota can be transmitted into the urban ecosystems via fecal pollution, potentially leading to a public health crisis. It is essential to determine the primary sources of fecal contamination and accurately evaluate the health risks for the propagation of antibiotic resistance genes (ARGs) from the intestinal microbiota. In this research, the occurrence, sources and potential hosts of ARGs in urban environmental samples collected from a wastewater treatment plant (WWTP), natural water bodies, tap water and farmland soil were comprehensively investigated. Host-associated fecal indicators for general warm-blooded animals (BacGeneral), humans (crAssphage), and other animals (bovines and swine) were employed for reliable microbial source tracking (MST). Results showed that the fecal indicator BacGeneral was detected in 84.00 % of collected environmental samples, indicating the widespread fecal contamination in local water and farmland. The WWTP was the reservoir and main source of fecal contamination in local environment, harboring the highest total abundances of ARGs (3.85 ± 2.72 ARGs/16S rRNA) and mobile genetic elements (MGEs) (0.32 ± 0.12 MGEs/16S rRNA) from multiple animals and humans. Although the swine-associated indicator was undetected, fecal contamination from both bovines and humans was prevalent in collected samples, with detection rates of pollution indicators at 52.00 % for bovine and 28.00 % for human sources. The co-occurrence of ARGs, fecal indicators and MGEs was analyzed, and significant correlation (P < 0.01) between total ARG abundance and fecal indicator (BacGeneral) in contaminated environments demonstrated that fecal pollution exhibited a great influence on overall resistome in local environment. This research offers a comprehensive understanding of the sources and dissemination of ARGs in feces-polluted urban environments, providing data for the monitoring and prevention of ARG pollution.
Collapse
Affiliation(s)
- Yujing Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China.
| | - Hui She
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Lingna Jing
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinxiu Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying Shao
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxin Che
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
| | - Yu Shi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
| | - Chao Guo
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenhui Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijun Yang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Martinez-Tellez B, Xu H, Ortiz-Alvarez L, Rodríguez-García C, Schönke M, Jurado-Fasoli L, Osuna-Prieto FJ, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Folkerts G, Vilchez-Vargas R, Link A, Plaza-Diaz J, Gil A, Labayen I, Fernandez-Veledo S, Rensen PCN, Ruiz JR. Effect of a 24-week supervised concurrent exercise intervention on fecal microbiota diversity and composition in young sedentary adults: The ACTIBATE randomized controlled trial. Clin Nutr 2025; 49:128-137. [PMID: 40279809 DOI: 10.1016/j.clnu.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Numerous physiological responses to exercise are observed in humans, yet the effects of long-term exercise and varying intensities on the diversity and composition of human fecal microbiota remain unclear. We investigated the effect of a 24-week supervised concurrent exercise intervention, at moderate and vigorous intensities, on fecal microbiota diversity and composition in young adults. METHODS This ancillary study was based on data from the ACTIBATE randomized controlled trial (ClinicalTrials.gov ID: NCT02365129), and included adults (aged 18-25 years, 70 % female) that were randomized to (i) a control group (CON: no exercise, n = 20), (ii) a moderate-intensity exercise group (MOD-EX, n = 21), and (iii) a vigorous-intensity exercise group (VIG-EX, n = 20). Fecal samples were collected before and after the 24-week exercise intervention, and the diversity and composition of the fecal microbiota were analyzed by 16S rRNA sequencing. Inferential functional profiling of the fecal microbiota was performed and correlations between microbial changes and cardiometabolic outcomes were assessed. RESULTS Exercise did not modify beta or alpha diversities regardless of the intensity (all P ≥ 0.062). The relative abundance of the Erysipelotrichaceae family (Bacillota phylum) (-0.3 ± 1.2 %; P = 0.031) was however reduced in the VIG-EX group. Coprococcus was the only genus showed a significant difference between MOD-EX and VIG-EX after the intervention, with its relative abundance increasing in MOD-EX (+0.4 ± 0.6 %; P = 0.005). None of these changes were related to the exercise-induced cardiometabolic benefits (all P ≥ 0.05). CONCLUSIONS In young adults, a 24-week supervised concurrent exercise program, at moderate and vigorous intensities, resulted in minor changes in fecal microbiota composition, while neither alpha nor beta diversities were affected. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365129.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Nursing, Physiotherapy and Medicine and SPORT Research Group, CIBIS Research Center, University of Almería, 04120, Almería, Spain.
| | - Huiwen Xu
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Carmen Rodríguez-García
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
| | - Juan M A Alcantara
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Francisco M Acosta
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, 20520, Turku, Finland
| | - Francisco J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, 80336, Munich, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain; School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006, Logroño, Spain
| | - Angel Gil
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18016, Granada, Spain
| | - Idoia Labayen
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Sonia Fernandez-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili, 43003, Tarragona, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain.
| |
Collapse
|
5
|
Zhang P, Lu W, Yue L, Zhang Z, Shao X. Guava root exudate-driven rhizosphere microorganisms changes transmitted to foliar-feeding insects influence their feeding behaviour. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333527 DOI: 10.1111/pbi.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The growth of different grafted guava was different as affected by grafting on different rootstock varieties, which also influenced the damage degree of Spodoptera litura larvae. The co-regulation of the pest gut by rhizosphere microorganisms and root exudates may contribute to this differential damage. In this study, the microorganisms of soil, plants, S. litura larvae and root exudates of guava grafted on different rootstock varieties were analysed and compared. The activities of superoxide dismutase, peroxidase and catalase in the midgut of S. litura larvae feeding on heterograft leaves of guava (where rootstock and scion are of the different variety) were significantly higher than those in the midgut of S. litura larvae feeding on homograft leaves of guava (where rootstock and scion are of the same variety), and glutathione s-transferase activity showed an opposite result. Enterococcus spp. and Escherichia spp. were the two bacterial genera with the greatest difference in abundance in the midgut of S. litura larvae and exhibited a negative correlation with each other. The root system of guava influenced the root structure, soil nutrients and the population structure and diversity of rhizosphere microorganisms by regulating the type and amount of root exudates. Root exudates also influenced the physiological and biochemical status of S. litura larvae by regulating the rhizosphere microorganisms driving the tritrophic interaction of plant-microbes-insects. Based on our results and the observed differences in pest occurrence among different grafted plants, improving varieties through grafting may become an effective strategy to reduce the impact of insect pests on guava.
