1
|
Kim JH, Jung SH, Park C, Lee JR. T cells in ARAP-deficient mice present defective T cell receptor signaling and reduced severity in an experimentally-induced autoimmune disease. Front Immunol 2025; 16:1556616. [PMID: 40264755 PMCID: PMC12011753 DOI: 10.3389/fimmu.2025.1556616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
We previously reported a novel adaptor protein, ARAP, required for T cell receptor signaling and integrin-mediated adhesion. The present study investigates further the role of ARAP in T cell biology using mice with an ARAP gene deficiency. Similar to wild-type mice, ARAP-deficient mice participate in normal breeding and immune cell development. Similar defects were observed in the T cell receptor signaling and adhesion of ARAP-deficient mice, as shown in previous studies investigating ARAP-suppressed Jurkat T cells. ARAP deficiencies analyzed in vivo presented a less severe clinical course of experimental autoimmune encephalomyelitis (EAE) following immunization of mice with the myelin oligodendrocyte glycoprotein (MOG). Serum levels of MOG-specific antibodies and IFN-γ were also reduced in ARAP-deficient EAE mice compared to wild-type EAE mice. Moreover, adoptive transfer of ARAP-deficient T cells induced less severe EAE in recombination-activating gene 1-deficient mice than wild-type T cell transfer. These results strongly suggest that ARAP positively regulates T cell function, while ARAP deficiency in T cells reduces the severity and incidence of EAE.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mice, Knockout
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/deficiency
- Female
- Mice, Inbred C57BL
- Disease Models, Animal
- Adoptive Transfer
- Humans
- Severity of Illness Index
Collapse
Affiliation(s)
| | | | | | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang P, Wang X, Yang X, Liu H. Molecular control of PDPNhi macrophage subset induction by ADAP as a host defense in sepsis. JCI Insight 2025; 10:e186456. [PMID: 39903516 PMCID: PMC11949065 DOI: 10.1172/jci.insight.186456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Induction of podoplanin (PDPN) expression is a critical response of macrophages to LPS stimulation or bacterial infection in sepsis, but how this key process of TLR4-stimulated PDPN upregulation is regulated and the effect of PDPN expression on macrophage function remain elusive. Here, we determined how this process is regulated in vitro and in vivo. PDPN failed to be upregulated in TLR4-stimulated macrophages deficient in adhesion and degranulation-promoting adapter protein (ADAP), which could be rescued by the reconstitution of ADAP. A distinct PDPNhi peritoneal macrophage (PM) subset, which exhibited an M2-like phenotype and enhanced phagocytic activity, was generated in WT but not in ADAP-deficient septic mice. The blockade of PDPNhi PMs mimicked the effect of ADAP deficiency, which exacerbated sepsis. Mechanistically, Bruton's tyrosine kinase-mediated (BTK-mediated) tyrosine phosphorylation of ADAP at Y571 worked together with mTOR to converge on STAT3 activation for the transactivation of the PDPN promoter. Moreover, agonist activation of STAT3 profoundly potentiated the PDPNhi PM subset generation and alleviated sepsis severity in mice. Together, our findings reveal a mechanism whereby ADAP resets macrophage function by controlling the TLR4-induced upregulation of PDPN as a host innate immune defense during sepsis.
Collapse
Affiliation(s)
- Pengchao Zhang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinning Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hebin Liu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Wang Y, Feng H, Li X, Ruan Y, Guo Y, Cui X, Zhang P, Li Y, Wang X, Wang X, Wei L, Yi Y, Zhang L, Yang X, Liu H. Dampening of ISGylation of RIG-I by ADAP regulates type I interferon response of macrophages to RNA virus infection. PLoS Pathog 2024; 20:e1012230. [PMID: 38776321 PMCID: PMC11111093 DOI: 10.1371/journal.ppat.1012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-β and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-β transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.
Collapse
Affiliation(s)
- Yan Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Haixia Feng
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yina Ruan
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yueping Guo
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Pengchao Zhang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xinning Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xingran Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulan Yi
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Lifeng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Shi H, Shao B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023; 12:cells12081136. [PMID: 37190045 DOI: 10.3390/cells12081136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immunological synapses. LFA-1 functions through interacting with its ligands with differing affinities: low, intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and immunological synapse formation.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Banerjee A, Chakraborty A, Almpani M, Shankar M, Goverman J, Schulz JT, Sheridan RL, Friedstat J, Hickey SA, Tompkins RG, Rahme LG. A PREVENTIVE TOOL FOR PREDICTING BLOODSTREAM INFECTIONS IN CHILDREN WITH BURNS. Shock 2023; 59:393-399. [PMID: 36597771 PMCID: PMC9991965 DOI: 10.1097/shk.0000000000002075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Introduction: Despite significant advances in pediatric burn care, bloodstream infections (BSIs) remain a compelling challenge during recovery. A personalized medicine approach for accurate prediction of BSIs before they occur would contribute to prevention efforts and improve patient outcomes. Methods: We analyzed the blood transcriptome of severely burned (total burn surface area [TBSA] ≥20%) patients in the multicenter Inflammation and Host Response to Injury ("Glue Grant") cohort. Our study included 82 pediatric (aged <16 years) patients, with blood samples at least 3 days before the observed BSI episode. We applied the least absolute shrinkage and selection operator (LASSO) machine-learning algorithm to select a panel of biomarkers predictive of BSI outcome. Results: We developed a panel of 10 probe sets corresponding to six annotated genes ( ARG2 [ arginase 2 ], CPT1A [ carnitine palmitoyltransferase 1A ], FYB [ FYN binding protein ], ITCH [ itchy E3 ubiquitin protein ligase ], MACF1 [ microtubule actin crosslinking factor 1 ], and SSH2 [ slingshot protein phosphatase 2 ]), two uncharacterized ( LOC101928635 , LOC101929599 ), and two unannotated regions. Our multibiomarker panel model yielded highly accurate prediction (area under the receiver operating characteristic curve, 0.938; 95% confidence interval [CI], 0.881-0.981) compared with models with TBSA (0.708; 95% CI, 0.588-0.824) or TBSA and inhalation injury status (0.792; 95% CI, 0.676-0.892). A model combining the multibiomarker panel with TBSA and inhalation injury status further improved prediction (0.978; 95% CI, 0.941-1.000). Conclusions: The multibiomarker panel model yielded a highly accurate prediction of BSIs before their onset. Knowing patients' risk profile early will guide clinicians to take rapid preventive measures for limiting infections, promote antibiotic stewardship that may aid in alleviating the current antibiotic resistance crisis, shorten hospital length of stay and burden on health care resources, reduce health care costs, and significantly improve patients' outcomes. In addition, the biomarkers' identity and molecular functions may contribute to developing novel preventive interventions.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Patrick J. Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst (Amherst, MA 01003, USA)
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland (3010 Bern, Switzerland)
| | - Colleen M. Ryan
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Ankita Banerjee
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Malavika Shankar
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Jeremy Goverman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - John T. Schulz
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Robert L. Sheridan
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Jonathan Friedstat
