1
|
Wang C, Feng B, Ding Y, Liu Q, Xia Y, Zheng X, Lian X, Wang X, Hou N, Wang L, Zhang H, Feng J, Tan B. Identification, characterization and expression analysis of lineage-specific genes within 'Zhongyoutao 14' peach (Prunus persica). Gene 2025; 941:149234. [PMID: 39814190 DOI: 10.1016/j.gene.2025.149234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND With the development of sequencing technology and the rapid increasing in the number of sequenced genomes, lineage-specific genes (LSGs) have been identified and characterized across various species. Similar to other conserved functional genes, LSGs play a crucial role in biological evolution and development. However, the understanding of LSGs remains limited. This study aims to identify significant gene expression profiles of LSGs in peach, which may contribute to the development of specific tissues and important traits. METHODS Seven peach and 341 exogenous species genomes were used in this study. Firstly, the coding sequences of CN14 peach were compared with other genomes to discover LSGs. Next, the LSGs of CN14 peach were compared with other peach genomes to identify the peach specific genes and orphan genes. Furthermore, the tissue specificity expressed PSGs and orphan genes were identified using transcriptome data. In addition, the genes specific expressed in stem might response to GA3 treatment were identified using RT-qPCR. RESULT A total of 74 peach specific genes (PSGs) and 91 Orphan genes were identified. The PSGs and orphan genes had fewer exon numbers, shorter gene lengths and lower molecular weight compared with evolutionarily conserved genes (ECGs). Part of these PSGs and Orphan genes were shown an obvious tissue specificity expression pattern at stem, fruit and flower. Three PSGs and three Orphan genes were identified within the QTLs associated with temperature-sensitive semi-dwarf (TSSD), maturity date (Md), and red flesh around stone (Rfas). Three PSGs and seven Orphan genes were identified in response to GA3, these genes might play important role in stem development of peach. CONCLUSION The identification and characterization of PSGs and Orphan genes not only provide valuable peach-specific genetic resources, but also might contribute to peach specific biological process.
Collapse
Affiliation(s)
- Caijuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Beibei Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yejun Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Qinqi Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yukai Xia
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China
| | - Nan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China
| | - Lei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China.
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou, China.
| |
Collapse
|
2
|
Wang J, Du LF, Zhang MZ, Wei W, Chen ZY, Zhang X, Xiong T, Wang ZF, Xia LY, Jiang JF, Li WJ, Zhu DY, Jia N, Cao WC. Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry. Commun Biol 2024; 7:784. [PMID: 38951577 PMCID: PMC11217389 DOI: 10.1038/s42003-024-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zi-Yun Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zhen-Fei Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wen-Jun Li
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| |
Collapse
|
3
|
Seidi S, Omidi AH, Esmaeili S. Distribution of different Rickettsia species in countries of the WHO Eastern Mediterranean (WHO-EMRO) region: An overview. Travel Med Infect Dis 2024; 58:102695. [PMID: 38360158 DOI: 10.1016/j.tmaid.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
SUBJECT Rickettsia is a zoonotic bacterial pathogen transmitted by vectors and has extensive reservoirs in animal and human populations. Rickettsiosis is a public health problem all over the world. However, comprehensive information on the geographical distribution of different Rickettsia species, infection status of reservoirs, vectors, and human cases is lacking in most parts of the world. Therefore, this study aimed to investigate the geographical distribution of different Rickettsia species and their vectors in countries of the WHO-EMRO region. METHODS In this review study, a search was conducted for reports and published studies on Rickettsia species from WHO-EMRO region countries in various databases from 1995 to 2022. Finally, the reported status of human cases, reservoirs, and vectors associated with each species in different countries was documented. RESULTS Reports of infections related to the detection of Rickettsia species were only available for 15 out of 22 WHO-EMRO member countries. A total of twenty-four Rickettsia species, including R. sibrica, R. lusitaniae, R. africae, R. prowazekii, R. felis, R. typhi, R. rickettsii, R. aeschlimannii, R. conorii, R. massiliae, R. helvetica, R. monacensis, R. rhipicephali, R. bellii, R. asembonensis, R. hoogstraalii, R. andeanae, R. raoultii, R. asiatica, R. slovaca, R. australis, R. barbariae, Candidatus R. amblyommii, and Candidatus R. goldwasserii, were reported from WHO-EMRO member countries. Furthermore, human cases infected with six different Rickettsia species, including R. sibrica, R. prowazekii, R. felis, R. typhi, R. rickettsii, R. aeschlimannii, R. conorii, R. massiliae, and R. helvetica, were reported from these countries. CONCLUSION The vast diversity of Rickettsia vectors has contributed to the ongoing discovery of new Rickettsia species. Therefore, further research on the reservoir hosts of Rickettsia infections in the understudied WHO-EMRO region is crucial. This research sheds light on Rickettsia disease's epidemiology and transmission dynamics in this region.
Collapse
Affiliation(s)
- Shahin Seidi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | - Amir Hossein Omidi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | - Saber Esmaeili
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
| |
Collapse
|
4
|
Lin ZT, Du LF, Zhang MZ, Han XY, Wang BH, Meng J, Yu FX, Zhou XQ, Wang N, Li C, Wang XY, Liu J, Gao WY, Ye RZ, Xia LY, Sun Y, Jia N, Jiang JF, Zhao L, Cui XM, Zhan L, Cao WC. Genomic Characteristics of Emerging Intraerythrocytic Anaplasma capra and High Prevalence in Goats, China. Emerg Infect Dis 2023; 29:1780-1788. [PMID: 37610104 PMCID: PMC10461651 DOI: 10.3201/eid2909.230131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.