Collapse
Affiliation(s)
- Peiwen Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, China
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Wei Lu
- College of Agriculture, Xinjiang Agricultural University, Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the University of the Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Yue
- College of Agriculture, Xinjiang Agricultural University, Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the University of the Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhixiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Xuehua Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, China
| |
Collapse
|
6
|
Fath-All AA, Atia T, Mohamed AS, Khalil NM, Abdelaziz TD, Mahmoud NA, Elagali AM, Sakr HI, Abd El-Ghany MN. Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats. Tissue Cell 2025; 96:102953. [PMID: 40334393 DOI: 10.1016/j.tice.2025.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Gastric ulcer is one of the most common gastrointestinal tract diseases with a higher extent in male patients to. Selenium nanoparticles (SeNPs) possess therapeutic benefits, including antimicrobial, antioxidant, anti-inflammatory, and anti-ulcerative agents. The study aimed to investigate the modulatory effect of yeast-mediated SeNPs on gastric ulcers and microbiota dysbiosis in a rat model. METHOD Twenty-four rats were randomly divided into four groups. Both the control and SeNPs-only groups received distilled water orally, and after 1 h, they received 2 % carboxymethyl cellulose (CMC). The ulcer model and SeNPs-treated groups received 99 % ethanol (5 ml/kg orally) for ulcer induction, followed by 2 % CMC after one hour. The SeNPs-treated group got SeNPs (60 mg/kg) suspended in 2 % CMC. We measured ulcer markers (ulcer index and gastric juice pH and volume and stomach tissue oxidative stress markers (malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), and catalase (CAT)), in addition to histopathological examination of gastric tissues stained with three different satins: hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson's trichrome stains (many-color dye), and microbiological analysis of freshly collected fecal sample. RESULTS SeNPs treatment significantly decreased gastric volume, ulcer index, malondialdehyde, and increased glutathione levels. A macroscopic examination of the treated stomach revealed decreased ulcer lesion numbers. Furthermore, histopathological examination showed that SeNPs treatment repaired ulcerative gastric tissue through the regeneration of epithelial cells and reduction in damaged areas and collagen fibers. In the treated group, microbiological analysis of rat feces showed a significant increase in Leuconostoc pseudomesenteroides, Escherichia coli, and Enterococcus faecium counts. CONCLUSION This research suggests that SeNPs exhibit anti-ulcer activity and can accelerate ulcer healing via their antioxidant action. They also have a modulatory effect on gut microbiota dysbiosis associated with gastric ulcers. This is the first research studying the impact of safe yeast-mediated SeNPs on rat's gastric ulcer and gut microbiota.
Collapse
Affiliation(s)
- Aya Adel Fath-All
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University in Al-Kharj, Saudi Arabia.
| | - Ayman Saber Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Neveen M Khalil
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| | - Tamer D Abdelaziz
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Neamat A Mahmoud
- Department of Medical Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Hader I Sakr
- Department of Medical Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| |
Collapse
|
7
|
Yajun L, Xuan Z, Juan T, Rui T, Zuyan X, Bingbing Z, Ruiqi Z, Guiqin D, Tao Z. Risk factors for catheter-associated urinary tract infection in an intensive care unit: a matched case-control study. BMC Infect Dis 2025; 25:617. [PMID: 40295958 PMCID: PMC12036276 DOI: 10.1186/s12879-025-10839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE Catheter-associated urinary tract infections (CAUTIs) are common healthcare-related infections in intensive care units (ICUs). This study investigated the risk factors for CAUTIs in critically ill patients. METHODS This study was a single-centre, retrospective, matched case-control study of patients undergoing indwelling catheterization in the ICU from December 1, 2016, to October 31, 2021. Patients with catheterizations were matched 1:4 with controls that were hospitalized in the ICU during the same period (with a difference in admission time of no more than two months). RESULTS CAUTI occurred in 18 of 403 patients, with an infection rate of 3.7/per 1000 catheter days. Repeat catheterization of the urinary catheter (OR = 10.09) and days of antibiotic use (OR = 0.13) were independent risk factors for CAUTI (P < 0.05). A total of 31 pathogen strains were detected in urine samples from 18 CAUTI patients. The main pathogens were Gram-positive bacteria (n = 13, 41.9%), fungi (n = 10, 32.3%) and Gram-negative bacteria (n = 7, 22.6%). CAUTI was associated with an increase in hospitalization days by 26 days and an increase in total hospitalization cost of ¥160,000 (P < 0.001). CONCLUSION CAUTIs pose an economic and health burden for ICU patients. Repeat catheterization and longer use of antibiotics are to be avoided as much as possible.
Collapse
Affiliation(s)
- Li Yajun
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Zhou Xuan
- Guiyang Center for Disease Control and Prevention, Guiyang City, Guizhou Province, China
| | - Tian Juan
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Tu Rui
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Xiao Zuyan
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Zhang Bingbing
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Zhou Ruiqi
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China
| | - Du Guiqin
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China.
| | - Zhao Tao
- Department of Hospital Infection Management, The First People's Hospital of Gui Yang, 97 Boai Road, Nanming District, Guiyang City, Guizhou Province, China.
| |
Collapse
|
8
|
Yang B, Xu Y, Zhang W, Zhu D, Huang B, Yang Y, Jia X, Feng L. Oral absorption mechanisms of polysaccharides and potential as carriers for the construction of nano-delivery systems: A review. Int J Biol Macromol 2025; 310:143184. [PMID: 40253019 DOI: 10.1016/j.ijbiomac.2025.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Polysaccharides have garnered increasing attention in recent years for their potential in oral drug delivery within biomaterials and pharmaceuticals, owing to their excellent physicochemical properties, bioactivity, and low toxicity. However, the absorption of polysaccharides encounters multiple challenges posed by the biological, chemical, mechanical, and immune barriers of the intestinal mucosa. Therefore, elucidating the mechanisms by which polysaccharides traverse the intestinal mucosa for oral absorption is essential for their further development and application. Current studies have identified several polysaccharide absorption pathways, including transcellular transport, paracellular transport, M cell and Peyer's patches mediated transport, and intestinal flora mediated transport. Furthermore, numerous studies have demonstrated that polysaccharides can enhance the solubility, gastrointestinal stability, and permeability of small molecule components, which significantly improves their bioavailability. More importantly, nano-delivery systems utilizing polysaccharides as carriers have shown great promise in enhancing the targeting of small molecule components, thereby opening new avenues for drug delivery applications. We hope this review will provide theoretical support and inspiration for a deeper understanding of oral absorption mechanisms and the potential of polysaccharides in the development of nano-delivery systems.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weiye Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dandan Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
9
|