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Sean A. Hickey
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Ronald G. Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| |
Collapse
|
7
|
Novel insights into mouse models of ectopic proplatelet release. Blood Adv 2022; 6:6135-6139. [PMID: 36251748 PMCID: PMC9768245 DOI: 10.1182/bloodadvances.2022007824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
Mature bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Defects in this process can lead to thrombocytopenia and increased risk of bleeding. Mice lacking the actin-regulatory proteins Profilin 1 (PFN1), Wiskott-Aldrich Syndrome protein (WASp), Actin Related Protein 2/3 complex (Arp2/3), or adhesion and degranulation-promoting adapter protein (ADAP) display thrombocytopenia and ectopic release of (pro)platelet-like particles into the BM compartment, pointing to an important axis of actin-mediated directional proplatelet formation. The mechanism underlying ectopic release in these mice is still not completely understood. However, we hypothesized that similar functional defects account for this observation. We analyzed WASp-, ADAP-, PFN1-, and ARPC2-knockout mice to determine the role of actin reorganization and integrin activation in directional proplatelet formation. ADAP-, ARPC2-, and PFN1-deficient MKs displayed reduced adhesion to collagen, defective F-actin organization, and diminished β1-integrin activation. WASp-deficient MKs showed the strongest reduction in the adhesion assay of collagen and altered F-actin organization with reduced podosome formation. Our results indicate that ADAP, PFN1, WASp, and ARP2/3 are part of the same pathway that regulates polarization processes in MKs and directional proplatelet formation into BM sinusoids.
Collapse
|
8
|
Xiong Y, Li Y, Cui X, Zhang L, Yang X, Liu H. ADAP restraint of STAT1 signaling regulates macrophage phagocytosis in immune thrombocytopenia. Cell Mol Immunol 2022; 19:898-912. [PMID: 35637282 PMCID: PMC9149338 DOI: 10.1038/s41423-022-00881-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Heightened platelet phagocytosis by macrophages accompanied by an increase in IFN-γ play key roles in the etiology of immune thrombocytopenia (ITP); however, it remains elusive how macrophage-mediated platelet clearance is regulated in ITP. Here, we report that adhesion and degranulation-protein adaptor protein (ADAP) restrains platelet phagocytosis by macrophages in ITP via modulation of signal transducer and activator of transcription 1 (STAT1)-FcγR signaling. We show that ITP was associated with the underexpression of ADAP in splenic macrophages. Furthermore, macrophages from Adap-/- mice exhibited elevated platelet phagocytosis and upregulated proinflammatory signaling, and thrombocytopenia in Adap-/- mice was mitigated by the depletion of macrophages. Mechanistically, ADAP interacted and competed with STAT1 binding to importin α5. ADAP deficiency potentiated STAT1 nuclear entry, leading to a selective enhancement of FcγRI/IV transcription in macrophages. Moreover, pharmacological inhibition of STAT1 or disruption of the STAT1-importin α5 interaction relieved thrombocytopenia in Adap-/- mice. Thus, our findings not only reveal a critical role for ADAP as an intracellular immune checkpoint for shaping macrophage phagocytosis in ITP but also identify the ADAP-STAT1-importin α5 module as a promising therapeutic target in the treatment of ITP.
Collapse
Affiliation(s)
- Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lifeng Zhang
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215123, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Li M, Qiao R, Zhong R, Wei Y, Wang J, Zhang Z, Wang L, Xu T, Wang Y, Dai L, Gu W, Han B, Yang R. FYB methylation in peripheral blood as a potential marker for the early-stage lung cancer: a case-control study in Chinese population. Biomarkers 2021; 27:79-85. [PMID: 34882057 DOI: 10.1080/1354750x.2021.2016970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China. Exploring novel biomarkers for the early detection of LC is important. MATERIALS AND METHODS We quantified DNA methylation levels of three CpG sites of FYB gene in peripheral blood in 163 early-stage LC cases (88.3% at stage I) and 187 age- and gender-matched healthy controls. Covariates-adjusted odds ratios (ORs) for -10% methylation were calculated by binary logistic regression. RESULTS With multiple testing corrections, hypomethylation of FYB_CpG_4 was significantly associated with LC (OR = 2.04, p = 4.50E-04) even with LC at stage I (OR = 1.41, p = 0.003) without obvious bias between genders, but it mainly affected the subjects older than 55 years (OR = 2.04, p = 0.015). Hypomethylation of FYB_CpG_2 was also associated with LC, but only for the males (OR = 1.76, p = 0.018). FYB_CpG_3 methylation had no association with LC, but interestingly its methylation level in the males was only half of that in the females. DISCUSSION AND CONCLUSIONS We proposed a novel association between blood-based abnormal FYB methylation and very early-stage LC. The age- and gender-related DNA methylation patterns also revealed the diversity and precision of epigenetic regulations.
Collapse
Affiliation(s)
- Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yujie Wei
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Jun Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Zheng Zhang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Ling Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| |
Collapse
|
10
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Böning MAL, Parzmair GP, Jeron A, Düsedau HP, Kershaw O, Xu B, Relja B, Schlüter D, Dunay IR, Reinhold A, Schraven B, Bruder D. Enhanced Susceptibility of ADAP-Deficient Mice to Listeria monocytogenes Infection Is Associated With an Altered Phagocyte Phenotype and Function. Front Immunol 2021; 12:724855. [PMID: 34659211 PMCID: PMC8515145 DOI: 10.3389/fimmu.2021.724855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date, only limited data exist regarding the role of ADAP in pathogen-specific immunity during in vivo infection, and its contribution in phagocyte-mediated antibacterial immunity remains elusive. Here, we show that mice lacking ADAP (ADAPko) are highly susceptible to the infection with the intracellular pathogen Listeria monocytogenes (Lm) by showing enhanced immunopathology in infected tissues together with increased morbidity, mortality, and excessive infiltration of neutrophils and monocytes. Despite high phagocyte numbers in the spleen and liver, ADAPko mice only inefficiently controlled pathogen growth, hinting at a functional impairment of infection-primed phagocytes in the ADAP-deficient host. Flow cytometric analysis of hallmark pro-inflammatory mediators and unbiased whole genome transcriptional profiling of neutrophils and inflammatory monocytes uncovered broad molecular alterations in the inflammatory program in both phagocyte subsets following their activation in the ADAP-deficient host. Strikingly, ex vivo phagocytosis assay revealed impaired phagocytic capacity of neutrophils derived from Lm-infected ADAPko mice. Together, our data suggest that an alternative priming of phagocytes in ADAP-deficient mice during Lm infection induces marked alterations in the inflammatory profile of neutrophils and inflammatory monocytes that contribute to enhanced immunopathology while limiting their capacity to eliminate the pathogen and to prevent the fatal outcome of the infection.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerald P Parzmair
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
12
|
Dinur-Schejter Y, Zaidman I, Mor-Shaked H, Stepensky P. The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt From Inborn Errors of Immunity. Front Immunol 2021; 12:701704. [PMID: 34456914 PMCID: PMC8397411 DOI: 10.3389/fimmu.2021.701704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their function by linking multiple proteins into intricate complexes, allowing for transmitting and fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling, following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling, have been described as the cause of human inborn errors of immunity (IEI). We describe the current knowledge based on defects in cell lines, murine models and human patients. Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not resulted in a T-cell defect.
