1
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2025; 70:423-444. [PMID: 38876192 PMCID: PMC11976419 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Ling H, Zhang W, Zhang Y, Shen J, Liu Q. Lanthanide-Doped Upconversion Nanoparticles for Single-Particle Imaging. Chembiochem 2025:e2400942. [PMID: 40134352 DOI: 10.1002/cbic.202400942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have recently demonstrated great promise in single-particle imaging (SPI) due to their exceptional photostability and minimal background fluorescence. However, their limited brightness has posed a significant barrier to wider adoption in SPI applications. This review highlights recent advances in applying UCNPs for SPI, focusing on strategies to enhance their brightness and reduce quenching effects in aqueous environments. Additionally, it summarizes the latest progress in using UCNPs for single-particle tracking and super-resolution imaging, underscoring their potential in biomedical research. Finally, the review outlines current challenges and future directions in this field.
Collapse
Affiliation(s)
- Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Wenrui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jie Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Gliwa K, Hull J, Kansol A, Zembruski V, Lakshmanan R, Mietzsch M, Chipman P, Bennett A, McKenna R. Biophysical and structural insights into AAV genome ejection. J Virol 2025; 99:e0089924. [PMID: 39907279 PMCID: PMC11915859 DOI: 10.1128/jvi.00899-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/09/2024] [Indexed: 02/06/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) is comprised of non-enveloped capsids that can package a therapeutic transgene and are currently being developed and utilized as gene therapy vectors. The therapeutic efficiency of rAAV is dependent on successful cytoplasmic trafficking and transgene delivery to the nucleus. It is hypothesized that an increased understanding of the effects of the cellular environment and biophysical properties of the capsid as it traffics to the nucleus could provide insight to improve vector efficiency. The AAV capsid is exposed to increasing [H+] during endo-lysosomal trafficking. Exposure to low pH facilitates the externalization of the viral protein 1 unique region (VP1u). This VP1u contains a phospholipase A2 domain required for endosomal escape and nuclear localization signals that facilitate nuclear targeting and entry. The viral genome is released either after total capsid disassembly or via a concerted DNA ejection mechanism in the nucleus. This study presents the characterization of genome ejection (GE) for two diverse serotypes, AAV2 and AAV5, using temperature. The temperature required to disassemble the virus capsid (TM) is significantly higher than the temperature required to expose the transgene (TE) for both serotypes. This was verified by quantitative PCR (qPCR) and transmission electron microscopy. Additionally, the absence of VP1/VP2 in the capsids and a decrease in pH increase the temperature of GE. Furthermore, cryo-electron microscopy structures of the AAV5 capsid pre- and post-GE reveal dynamics at the twofold, threefold, and fivefold regions of the capsid interior consistent with a concerted egress of the viral genome.IMPORTANCEThe development of recombinant adeno-associated virus (rAAV) capsids has grown rapidly in recent years, with five of the eight established therapeutics gaining approval in the past 2 years alone. Clinical progression with AAV2 and AAV5 represents a growing need to further characterize the molecular biology of these viruses. The goal of AAV-based gene therapy is to treat monogenic disorders with a vector-delivered transgene to provide wild-type protein function. A better understanding of the dynamics and conditions enabling transgene release may improve therapeutic efficiency. In addition to their clinical importance, AAV2 and 5 were chosen in this study for their diverse antigenic and biophysical properties compared to more closely related serotypes. Characterization of a shared genome ejection process may imply a conserved mechanism for all rAAV therapies.
Collapse
Affiliation(s)
- Keely Gliwa
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Joshua Hull
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Victoria Zembruski
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Renuk Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- ICBR Electron Microscopy Core Facility, University of Florida, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
5
|
Mateos N, Gutierrez-Martinez E, Angulo-Capel J, Carlon-Andres I, Padilla-Parra S, Garcia-Parajo MF, Torreno-Pina JA. Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells. ACS NANO 2024; 18:28881-28893. [PMID: 39387532 PMCID: PMC11503779 DOI: 10.1021/acsnano.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.