Collapse
Affiliation(s)
- Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Li-Feng Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Bai-Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Jiao Meng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Fu-Xun Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Xiao-Quan Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Ning Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Cheng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Xiao-Yang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Jing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Wan-Ying Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (Z.-T. Lin, L.-F. Du, M.-Z. Zhang, X.-Y. Han, Y. Sun, N. Jia, J.-F. Jiang, X.-M. Cui, W.-C. Cao)
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, China (L.-F. Du, M.-Z. Zhang, B.-H. Wang, N. Wang, C. Li, X.-Y. Wang, J. Liu, W.-Y. Gao, R.-Z. Ye, L.-Y. Xia, L. Zhao)
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China (J. Meng, F.-X. Yu, L. Zhan)
- Guizhou Provincial Blood Center, Guiyang (X.-Q. Zhou)
| | | | | | | | | |
Collapse
|
5
|
Fu X, Xie DF, Zhou YY, Cheng RY, Zhang XY, Zhou SD, He XJ. Phylogeny and adaptive evolution of subgenus Rhizirideum (Amaryllidaceae, Allium) based on plastid genomes. BMC PLANT BIOLOGY 2023; 23:70. [PMID: 36726056 PMCID: PMC9890777 DOI: 10.1186/s12870-022-03993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Yu-Yang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
6
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
7
|
van Wyk CL, Mtshali K, Taioe MO, Terera S, Bakkes D, Ramatla T, Xuan X, Thekisoe O. Detection of Ticks and Tick-Borne Pathogens of Urban Stray Dogs in South Africa. Pathogens 2022; 11:pathogens11080862. [PMID: 36014983 PMCID: PMC9416273 DOI: 10.3390/pathogens11080862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to identify ticks infesting dogs admitted to the Potchefstroom Animal Welfare Society (PAWS) and to detect tick-borne pathogens they are harbouring. A total of 592 ticks were collected from 61 stray dogs admitted to PAWS originating from several suburbs in and near Potchefstroom, South Africa. The dog ticks were identified as Haemaphysalis elliptica (39%) and Rhipicephalus sanguineus (61%) by both morphological and DNA analyses. Of these ticks, H. elliptica consisted of 67.5% (156/231) and 32.5% (75/231) female and male ticks, respectively, whilst R. sanguineus consisted of 48.5% (175/361) and 51.5% (186/361) female and male ticks, respectively. Microscopic examination of blood smears from engorged female ticks indicated overall occurrences of 0.5% (1/204) for Babesia spp. from R. sanguineus, 1% (2/204) of Anaplasma spp. from H. elliptica, and 22% (45/204) of Rickettsia spp. from both H. elliptica and R. sanguineus. Using pooled samples molecular detection of tick-borne pathogens indicated overall occurrences of 1% (1/104) for A. phagocytophilum in H. elliptica, 9.6% (10/104) of Rickettsia spp. in H. elliptica and R. sanguineus, 5.8% (6/104) of Ehrlichia canis in H. elliptica and R. sanguineus, and 13.5% (14/104) of Coxiella spp. in both H. elliptica and R. sanguineus. Additionally, PCR detected 6.5% (2/31) of Coxiella spp. DNA from H. elliptica eggs. Our data indicate that urban stray dogs admitted at PAWS are infested by H. elliptica and R. sanguineus ticks which are harbouring several pathogenic organisms known to cause tick-borne diseases.
Collapse
Affiliation(s)
- Clara-Lee van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; (C.-L.v.W.); (M.O.T.); (T.R.); (O.T.)
| | - Khethiwe Mtshali
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa;
| | - Moeti O. Taioe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; (C.-L.v.W.); (M.O.T.); (T.R.); (O.T.)
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Stallone Terera
- Potchefstroom Animal Welfare Society, Potchefstroom 2531, South Africa;
| | - Deon Bakkes
- Gertrud Theiler Tick Museum, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa;
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; (C.-L.v.W.); (M.O.T.); (T.R.); (O.T.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Correspondence:
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; (C.-L.v.W.); (M.O.T.); (T.R.); (O.T.)
| |
Collapse
|
8
|
Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China. Pathogens 2022; 11:pathogens11050606. [PMID: 35631127 PMCID: PMC9143929 DOI: 10.3390/pathogens11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas and undiscovered pathogens are still to be further researched. In this study, ticks (Haemaphysalis qinghaiensis), sheep keds (Melophagus ovinus), and blood samples from yaks and goats were collected in Ngawa Tibetan and Qiang Autonomous Prefecture located on the eastern edge of the Qinghai–Tibet Plateau, Southwest China. Several vector-borne bacterial pathogens were screened and studied. Anaplasma bovis strains representing novel genotypes were detected in ticks (8.83%, 37/419), yak blood samples (45.71%, 64/140), and goat blood samples (58.93%, 33/56). Two spotted fever group (SFG) Rickettsiae, Candidatus Rickettsia jingxinensis, and a novel Rickettsia species named Candidatus Rickettsia hongyuanensis were identified in ticks. Another Rickettsia species closely related to the Rickettsia endosymbiont of Polydesmus complanatus was also detected in ticks. Furthermore, a Coxiella species was detected in ticks (3.34%, 14/419), keds (1.89%, 2/106), and yak blood (0.71%, 1/140). Interestingly, another Coxiella species and a Coxiella-like bacterium were detected in a tick and a goat blood sample, respectively. These results indicate the remarkable diversity of vector-borne pathogens circulating in this area. Further investigations on their pathogenicity to humans and domestic animals are still needed.
Collapse
|
9
|
Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807. [PMID: 35264613 PMCID: PMC8907221 DOI: 10.1038/s41598-022-07725-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rickettsia species are endosymbionts hosted by arthropods and are known to cause mild to fatal diseases in humans. Here, we analyse the evolution and diversity of 34 Rickettsia species using a pangenomic meta-analysis (80 genomes/41 plasmids). Phylogenomic trees showed that Rickettsia spp. diverged into two Spotted Fever groups, a Typhus group, a Canadensis group and a Bellii group, and may have inherited their plasmids from an ancestral plasmid that persisted in some strains or may have been lost by others. The results suggested that the ancestors of Rickettsia spp. might have infected Acari and/or Insecta and probably diverged by persisting inside and/or switching hosts. Pangenomic analysis revealed that the Rickettsia genus evolved through a strong interplay between genome degradation/reduction and/or expansion leading to possible distinct adaptive trajectories. The genus mainly shared evolutionary relationships with α-proteobacteria, and also with γ/β/δ-proteobacteria, cytophagia, actinobacteria, cyanobacteria, chlamydiia and viruses, suggesting lateral exchanges of several critical genes. These evolutionary processes have probably been orchestrated by an abundance of mobile genetic elements, especially in the Spotted Fever and Bellii groups. In this study, we provided a global evolutionary genomic view of the intracellular Rickettsia that may help our understanding of their diversity, adaptation and fitness.
Collapse
|
10
|
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop Med Infect Dis 2021; 6:172. [PMID: 34698275 PMCID: PMC8544691 DOI: 10.3390/tropicalmed6040172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar ("tache noire"). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.
Collapse
Affiliation(s)
- Nikolaos Spernovasilis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Ioulia Markaki
- “Trifyllio” General Hospital of Kythira, 80200 Kythira, Greece;
| | - Michail Papadakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Nikolaos Mazonakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Despo Ierodiakonou
- Department of Social Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2417, Cyprus
| |
Collapse
|
11
|
Dall'Agnol B, Webster A, Souza UA, Barbieri A, Mayer FQ, Cardoso GA, Torres TT, Machado RZ, Ferreira CAS, Reck J. Genomic analysis on Brazilian strains of Anaplasma marginale. ACTA ACUST UNITED AC 2021; 30:e000421. [PMID: 34076044 DOI: 10.1590/s1984-29612021043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Anaplasma marginale is a vector-borne pathogen that causes a disease known as anaplasmosis. No sequenced genomes of Brazilian strains are yet available. The aim of this work was to compare whole genomes of Brazilian strains of A. marginale (Palmeira and Jaboticabal) with genomes of strains from other regions (USA and Australia strains). Genome sequencing of Brazilian strains was performed by means of next-generation sequencing. Reads were mapped using the genome of the Florida strain of A. marginale as a reference sequence. Single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) were identified. The data showed that two Brazilian strains grouped together in one particular clade, which grouped in a larger American group together with North American strains. Moreover, some important differences in surface proteins between the two Brazilian isolates can be discerned. These results shed light on the evolutionary history of A. marginale and provide the first genome information on South American isolates. Assessing the genome sequences of strains from different regions is essential for increasing knowledge of the pan-genome of this bacteria.