Collapse
Affiliation(s)
- Yael Dinur-Schejter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel.,Allergy and Clinical Immunology Unit, Hadassah Ein-Kerem Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Monique and Jacques Roboh Department of Genetic Research, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Eidell KP, Lovy A, Sylvain NR, Scangarello FA, Muendlein HI, Ophir MJ, Nguyen K, Seminario MC, Bunnell SC. LFA-1 and kindlin-3 enable the collaborative transport of SLP-76 microclusters by myosin and dynein motors. J Cell Sci 2021; 134:270974. [PMID: 34279667 DOI: 10.1242/jcs.258602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins via the effectors talin-1 and kindlin-3 (FERMT3). We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity and dynein motor function. Although immobilized VLA-4 (α4β1 integrin) and LFA-1 (αLβ2 integrin) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin β2, kindlin-3 and zyxin are required for complete centripetal transport, while integrin β1 and talin-1 are not. CD69 upregulation is similarly dependent on integrin β2, kindlin-3 and zyxin, but not talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and kindlin-3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keith P Eidell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Alenka Lovy
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas R Sylvain
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Frank A Scangarello
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Michael J Ophir
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Ken Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | - Stephen C Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
14
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
15
|
Motamedi M, Xiao MZX, Iyer A, Gniadecki R. Patterns of Gene Expression in Cutaneous T-Cell Lymphoma: Systematic Review of Transcriptomic Studies in Mycosis Fungoides. Cells 2021; 10:cells10061409. [PMID: 34204115 PMCID: PMC8229125 DOI: 10.3390/cells10061409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mycosis fungoides (MF) is the most prevalent type of skin lymphoma. In its early stages, it has a favorable prognosis. However, in its late stages, it is associated with an increased risk of mortality. This systematic review aimed to identify the transcriptomic changes involved in MF pathogenesis and progression. A literature search was conducted using the database PubMed, followed by the extraction of 2245 genes which were further filtered to 150 recurrent genes that appeared in two or more publications. Categorization of these genes identified activated pathways involved in pathways such as cell cycle and proliferation, chromosomal instability, and DNA repair. We identified 15 genes implicated in MF progression, which were involved in cell proliferation, immune checkpoints, resistance to apoptosis, and immune response. In highlighting the discrepancies in the way MF transcriptomic data is obtained, further research can focus on not only unifying their approach but also focus on the 150 pertinent genes identified in this review.
Collapse
Affiliation(s)
- Melika Motamedi
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Maggie Z. X. Xiao
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
- 8-112 Clinical Sciences Building, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-407-1555
| |
Collapse
|
16
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Yang N, Xiong Y, Wang Y, Yi Y, Zhu J, Ma F, Li J, Liu H. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:814-826. [PMID: 33431658 DOI: 10.4049/jimmunol.2000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP), originally identified as an essential adaptor molecule in TCR signaling and T cell adhesion, has emerged as a critical regulator in innate immune cells such as macrophages; however, its role in macrophage polarization and inflammatory responses remains unknown. In this study, we show that ADAP plays an essential role in TLR4-mediated mouse macrophage polarization via modulation of STAT3 activity. Macrophages from ADAP-deficient mice exhibit enhanced M1 polarization, expression of proinflammatory cytokines and capacity in inducing Th1 responses, but decreased levels of anti-inflammatory cytokines in response to TLR4 activation by LPS. Furthermore, overexpression of ADAP enhances, whereas loss of ADAP reduces, the LPS-mediated phosphorylation and activity of STAT3, suggesting ADAP acts as a coactivator of STAT3 activity and function. Furthermore, the coactivator function of ADAP mostly depends on the tyrosine phosphorylation at Y571 in the motif YDSL induced by LPS. Mutation of Y571 to F severely impairs the stimulating effect of ADAP on STAT3 activity and the ability of ADAP to inhibit M1-like polarization in TLR4-activated mouse macrophages. Moreover, ADAP interacts with STAT3, and loss of ADAP renders mouse macrophages less sensitive to IL-6 stimulation for STAT3 phosphorylation. Collectively, our findings revealed an additional layer of regulation of TLR4-mediated mouse macrophage plasticity whereby ADAP phosphorylation on Y571 is required to prime STAT3 for activation in TLR4-stimulated mouse macrophages.