Zhou R, Weng S, He J. Bacterial Infection Disrupts the Intestinal Bacterial Community and Facilitates the Enrichment of Pathogenic Bacteria in the Intestines of Penaeus vannamei. Microorganisms 2025; 13:864. [PMID: 40284700 PMCID: PMC12029295 DOI: 10.3390/microorganisms13040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Pathogenic infections can reshape the intestinal microbiota of aquatic animals, thereby impacting their health status. In this study, we aimed to investigate whether Vibrio parahaemolyticus infection induces dysbiosis in the intestinal bacterial community of Penaeus vannamei and to assess the associated ecological risks. Our findings revealed the deterministic processes in intestinal bacterial community assembly during bacterial infections, indicating that host selection, i.e., host immune response post-infection, has a significant influence on intestinal microbes. More importantly, we found that bacterial infection reshaped the intestinal community by reducing the relative abundance of probiotic Ruegeria species (e.g., R. atlantica, R. lacuscaerulensis, R. conchae, R. profundi, R. arenilitoris, R. pomeroyi) and increasing the relative abundance of Vibrio species (V. harveyi, V. sinaloensis, V. coralliilyticus, and V. brasiliensis). Significant negative correlations were observed between the relative abundance of these Ruegeria species and the relative abundance of Vibrio species. Moreover, the control P. vannamei contained a substantially higher number of keystone species belonging to Ruegeria in the bacterial community network, whereas bacterial infection individuals had few or no keystone species belonging to Ruegeria, with keystone species belonging to Vibrio becoming more prominent. Thus, the significant increase in Vibrio species abundance in the P. vannamei intestine following bacterial infection was associated with the marked reduction in Ruegeria species. Our findings will provide valuable insights into the complex interactions among bacterial infection, intestinal microbiota, and host health, and they provide guidance for the development of probiotics in promoting the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Li N, Fang X, Li H, Liu J, Chen N, Zhao X, Yang Q, Chen X. Ginsenoside CK modulates glucose metabolism via PPARγ to ameliorate SCOP-induced cognitive dysfunction. Metab Brain Dis 2025; 40:168. [PMID: 40178645 DOI: 10.1007/s11011-025-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Ginsenoside compound K (CK) exhibits neuroprotective properties; however, the underlying mechanisms behind these effects have not been investigated thoroughly. CK is the primary active compound derived from ginseng and is metabolized in the gut. It enhances neuronal function by modulating the gut microflora. Therefore, the present study aimed to elucidate the mechanism through which CK enhances cognitive function, employing gut microbiome and microarray analyses. The results revealed that CK upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), suppressed amyloid-β (Aβ) aggregation in hippocampal neurons, and influenced the expression of cyclin-dependent kinase-5 (CDK5), (including insulin receptor substrate 2) IRS2, insulin-degrading enzyme (IDE), glycogen synthase kinase-3 beta (GSK-3β), glucose transporter type 1 (GLUT1), and glucose transporter type 3 (GLUT3) proteins. These proteins play crucial roles in regulating brain glucose metabolism, increasing neuronal energy, and reducing neuronal apoptosis, thereby ameliorating cognitive impairment in mice.
Collapse
Affiliation(s)
- Na Li
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Xingyu Fang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, 130117, Jilin, P.R. China
| | - Jian Liu
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Nan Chen
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Xiaohui Zhao
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Qing Yang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China.
| | - Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P.R. China.
| |
Collapse
|
11
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2025; 480:1969-1981. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Uddin MJ, Julin K, Overkleeft HS, Johannessen M, Lentz CS. Activity-Based Protein Profiling Identifies an α-Amylase Family Protein Contributing to the Virulence of Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2025; 11:573-583. [PMID: 39916318 PMCID: PMC11915364 DOI: 10.1021/acsinfecdis.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
In search of new putative antimicrobial drug targets in methicillin-resistant Staphylococcus aureus, we aimed to identify and characterize retaining glycosidase activities in this bacterial pathogen. Using activity-based protein profiling (ABPP), a panel of 7 fluorescent probes was screened to detect activities of diverse retaining glycosidase families. Based on this, a cocktail of 3 biotinylated probes (targeting α-glucosidases, β-galactosidases and α-fucosidases) was used for target enrichment and three glycoside hydrolase family proteins were identified by mass-spectrometry: 6-phospho-β-glucosidase (BglA), α-amylase family protein trehalase C (TreC), and autolysin (Atl). The physiological relevance of previously uncharacterized BglA and TreC was addressed in CRISPRi and inhibitor studies with the putative TreC inhibitor α-cyclophellitol-aziridine. Silencing of treC did not affect bacterial growth in rich media, but reduced biofilm formation in vitro, and attenuated virulence during Galleria mellonella infection, warranting future investigations into the biochemical function of this enzyme.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kjersti Julin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mona Johannessen
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Christian S. Lentz
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
13
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
14
|
Halimi H, Ahmadi B, Asri N, Rostami-Nejad M, Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb Pathog 2025; 200:107363. [PMID: 39909290 DOI: 10.1016/j.micpath.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Bacterial biofilms, which are complex communities of microorganisms encapsulated in a self-produced extracellular matrix, play critical roles in various diseases. Recent research has underscored the dualistic nature of amyloids, structural proteins within these biofilms, in human health, particularly highlighting the significant role in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's disease (PD). These amyloids modulate the immune response by inducing the production of interleukin-10 (IL-10), which plays a role in anti-inflammatory processes. Additionally, they inhibit the aggregation of human amyloids and enhance the integrity of the intestinal barrier. Detrimentally, they exacerbate neuroinflammation by elevating inflammatory cytokines and promoting the aggregation of human amyloid proteins-amyloid-β (Aβ) in AD and α-synuclein (αS) in PD-through a process known as cross-seeding. Moreover, bacterial amyloids have also been shown to stimulate the production of anti-curli/DNA antibodies, which are implicated in the pathogenesis of autoimmune diseases. Given their dualistic nature, bacterial amyloids may, under specific conditions, function as beneficial proteins for human health. This understanding holds promise for the development of targeted therapeutic strategies aimed at modulating bacterial amyloids in the context of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Hossein Halimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ahmadi
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025; 25:1128-1148. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wu G, Ai Q, Shi Y. Oral administration of Lactobacillus rhamnosus MP108 ameliorates hemolytic jaundice in rats. J Food Sci 2025; 90:e17671. [PMID: 39898970 DOI: 10.1111/1750-3841.17671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Accumulating evidence suggests that specific probiotic strains exert effects on hemolytic jaundice (HJ), and probiotic strains of Lactobacillus rhamnosus exhibit potential beneficial effects against HJ. This study aimed to determine the effects of L. rhamnosus MP108 (MP108) on rats with acetylphenylhydrazine (APH)-induced HJ. One week of oral MP108 administration (16 × 109 CFU/kg·day) significantly reversed the HJ-induced body-weight reduction and normalized serum levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), hydrogen peroxide (H2O2), and superoxide anion (O2-) in HJ rats. Furthermore, significant improvements were observed in the pathological changes of liver and intestinal tissues. 16S rRNA high-throughput sequencing of fecal samples demonstrated that MP108 altered gut microbiota composition by increasing Lacticaseibacillus spp. abundance, which correlated with the serum levels of ALT, AST, TBIL, T-SOD, GSH-PX, H2O2, and O2-. In summary, these results provide evidence that MP108 has the potential to improve HJ symptoms by alleviating hepatic impairment, which is associated with changes in gut microbiota composition. PRACTICAL APPLICATION: The study indicates that MP108 can modulate the gut microbiota, improve liver function, and thereby alleviate the symptoms of hemolytic jaundice (HJ). These findings suggest a promising therapeutic approach for HJ, offering potential benefits to patients with related conditions.