Collapse
Affiliation(s)
- Bruno Dall'Agnol
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Anelise Webster
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Ugo Araújo Souza
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Antonela Barbieri
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | | | | | - Rosangela Zacarias Machado
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - José Reck
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| |
Collapse
|
12
|
Yen WY, Stern K, Mishra S, Helminiak L, Sanchez-Vicente S, Kim HK. Virulence potential of Rickettsia amblyommatis for spotted fever pathogenesis in mice. Pathog Dis 2021; 79:ftab024. [PMID: 33908603 PMCID: PMC8110513 DOI: 10.1093/femspd/ftab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/15/2021] [Indexed: 11/14/2022] Open
Abstract
Rickettsia amblyommatis belongs to the spotted fever group of Rickettsia and infects Amblyomma americanum (Lone Star ticks) for transmission to offspring and mammals. Historically, the geographic range of A. americanum was restricted to the southeastern USA. However, recent tick surveys identified the progressive northward invasion of A. americanum, contributing to the increased number of patients with febrile illnesses of unknown etiology after a tick bite in the northeastern USA. While serological evidence strongly suggests that patients are infected with R. amblyommatis, the virulence potential of R. amblyommatis is not well established. Here, we performed a bioinformatic analysis of three genome sequences of R. amblyommatis and identified the presence of multiple putative virulence genes whose products are implicated for spotted fever pathogenesis. Similar to other pathogenic spotted fever rickettsiae, R. amblyommatis replicated intracellularly within the cytoplasm of tissue culture cells. Interestingly, R. amblyommatis displayed defective attachment to microvascular endothelial cells. The attachment defect and slow growth rate of R. amblyommatis required relatively high intravenous infectious doses to produce dose-dependent morbidity and mortality in C3H mice. In summary, our results corroborate clinical evidence that R. amblyommatis can cause mild disease manifestation in some patients.
Collapse
Affiliation(s)
- Wan-Yi Yen
- Division of Laboratory Animal Resources, Laboratory of Comparative Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kayla Stern
- John F. Kennedy High School, Bellmore, NY 11710, USA
| | - Smruti Mishra
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Luke Helminiak
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Santiago Sanchez-Vicente
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Moelling K, Broecker F. Viroids and the Origin of Life. Int J Mol Sci 2021; 22:ijms22073476. [PMID: 33800543 PMCID: PMC8036462 DOI: 10.3390/ijms22073476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are non-coding circular RNA molecules with rod-like or branched structures. They are often ribozymes, characterized by catalytic RNA. They can perform many basic functions of life and may have played a role in evolution since the beginning of life on Earth. They can cleave, join, replicate, and undergo Darwinian evolution. Furthermore, ribozymes are the essential elements for protein synthesis of cellular organisms as parts of ribosomes. Thus, they must have preceded DNA and proteins during evolution. Here, we discuss the current evidence for viroids or viroid-like RNAs as a likely origin of life on Earth. As such, they may also be considered as models for life on other planets or moons in the solar system as well as on exoplanets.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Gloriastr 30, 8006 Zurich, Switzerland
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
- Correspondence: ; Tel.: +49-(172)-3274306
| | - Felix Broecker
- Vaxxilon Deutschland GmbH, Magnusstr. 11, 12489 Berlin, Germany;
| |
Collapse
|
14
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
15
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
16
|
Chen K, Tian Z, Chen P, He H, Jiang F, Long CA. Genome-wide identification, characterization and expression analysis of lineage-specific genes within Hanseniaspora yeasts. FEMS Microbiol Lett 2020; 367:5837084. [PMID: 32407480 DOI: 10.1093/femsle/fnaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific genes (LSGs) are defined as genes with sequences that are not significantly similar to those in any other lineage. LSGs have been proposed, and sometimes shown, to have significant effects in the evolution of biological function. In this study, two sets of Hanseniaspora spp. LSGs were identified by comparing the sequences of the Kloeckera apiculata genome and of 80 other yeast genomes. This study identified 344 Hanseniaspora-specific genes (HSGs) and 109 genes ('orphan genes') specific to K. apiculata. Three thousand three hundred thirty-one K. apiculata genes that showed significant similarity to at least one sequence outside the Hanseniaspora were classified into evolutionarily conserved genes. We analyzed their sequence features, functional categories, gene origin, gene structure and gene expression. We also investigated the predicted cellular roles and Gene Ontology categories of the LSGs using functional inference. The patterns of the functions of LSGs do not deviate significantly from genome-wide average. The results showed that a few LSGs were formed by gene duplication, followed by rapid sequence divergence. Many of the HSGs and orphan genes exhibited altered expression in response to abiotic stress. Studying these LSGs might be helpful for understanding the molecular mechanism of yeast adaption.
Collapse
Affiliation(s)
- Kai Chen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zhonghuan Tian
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Chen
- Department of Pediatric Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Hua He
- School of Landscape Architecture and Horticulture, Wuhan Institute of Bioengineering, Wuhan 430415, China
| | - Fatang Jiang
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
First Whole Genome Sequence of Anaplasma platys, an Obligate Intracellular Rickettsial Pathogen of Dogs. Pathogens 2020; 9:pathogens9040277. [PMID: 32290349 PMCID: PMC7238063 DOI: 10.3390/pathogens9040277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/31/2023] Open
Abstract
We have assembled the first genome draft of Anaplasma platys, an obligate intracellular rickettsia, and the only known bacterial pathogen infecting canine platelets. A. platys is a not-yet-cultivated bacterium that causes infectious cyclic canine thrombocytopenia, a potentially fatal disease in dogs. Despite its global distribution and veterinary relevance, no genome sequence has been published so far for this pathogen. Here, we used a strategy based on metagenome assembly to generate a draft of the A. platys genome using the blood of an infected dog. The assembled draft is similar to other Anaplasma genomes in size, gene content, and synteny. Notable differences are the apparent absence of rbfA, a gene encoding a 30S ribosome-binding factor acting as a cold-shock protein, as well as two genes involved in biotin metabolism. We also observed differences associated with expanded gene families, including those encoding outer membrane proteins, a type IV secretion system, ankyrin repeat-containing proteins, and proteins with predicted intrinsically disordered regions. Several of these families have members highly divergent in sequence, likely to be associated with survival and interactions within the host and the vector. The sequence of the A. platys genome can benefit future studies regarding invasion, survival, and pathogenesis of Anaplasma species, while paving the way for the better design of treatment and prevention strategies against these neglected intracellular pathogens.