Collapse
Affiliation(s)
- Naiqi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Jingfei Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; .,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
18
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
19
|
Malarkannan S. Molecular mechanisms of FasL-mediated 'reverse-signaling'. Mol Immunol 2020; 127:31-37. [PMID: 32905906 DOI: 10.1016/j.molimm.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Effector lymphocytes, including NK and T cells, express FasL. Expression of Fas, the receptor for FasL in tumor cells, renders them susceptible to NK and T cell-mediated killing. The functional relevance of FasL in initiating death signals in tumor cells is well-characterized. However, the cytoplasmic interacting partners and the potential signaling pathways downstream of FasL are far from fully defined. FasL possesses an 81 amino acid long cytoplasmic tail with multiple unique recruitment motifs. We predict multiple interdependent signaling complexes form the core of the 'reverse signaling' downstream of FasL. A direct interaction between the proline-rich domain of FasL and the SH3 domain of PI(3)K-p85α initiates the first pathway. This cascade helps FasL to link to PLC-γ2 via PIP3 or the Akt-dependent activation of mTOR complexes. Independently, a GRB2/GADs-binding PXXP cytoplasmic motif of FasL can initiate a Ras-GTP-dependent PAK1→C-Raf→MEK1/2→ERK1/2 activation. FasL can recruit Fyn via the proline-rich domain leading to the recruitment of ADAP. Through its ability to directly interact with Carma1 and TAK1, ADAP initiates the formation of the Carma1/Bcl10/Malt1-based CBM signalosome that is primarily responsible for inflammatory cytokine production. Here, we explore the conserved cytoplasmic domains of FasL, the potential signaling molecules that interact, and the functional downstream consequences within the effector lymphocytes to define the FasL-mediated 'reverse signaling'.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
20
|
Thakar MS, Kearl TJ, Malarkannan S. Controlling Cytokine Release Syndrome to Harness the Full Potential of CAR-Based Cellular Therapy. Front Oncol 2020; 9:1529. [PMID: 32076597 PMCID: PMC7006459 DOI: 10.3389/fonc.2019.01529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023] Open
Abstract
Chimeric Antigen Receptor (CAR)-based therapies offer a promising, targeted approach to effectively treat relapsed or refractory B cell malignancies. However, the treatment-related toxicity defined as cytokine-release syndrome (CRS) often develops in patients, and if uncontrolled, can be fatal. Grading systems have now been developed to further characterize and objectify clinical findings in order to provide algorithm-based guidance on CRS-related treatment decisions. The pharmacological treatments associated with these algorithms suppress inflammation through a variety of mechanisms and are paramount to improving the safety profile of CAR-based therapies. However, fatalities are still occurring, and there are downsides to these treatments, including the possibility of disrupting CAR-T cell persistence. This review article will describe the clinical presentation and current management of CRS, and through our now deeper understanding of downstream signaling pathways, will provide a molecular framework to formulate new hypotheses regarding clinical applications to contain proinflammatory cytokines responsible for CRS.
Collapse
Affiliation(s)
- Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tyce J Kearl
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Böning MAL, Trittel S, Riese P, van Ham M, Heyner M, Voss M, Parzmair GP, Klawonn F, Jeron A, Guzman CA, Jänsch L, Schraven B, Reinhold A, Bruder D. ADAP Promotes Degranulation and Migration of NK Cells Primed During in vivo Listeria monocytogenes Infection in Mice. Front Immunol 2020; 10:3144. [PMID: 32038647 PMCID: PMC6987423 DOI: 10.3389/fimmu.2019.03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Trittel
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maxi Heyner
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald P Parzmair
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
22
|
Rudolph J, Meinke C, Voss M, Guttek K, Kliche S, Reinhold D, Schraven B, Reinhold A. Immune Cell-Type Specific Ablation of Adapter Protein ADAP Differentially Modulates EAE. Front Immunol 2019; 10:2343. [PMID: 31632410 PMCID: PMC6779796 DOI: 10.3389/fimmu.2019.02343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The cytosolic adhesion and degranulation-promoting adapter protein ADAP is expressed in various hematopoietic cells including T cells, NK cells, myeloid cells, and platelets but absent in mature B cells. The role of ADAP in T cell activation, proliferation and integrin activation is well-accepted. We previously demonstrated that conventional ADAP knockout mice show a significantly attenuated course of experimental autoimmune encephalomyelitis (EAE). To dissect the impact of different ADAP expressing cell populations on the reduced EAE severity, here, we generated lineage-specific conditional knockout mice. ADAP was deleted in T cells, myeloid cells, NK cells and platelets, respectively. Specific loss of ADAP was confirmed on the protein level. Detailed immunophenotyping was performed to assess the consequence of deletion of ADAP with regard to the maturation and distribution of immune cells in primary and secondary lymphoid organs. The analysis showed equivalent results as for conventional ADAP knockout mice: impaired thymocyte development in ADAPfl/fl Lck-Cre mice, normal NK cell and myeloid cell distribution in ADAPfl/fl NKp46-Cre mice and ADAPfl/fl LysM-Cre mice, respectively as well as thrombocytopenia in ADAPfl/fl PF4-Cre mice. Active EAE was induced in these animals by immunization with the myelin oligodendrocyte glycoprotein35−55 peptide. The clinical course of EAE was significantly milder in mice with loss of ADAP in T cells, myeloid cells and NK cells compared to ADAP-sufficient control littermates. Surprisingly, specific deletion of ADAP in platelets resulted in a more exacerbated disease. These data show that T cell-independent as well as T cell-dependent mechanisms are responsible for the complex phenotype observed in conventional ADAP knockout mice.
Collapse
Affiliation(s)
- Jochen Rudolph
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Clara Meinke
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Martin Voss
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Karina Guttek
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Dirk Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Annegret Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| |
Collapse
|
23
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
MESH Headings
- Adaptor Protein Complex 3/immunology
- Adaptor Protein Complex 3/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Humans
- Lymphocyte Activation/immunology
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- Signaling Lymphocytic Activation Molecule Family/immunology
- Signaling Lymphocytic Activation Molecule Family/metabolism
Collapse
Affiliation(s)
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Characterization of Mice with a Platelet-Specific Deletion of the Adapter Molecule ADAP. Mol Cell Biol 2019; 39:MCB.00365-18. [PMID: 30833485 DOI: 10.1128/mcb.00365-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
The adhesion and degranulation-promoting adapter protein (ADAP) is expressed in T cells, NK cells, myeloid cells, and platelets. The involvement of ADAP in the regulation of receptor-mediated inside-out signaling leading to integrin activation is well characterized, especially in T cells and in platelets. Due to the fact that animal studies using conventional knockout mice are limited by the overlapping effects of the different ADAP-expressing cells, we generated conditional ADAP knockout mice (ADAPfl/fl PF4-Cretg) (PF4, platelet factor 4). We observed that loss of ADAP restricted to the megakaryocytic lineage has no impact on other hematopoietic cells even under stimulation conditions. ADAPfl/fl PF4-Cretg mice showed thrombocytopenia in combination with reduced plasma levels of PF4 and transforming growth factor β1 (TGF-β1). In vitro, platelets from these mice revealed reduced P-selectin expression, lower levels of TGF-β1 release, diminished integrin αIIbβ3 activation, and decreased fibrinogen binding after stimulation with podoplanin, the ligand of C-type lectin-like receptor 2 (CLEC-2). Furthermore, loss of ADAP was associated with impaired CLEC-2-mediated activation of phospholipase Cγ2 (PLCγ2) and extracellular signal-regulated kinase 1/2 (ERK1/2). Induction of experimental autoimmune encephalomyelitis (EAE) in mice lacking ADAP expression in platelets caused a more severe disease. In vivo administration of TGF-β1 early after T cell transfer reduced EAE severity in mice with loss of ADAP restricted to platelets. Our results reveal a regulatory function of ADAP in platelets in vitro and during autoimmune disease EAE in vivo.