Collapse
Affiliation(s)
- Nicolas Mateos
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Enric Gutierrez-Martinez
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jessica Angulo-Capel
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Irene Carlon-Andres
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
| | - Sergi Padilla-Parra
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Maria F. Garcia-Parajo
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Juan A. Torreno-Pina
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
6
|
Chen R, Rey JA, Tuna IS, Tran DD, Sarntinoranont M. A Spatial Interpolation Approach to Assign Magnetic Resonance Imaging-Derived Material Properties for Finite Element Models of Adeno-Associated Virus Infusion Into a Recurrent Brain Tumor. J Biomech Eng 2024; 146:101001. [PMID: 38581376 PMCID: PMC11110824 DOI: 10.1115/1.4064966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
Adeno-associated virus (AAV) is a clinically useful gene delivery vehicle for treating neurological diseases. To deliver AAV to focal targets, direct infusion into brain tissue by convection-enhanced delivery (CED) is often needed due to AAV's limited penetration across the blood-brain-barrier and its low diffusivity in tissue. In this study, computational models that predict the spatial distribution of AAV in brain tissue during CED were developed to guide future placement of infusion catheters in recurrent brain tumors following primary tumor resection. The brain was modeled as a porous medium, and material property fields that account for magnetic resonance imaging (MRI)-derived anatomical regions were interpolated and directly assigned to an unstructured finite element mesh. By eliminating the need to mesh complex surfaces between fluid regions and tissue, mesh preparation was expedited, increasing the model's clinical feasibility. The infusion model predicted preferential fluid diversion into open fluid regions such as the ventricles and subarachnoid space (SAS). Additionally, a sensitivity analysis of AAV delivery demonstrated that improved AAV distribution in the tumor was achieved at higher tumor hydraulic conductivity or lower tumor porosity. Depending on the tumor infusion site, the AAV distribution covered 3.67-70.25% of the tumor volume (using a 10% AAV concentration threshold), demonstrating the model's potential to inform the selection of infusion sites for maximal tumor coverage.
Collapse
Affiliation(s)
- Reed Chen
- Department of Biomedical Engineering, Duke University, 407 Towerview Rd, Box 97756, Durham, NC 27708
| | - Julian A. Rey
- Department of Mechanical & Aerospace Engineering, University of Florida, 142 New Engineering Building, P.O. Box 116250, Gainesville, FL 32611
- University of Florida
| | - Ibrahim S. Tuna
- Department of Radiology, University of Florida College of Medicine, P.O. Box 100374, Gainesville, FL 32610-0374
- University of Florida
| | - David D. Tran
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- University of Southern California
| | - Malisa Sarntinoranont
- Department of Mechanical & Aerospace Engineering, University of Florida, 497 Wertheim, P.O. Box 116250, Gainesville, FL 32611
| |
Collapse
|
7
|
Pham Q, Glicksman J, Chatterjee A. Chemical approaches to probe and engineer AAV vectors. NANOSCALE 2024; 16:13820-13833. [PMID: 38978480 PMCID: PMC11271820 DOI: 10.1039/d4nr01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Adeno-associated virus (AAV) has emerged as the most promising vector for in vivo human gene therapy, with several therapeutic approvals in the last few years and countless more under development. Underlying this remarkable success are several attractive features that AAV offers, including lack of pathogenicity, low immunogenicity, long-term gene expression without genomic integration, the ability to infect both dividing and non-dividing cells, etc. However, the commonly used wild-type AAV capsids in therapeutic development present significant challenges, including inadequate tissue specificity and the need for large doses to attain therapeutic effectiveness, raising safety concerns. Additionally, significant preexisting adaptive immunity against most natural capsids, and the development of such anti-capsid immunity after the first treatment, represent major challenges. Strategies to engineer the AAV capsid are critically needed to address these challenges and unlock the full promise of AAV gene therapy. Chemical modification of the AAV capsid has recently emerged as a powerful new approach to engineer its properties. Unlike genetic strategies, which can be more disruptive to the delicate capsid assembly and packaging processes, "late-stage" chemical modification of the assembled capsid-whether at natural amino acid residues or site-specifically installed noncanonical amino acid residues-often enables a versatile approach to introducing new properties to the capsid. This review summarizes the significant recent progress in AAV capsid engineering strategies, with a particular focus on chemical modifications in advancing the next generation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jake Glicksman