Collapse
Affiliation(s)
- Gaohong Wu
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| | - Qing Ai
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yuan Shi
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
17
|
Pełka K, Hafeez AB, Worobo RW, Szweda P. Probiotic potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread. Probiotics Antimicrob Proteins 2025; 17:364-377. [PMID: 37725304 PMCID: PMC11832673 DOI: 10.1007/s12602-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting γ -hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.
Collapse
Affiliation(s)
- Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland.
| |
Collapse
|
18
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
19
|
Ma F, Ma R, Zhao L. Effects of Antimicrobial Peptides on Antioxidant Properties, Non-specific Immune Response and Gut Microbes of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). Biochem Genet 2025; 63:85-103. [PMID: 38411941 DOI: 10.1007/s10528-024-10708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Antimicrobial peptides (AMPs) are an important part of non-specific immunity and play a key role in the cellular host defense against pathogens and tissue injury infections. We investigated the effects of AMP supplementation on the antioxidant capacity, non-specific immunity, and gut microbiota of tsinling lenok trout. 240 fish were fed diets (CT, A120, A240 and A480) containing different amounts of AMP peptides (0, 120 mg kg-1, 240 mg kg-1, 480 mg kg-1) for 8 weeks. Our results showed that the activity of total antioxidant capacity (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), catalase (CAT) and acid phosphatase (ACP) in the A240 and A480 group were higher than that in the CT group (P < 0.05). The content of malondialdehyde (MDA) in AMP group was significantly lower than that in CT group (P < 0.05). Furthermore, we harvested the mid-gut and applied next-generation sequencing of 16S rDNA. The results showed that the abundance of Halomonas in AMP group was significantly lower than that in CT group. Functional analysis showed that the abundance of chloroalkane and chloroalkene degradation pathway increased significantly in AMP group. In conclusion, AMP enhanced the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| |
Collapse
|
20
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
21
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
22
|
Srivastava G, Brylinski M. A Data-Driven Approach to Enhance the Prediction of Bacteria-Metabolite Interactions in the Human Gut Microbiome Using Enzyme Encodings and Metabolite Structural Embeddings. Nutrients 2025; 17:469. [PMID: 39940326 PMCID: PMC11820091 DOI: 10.3390/nu17030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Background: The human gut microbiome is critical for host health by facilitating essential metabolic processes. Our study presents a data-driven analysis across 312 bacterial species and 154 unique metabolites to enhance the understanding of underlying metabolic processes in gut bacteria. The focus of the study was to create a strategy to generate a theoretical (negative) set for binary classification models to predict the consumption and production of metabolites in the human gut microbiome. Results: Our models achieved median balanced accuracies of 0.74 for consumption predictions and 0.95 for production predictions, highlighting the effectiveness of this approach in generating reliable negative sets. Additionally, we applied a kernel principal component analysis for dimensionality reduction. The consumption model with a polynomial kernel, and the production model with a radial basis function with 32 reduced features, showed median accuracies of 0.58 and 0.67, respectively. This demonstrates that biological information can still be captured, albeit with some loss, even after reducing the number of features. Furthermore, our models were validated on six previously unseen cases, achieving five correct predictions for consumption and four for production, demonstrating alignment with known biological outcomes. Conclusions: These findings highlight the potential of integrating data-driven approaches with machine learning techniques to enhance our understanding of gut microbiome metabolism. This work provides a foundation for creating bacteria-metabolite datasets to enhance machine learning-based predictive tools, with potential applications in developing therapeutic methods targeting gut microbes.
Collapse
Affiliation(s)
- Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Rafique A, Ali I, Kim S, Farooq A, Manzoor U, Moon J, Arooj M, Ahn M, Park Y, Hyun CL, Koh YS. Toll-like receptor 13-mediated signaling protects against the development of colon cancer. Int J Cancer 2024; 155:1858-1873. [PMID: 38989970 DOI: 10.1002/ijc.35089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.
Collapse
Affiliation(s)
- Asma Rafique
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Irshad Ali
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Seukchan Kim
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Adeel Farooq
- Research Institute for Basic Sciences, Jeju National University, Jeju, South Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jeungho Moon
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Madeeha Arooj
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, South Korea
| | - Chang Lim Hyun
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Young-Sang Koh
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
25
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024; 92:e0030224. [PMID: 39347570 PMCID: PMC11556149 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P. Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
26
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
27
|
Rogers AWL, Radlinski LC, Nguyen H, Tiffany CR, Carvalho TP, Masson HLP, Goodson ML, Bechtold L, Yamazaki K, Liou MJ, Miller BM, Mahan SP, Young BM, Demars AM, Gretler SR, Larabi AB, Lee JY, Bays DJ, Tsolis RM, Bäumler AJ. Salmonella re-engineers the intestinal environment to break colonization resistance in the presence of a compositionally intact microbiota. Cell Host Microbe 2024; 32:1774-1786.e9. [PMID: 39181125 PMCID: PMC11466686 DOI: 10.1016/j.chom.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms. Using metabolite profiling and genetic analysis, we show that the initial rise in luminal pathogen abundance was powered by a combination of aerobic respiration and mixed acid fermentation of simple sugars, such as glucose, which resulted in their depletion from the metabolome. The initial rise in the abundance of the pathogen in the feces coincided with a reduction in the cecal concentrations of acetate and butyrate and an increase in epithelial oxygenation. Notably, these changes in the host environment preceded changes in the microbiota composition. We conclude that changes in the host environment can weaken colonization resistance even in the absence of overt compositional changes in the gut microbiota.