Collapse
|
25
|
Owen DL, Mahmud SA, Sjaastad LE, Williams JB, Spanier JA, Simeonov DR, Ruscher R, Huang W, Proekt I, Miller CN, Hekim C, Jeschke JC, Aggarwal P, Broeckel U, LaRue RS, Henzler CM, Alegre ML, Anderson MS, August A, Marson A, Zheng Y, Williams CB, Farrar MA. Thymic regulatory T cells arise via two distinct developmental programs. Nat Immunol 2019; 20:195-205. [PMID: 30643267 PMCID: PMC6650268 DOI: 10.1038/s41590-018-0289-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
The developmental programs that generate a broad repertoire of regulatory T cells (Treg cells) able to respond to both self antigens and non-self antigens remain unclear. Here we found that mature Treg cells were generated through two distinct developmental programs involving CD25+ Treg cell progenitors (CD25+ TregP cells) and Foxp3lo Treg cell progenitors (Foxp3lo TregP cells). CD25+ TregP cells showed higher rates of apoptosis and interacted with thymic self antigens with higher affinity than did Foxp3lo TregP cells, and had a T cell antigen receptor repertoire and transcriptome distinct from that of Foxp3lo TregP cells. The development of both CD25+ TregP cells and Foxp3lo TregP cells was controlled by distinct signaling pathways and enhancers. Transcriptomics and histocytometric data suggested that CD25+ TregP cells and Foxp3lo TregP cells arose by coopting negative-selection programs and positive-selection programs, respectively. Treg cells derived from CD25+ TregP cells, but not those derived from Foxp3lo TregP cells, prevented experimental autoimmune encephalitis. Our findings indicate that Treg cells arise through two distinct developmental programs that are both required for a comprehensive Treg cell repertoire capable of establishing immunotolerance.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Shawn A Mahmud
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Louisa E Sjaastad
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jason B Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Justin A Spanier
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Dimitre R Simeonov
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Roland Ruscher
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Irina Proekt
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Corey N Miller
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Can Hekim
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan C Jeschke
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca S LaRue
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, USA
| | - Christine M Henzler
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Calvin B Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A Farrar
- Center for Immunology, Masonic Cancer Center, and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Waldt N, Seifert A, Demiray YE, Devroe E, Turk BE, Reichardt P, Mix C, Reinhold A, Freund C, Müller AJ, Schraven B, Stork O, Kliche S. Filamin A Phosphorylation at Serine 2152 by the Serine/Threonine Kinase Ndr2 Controls TCR-Induced LFA-1 Activation in T Cells. Front Immunol 2018; 9:2852. [PMID: 30568657 PMCID: PMC6290345 DOI: 10.3389/fimmu.2018.02852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
The integrin LFA-1 (CD11a/CD18) plays a critical role in the interaction of T cells with antigen presenting cells (APCs) to promote lymphocyte differentiation and proliferation. This integrin can be present either in a closed or in an open active conformation and its activation upon T-cell receptor (TCR) stimulation is a critical step to allow interaction with APCs. In this study we demonstrate that the serine/threonine kinase Ndr2 is critically involved in the initiation of TCR-mediated LFA-1 activation (open conformation) in T cells. Ndr2 itself becomes activated upon TCR stimulation and phosphorylates the intracellular integrin binding partner Filamin A (FLNa) at serine 2152. This phosphorylation promotes the dissociation of FLNa from LFA-1, allowing for a subsequent association of Talin and Kindlin-3 which both stabilize the open conformation of LFA-1. Our data suggest that Ndr2 activation is a crucial step to initiate TCR-mediated LFA-1 activation in T cells.
Collapse
Affiliation(s)
- Natalie Waldt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anke Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yunus Emre Demiray
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Eric Devroe
- MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Department of Immune Control Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Stork
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
27
|
Lewis JB, Scangarello FA, Murphy JM, Eidell KP, Sodipo MO, Ophir MJ, Sargeant R, Seminario MC, Bunnell SC. ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. J Cell Sci 2018; 131:jcs215517. [PMID: 30305305 PMCID: PMC6240300 DOI: 10.1242/jcs.215517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.
Collapse
Affiliation(s)
- Juliana B Lewis
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frank A Scangarello
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joanne M Murphy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle O Sodipo
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ryan Sargeant
- Pacific Immunology Corporation, Ramona, CA 92065, USA
| | | | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
28
|
Wu Z, Blessing NA, Simske JS, Bruggeman LA. Fyn-binding protein ADAP supports actin organization in podocytes. Physiol Rep 2018; 5. [PMID: 29192064 PMCID: PMC5727265 DOI: 10.14814/phy2.13483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023] Open
Abstract
The renal podocyte is central to the filtration function of the kidney that is dependent on maintaining both highly organized, branched cell structures forming foot processes, and a unique cell-cell junction, the slit diaphragm. Our recent studies investigating the developmental formation of the slit diaphragm identified a novel claudin family tetraspannin, TM4SF10, which is a binding partner for ADAP (also known as Fyn binding protein Fyb). To investigate the role of ADAP in podocyte function in relation to Fyn and TM4SF10, we examined ADAP knockout (KO) mice and podocytes. ADAP KO mice developed glomerular pathology that began as hyalinosis and progressed to glomerulosclerosis, with aged male animals developing low levels of albuminuria. Podocyte cell lines established from the KO mice had slower attachment kinetics compared to wild-type cells, although this did not affect the total number of attached cells nor the ability to form focal contacts. After attachment, the ADAP KO cells did not attain typical podocyte morphology, lacking the elaborate cell protrusions typical of wild-type podocytes, with the actin cytoskeleton forming circumferential stress fibers. The absence of ADAP did not alter Fyn levels nor were there differences between KO and wild-type podocytes in the reduction of Fyn activating phosphorylation events with puromycin aminonucleoside treatment. In the setting of endogenous TM4SF10 overexpression, the absence of ADAP altered the formation of cell-cell contacts containing TM4SF10. These studies suggest ADAP does not alter Fyn activity in podocytes, but appears to mediate downstream effects of Fyn controlled by TM4SF10 involving actin cytoskeleton organization.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Natalya A Blessing
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jeffrey S Simske
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
29
|
ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia. Blood 2018; 132:635-646. [PMID: 29950291 DOI: 10.1182/blood-2018-01-829259] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023] Open
Abstract
Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Defects in thrombopoiesis can lead to thrombocytopenia associated with increased bleeding tendency. Recently, the platelet disorder congenital autosomal-recessive small-platelet thrombocytopenia (CARST) was described; it is caused by mutations in the adhesion and degranulation-promoting adaptor protein (ADAP; synonym: FYB, SLAP130/120) gene, and characterized by microthrombocytopenia and bleeding symptoms. In this study, we used constitutive ADAP-deficient mice (Adap-/- ) as a model to investigate mechanisms underlying the microthrombocytopenia in CARST. We show that Adap-/- mice display several characteristics of human CARST, with moderate thrombocytopenia and smaller-sized platelets. Adap-/- platelets had a shorter life span than control platelets, and macrophage depletion, but not splenectomy, increased platelet counts in mutant mice to control levels. Whole-sternum 3-dimensional confocal imaging and intravital 2-photon microscopy revealed altered morphology of ADAP-deficient MKs with signs of fragmentation and ectopic release of (pro)platelet-like particles into the BM compartment. In addition, cultured BM-derived MKs lacking ADAP showed reduced spreading on extracellular matrix proteins as well as activation of β1 integrins, impaired podosome formation, and displayed defective polarization of the demarcation membrane system in vitro. MK-/platelet-specific ADAP-deficient mice (PF4-cre) also produced fewer and smaller-sized platelets and released platelets ectopically. These data demonstrate that the abnormal platelet production in the mutant mice is an MK-intrinsic defect. Taken together, these results point to an as-yet-unidentified role of ADAP in the process of MK polarization and platelet biogenesis.