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
8
|
Kudryavtsev DS, Mozhaeva VA, Ivanov IA, Siniavin AE, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Tsetlin VI, Balykin VI, Melentiev PN. Optical detection of infectious SARS-CoV-2 virions by counting spikes. NANOSCALE 2024; 16:12424-12430. [PMID: 38887059 DOI: 10.1039/d4nr01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Vera A Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Andrey E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health, Moscow, 123098, Russia
| | | | | | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
- Higher School of Economics, National Research University, Moscow, 101000, Russia
| |
Collapse
|
9
|
Liu J, Sun K, Wang H. Anomalous diffusion in external-force-affected deterministic systems. Phys Rev E 2024; 110:014204. [PMID: 39160918 DOI: 10.1103/physreve.110.014204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the impact of external forces on the movement of particles, specifically focusing on a type of box piecewise linear map that generates normal diffusion akin to Brownian motion. Through numerical methods, the research delves into the effects of two distinct external forces: linear forces linked to the particle's current position and periodic sinusoidal forces related to time. The results uncover anomalous dynamical behavior characterized by nonlinear growth in the ensemble-averaged mean-squared displacement (EAMSD), aging, and ergodicity breaking. Notably, the diffusion pattern of particles under linear external forces resembles an Ehrenfest double urn model, with its asymptotic EAMSD coinciding with the Langevin equation under linear potential. Meanwhile, particle movement influenced by periodic sinusoidal forces corresponds to an inhomogeneous Markov chain, with its external force amplitude and diffusion coefficient function exhibiting a "multipeak" fractal structure. The study also provides insights into the formation of this structure through the turnstiles dynamics.
Collapse
|
10
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
11
|
Thomas SP, Spinelli MM, Rghei AD, Lopes JA, Zielinska N, McLeod BM, Pei Y, Zhang W, Thebaud B, Karimi K, Wootton SK. Analysis of the impact of pluronic acid on the thermal stability and infectivity of AAV6.2FF. BMC Biotechnol 2024; 24:22. [PMID: 38664752 PMCID: PMC11045451 DOI: 10.1186/s12896-024-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.
Collapse
Affiliation(s)
- Sylvia P Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marcus M Spinelli
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Zielinska
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Benjamin M McLeod
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Bernard Thebaud
- The Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Seckler H, Metzler R, Kelty-Stephen DG, Mangalam M. Multifractal spectral features enhance classification of anomalous diffusion. Phys Rev E 2024; 109:044133. [PMID: 38755826 DOI: 10.1103/physreve.109.044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, New York 12561, USA
| | - Madhur Mangalam
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
13
|
Chae SJ, Kim DW, Igoshin OA, Lee S, Kim JK. Beyond microtubules: The cellular environment at the endoplasmic reticulum attracts proteins to the nucleus, enabling nuclear transport. iScience 2024; 27:109235. [PMID: 38439967 PMCID: PMC10909898 DOI: 10.1016/j.isci.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
All proteins are translated in the cytoplasm, yet many, including transcription factors, play vital roles in the nucleus. While previous research has concentrated on molecular motors for the transport of these proteins to the nucleus, recent observations reveal perinuclear accumulation even in the absence of an energy source, hinting at alternative mechanisms. Here, we propose that structural properties of the cellular environment, specifically the endoplasmic reticulum (ER), can promote molecular transport to the perinucleus without requiring additional energy expenditure. Specifically, physical interaction between proteins and the ER impedes their diffusion and leads to their accumulation near the nucleus. This result explains why larger proteins, more frequently interacting with the ER membrane, tend to accumulate at the perinucleus. Interestingly, such diffusion in a heterogeneous environment follows Chapman's law rather than the popular Fick's law. Our findings suggest a novel protein transport mechanism arising solely from characteristics of the intracellular environment.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
14
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
15
|
Holler C, Taylor RW, Schambony A, Möckl L, Sandoghdar V. A paintbrush for delivery of nanoparticles and molecules to live cells with precise spatiotemporal control. Nat Methods 2024; 21:512-520. [PMID: 38347139 PMCID: PMC10927540 DOI: 10.1038/s41592-024-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