Collapse
Affiliation(s)
- Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thaynara Parente Carvalho
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lalita Bechtold
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kohei Yamazaki
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA; Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aurore M Demars
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sophie R Gretler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anaïs B Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California at Davis, One Shields Avenue, Sacramento, CA 95817, USA
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Costantini M, Videvall E, Foster J, Medeiros M, Gillece J, Paxton E, Crampton L, Mounce H, Wang A, Fleischer R, Campana M, Reed F. The Role of Geography, Diet, and Host Phylogeny on the Gut Microbiome in the Hawaiian Honeycreeper Radiation. Ecol Evol 2024; 14:e70372. [PMID: 39416467 PMCID: PMC11480636 DOI: 10.1002/ece3.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The animal gut microbiome can have a strong influence on the health, fitness, and behavior of its hosts. The composition of the gut microbial community can be influenced by factors such as diet, environment, and evolutionary history (phylosymbiosis). However, the relative influence of these factors is unknown in most bird species. Furthermore, phylosymbiosis studies have largely focused on clades that diverged tens of millions of years ago, and little is known about the degree of gut microbiome divergence in more recent species radiations. This study explores the drivers of microbiome variation across the unique and recent Hawaiian honeycreeper radiation (Fringillidae: Drepanidinae). Fecal samples were collected from 14 extant species spanning the main islands of the Hawaiian archipelago and were sequenced using three metabarcoding markers to characterize the gut microbiome, invertebrate diet, and plant diet of Hawaiian honeycreepers. We then used these metabarcoding data and the honeycreeper host phylogeny to evaluate their relative roles in shaping the gut microbiome. Microbiome variation across birds was highly individualized; however, source island had a small but significant effect on microbiome structure. The microbiomes did not recapitulate the host phylogenetic tree, indicating that evolutionary history does not strongly influence microbiome structure in the honeycreeper clade. These results expand our understanding of the roles of diet, geography, and phylogeny on avian microbiome structure, while also providing important ecological information about the diet and gut microbiota of wild Hawaiian honeycreepers.
Collapse
Affiliation(s)
- Maria S. Costantini
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- Department of Ecology, Evolution and Organismal BiologyBrown UniversityProvidenceRhode IslandUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRhode IslandUSA
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jeffrey T. Foster
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Matthew C. I. Medeiros
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - John D. Gillece
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research CenterU.S. Geological SurveyHawai'i National ParkHawai'iUSA
| | - Lisa H. Crampton
- Kaua'i Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - Hanna L. Mounce
- Maui Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaMakawaoHawai'iUSA
| | - Alex X. Wang
- Hawai'i Division of Forestry and WildlifeHiloHawai'iUSA
| | - Robert C. Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Floyd A. Reed
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| |
Collapse
|
29
|
Ha J, Kim J, Kim S, Lee KJ, Shin H. Garlic-Induced Enhancement of Bifidobacterium: Enterotype-Specific Modulation of Gut Microbiota and Probiotic Populations. Microorganisms 2024; 12:1971. [PMID: 39458280 PMCID: PMC11509698 DOI: 10.3390/microorganisms12101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome is a dynamic ecosystem crucial for maintaining its host's health by regulating various immune and metabolic functions. Since diet plays a fundamental role in shaping the gut microbiome, understanding the relationship between food consumption and microbiome structure is essential. Although medicinal plants are widely recognized for their broad health benefits, their specific impact on the gut microbiome remains unclear. In this study, we investigated the effects of garlic (Allium sativum) on the gut microbiome using an in vitro human fecal incubation model. Our findings revealed that the impact of garlic on gut microbial structure varied depending on the dominant gut microbiome components (enterotypes). The Bacteroides-dominant enterotype exhibited significant changes in overall microbial diversity in response to garlic, while the Prevotella-dominant enterotype remained unaffected. Additionally, the garlic treatment led to specific alterations in microbiota composition, such as an increase in beneficial probiotics like Bifidobacterium. We validated garlic's prebiotic potential by promoting the growth of Bifidobacterium adolescentis under in vitro culture conditions. Our study highlights the importance of understanding enterotype-specific responses to diet and suggests that garlic may serve as a dietary supplement for modulating gut microbiota and promoting the growth of beneficial probiotics.
Collapse
Affiliation(s)
- Jina Ha
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jinwoo Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Seongok Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Kwang Jun Lee
- Division of Zoonotic and Vector Borne Diseases Research, Center for Infectious Diseases Research, National Institute of Health, Cheongju 28159, Republic of Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
30
|
Józefczuk P, Biliński J, Minkowska A, Łaguna P. Gut microbiome in children undergoing hematopoietic stem cell transplantation. Best Pract Res Clin Gastroenterol 2024; 72:101955. [PMID: 39645282 DOI: 10.1016/j.bpg.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children as a treatment for various cancers, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or other diseases, e.g. severe congenital immunodeficiency, metabolic disorders, hence the patient population is quite diverse. There is an increasing interest on the role of the microbiome in peri-transplant period. In this review, concepts of HSCT with the focus on the importance of microbiome composition, its changes during treatment and possible microbiota oriented interventions will be discussed. This paper analyzes data in pediatric population, but in view of interesting results and absence of analogous data for pediatric patients, it also looks at studies performed on adult population and pre-clinical trials on animals discussing possible translation to children.
Collapse
Affiliation(s)
- Paweł Józefczuk
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland.
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland; Human Biome Institute, Gdansk, Warsaw, Poland
| | - Aleksandra Minkowska
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| |
Collapse
|
31
|
Hu C, Guo CL, Lau HCH, Shi F, Zhang Z, Guo G, Liu G, Chen Y, Lau LHS, Zhang L, Sun X, Wong SH, Zhang L, She J, Yu J. Appendix removal affects the subsequent cancer risk in Asian adults: A territory-wide population-based cohort study. Cancer Lett 2024; 598:217087. [PMID: 38964732 DOI: 10.1016/j.canlet.2024.217087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Human appendix is critical for the maintenance of intestinal homeostasis. Appendicectomy has been the optimal treatment of acute appendicitis, yet the cancer incidence after appendix removal remains unclear. In this territory-wide retrospective cohort study, adult participants who underwent appendicectomy from 2000 to 2018 were retrieved from a population database (n = 43,983), while matched reference participants were retrieved as controls (n = 85,853). After appendicectomy, the overall cancer risk was significantly increased (subdistribution hazard ratio (SHR) = 1.124) compared to the non-appendicectomy group. Appendicectomy-treated males had higher cancer risk than males without appendicectomy (SHR = 1.197), while such difference was not observed in female participants. Significant increase in cancer risk was also observed in elder participants (age >60) with appendicectomy (SHR = 1.390). Appendicectomy was positively correlated with the risk of digestive tract and respiratory cancers including colon (SHR = 1.440), pancreas (SHR = 1.930), and trachea, bronchus, and lung (SHR = 1.394). In contrast, the risk of liver cancer was markedly decreased after appendicectomy (SHR = 0.713). In conclusion, we reported the association of appendicectomy with subsequent cancer incidence. These findings highlight the potential complication after appendix removal and the necessity of post-operative management to monitor and prevent long-term adverse events.