Collapse
|
30
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
31
|
Xiong Y, Ye C, Yang N, Li M, Liu H. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2017; 199:4142-4154. [PMID: 29127148 DOI: 10.4049/jimmunol.1700572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Chengjin Ye
- Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Madanqi Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and .,Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
32
|
Schierding W, Antony J, Karhunen V, Vääräsmäki M, Franks S, Elliott P, Kajantie E, Sebert S, Blakemore A, Horsfield JA, Järvelin MR, O’Sullivan JM, Cutfield WS. GWAS on prolonged gestation (post-term birth): analysis of successive Finnish birth cohorts. J Med Genet 2017; 55:55-63. [DOI: 10.1136/jmedgenet-2017-104880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/23/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023]
Abstract
BackgroundGestation is a crucial timepoint in human development. Deviation from a term gestational age correlates with both acute and long-term adverse health effects for the child. Both being born preterm and post-term, that is, having short and long gestational ages, are heritable and influenced by the prenatal and perinatal environment. Despite the obvious heritable component, specific genetic influences underlying differences in gestational age are poorly understood.MethodsWe investigated the genetic architecture of gestational age in 9141 individuals, including 1167 born post-term, across two Northern Finland cohorts born in 1966 or 1986.ResultsHere we identify one globally significant intronic genetic variant within the ADAMTS13 gene that is associated with prolonged gestation (p=4.85×10−8). Additional variants that reached suggestive levels of significance were identified within introns at the ARGHAP42 and TKT genes, and in the upstream (5’) intergenic regions of the B3GALT5 and SSBP2 genes. The variants near the ADAMTS13, B3GALT5, SSBP2 and TKT loci are linked to alterations in gene expression levels (cis-eQTLs). Luciferase assays confirmed the allele specific enhancer activity for the BGALT5 and TKT loci.ConclusionsOur findings provide the first evidence of a specific genetic influence associated with prolonged gestation. This study forms a foundation for a better understanding of the genetic and long-term health risks faced by induced and post-term individuals. The long-term risks for induced individuals who have a previously overlooked post-term potential may be a major issue for current health providers.
Collapse
|
33
|
Kuropka B, Schraven B, Kliche S, Krause E, Freund C. Tyrosine-phosphorylation of the scaffold protein ADAP and its role in T cell signaling. Expert Rev Proteomics 2017; 13:545-54. [PMID: 27258783 DOI: 10.1080/14789450.2016.1187565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The Adhesion and Degranulation promoting Adaptor Protein (ADAP) is phosphorylated upon T cell activation and acts as a scaffold for the formation of a signaling complex that integrates molecular interactions between T cell or chemokine receptors, the actin cytoskeleton, and integrin-mediated cellular adhesion and migration. AREAS COVERED This article reviews current knowledge of the functions of the adapter protein ADAP in T cell signaling with a focus on the role of individual phosphotyrosine (pY) motifs for SH2 domain mediated interactions. The data presented was obtained from literature searches (PubMed) as well as the authors own research on the topic. Expert commentary: ADAP can be regarded as a paradigmatic example of how tyrosine phosphorylation sites serve as dynamic interaction hubs. Molecular crowding at unstructured and redundant sites (pY595, pY651) is contrasted by more specific interactions enabled by the three-dimensional environment of a particular phosphotyrosine motif (pY571).
Collapse
Affiliation(s)
- Benno Kuropka
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany.,b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Burkhart Schraven
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany.,d Department of Immune Control , Helmholtz Center for Infection Research (HZI) , Braunschweig , Germany
| | - Stefanie Kliche
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany
| | - Eberhard Krause
- b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Christian Freund
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany
| |
Collapse
|
34
|
D120 and K152 within the PH Domain of T Cell Adapter SKAP55 Regulate Plasma Membrane Targeting of SKAP55 and LFA-1 Affinity Modulation in Human T Lymphocytes. Mol Cell Biol 2017; 37:MCB.00509-16. [PMID: 28052935 DOI: 10.1128/mcb.00509-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022] Open
Abstract
The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1.
Collapse
|
35
|
Thiere M, Kliche S, Müller B, Teuber J, Nold I, Stork O. Integrin Activation Through the Hematopoietic Adapter Molecule ADAP Regulates Dendritic Development of Hippocampal Neurons. Front Mol Neurosci 2016; 9:91. [PMID: 27746719 PMCID: PMC5044701 DOI: 10.3389/fnmol.2016.00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Integrin-mediated cell adhesion and signaling is of critical importance for neuronal differentiation. Recent evidence suggests that an “inside-out” activation of β1-integrin, similar to that observed in hematopoietic cells, contributes to the growth and branching of dendrites. In this study, we investigated the role of the hematopoietic adaptor protein adhesion and degranulation promoting adapter protein (ADAP) in these processes. We demonstrate the expression of ADAP in the developing and adult nervous hippocampus, and in outgrowing dendrites of primary hippocampal neurons. We further show that ADAP occurs in a complex with another adaptor protein signal-transducing kinase-associated phosphoprotein-homolog (SKAP-HOM), with the Rap1 effector protein RAPL and the Hippo kinase macrophage-stimulating 1 (MST1), resembling an ADAP/SKAP module that has been previously described in T-cells and is critically involved in “inside-out” activation of integrins. Knock down of ADAP resulted in reduced expression of activated β1-integrin on dendrites. It furthermore reduced the differentiation of developing neurons, as indicated by reduced dendrite growth and decreased expression of the dendritic marker microtubule-associated protein 2 (MAP2). Our data suggest that an ADAP-dependent integrin-activation similar to that described in hematopoietic cells contributes to the differentiation of neuronal cells.