Delivery of very small amounts of reagents to the near-field of cells with micrometer spatial precision and millisecond time resolution is currently out of reach. Here we present μkiss as a micropipette-based scheme for brushing a layer of small molecules and nanoparticles onto the live cell membrane from a subfemtoliter confined volume of a perfusion flow. We characterize our system through both experiments and modeling, and find excellent agreement. We demonstrate several applications that benefit from a controlled brush delivery, such as a direct means to quantify local and long-range membrane mobility and organization as well as dynamical probing of intercellular force signaling.
Collapse
Affiliation(s)
- Cornelia Holler
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Richard William Taylor
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alexandra Schambony
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
16
|
Słyk Ż, Wrzesień R, Barszcz S, Gawrychowski K, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother 2024; 170:116061. [PMID: 38154269 DOI: 10.1016/j.biopha.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Gelatin-based formulations are utilized in neurosurgical procedures, with Medisponge® serving as an illustration of a secure and biocompatible hemostatic formulation. Noteworthy are combined hemostatic products that integrate pharmacological agents with gelatin. Gelatin matrices, which host biologically active substances, provide a platform for a variety of molecules. Biopolymers function as carriers for chemicals and genes, a facet particularly pertinent in brain cancer therapy, as gene therapy complement conventional approaches. The registration of Zolgensma underscores the efficacy of rAAV vectors in therapeutic gene delivery to the CNS. rAAVs, renowned for their safety, stability, and neuron-targeting capabilities, predominate in CNS gene therapy studies. The effectiveness of rAAV vector therapy varies based on the serotype and administration route. Local gene therapy employing hydrogel (e.g., post-tumor resection) enables the circumvention of the blood-brain barrier and restricts formulation diffusion. This study formulates gelatin rAAV gene formulations and evaluates vector transduction potential. Transduction efficiency was assessed using ex vivo mouse brains and in vitro cancer cell lines. In vitro, the transduction of rAAV vectors in gelatin matrices was quantified through qPCR, measuring the itr and Gfp expression. rAAVDJ and rAAV2 demonstrated superior transduction in ex vivo and in vitro models. Among the cell lines tested (Hs683, B16-F10, NIH:OVCAR-3), gelatin matrix F1 exhibited selective transduction, particularly with Hs683 human glioma cells, surpassing the performance Medisponge®. This research highlights the exploration of local brain cancer therapy, emphasizing the potential of gelatin as an rAAV vector carrier for gene therapy. The functional transduction activity of gelatin rAAV formulations is demonstrated.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Barszcz
- Department of Neurosurgery, Children's Clinical Hospital, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Gawrychowski
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Valdés Gómez A, Sevilla FJ. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies. Phys Rev E 2023; 108:054117. [PMID: 38115432 DOI: 10.1103/physreve.108.054117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
We analyze fractional Brownian motion and scaled Brownian motion on the two-dimensional sphere S^{2}. We find that the intrinsic long-time correlations that characterize fractional Brownian motion collude with the specific dynamics (navigation strategies) carried out on the surface giving rise to rich transport properties. We focus our study on two classes of navigation strategies: one induced by a specific set of coordinates chosen for S^{2} (we have chosen the spherical ones in the present analysis), for which we find that contrary to what occurs in the absence of such long-time correlations, nonequilibrium stationary distributions are attained. These results resemble those reported in confined flat spaces in one and two dimensions [Guggenberger et al. New J. Phys. 21, 022002 (2019)1367-263010.1088/1367-2630/ab075f; Vojta et al. Phys. Rev. E 102, 032108 (2020)2470-004510.1103/PhysRevE.102.032108]; however, in the case analyzed here, there are no boundaries that affect the motion on the sphere. In contrast, when the navigation strategy chosen corresponds to a frame of reference moving with the particle (a Frenet-Serret reference system), then the equilibrium distribution on the sphere is recovered in the long-time limit. For both navigation strategies, the relaxation times toward the stationary distribution depend on the particular value of the Hurst parameter. We also show that on S^{2}, scaled Brownian motion, distinguished by a time-dependent diffusion coefficient with a power-scaling, is independent of the navigation strategy finding a good agreement between the analytical calculations obtained from the solution of a time-dependent diffusion equation on S^{2}, and the numerical results obtained from our numerical method to generate ensemble of trajectories.