Collapse
|
18
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
19
|
Xie DF, Yu HX, Price M, Xie C, Deng YQ, Chen JP, Yu Y, Zhou SD, He XJ. Phylogeny of Chinese Allium Species in Section Daghestanica and Adaptive Evolution of Allium (Amaryllidaceae, Allioideae) Species Revealed by the Chloroplast Complete Genome. FRONTIERS IN PLANT SCIENCE 2019; 10:460. [PMID: 31114591 PMCID: PMC6503222 DOI: 10.3389/fpls.2019.00460] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
The genus Allium (Amaryllidaceae, Allioideae) is one of the largest monocotyledonous genera and it includes many economically important crops that are cultivated for consumption or medicinal uses. Recent advances in molecular phylogenetics have revolutionized our understanding of Allium taxonomy and evolution. However, the phylogenetic relationships in some Allium sections (such as the Allium section Daghestanica) and the genetic bases of adaptative evolution, remain poorly understood. Here, we newly assembled six chloroplast genomes from Chinese endemic species in Allium section Daghestanica and by combining these genomes with another 35 allied species, we performed a series of analyses including genome structure, GC content, species pairwise Ka/Ks ratios, and the SSR component, nucleotide diversity and codon usage. Positively selected genes (PSGs) were detected in the Allium lineage using the branch-site model. Comparison analysis of Bayesian and ML phylogeny on CCG (complete chloroplast genome), SCG (single copy genes) and CDS (coding DNA sequences) produced a well-resolved phylogeny of Allioideae plastid lineages, which illustrated several novel relationships with the section Daghestanica. In addition, six species in section Daghestanica showed highly conserved structures. The GC content and the GC3s content in Allioideae species exhibited lower values than studied non-Allioideae species, along with elevated pairwise Ka/Ks ratios. The rps2 gene was lost in all examined Allioideae species, and 10 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis, seven of them are associated with photosynthesis. Our study uncovered a new species relationship in section Daghestanica and suggested that the selective pressure has played an important role in Allium adaptation and evolution, these results will facilitate our further understanding of evolution and adaptation of species in the genus Allium.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan-Xi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi-Qi Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jun-Pei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Moelling K, Broecker F. Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 2019; 10:523. [PMID: 30941110 PMCID: PMC6433886 DOI: 10.3389/fmicb.2019.00523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.”
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Caputo A, Fournier PE, Raoult D. Genome and pan-genome analysis to classify emerging bacteria. Biol Direct 2019; 14:5. [PMID: 30808378 PMCID: PMC6390601 DOI: 10.1186/s13062-019-0234-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background In the recent years, genomic and pan-genomic studies have become increasingly important. Culturomics allows to study human microbiota through the use of different culture conditions, coupled with a method of rapid identification by MALDI-TOF, or 16S rRNA. Bacterial taxonomy is undergoing many changes as a consequence. With the help of pan-genomic analyses, species can be redefined, and new species definitions generated. Results Genomics, coupled with culturomics, has led to the discovery of many novel bacterial species or genera, including Akkermansia muciniphila and Microvirga massiliensis. Using the genome to define species has been applied within the genus Klebsiella. A discontinuity or an abrupt break in the core/pan-genome ratio can uncover novel species. Conclusions Applying genomic and pan-genomic analyses to the reclassification of other bacterial species or genera will be important in the future of medical microbiology. The pan-genome is one of many new innovative tools in bacterial taxonomy. Reviewers This article was reviewed by William Martin, Eric Bapteste and James Mcinerney. Open peer review Reviewed by William Martin, Eric Bapteste and James Mcinerney.
Collapse
Affiliation(s)
- Aurélia Caputo
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
22
|
Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 2019; 20:69. [PMID: 30665414 PMCID: PMC6341658 DOI: 10.1186/s12864-018-5374-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen. Results In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674 bp A. ovis genome encodes 933 protein coding sequences, the split operon arrangement for ribosomal RNA genes, and more pseudogenes than previously recognized for other Anaplasma species. The metabolic potential is similar to other Anaplasma species. Anaplasma ovis has a small repertoire of surface proteins and transporters. Several novel genes are identified. Conclusions Analyses of these important features and significant gene families/genes with potential to be vaccine candidates are presented in a comparative context. The availability of this genome will significantly facilitate research for this pathogen.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Austin M Peasley
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, China
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
23
|
Diop A, Raoult D, Fournier PE. Paradoxical evolution of rickettsial genomes. Ticks Tick Borne Dis 2018; 10:462-469. [PMID: 30448253 DOI: 10.1016/j.ttbdis.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent Rickettsia species were shown to have the most drastically reduced and degraded genomes compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct evolutionary process observed in Rickettsia species may be correlated with the differences in virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and content, for that a better understanding of the balance between proliferation and elimination of genetic material in these intracellular bacteria is required.
Collapse
Affiliation(s)
- Awa Diop
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
24
|
Chung M, Munro JB, Tettelin H, Dunning Hotopp JC. Using Core Genome Alignments To Assign Bacterial Species. mSystems 2018; 3:e00236-18. [PMID: 30534598 PMCID: PMC6280431 DOI: 10.1128/msystems.00236-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
With the exponential increase in the number of bacterial taxa with genome sequence data, a new standardized method to assign species designations is needed that is consistent with classically obtained taxonomic analyses. This is particularly acute for unculturable, obligate intracellular bacteria with which classically defined methods, like DNA-DNA hybridization, cannot be used, such as those in the Rickettsiales. In this study, we generated nucleotide-based core genome alignments for a wide range of genera with classically defined species, as well as those within the Rickettsiales. We created a workflow that uses the length, sequence identity, and phylogenetic relationships inferred from core genome alignments to assign genus and species designations that recapitulate classically obtained results. Using this method, most classically defined bacterial genera have a core genome alignment that is ≥10% of the average input genome length. Both Anaplasma and Neorickettsia fail to meet this criterion, indicating that the taxonomy of these genera should be reexamined. Consistently, genomes from organisms with the same species epithet have ≥96.8% identity of their core genome alignments. Additionally, these core genome alignments can be used to generate phylogenomic trees to identify monophyletic clades that define species and neighbor-network trees to assess recombination across different taxa. By these criteria, Wolbachia organisms are delineated into species different from the currently used supergroup designations, while Rickettsia organisms are delineated into 9 distinct species, compared to the current 27 species. By using core genome alignments to assign taxonomic designations, we aim to provide a high-resolution, robust method to guide bacterial nomenclature that is aligned with classically obtained results. IMPORTANCE With the increasing availability of genome sequences, we sought to develop and apply a robust, portable, and high-resolution method for the assignment of genera and species designations that can recapitulate classically defined taxonomic designations. Using cutoffs derived from the lengths and sequence identities of core genome alignments along with phylogenetic analyses, we sought to evaluate or reevaluate genus- and species-level designations for diverse taxa, with an emphasis on the order Rickettsiales, where species designations have been applied inconsistently. Our results indicate that the Rickettsia genus has an overabundance of species designations, that the current Anaplasma and Neorickettsia genus designations are both too broad and need to be divided, and that there are clear demarcations of Wolbachia species that do not align precisely with the existing supergroup designations.