Collapse
Affiliation(s)
- Marlen Thiere
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Bettina Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Jan Teuber
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Isabell Nold
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
36
|
Fiege JK, Beura LK, Burbach BJ, Shimizu Y. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2079-89. [PMID: 27521337 PMCID: PMC5010998 DOI: 10.4049/jimmunol.1501805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 07/13/2016] [Indexed: 11/19/2022]
Abstract
During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
37
|
Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci Rep 2016; 6:32735. [PMID: 27597234 PMCID: PMC5011738 DOI: 10.1038/srep32735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 12/27/2022] Open
Abstract
Oral cancer generally progresses from precancerous lesions such as leukoplakia (LK), lichen planus (LP) and oral submucous fibrosis (OSMF). Since few of these precancers progress to cancers; it is worth to identify biological molecules that may play important roles in progression. Here, expression deregulation of 7 miRNAs (mir204, mir31, mir31*, mir133a, mir7, mir206 and mir1293) and their possible target genes in 23 cancers, 18 LK, 12 LP, 23 OSMF tissues compared to 20 healthy tissues was determined by qPCR method. Expression of mir7, mir31, mir31* and mir1293 was upregulated and that of mir133a, mir204 and mir206 was downregulated in cancer. Expression of most of these miRNAs was also upregulated in LK and LP tissues but not in OSMF. Expression deregulation of some of the target genes was also determined in cancer, LK and LP tissues. Significant upregulation of mir31 and downregulation of its target gene, CXCL12, in cancer, LK and LP tissues suggest their importance in progression of precancer to cancer. Expression upregulation of mir31 was also validated using GEO data sets. Although sample size is low, novelty of this work lies in studying expression deregulation of miRNAs and target genes in oral cancer and three types of precancerous lesions.
Collapse
|
38
|
Danzer C, Koller A, Baier J, Arnold H, Giessler C, Opoka R, Schmidt S, Willers M, Mihai S, Parsch H, Wirtz S, Daniel C, Reinhold A, Engelmann S, Kliche S, Bogdan C, Hoebe K, Mattner J. A mutation within the SH2 domain of slp-76 regulates the tissue distribution and cytokine production of iNKT cells in mice. Eur J Immunol 2016; 46:2121-2136. [PMID: 27349342 DOI: 10.1002/eji.201646331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Claudia Danzer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Koller
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Baier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Arnold
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Giessler
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Stephanie Schmidt
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maike Willers
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans Parsch
- Zentrallabor, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Nephropathologische Abteilung, Universitätsklinikum Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Swen Engelmann
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Freund J, May RM, Yang E, Li H, McCullen M, Zhang B, Lenvik T, Cichocki F, Anderson SK, Kambayashi T. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells. PLoS Biol 2016; 14:e1002526. [PMID: 27500644 PMCID: PMC4976927 DOI: 10.1371/journal.pbio.1002526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cells, Cultured
- Flow Cytometry
- Genetic Variation/immunology
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/immunology
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- RNA Interference
- Receptors, KIR/immunology
- Receptors, KIR/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jacquelyn Freund
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca M. May
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Enjun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Matthew McCullen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bin Zhang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Todd Lenvik
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank Cichocki
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick, Maryland, United States of America
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
40
|
Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med 2016; 213:1609-25. [PMID: 27354546 PMCID: PMC4986522 DOI: 10.1084/jem.20151088] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Saito et al. describe a ring of focal adhesion molecules that surrounds T cell receptor microclusters and is essential for early T cell activation. The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals.
Collapse
Affiliation(s)
- Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ike
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Laboratory for Cell Signaling, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Laboratory for Cell Signaling, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Jung SH, Yoo EH, Yu MJ, Song HM, Kang HY, Cho JY, Lee JR. ARAP, a Novel Adaptor Protein, Is Required for TCR Signaling and Integrin-Mediated Adhesion. THE JOURNAL OF IMMUNOLOGY 2016; 197:942-52. [PMID: 27335501 DOI: 10.4049/jimmunol.1501913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
Abstract
A novel adaptor protein was identified by analyzing phosphotyrosine proteomes from membrane rafts of activated T cells. This protein showed sequence similarity to a well-known T cell adaptor protein, adhesion and degranulation-promoting adaptor protein (ADAP); therefore, the novel protein was designated activation-dependent, raft-recruited ADAP-like phosphoprotein (ARAP). Suppression of ARAP impaired the major signaling pathways downstream of the TCR. ARAP associated with the Src homology 2 domain of Src homology 2-containing leukocyte protein of 76 kDa via the phosphorylation of two YDDV motifs in response to TCR stimulation. ARAP also mediated integrin activation but was not involved in actin polymerization. The results of this study indicate that a novel T cell adaptor protein, ARAP, plays a unique role in T cells as a part of both the proximal activation signaling and inside-out signaling pathways that result in integrin activation and T cell adhesion.