Collapse
Affiliation(s)
- Adriano Valdés Gómez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Alcaldía Coyoacán, C.P. 04510 Ciudad Universitaria, Ciudad de México, México
- BBVA AI Factory México
| | - Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
18
|
Cherayil BJ. Survival probabilities and first-passage distributions of self-propelled particles in spherical cavities. Phys Rev E 2023; 108:054607. [PMID: 38115486 DOI: 10.1103/physreve.108.054607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
A model of self-propelled motion in a closed compartment containing simple or complex fluids is formulated in this paper in terms of the dynamics of a point particle moving in a spherical cavity under the action of random thermal forces and exponentially correlated noise. The particle's time evolution is governed by a generalized Langevin equation (GLE) in which the memory function, connected to the thermal forces by a fluctuation-dissipation relation, is described by Jeffrey's model of viscoelasticity (which reduces to a model of ordinary viscous dynamics in a suitable limit). The GLE is transformed exactly to a Fokker-Planck equation that in spherical polar coordinates is in turn found to admit of an exact solution for the particle's probability density function under absorbing boundary conditions at the surface of the sphere. The solution is used to derive an expression (that is also exact) for the survival probability of the particle in the sphere, starting from its center, which is then used to calculate the distribution of the particle's first-passage times to the boundary. The behavior of these quantities is investigated as a function of the Péclet number and the persistence time of the athermal forces, providing insight into the effects of nonequilibrium fluctuations on confined particle motion in three dimensions.
Collapse
Affiliation(s)
- Binny J Cherayil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
19
|
Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, Carbone D, Manna D, Aalam F, Wang D, Vanier C, Corbeil D, Lorico A. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. Nat Commun 2023; 14:4588. [PMID: 37563144 PMCID: PMC10415338 DOI: 10.1038/s41467-023-40227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
Collapse
Affiliation(s)
- Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Germana Rappa
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - David Manna
- Touro College of Osteopathic Medicine, Middletown, New York, NY, USA
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - David Wang
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Cheryl Vanier
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
- Imgen Research, LLC, 5495 South Rainbow #201, Las Vegas, NV, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| |
Collapse
|
20
|
Liang Y, Wang W, Metzler R. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift. Phys Rev E 2023; 108:024143. [PMID: 37723819 DOI: 10.1103/physreve.108.024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
The stochastic motion of a particle with long-range correlated increments (the moving phase) which is intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion with constant forcing in which the trapping effect is introduced by the subordination technique, connecting "operational time" with observable "real time." We derive the statistical properties of this process such as non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons between the cases with and without drift.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
21
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
22
|
Nattagh Najafi M, Zayed RMA, Nabavizadeh SA. Swarming Transition in Super-Diffusive Self-Propelled Particles. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050817. [PMID: 37238572 DOI: 10.3390/e25050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
A super-diffusive Vicsek model is introduced in this paper that incorporates Levy flights with exponent α. The inclusion of this feature leads to an increase in the fluctuations of the order parameter, ultimately resulting in the disorder phase becoming more dominant as α increases. The study finds that for α values close to two, the order-disorder transition is of the first order, while for small enough values of α, it shows degrees of similarities with the second-order phase transitions. The article formulates a mean field theory based on the growth of the swarmed clusters that accounts for the decrease in the transition point as α increases. The simulation results show that the order parameter exponent β, correlation length exponent ν, and susceptibility exponent γ remain constant when α is altered, satisfying a hyperscaling relation. The same happens for the mass fractal dimension, information dimension, and correlation dimension when α is far from two. The study reveals that the fractal dimension of the external perimeter of connected self-similar clusters conforms to the fractal dimension of Fortuin-Kasteleyn clusters of the two-dimensional Q=2 Potts (Ising) model. The critical exponents linked to the distribution function of global observables vary when α changes.