Collapse
Affiliation(s)
- Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cosmos Liutao Guo
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Louis Ho-Shing Lau
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lei Zhang
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
32
|
Baev V, Iliev I, Apostolova E, Gozmanova M, Hristova Y, Ilieva Y, Yahubyan G, Gochev V. Genomic Exploration of a Chitinolytic Streptomyces albogriseolus PMB5 Strain from European mantis ( Mantis religiosa). Curr Issues Mol Biol 2024; 46:9359-9375. [PMID: 39329906 PMCID: PMC11430731 DOI: 10.3390/cimb46090554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in Streptomyces. A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment. In this study, we present the chitinolytic strain Streptomyces albogriseolus PMB5, isolated from the insectivorous Mantis religiosa (European mantis). Whole-genome sequencing revealed that PMB5 harbors a linear chromosome of 7,211,961 bp and a linear plasmid of 327,989 bp. The genome comprises 6683 genes, including 6592 protein-coding sequences and 91 RNA genes. Furthermore, genome analysis revealed 19 biosynthetic gene clusters covering polyketides, terpenes, and RiPPs, with 10 clusters showing significant gene similarity (>80%) to known clusters like antimycin, hopene, and geosmin. In the genome of S. albogriseolus PMB5, we were able to identify several antibiotic resistance genes; these included cml (resistance to phenicol), gimA (resistance to macrolides), parY (resistance to aminocoumarin), oleC/oleD (resistance to macrolides), novA (resistance to aminocoumarin) and bla/blc (resistance to beta-lactams). Additionally, three clusters displayed no similarity to known sequences, suggesting novel bioactive compound discovery potential. Remarkably, strain PMB5 is the first reported S. albogriseolus capable of thriving on a medium utilizing chitin as a carbon source, with over 50 chitin-utilizing genes identified, including five AA10 family LPMOs, five GH18 chitinases, and one GH19 chitinase. This study significantly enhances the genomic understanding of S. albogriseolus, a species previously underrepresented in research, paving the way to further exploration of the biotechnological potential of the species.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yana Hristova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yanitsa Ilieva
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
33
|
Miyamoto T, Tsuruta T, Teraoka M, Wang T, Nishino N. Cyclic Oligosaccharide-Induced Modulation of Immunoglobulin A Reactivity to Gut Bacteria Contributes to Alterations in the Bacterial Community Structure. Nutrients 2024; 16:2824. [PMID: 39275142 PMCID: PMC11397466 DOI: 10.3390/nu16172824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Immunoglobulin A (IgA) is a major gut antibody that coats commensal gut bacteria and contributes to shaping a stable gut bacterial composition. Although previous studies have shown that cyclic oligosaccharides, including cyclic nigerosyl-1,6-nigerose (CNN) and cyclodextrins (CDs, including αCD, βCD, and γCD), alter the gut bacterial composition, it remains unclear whether cyclic oligosaccharides modify the IgA coating of gut bacteria, which relates to cyclic oligosaccharide-induced alteration of the gut bacterial composition. To address this issue, mice were maintained for 12 weeks on diets containing CNN, αCD, βCD, or γCD; the animals' feces were evaluated for their bacterial composition and the IgA coating index (ICI), a measure of the degree of IgA coating of bacteria. We observed that the intake of each cyclic oligosaccharide altered the gut bacterial composition, with changes in the ICI found at both the phylum and genus levels. The ICI for Bacillota, Lachnospiraceae NK4A136 group, UC Lachnospiraceae, and Tuzzerella were significantly and positively correlated with the relative abundance (RA) in total bacteria for these bacteria; in contrast, significant correlations were not seen for other phyla and genera. Our observations suggest that cyclic oligosaccharide-induced modulation of the IgA coating of gut bacteria may partly relate to changes in the community structure of the gut bacteria.
Collapse
Affiliation(s)
- Taisei Miyamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takeshi Tsuruta
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Mao Teraoka
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Tianyang Wang
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Naoki Nishino
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
34
|
Eissa ESH, El-Sayed AFM, Hendam BM, Ghanem SF, Abd Elnabi HE, Abd El-Aziz YM, Abdelnour SA, Eissa MEH, Dighiesh HS. The regulatory effects of water probiotic supplementation on the blood physiology, reproductive performance, and its related genes in Red Tilapia (Oreochromis niloticus X O. mossambicus). BMC Vet Res 2024; 20:351. [PMID: 39113050 PMCID: PMC11305012 DOI: 10.1186/s12917-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/11/2024] Open
Abstract
Probiotics are becoming increasingly popular as eco-friendly alternatives in aquaculture. However, there is limited research on their impacts on the reproductive efficiency of Red Tilapia (Oreochromis niloticus x O. mossambicus) broodstock. Therefore, this experiment aimed to explore the combined effects of selective probiotics Bacillus subtilis and B. licheniformis (BSL; 1:1) added to water on blood hematology, serum metabolites, gonadal histology, reproductive performance, and reproductive associated genes in Red Tilapia broodstock. Tilapia broodfish weighing 140-160 g were stocked in four treatment groups: control (T0), and the other three groups were added different levels of BSL to the water as follows: T1 (0.01 g/m3), T2 (0.02 g/m3), and T3 (0.03 g/m3), respectively. Results indicate that BSL administration significantly improved RBCs, hemoglobin, hematocrit, MCH, and MCHC, with the highest improvement seen in the T3 group (P < 0.05). BSL added to the fish water significantly enhanced serum protein fractions (total protein, albumin, and globulins), while AST, ALT, ALP, creatinine, uric acid, and glucose were significantly diminished in a dose-dependent way (P < 0.05). Adding 0.02-0.03 g/ m3 of BSL resulted in higher antioxidant status (superoxide dismutase and catalase) compared to other groups (P < 0.05). Testosterone levels were higher in T3 than in other groups (P < 0.05). All female hormones (LH, FSH, estradiol, and progesterone) were substantially augmented by the addition of BSL. Additionally, the BSL groups exhibited higher GSI, HSI, VSI (male only), egg diameter (mm), mean number of fry/fish, and mean fry weight (g) compared to the control group (P < 0.05). Expression of reproductive-associated genes (vasa, nanos1a, nanos2, dnd1, pum1, AMH, and vtg) were significantly up-regulated in the gonads of fish in the 0.03 g/m3 treatment. The histological gonadal structure exhibited that BSL improved gonad maturation in both genders of Tilapia fish. Overall, adding a mixture of B. subtilis and B. licheniformis (0.03 g/m3 water) can accelerate reproductive performance in Red Tilapia through up-regulation of reproductive genes and enhance the health profile.