Collapse
Affiliation(s)
- Seung Hee Jung
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Hye Yoo
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Mi Jin Yu
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Hyeon Myeong Song
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yoon Kang
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| |
Collapse
|
42
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
43
|
Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, Zhang C, Sheng C, Leng Q, Rudd CE, Wei B, Wang H. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med 2016; 7:754-69. [PMID: 25851535 PMCID: PMC4459816 DOI: 10.15252/emmm.201404578] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 negatively regulates CD8(+) cytotoxic T lymphocytes (CTL) cytotoxicity and anti-tumor immunity. However, it is not fully understood how PD-1 expression on CD8(+) CTL is regulated during anti-tumor immunotherapy. In this study, we have identified that the ADAP-SKAP55 signaling module reduced CD8(+) CTL cytotoxicity and enhanced PD-1 expression in a Fyn-, Ca(2+)-, and NFATc1-dependent manner. In DC vaccine-based tumor prevention and therapeutic models, knockout of SKAP55 or ADAP showed a heightened protection from tumor formation or metastases in mice and reduced PD-1 expression in CD8(+) effector cells. Interestingly, CTLA-4 levels and the percentages of tumor infiltrating CD4(+)Foxp3(+) Tregs remained unchanged. Furthermore, adoptive transfer of SKAP55-deficient or ADAP-deficient CD8(+) CTLs significantly blocked tumor growth and increased anti-tumor immunity. Pretreatment of wild-type CD8(+) CTLs with the NFATc1 inhibitor CsA could also downregulate PD-1 expression and enhance anti-tumor therapeutic efficacy. Together, we propose that targeting the unrecognized ADAP-SKAP55-NFATc1-PD-1 pathway might increase efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunyang Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Normal University, Shanghai, China
| | - Shaozhuo Jiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chun Sheng
- Shanghai Normal University, Shanghai, China
| | - Qibin Leng
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | | | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Lim D, Lu Y, Rudd CE. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1. Immunol Lett 2016; 172:40-6. [PMID: 26905930 PMCID: PMC4860717 DOI: 10.1016/j.imlet.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022]
Abstract
Skap1−/− T-cells show impaired talin and RIAM localization at the anti-CD3 beads. Talin cleavage is altered in Skap1−/− T-cells. Cleavage resistant talin (L432G) restored normal conjugation of Skap1−/− T-cells. Immune cell adaptor SKAP1 interfaces with regulation of talin and RIAM in T-cells.
While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation.
Collapse
Affiliation(s)
- Daina Lim
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Yuning Lu
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK.
| |
Collapse
|
45
|
|
46
|
Fiege JK, Burbach BJ, Shimizu Y. Negative Regulation of Memory Phenotype CD8 T Cell Conversion by Adhesion and Degranulation-Promoting Adapter Protein. THE JOURNAL OF IMMUNOLOGY 2015; 195:3119-28. [PMID: 26320248 DOI: 10.4049/jimmunol.1402670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
The maintenance of T cell repertoire diversity involves the entry of newly developed T cells, as well as the maintenance of memory T cells generated from previous infections. This balance depends on competition for a limited amount of homeostatic cytokines and interaction with self-peptide MHC class I. In the absence of prior infection, memory-like or memory phenotype (MP) CD8 T cells can arise from homeostatic cytokine exposure during neonatal lymphopenia. Aside from downstream cytokine signaling, little is known about the regulation of the conversion of naive CD8 T cells to MP CD8 T cells during acute lymphopenia. We have identified a novel negative regulatory role for adhesion and degranulation-promoting adapter protein (ADAP) in CD8 T cell function. We show that in the absence of ADAP, naive CD8 T cells exhibit a diminished response to stimulatory Ag, but an enhanced response to weak agonist-altered peptide ligands. ADAP-deficient mice exhibit more MP CD8 T cells that occur following thymic emigration and are largely T cell intrinsic. Naive ADAP-deficient CD8 T cells are hyperresponsive to lymphopenia in vivo and exhibit enhanced activation of STAT5 and homeostatic Ag-independent proliferation in response to IL-15. Our results indicate that ADAP dampens naive CD8 T cell responses to lymphopenia and IL-15, and they demonstrate a novel Ag-independent function for ADAP in the suppression of MP CD8 T cell generation.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
47
|
Serum biomarkers VEGF-C and IL-6 are associated with severe human Peripheral Artery Stenosis. JOURNAL OF INFLAMMATION-LONDON 2015; 12:50. [PMID: 26283889 PMCID: PMC4538759 DOI: 10.1186/s12950-015-0095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Emerging reports propose possible biomarkers that are related to inflammation, nutrition and lipid parameters for detection of the progression of atherosclerotic plaques, peripheral artery disease (PAD) and particularly peripheral artery stenosis (PAS). However, it remains unclear which biomarkers in serum are associated with the severity of PAS. FINDINGS In this study, we measured serum levels of inflammatory biomarkers along with lipid and nutritional parameters in 53 patients who suffered different degrees of PAS. Serum concentrations of vascular endothelial growth factor-c (VEGF-C) and IL-6 (Interleukin 6) were significantly increased in patients showing moderate or severe PAS. Furthermore, the number of blood monocytes from PAS patients was significantly increased, which showed elevated adhesion to plate-coated fibrinogen. Compared to healthy subjects, freshly isolated or LPS (lipopolysaccharide)-stimulated blood monocytes from PAS patients could produce VEGF-C and IL-6 at higher levels. CONCLUSIONS Our study suggests that the increased number of blood monocytes might play key roles during the development of severe PAS, which enhance adhesion at the local narrowed peripheral artery and secret high levels of VEGF-C and IL-6. We suggest that serum concentrations of VEGF-C and IL-6 might be used as biomarkers for diagnosis severe PAS in combination with clinical imaging examination.
Collapse
|
48
|
Kuropka B, Witte A, Sticht J, Waldt N, Majkut P, Hackenberger CPR, Schraven B, Krause E, Kliche S, Freund C. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration. Mol Cell Proteomics 2015; 14:2961-72. [PMID: 26246585 DOI: 10.1074/mcp.m115.048249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.
Collapse
Affiliation(s)
- Benno Kuropka
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany; §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Amelie Witte
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Sticht
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany
| | - Natalie Waldt
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Paul Majkut
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; ‖RiNA GmbH, Volmerstrasse 9, 12489 Berlin, Germany
| | | | - Burkhart Schraven
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany; **Helmholtz Center for Infection Research (HZI), Department of Immune Control, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Eberhard Krause
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany;
| | - Stefanie Kliche
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany;
| | - Christian Freund
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany;
| |
Collapse
|
49
|
Dios-Esponera A, Isern de Val S, Sevilla-Movilla S, García-Verdugo R, García-Bernal D, Arellano-Sánchez N, Cabañas C, Teixidó J. Positive and negative regulation by SLP-76/ADAP and Pyk2 of chemokine-stimulated T-lymphocyte adhesion mediated by integrin α4β1. Mol Biol Cell 2015. [PMID: 26202465 PMCID: PMC4569313 DOI: 10.1091/mbc.e14-07-1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stimulation by chemokines of integrin α4β1-dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase-inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76-, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation.
Collapse
Affiliation(s)
- Ana Dios-Esponera
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Soledad Isern de Val
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Silvia Sevilla-Movilla
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Rosa García-Verdugo
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - David García-Bernal
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Nohemí Arellano-Sánchez
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular (CSIC), Department of Cell Biology and Immunology, Cantoblanco, 28049 Madrid, Spain
| | - Joaquin Teixidó
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| |
Collapse
|
50
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|