Collapse
Affiliation(s)
| | - Rafe Md Abu Zayed
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | | |
Collapse
|
23
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Xu LW, Sgouralis I, Kilic Z, Pressé S. BNP-Track: A framework for multi-particle superresolved tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535440. [PMID: 37066179 PMCID: PMC10104013 DOI: 10.1101/2023.04.03.535440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
When tracking fluorescently labeled molecules (termed "emitters") under widefield microscopes, point spread function overlap of neighboring molecules is inevitable in both dilute and especially crowded environments. In such cases, superresolution methods leveraging rare photophysical events to distinguish static targets nearby in space introduce temporal delays that compromise tracking. As we have shown in a companion manuscript, for dynamic targets, information on neighboring fluorescent molecules is encoded as spatial intensity correlations across pixels and temporal correlations in intensity patterns across time frames. We then demonstrated how we used all spatiotemporal correlations encoded in the data to achieve superresolved tracking. That is, we showed the results of full posterior inference over both the number of emitters and their associated tracks simultaneously and self-consistently through Bayesian nonparametrics. In this companion manuscript we focus on testing the robustness of our tracking tool, BNP-Track, across sets of parameter regimes and compare BNP-Track to competing tracking methods in the spirit of a prior Nature Methods tracking competition. We explore additional features of BNP-Track including how a stochastic treatment of background yields greater accuracy in emitter number determination and how BNP-Track corrects for point spread function blur (or "aliasing") introduced by intraframe motion in addition to propagating error originating from myriad sources (such as criss-crossing tracks, out-of-focus particles, pixelation, shot and camera artefact, stochastic background) in posterior inference over emitter numbers and their associated tracks. While head-to-head comparison with other tracking methods is not possible (as competitors cannot simultaneously learn molecule numbers and associated tracks), we can give competing methods some advantages in order to perform approximate head-to-head comparison. We show that even under such optimistic scenarios, BNP-Track is capable of tracking multiple diffraction-limited point emitters conventional tracking methods cannot resolve thereby extending the superresolution paradigm to dynamical targets.