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Guellil M, Kersten O, Namouchi A, Bauer EL, Derrick M, Jensen AØ, Stenseth NC, Bramanti B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc Natl Acad Sci U S A 2018; 115:10422-10427. [PMID: 30249639 PMCID: PMC6187149 DOI: 10.1073/pnas.1807266115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Louse-borne relapsing fever (LBRF) is known to have killed millions of people over the course of European history and remains a major cause of mortality in parts of the world. Its pathogen, Borrelia recurrentis, shares a common vector with global killers such as typhus and plague and is known for its involvement in devastating historical epidemics such as the Irish potato famine. Here, we describe a European and historical genome of Brecurrentis, recovered from a 15th century skeleton from Oslo. Our distinct European lineage has a discrete genomic makeup, displaying an ancestral oppA-1 gene and gene loss in antigenic variation sites. Our results illustrate the potential of ancient DNA research to elucidate dynamics of reductive evolution in a specialized human pathogen and to uncover aspects of human health usually invisible to the archaeological record.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Amine Namouchi
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Egil L Bauer
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Michael Derrick
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Anne Ø Jensen
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Biomedical and Specialty Surgical Sciences, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 35-441221 Ferrara, Italy
| |
Collapse
|
26
|
Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect 2018; 20:401-409. [DOI: 10.1016/j.micinf.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
|
27
|
Marosevic D, Margos G, Wallich R, Wieser A, Sing A, Fingerle V. First insights in the variability of Borrelia recurrentis genomes. PLoS Negl Trop Dis 2017; 11:e0005865. [PMID: 28902847 PMCID: PMC5612729 DOI: 10.1371/journal.pntd.0005865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/25/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
Background Borrelia recurrentis is the causative agent of louse-borne relapsing fever, endemic to the Horn of Africa. New attention was raised in Europe, with the highest number of cases (n = 45) reported among migrants in 2015 in Germany and sporadically from other European countries. So far only one genome was sequenced, hindering the development of specific molecular diagnostic and typing tools. Here we report on modified culture conditions for B. recurrentis and the intraspecies genome variability of six isolates isolated and cultured in different years in order to explore the possibility to identify new targets for typing and examine the molecular epidemiology of the pathogen. Methodology/Principal findings Two historical isolates from Ethiopia and four isolates from migrants from Somalia (n = 3) and Ethiopia (n = 1) obtained in 2015 were cultured in MPK-medium supplemented with 50% foetal calf serum. Whole DNA was sequenced using Illumina MiSeq technology and analysed using the CLC Genomics Workbench and SPAdes de novo assembler. Compared to the reference B. recurrentis A1 29–38 SNPs were identified in the genome distributed on the chromosome and plasmids. In addition to that, plasmids of differing length, compared to the available reference genome were identified. Conclusions/Significance The observed low genetic variability of B. recurrentis isolates is possibly due to the adaptation to a very conserved vector-host (louse-human) cycle, or influenced by the fastidious nature of the pathogen and their resistance to in vitro growth. Nevertheless, isolates obtained in 2015 were bearing the same chromosomal SNPs and could be distinguished from the historical isolates by means of whole genome sequencing, but not hitherto used typing methods. This is the first study examining the molecular epidemiology of B. recurrentis and provides the necessary background for the development of better diagnostic tools. Louse-borne relapsing fever, as the name suggests, is the only relapsing fever transmitted by lice, and caused by the spirochaete Borrelia recurrentis. Today it is endemic to the Horn of Africa, but due to the cosmopolitan nature of the vector, the pathogen still bears epidemic potential to spread globally among vulnerable populations. The most recent account of that has been observed among migrants arriving to Europe in 2015. Up to date, only one strain was sequenced, thus hampering the development of species-specific typing tools. We employed state-of-the-art high-throughput sequencing to six B. recurrentis isolates obtained at different time-points and currently available in culture. Our aim was to address the question of genome variability of this pathogen at the highest resolution and provide information necessary for the development of specific typing tools. B. recurrentis has highly conserved genomes, differing in 29–38 SNPs compared to the reference genome B. recurrentis A1, all identified outside the loci currently developed and used for relapsing fever Borrelia typing. Therefore, applying these typing methods would render them indistinguishable, while at the SNP level we found a distinction between isolates obtained in 2015 from migrants and the two historical isolates. Our data provide first insights in the genome variability and baseline information necessary for further studies of the molecular epidemiology of the pathogen and for the development of improved diagnostic tools.
Collapse
Affiliation(s)
- Durdica Marosevic
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
- European Programme for Public Health Microbiology Training, European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden
- * E-mail:
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | | | - Andreas Wieser
- Department of Bacteriology, Max von Pettenkofer Institute (LMU), Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Sing
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| |
Collapse
|
28
|
El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier PE, Raoult D. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp. Front Microbiol 2017; 8:1363. [PMID: 28775717 PMCID: PMC5517468 DOI: 10.3389/fmicb.2017.01363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Collapse
Affiliation(s)
- Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Malgorzata Kowalczewska
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Nicholas Armstrong
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Said Azza
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Pierre-Edouard Fournier
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| |
Collapse
|
29
|
Proteolytic Cleavage of the Immunodominant Outer Membrane Protein rOmpA in Rickettsia rickettsii. J Bacteriol 2017; 199:JB.00826-16. [PMID: 28031280 DOI: 10.1128/jb.00826-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events.IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a passenger domain and an autotransporter domain that remain associated on the rickettsial outer membrane. The protease responsible for this posttranslation processing remains unknown. Here we show that another autotransporter, rOmpA, is similarly processed by R. rickettsii Similarities in sequence at the cleavage site and predicted secondary protein structure suggest that all four R. rickettsii autotransporters may be processed by the same outer membrane protease.
Collapse
|
30
|
Battilani M, De Arcangeli S, Balboni A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. INFECTION GENETICS AND EVOLUTION 2017; 49:195-211. [PMID: 28122249 DOI: 10.1016/j.meegid.2017.01.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/25/2022]
Abstract
Anaplasma are obligate intracellular bacteria of cells of haematopoietic origin and are aetiological agents of tick-borne diseases of both veterinary and medical interest common in both tropical and temperate regions. The recent disclosure of their zoonotic potential has greatly increased interest in the study of these bacteria, leading to the recent reorganisation of Rickettsia taxonomy and to the possible discovery of new species belonging to the genus Anaplasma. This review is particularly focused on the common and unique characteristics of Anaplasma marginale and Anaplasma phagocytophilum, with an emphasis on genetic diversity and evolution, and the main distinguishing features of the diseases caused by the different Anaplasma spp. are described as well.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy.