Collapse
Affiliation(s)
- El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, El-Arish, 45511, Egypt
| | | | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Mansoura University, Mansoura, Egypt
| | - Sara F Ghanem
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Heba E Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Yasmin M Abd El-Aziz
- Zoology Department, Faculty of Science, Port-Said University, Port Fouad, 42526, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt
| | - Hagar Sedeek Dighiesh
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43512, Egypt
| |
Collapse
|
35
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
36
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
37
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
38
|
Lin K, Peng F, He K, Qian Z, Mei X, Su Z, Wujimaiti Y, Xia X, Zhang T. Research progress on intestinal microbiota regulating cognitive function through the gut-brain axis. Neurol Sci 2024; 45:3711-3721. [PMID: 38632176 DOI: 10.1007/s10072-024-07525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The intestinal microbiota community is a fundamental component of the human body and plays a significant regulatory role in maintaining overall health and in the management disease states.The intestinal microbiota-gut-brain axis represents a vital connection in the cognitive regulation of the central nervous system by the intestinal microbiota.The impact of intestinal microbiota on cognitive function is hypothesized to manifest through both the nervous system and circulatory system. Imbalances in intestinal microbiota during the perioperative period could potentially contribute to perioperative neurocognitive dysfunction. This article concentrates on a review of existing literature to explore the potential influence of intestinal microbiota on brain and cognitive functions via the nervous and circulatory systems.Additionally, it summarizes recent findings on the impact of perioperative intestinal dysbacteriosis on perioperative neurocognitive dysfunction and suggests novel approaches for prevention and treatment of this condition.
Collapse
Affiliation(s)
- Kaijie Lin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Peng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China
| | - Kunyang He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhengyu Qian
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xuan Mei
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhikun Su
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Xun Xia
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Wang J, Mei L, Hao Y, Xu Y, Yang Q, Dai Z, Yang Y, Wu Z, Ji Y. Contemporary Perspectives on the Role of Vitamin D in Enhancing Gut Health and Its Implications for Preventing and Managing Intestinal Diseases. Nutrients 2024; 16:2352. [PMID: 39064795 PMCID: PMC11279818 DOI: 10.3390/nu16142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, Peking University, Beijing 100083, China;
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| |
Collapse
|
40
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Lv J, Jin S, Zhang Y, Zhou Y, Li M, Feng N. Equol: a metabolite of gut microbiota with potential antitumor effects. Gut Pathog 2024; 16:35. [PMID: 38972976 PMCID: PMC11229234 DOI: 10.1186/s13099-024-00625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
An increasing number of studies have shown that the consumption of soybeans and soybeans products is beneficial to human health, and the biological activity of soy products may be attributed to the presence of Soy Isoflavones (SI) in soybeans. In the intestinal tracts of humans and animals, certain specific bacteria can metabolize soy isoflavones into equol. Equol has a similar chemical structure to endogenous estradiol in the human body, which can bind with estrogen receptors and exert weak estrogen effects. Therefore, equol plays an important role in the occurrence and development of a variety of hormone-dependent malignancies such as breast cancer and prostate cancer. Despite the numerous health benefits of equol for humans, only 30-50% of the population can metabolize soy isoflavones into equol, with individual variation in gut microbiota being the main reason. This article provides an overview of the relevant gut microbiota involved in the synthesis of equol and its anti-tumor effects in various types of cancer. It also summarizes the molecular mechanisms underlying its anti-tumor properties, aiming to provide a more reliable theoretical basis for the rational utilization of equol in the field of cancer treatment.
Collapse
Affiliation(s)
- Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Nantong University Medical School, Nantong, China.
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| |
Collapse
|
42
|
Liu Z, Zeng M, Xiao Y, Zhu X, Liu M, Long Y, Li H, Zhang Y, Yao S. Surface-mediated fluorescent sensor array for identification of gut microbiota and monitoring of colorectal cancer. Talanta 2024; 274:126081. [PMID: 38613947 DOI: 10.1016/j.talanta.2024.126081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The development of efficient, accurate, and high-throughput technology for gut microbiota sensing holds great promise in the maintenance of health and the treatment of diseases. Herein, we developed a rapid fluorescent sensor array based on surface-engineered silver nanoparticles (AgNPs) and vancomycin-modified gold nanoclusters (AuNCs@Van) for gut microbiota sensing. By controlling the surface of AgNPs, the recognition ability of the sensor can be effectively improved. The sensor array was used to successfully discriminate six gut-derived bacteria, including probiotics, neutral, and pathogenic bacteria and even their mixtures. Significantly, the sensing system has also been successfully applied to classify healthy individuals and colorectal cancer (CRC) patients rapidly and accurately within 30 min, demonstrating its clinically relevant specificity.
Collapse
Affiliation(s)
- Zhihui Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Meizi Zeng
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yuquan Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ying Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
43
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
44
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
45
|
Cheng Q, Han Y, Xiao Y, Li Z, Qin A, Ji S, Kan B, Liang W. The ArgR-Regulated ADI Pathway Facilitates the Survival of Vibrio fluvialis under Acidic Conditions. Int J Mol Sci 2024; 25:5679. [PMID: 38891866 PMCID: PMC11172107 DOI: 10.3390/ijms25115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogenic bacterium that can cause severe cholera-like diarrhea and various extraintestinal infections, posing challenges to public health and food safety worldwide. The arginine deiminase (ADI) pathway plays an important role in bacterial environmental adaptation and pathogenicity. However, the biological functions and regulatory mechanisms of the pathway in V. fluvialis remain unclear. In this study, we demonstrate that L-arginine upregulates the expression of the ADI gene cluster and promotes the growth of V. fluvialis. The ADI gene cluster, which we proved to be comprised of two operons, arcD and arcACB, significantly enhances the survival of V. fluvialis in acidic environments both in vitro (in culture medium and in macrophage) and in vivo (in mice). The mRNA level and reporter gene fusion analyses revealed that ArgR, a transcriptional factor, is necessary for the activation of both arcD and arcACB transcriptions. Bioinformatic analysis predicted the existence of multiple potential ArgR binding sites at the arcD and arcACB promoter regions that were further confirmed by electrophoretic mobility shift assay, DNase I footprinting, or point mutation analyses. Together, our study provides insights into the important role of the ArgR-ADI pathway in the survival of V. fluvialis under acidic conditions and the detailed molecular mechanism. These findings will deepen our understanding of how environmental changes and gene expression interact to facilitate bacterial adaptations and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
46
|
Yang G, Zhang J, Liu Y, Sun J, Ge L, Lu L, Long K, Li X, Xu D, Ma J. Acetate Alleviates Gut Microbiota Depletion-Induced Retardation of Skeletal Muscle Growth and Development in Young Mice. Int J Mol Sci 2024; 25:5129. [PMID: 38791168 PMCID: PMC11121558 DOI: 10.3390/ijms25105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.