| | - Stefano De Arcangeli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| |
Collapse
|
31
|
Buntin N, Hongpattarakere T, Ritari J, Douillard FP, Paulin L, Boeren S, Shetty SA, de Vos WM. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Appl Environ Microbiol 2017; 83:e02402-16. [PMID: 27815279 PMCID: PMC5203619 DOI: 10.1128/aem.02402-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
The draft genomes of Lactobacillus plantarum strains isolated from Asian fermented foods, infant feces, and shrimp intestines were sequenced and compared to those of well-studied strains. Among 28 strains of L. plantarum, variations in the genomic features involved in ecological adaptation were elucidated. The genome sizes ranged from approximately 3.1 to 3.5 Mb, of which about 2,932 to 3,345 protein-coding sequences (CDS) were predicted. The food-derived isolates contained a higher number of carbohydrate metabolism-associated genes than those from infant feces. This observation correlated to their phenotypic carbohydrate metabolic profile, indicating their ability to metabolize the largest range of sugars. Surprisingly, two strains (P14 and P76) isolated from fermented fish utilized inulin. β-Fructosidase, the inulin-degrading enzyme, was detected in the supernatants and cell wall extracts of both strains. No activity was observed in the cytoplasmic fraction, indicating that this key enzyme was either membrane-bound or extracellularly secreted. From genomic mining analysis, a predicted inulin operon of fosRABCDXE, which encodes β-fructosidase and many fructose transporting proteins, was found within the genomes of strains P14 and P76. Moreover, pts1BCA genes, encoding sucrose-specific IIBCA components involved in sucrose transport, were also identified. The proteomic analysis revealed the mechanism and functional characteristic of the fosRABCDXE operon involved in the inulin utilization of L. plantarum The expression levels of the fos operon and pst genes were upregulated at mid-log phase. FosE and the LPXTG-motif cell wall anchored β-fructosidase were induced to a high abundance when inulin was present as a carbon source. IMPORTANCE Inulin is a long-chain carbohydrate that may act as a prebiotic, which provides many health benefits to the host by selectively stimulating the growth and activity of beneficial bacteria in the colon. While certain lactobacilli can catabolize inulin, this has not yet been described for Lactobacillus plantarum, and an associated putative inulin operon has not been reported in this species. By using comparative and functional genomics, we showed that two L. plantarum strains utilized inulin and identified functional inulin operons in their genomes. The proteogenomic data revealed that inulin degradation and uptake routes, which related to the fosRABCDXE operon and pstBCA genes, were widely expressed among L. plantarum strains. The present work provides a novel understanding of gene regulation and mechanisms of inulin utilization in probiotic L. plantarum generating opportunities for synbiotic product development.
Collapse
Affiliation(s)
- Nirunya Buntin
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Tipparat Hongpattarakere
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jarmo Ritari
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Program Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Abstract
Small regulatory RNAs comprise critically important modulators of gene expression in bacteria, yet very little is known about their prevalence and functions in Rickettsia species. R. conorii, the causative agent of Mediterranean spotted fever, is a tick-borne pathogen that primarily infects microvascular endothelium in humans. We have determined the transcriptional landscape of R. conorii during infection of Human Microvascular Endothelial Cells (HMECs) by strand-specific RNA sequencing to identify 4 riboswitches, 13 trans-acting (intergenic), and 22 cis-acting (antisense) small RNAs (termed ‘Rc_sR’s). Independent expression of four novel trans-acting sRNAs (Rc_sR31, Rc_sR33, Rc_sR35, and Rc_sR42) and known bacterial sRNAs (6S, RNaseP_bact_a, ffs, and α-tmRNA) was next confirmed by Northern hybridization. Comparative analysis during infection of HMECs vis-à-vis tick AAE2 cells revealed significantly higher expression of Rc_sR35 and Rc_sR42 in HMECs, whereas Rc_sR31 and Rc_sR33 were expressed at similar levels in both cell types. We further predicted a total of 502 genes involved in all important biological processes as potential targets of Rc_sRs and validated the interaction of Rc_sR42 with cydA (cytochrome d ubiquinol oxidase subunit I). Our findings constitute the first evidence of the existence of post-transcriptional riboregulatory mechanisms in R. conorii and interactions between a novel Rc_sR and its target mRNA.
Collapse
|
33
|
Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci Rep 2016; 6:34362. [PMID: 27681823 PMCID: PMC5041132 DOI: 10.1038/srep34362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial dark matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.
Collapse
|
34
|
Lockwood S, Brayton KA, Broschat SL. Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens. BMC Genomics 2016; 17:481. [PMID: 27368698 PMCID: PMC4930560 DOI: 10.1186/s12864-016-2744-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Multiple important human and livestock pathogens employ ticks as their primary host vectors. It is not currently known whether this means of infecting a host arose once or many times during evolution. Results In order to address this question, we conducted a comparative genomics analysis on a set of bacterial pathogens from seven genera – Borrelia, Rickettsia, Anaplasma, Ehrlichia, Francisella, Coxiella, and Bartonella, including species from three different host vectors – ticks, lice, and fleas. The final set of 102 genomes used in the study encoded a total of 120,046 protein sequences. We found that no genes or metabolic pathways were present in all tick-borne bacteria. However, we found some genes and pathways were present in subsets of tick-transmitted organisms while absent from bacteria transmitted by lice or fleas. Conclusion Our analysis suggests that the ability of pathogens to be transmitted by ticks arose multiple times over the course of evolution. To our knowledge, this is the most comprehensive study of tick transmissibility to date. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2744-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Svetlana Lockwood
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, 99164-7040, USA.,Paul G. Allen School for Global Animal Health, Washington State University, PO Box 647090, Pullman, 99164-7090, USA
| | - Shira L Broschat
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, USA. .,Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, 99164-7040, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, PO Box 647090, Pullman, 99164-7090, USA.
| |
Collapse
|
35
|
El Karkouri K, Pontarotti P, Raoult D, Fournier PE. Origin and Evolution of Rickettsial Plasmids. PLoS One 2016; 11:e0147492. [PMID: 26866478 PMCID: PMC4750851 DOI: 10.1371/journal.pone.0147492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
Background Rickettsia species are strictly intracellular bacteria that have undergone a reductive genomic evolution. Despite their allopatric lifestyle, almost half of the 26 currently validated Rickettsia species have plasmids. In order to study the origin, evolutionary history and putative roles of rickettsial plasmids, we investigated the evolutionary processes that have shaped 20 plasmids belonging to 11 species, using comparative genomics and phylogenetic analysis between rickettsial, microbial and non-microbial genomes. Results Plasmids were differentially present among Rickettsia species. The 11 species had 1 to 4 plasmid (s) with a size ranging from 12 kb to 83 kb. We reconstructed pRICO, the last common ancestor of the current rickettsial plasmids. pRICO was vertically inherited mainly from Rickettsia/Orientia chromosomes and diverged vertically into a single or multiple plasmid(s) in each species. These plasmids also underwent a reductive evolution by progressive gene loss, similar to that observed in rickettsial chromosomes, possibly leading to cryptic plasmids or complete plasmid loss. Moreover, rickettsial plasmids exhibited ORFans, recent gene duplications and evidence of horizontal gene transfer events with rickettsial and non-rickettsial genomes mainly from the α/γ-proteobacteria lineages. Genes related to maintenance and plasticity of plasmids, and to adaptation and resistance to stress mostly evolved under vertical and/or horizontal processes. Those involved in nucleotide/carbohydrate transport and metabolism were under the influence of vertical evolution only, whereas genes involved in cell wall/membrane/envelope biogenesis, cycle control, amino acid/lipid/coenzyme and secondary metabolites biosynthesis, transport and metabolism underwent mainly horizontal transfer events. Conclusion Rickettsial plasmids had a complex evolution, starting with a vertical inheritance followed by a reductive evolution associated with increased complexity via horizontal gene transfer as well as gene duplication and genesis. The plasmids are plastic and mosaic structures that may play biological roles similar to or distinct from their co-residing chromosomes in an obligate intracellular lifestyle.
Collapse
Affiliation(s)
- Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Pontarotti
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, Marseille, France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre-Edouard Fournier
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 5, France
- * E-mail:
| |
Collapse
|
36
|
D’Amato F, Eldin C, Raoult D. The contribution of genomics to the study of Q fever. Future Microbiol 2016; 11:253-72. [DOI: 10.2217/fmb.15.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a worldwide zoonosis that can result in large outbreaks. The birth of genomics and sequencing of C. burnetii strains has revolutionized many fields of study of this infection. Accurate genotyping methods and comparative genomic analysis have enabled description of the diversity of strains around the world and their link with pathogenicity. Genomics has also permitted the development of qPCR tools and axenic culture medium, facilitating the diagnosis of Q fever. Moreover, several pathophysiological mechanisms can now be predicted and therapeutic strategies can be determined thanks to in silico genome analysis. An extensive pan-genomic analysis will allow for a comprehensive view of the clonal diversity of C. burnetii and its link with virulence.
Collapse
Affiliation(s)
- Felicetta D’Amato
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Carole Eldin
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| |
Collapse
|
37
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
38
|
Xu Y, Wu G, Hao B, Chen L, Deng X, Xu Q. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis). BMC Genomics 2015; 16:995. [PMID: 26597278 PMCID: PMC4657247 DOI: 10.1186/s12864-015-2211-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/13/2015] [Indexed: 11/23/2022] Open
Abstract
Background With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Results Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. Conclusion This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Baohai Hao
- Agricultural Bioinformatics Key laboratory of Hubei Province, College of Information, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lingling Chen
- Agricultural Bioinformatics Key laboratory of Hubei Province, College of Information, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Murray GGR, Weinert LA, Rhule EL, Welch JJ. The Phylogeny of Rickettsia Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution? Syst Biol 2015; 65:265-79. [PMID: 26559010 PMCID: PMC4748751 DOI: 10.1093/sysbio/syv084] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/04/2015] [Indexed: 11/14/2022] Open
Abstract
Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; and
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Emma L Rhule
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; and
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; and
| |
Collapse
|
40
|
Caputo A, Merhej V, Georgiades K, Fournier PE, Croce O, Robert C, Raoult D. Pan-genomic analysis to redefine species and subspecies based on quantum discontinuous variation: the Klebsiella paradigm. Biol Direct 2015; 10:55. [PMID: 26420254 PMCID: PMC4588269 DOI: 10.1186/s13062-015-0085-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Various methods are currently used to define species and are based on the phylogenetic marker 16S ribosomal RNA gene sequence, DNA-DNA hybridization and DNA GC content. However, these are restricted genetic tools and showed significant limitations. Results In this work, we describe an alternative method to build taxonomy by analyzing the pan-genome composition of different species of the Klebsiella genus. Klebsiella species are Gram-negative bacilli belonging to the large Enterobacteriaceae family. Interestingly, when comparing the core/pan-genome ratio; we found a clear discontinuous variation that can define a new species. Conclusions Using this pan-genomic approach, we showed that Klebsiella pneumoniae subsp. ozaenae and Klebsiella pneumoniae subsp. rhinoscleromatis are species of the Klebsiella genus, rather than subspecies of Klebsiella pneumoniae. This pan-genomic analysis, helped to develop a new tool for defining species introducing a quantic perspective for taxonomy. Reviewers This article was reviewed by William Martin, Pierre Pontarotti and Pere Puigbo (nominated by Dr Yuri Wolf). Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0085-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélia Caputo
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Vicky Merhej
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Kalliopi Georgiades
- Departement of Biological Sciences, University of Cyprus, P.O. Box 20537-1678, Nicosia Cyprus, Greece.
| | - Pierre-Edouard Fournier
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Olivier Croce
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Catherine Robert
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Didier Raoult
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| |
Collapse
|
41
|
Fan HW, Noda H, Xie HQ, Suetsugu Y, Zhu QH, Zhang CX. Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle. Genome Biol Evol 2015; 7:2623-34. [PMID: 26338189 PMCID: PMC4607526 DOI: 10.1093/gbe/evv169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stål), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change.
Collapse
Affiliation(s)
- Hai-Wei Fan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Lo WS, Gasparich GE, Kuo CH. Found and Lost: The Fates of Horizontally Acquired Genes in Arthropod-Symbiotic Spiroplasma. Genome Biol Evol 2015; 7:2458-72. [PMID: 26254485 PMCID: PMC4607517 DOI: 10.1093/gbe/evv160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important mechanism that contributed to biological diversity, particularly in bacteria. Through acquisition of novel genes, the recipient cell may change its ecological preference and the process could promote speciation. In this study, we determined the complete genome sequence of two Spiroplasma species for comparative analyses and inferred the putative gene gains and losses. Although most Spiroplasma species are symbionts of terrestrial insects, Spiroplasma eriocheiris has evolved to be a lethal pathogen of freshwater crustaceans. We found that approximately 7% of the genes in this genome may have originated from HGT and these genes expanded the metabolic capacity of this organism. Through comparison with the closely related Spiroplasma atrichopogonis, as well as other more divergent lineages, our results indicated that these HGT events could be traced back to the most recent common ancestor of these two species. However, most of these horizontally acquired genes have been pseudogenized in S. atrichopogonis, suggesting that they did not contribute to the fitness of this lineage that maintained the association with terrestrial insects. Thus, accumulation of small deletions that disrupted these foreign genes was not countered by natural selection. On the other hand, the long-term survival of these horizontally acquired genes in the S. eriocheiris genome hinted that they might play a role in the ecological shift of this species. Finally, the implications of these findings and the conflicts among gene content, 16S rRNA gene sequencing, and serological typing, are discussed in light of defining bacterial species.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, NationalChung Hsing University and Academia Sinica, Taipei, Taiwan Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, NationalChung Hsing University and Academia Sinica, Taipei, Taiwan Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
43
|
Abstract
The human heart has a limited capacity to regenerate lost or damaged cardiomyocytes after cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small noncoding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information, various researchers have used miRNAs to promote the formation of cardiomyocytes through several approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, several miRNAs have been identified that aid the formation of inducible pluripotent stem cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review, we discuss the current literature as it pertains to these processes, as well as discussing the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Martin H Kang
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
44
|
Zhou K, Huang B, Zou M, Lu D, He S, Wang G. Genome-wide identification of lineage-specific genes within Caenorhabditis elegans. Genomics 2015; 106:242-8. [PMID: 26188256 DOI: 10.1016/j.ygeno.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022]
Abstract
With the rapid growth of sequencing technology, a number of genomes and transcriptomes of various species have been sequenced, contributing to the study of lineage-specific genes (LSGs). We identified two sets of LSGs using BLAST: one included Caenorhabditis elegans species-specific genes (1423, SSGs), and the other consisted of Caenorhabditis genus-specific genes (4539, GSGs). The subsequent characterization and analysis of the SSGs and GSGs showed that they have significant differences in evolution and that most LSGs were generated by gene duplication and integration of transposable elements (TEs). We then performed temporal expression profiling and protein function prediction and observed that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are over-represented, suggesting that these specific genes may be related to the Caenorhabditis nematodes' special ability to survive in severe and extreme environments.