Collapse
Affiliation(s)
- Guitao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Dengfeng Xu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| |
Collapse
|
47
|
Roszkowska P, Klimczak E, Ostrycharz E, Rączka A, Wojciechowska-Koszko I, Dybus A, Cheng YH, Yu YH, Mazgaj S, Hukowska-Szematowicz B. Small Intestinal Bacterial Overgrowth (SIBO) and Twelve Groups of Related Diseases-Current State of Knowledge. Biomedicines 2024; 12:1030. [PMID: 38790992 PMCID: PMC11117733 DOI: 10.3390/biomedicines12051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The human gut microbiota creates a complex microbial ecosystem, characterized by its high population density, wide diversity, and complex interactions. Any imbalance of the intestinal microbiome, whether qualitative or quantitative, may have serious consequences for human health, including small intestinal bacterial overgrowth (SIBO). SIBO is defined as an increase in the number of bacteria (103-105 CFU/mL), an alteration in the bacterial composition, or both in the small intestine. The PubMed, Science Direct, Web of Science, EMBASE, and Medline databases were searched for studies on SIBO and related diseases. These diseases were divided into 12 groups: (1) gastrointestinal disorders; (2) autoimmune disease; (3) cardiovascular system disease; (4) metabolic disease; (5) endocrine disorders; (6) nephrological disorders; (7) dermatological diseases; (8) neurological diseases (9); developmental disorders; (10) mental disorders; (11) genetic diseases; and (12) gastrointestinal cancer. The purpose of this comprehensive review is to present the current state of knowledge on the relationships between SIBO and these 12 disease groups, taking into account risk factors and the causal context. This review fills the evidence gap on SIBO and presents a biological-medical approach to the problem, clearly showing the groups and diseases having a proven relationship with SIBO, as well as indicating groups within which research should continue to be expanded.
Collapse
Affiliation(s)
- Paulina Roszkowska
- Department of Diagnostic Immunology, Pomeranian Medical University, st. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.R.); (I.W.-K.)
| | - Emilia Klimczak
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
- Doctoral School, University of Szczecin, st. A. Mickiewicz 16, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, st. Wąska 13, 71-412 Szczecin, Poland
| | - Aleksandra Rączka
- Department of Genetics, West Pomeranian University of Technology, st. Aleja Piastów 45, 70-311 Szczecin, Poland; (A.R.); (A.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University, st. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.R.); (I.W.-K.)
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, st. Aleja Piastów 45, 70-311 Szczecin, Poland; (A.R.); (A.D.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-H.Y.)
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-H.Y.)
| | - Szymon Mazgaj
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
- Molecular Biology and Biotechnology Center, University of Szczecin, st. Wąska 13, 71-412 Szczecin, Poland
| |
Collapse
|
48
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
49
|
Dahab M, Idris H, Zhang P, Aladhadh M, Alatawi EA, Ming LC, Goh KW, Ser HL. Influence of Maqian essential oil on gut microbiota and immunoresponses in type 1 diabetes: In silico study. Heliyon 2024; 10:e29490. [PMID: 38655301 PMCID: PMC11035065 DOI: 10.1016/j.heliyon.2024.e29490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Diversity and homeostasis of gut bacterial composition is highly associated with the pathogenesis of insulin dysfunction and type 1 diabetes melittus (T1D), hence emerged in parallel with the activation of autoimmunity. We aimed to study the bioactive potential of essential oil from Zanthoxylum myriacanthum var. pubescens Huang (Maqian) through computational approaches. Twelve chemical constituents derived from Maqian essential oil were docked with selected proteins (i.e., 3pig, 1kho, 7dmq, 4m4d, 2z65, 4glp, and 3fxi) in which are involved in gut microbiota modulation in T1D. Subsequently, the prediction of bioavailability properties of the small molecules were evaluated. Among all chemical constituents, the post-docking interaction analysis demonstrated that α-phellandrene exhibits the strongest binding affinity and induces gut microbiota modulation with β-fructofuranosidase from Bifidobacterium longum. The current result revealed the potential of 3-Carene and α-Pinene in inducing specific changes in gut microbiota downregulating Clostridium perfringens and quenching Leptotrichia shahii respectively. β-Pinene possess exceptionally strong binding affinity that effectively disrupt the interaction between lipopolysaccharide and its cognate receptors, while α-Phellandrene was exhibited the uppermost binding affinity with TLR4/MD2 and could likely target TLR4 stimulating lipopolysaccharide. Our results are the first to report on the gut microbiota modulation effects of α-Phellandrene and β-Phellandrene via actions on LPS binding to CD14 and the TLR4 co-receptor signaling. In conclusion, our findings based on computational approaches, small molecules from Maqian present as promising agents which could regulate inflammatory response and modulate gut microbiota in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, Sudan
| | - Hajo Idris
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Saudi Arabia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| |
Collapse
|
50
|
Shi J, Li Z, Jia L, Ma Y, Huang Y, He P, Ran T, Liu W, Zhang W, Cheng Q, Zhang Z, Lei Z. Castration alters the ileum microbiota of Holstein bulls and promotes beef flavor compounds. BMC Genomics 2024; 25:426. [PMID: 38684965 PMCID: PMC11059720 DOI: 10.1186/s12864-024-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND In the beef industry, bull calves are usually castrated to improve flavor and meat quality; however, this can reduce their growth and slaughter performance. The gut microbiota is known to exert a significant influence on growth and slaughter performance. However, there is a paucity of research investigating the impact of castration on gut microbiota composition and its subsequent effects on slaughter performance and meat flavor. RESULT The objective of this study was to examine the processes via which castration hinders slaughter productivity and enhances meat quality. Bull and castrated calves were maintained under the same management conditions, and at slaughter, meat quality was assessed, and ileum and epithelial tissue samples were obtained. The research employed metagenomic sequencing and non-targeted metabolomics techniques to investigate the makeup of the microbiota and identify differential metabolites. The findings of this study revealed the Carcass weight and eye muscle area /carcass weight in the bull group were significantly higher than those in the steer group. There were no significant differences in the length, width, and crypt depth of the ileum villi between the two groups. A total of 53 flavor compounds were identified in the two groups of beef, of which 16 were significantly higher in the steer group than in the bull group, and 5 were significantly higher in the bull group than in the steer group. In addition, bacteria, Eukaryota, and virus species were significantly separated between the two groups. The lipid metabolism pathways of α-linolenic acid, linoleic acid, and unsaturated fatty acids were significantly enriched in the Steers group. Compared with the steer group, the organic system pathway is significantly enriched in the bull group. The study also found that five metabolites (LPC (0:0/20:3), LPC (20:3/0:0), LPE (0:0/22:5), LPE (22:5/0:0), D-Mannosamine), and three species (s_Cloning_vector_Hsp70_LexA-HP1, s_Bacteroides_Coprophilus_CAG: 333, and s_Clostridium_nexile-CAG: 348) interfere with each other and collectively have a positive impact on the flavor compounds of beef. CONCLUSIONS These findings provide a basic understanding that under the same management conditions, castration does indeed reduce the slaughter performance of bulls and improve the flavor of beef. Microorganisms and metabolites contribute to these changes through interactions.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zemin Li
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Cheng
- Gansu Xukang Food Co., Ltd, Pingliang, 744300, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, 734500, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|