Collapse
Affiliation(s)
- Kun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Beibei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Ming Zou
- Huazhong Agriculture University, Wuhan 430070, China.
| | - Dandan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
45
|
Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 2015; 7:72-85. [PMID: 26442149 PMCID: PMC4552756 DOI: 10.1016/j.nmni.2015.06.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023] Open
Abstract
The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position. Pangenome is a new way of studying pathogenic bacteria. Pangenome can be used as a taxonomic tool. This review describes pangenome in the world of pathogenic bacteria.
Collapse
Affiliation(s)
- L Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - V Merhej
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - P-E Fournier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| |
Collapse
|
46
|
Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. mBio 2015; 6:mBio.00323-15. [PMID: 25827414 PMCID: PMC4453529 DOI: 10.1128/mbio.00323-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains of R. rickettsii but is not produced in the only documented avirulent strain, Iowa, due to a premature stop codon. Here we report the creation of an isogenic ompA mutant in the highly virulent strain Sheila Smith by insertion of intronic RNA to create a premature stop codon 312 bp downstream of the 6,747-bp open reading frame initiation site (int312). Targeted insertion was accomplished using an LtrA group II intron retrohoming system. Growth and entry rates of Sheila Smith ompA::int312 in Vero cells remained comparable to those of the wild type. Virulence was assessed in a guinea pig model by challenge with 100 PFU of either ompA::int312 Sheila Smith or the wild type, but no significant difference in either fever peak (40.5°C) or duration (8 days) were shown between the wild type and the knockout. The ability to disrupt genes in a site-specific manner using an LtrA group II intron system provides an important new tool for evaluation of potential virulence determinants in rickettsial disease research. R. rickettsii rOmpA is an immunodominant outer membrane autotransporter conserved in the spotted fever group. Previous studies and genomic comparisons suggest that rOmpA is involved in adhesion and may be critical for virulence. Little information is available for rickettsial virulence factors in an isogenic background, as limited systems for targeted gene disruption are currently available. Here we describe the creation of an rOmpA knockout by insertion of a premature stop codon into the 5′ end of the open reading frame using a group II intron system. An isogenic rOmpA knockout mutation in the highly virulent Sheila Smith strain did not cause attenuation in a guinea pig model of infection, and no altered phenotype was observed in cell culture. We conclude that rOmpA is not critical for virulence in a guinea pig model but may play a role in survival or transmission from the tick vector.
Collapse
|
47
|
Badawi M, Giraud I, Vavre F, Grève P, Cordaux R. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Genome Biol Evol 2014; 6:2654-64. [PMID: 25230723 PMCID: PMC4224334 DOI: 10.1093/gbe/evu207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Fabrice Vavre
- Université de Lyon, UMR CNRS 5558 Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| |
Collapse
|
48
|
Hernández-López A, Chabrol O, Royer-Carenzi M, Merhej V, Pontarotti P, Raoult D. To tree or not to tree? Genome-wide quantification of recombination and reticulate evolution during the diversification of strict intracellular bacteria. Genome Biol Evol 2014; 5:2305-17. [PMID: 24259310 PMCID: PMC3879967 DOI: 10.1093/gbe/evt178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is well known that horizontal gene transfer (HGT) is a major force in the evolution of prokaryotes. During the adaptation of a bacterial population to a new ecological niche, and particularly for intracellular bacteria, selective pressures are shifted and ecological niches reduced, resulting in a lower rate of genetic connectivity. HGT and positive selection are therefore two important evolutionary forces in microbial pathogens that drive adaptation to new hosts. In this study, we use genomic distance analyses, phylogenomic networks, tree topology comparisons, and Bayesian inference methods to investigate to what extent HGT has occurred during the evolution of the genus Rickettsia, the effect of the use of different genomic regions in estimating reticulate evolution and HGT events, and the link of these to host range. We show that ecological specialization restricts recombination occurrence in Rickettsia, but other evolutionary processes and genome architecture are also important for the occurrence of HGT. We found that recombination, genomic rearrangements, and genome conservation all show evidence of network-like evolution at whole-genome scale. We show that reticulation occurred mainly, but not only, during the early Rickettsia radiation, and that core proteome genes of every major functional category have experienced reticulated evolution and possibly HGT. Overall, the evolution of Rickettsia bacteria has been tree-like, with evidence of HGT and reticulated evolution for around 10–25% of the core Rickettsia genome. We present evidence of extensive recombination/incomplete lineage sorting (ILS) during the radiation of the genus, probably linked with the emergence of intracellularity in a wide range of hosts.
Collapse
Affiliation(s)
- Antonio Hernández-López
- Aix-Marseille Université, LATP UMR - CNRS 7353, Evolution Biologique et Modélisation, Marseille, France
| | | | | | | | | | | |
Collapse
|
49
|
Caro-Gomez E, Gazi M, Goez Y, Valbuena G. Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 2014; 32:4968-76. [PMID: 25010827 DOI: 10.1016/j.vaccine.2014.06.089] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Rickettsial agents are some of the most lethal pathogens known to man. Among them, Rickettsia prowazekii is a select agent with potential use for bioterrorism; yet, there is no anti-Rickettsia vaccine commercially available. Owing to the obligate intracellular lifestyle of rickettsiae, CD8(+) T cells are indispensable for protective cellular immunity. Furthermore, T cells can mediate cross-protective immunity between different pathogenic Rickettsia, a finding consistent with the remarkable similarity among rickettsial genomes. However, Rickettsia T cell antigens remain unidentified. In the present study, we report an algorithm that allowed us to identify and validate four novel R. prowazekii vaccine antigen candidates recognized by CD8(+) T cells from a set of twelve in silico-defined protein targets. Our results highlight the importance of combining proteasome-processing as well as MHC class-I-binding predictions. The novel rickettsial vaccine candidate antigens, RP778, RP739, RP598, and RP403, protected mice against a lethal challenge with Rickettsia typhi, which is indicative of cross-protective immunity within the typhus group rickettsiae. Together, our findings validate a reverse vaccinology approach as a viable strategy to identify protective rickettsial antigens and highlight the feasibility of a subunit vaccine that triggers T-cell-mediated cross-protection among diverse rickettsiae.
Collapse
Affiliation(s)
- Erika Caro-Gomez
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Michal Gazi
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Yenny Goez
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA; Sealy Center for Vaccine Development, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
50
|
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. INFECTION GENETICS AND EVOLUTION 2014; 25:122-37. [DOI: 10.1016/j.meegid.2014.03.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023]
|