Collapse
Affiliation(s)
- Lance W.Q. Xu
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Zeliha Kilic
- Single-Molecule Imaging Center, Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Steve Pressé
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Science, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Ratra S, Pant B, Roy K, Manohar S, Kumar P, Singh S, Tumba K, Kumari K, Singh P. A review on synthesis of antiviral drugs, in silico studies and their toxicity. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
26
|
Single-virus tracking with quantum dots in live cells. Nat Protoc 2023; 18:458-489. [PMID: 36451053 DOI: 10.1038/s41596-022-00775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022]
Abstract
Single-virus tracking (SVT) offers the opportunity to monitor the journey of individual viruses in real time and to explore the interactions between viral and cellular structures in live cells, which can assist in characterizing the complex infection process and revealing the associated dynamic mechanisms. However, the low brightness and poor photostability of conventional fluorescent tags (e.g., organic dyes and fluorescent proteins) greatly limit the development of the SVT technique, and challenges remain in performing multicolor SVT over long periods of time. Owing to the outstanding photostability, high brightness and narrow emission with tunable color range of quantum dots (QDs), QD-based SVT (QSVT) enables us to follow the fate of individual viruses interacting with different cellular structures at the single-virus level for milliseconds to hours, providing more accurate and detailed information regarding viral infection in live cells. So far, the QSVT technique has yielded spectacular achievements in uncovering the mechanisms associated with virus entry, trafficking and egress. Here, we provide a detailed protocol for QSVT implementation using the viruses that we have previously studied systematically as an example. The specific procedures for performing QSVT experiments in live cells are described, including virus preparation, the QD labeling strategies, imaging approaches, image processing and data analysis. The protocol takes 1-2 weeks from the preparation of viruses and cellular specimens to image acquisition, and 1 d for image processing and data analysis.
Collapse
|
27
|
Zhang X, Li W, Cui Z. Single-Particle Tracking of Virus Entry in Live Cells. Subcell Biochem 2023; 106:153-168. [PMID: 38159226 DOI: 10.1007/978-3-031-40086-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Johnson C, Exell J, Lin Y, Aguilar J, Welsher KD. Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking. Nat Methods 2022; 19:1642-1652. [PMID: 36357694 PMCID: PMC10154077 DOI: 10.1038/s41592-022-01672-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
The early stages of the virus-cell interaction have long evaded observation by existing microscopy methods due to the rapid diffusion of virions in the extracellular space and the large three-dimensional cellular structures involved. Here we present an active-feedback single-particle tracking method with simultaneous volumetric imaging of the live cell environment called 3D-TrIm to address this knowledge gap. 3D-TrIm captures the extracellular phase of the infectious cycle in what we believe is unprecedented detail. We report what are, to our knowledge, previously unobserved phenomena in the early stages of the virus-cell interaction, including skimming contact events at the millisecond timescale, orders of magnitude change in diffusion coefficient upon binding and cylindrical and linear diffusion modes along cellular protrusions. Finally, we demonstrate how this method can move single-particle tracking from simple monolayer culture toward more tissue-like conditions by tracking single virions in tightly packed epithelial cells. This multiresolution method presents opportunities for capturing fast, three-dimensional processes in biological systems.
Collapse
Affiliation(s)
| | - Jack Exell
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Yuxin Lin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
29
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
30
|
Salman MI, Al-Shammari AM, Emran MA. 3-Dimensional coculture of breast cancer cell lines with adipose tissue–Derived stem cells reveals the efficiency of oncolytic Newcastle disease virus infection via labeling technology. Front Mol Biosci 2022; 9:754100. [PMID: 36172043 PMCID: PMC9511405 DOI: 10.3389/fmolb.2022.754100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Oncolytic virotherapy is one of the emerging biological therapeutics that needs a more efficient in vitro tumor model to overcome the two-dimensional (2D) monolayer tumor cell culture model’s inability to maintain tissue-specific structure. This is to offer significant prognostic preclinical assessment findings. One of the best models that can mimic the in vivo model in vitro are the three-dimensional (3D) tumor–normal cell coculture systems, which can be employed in preclinical oncolytic virus therapeutics. Thus, we developed our 3D coculture system in vitro using two types of breast cancer cell lines showing different receptor statuses cocultured with adipose tissue–derived mesenchymal stem cells. The cells were cultured in a floater tissue culture plate to allow spheroids formation, and then the spheroids were collected and transferred to a scaffold spheroids dish. These 3D culture systems were used to evaluate oncolytic Newcastle disease virus AMHA1 strain infectivity and antitumor activity using a tracking system of the Newcastle disease virus (NDV) labeled with fluorescent PKH67 linker to follow the virus entry into target cells. This provides evidence that the NDV AMHA1 strain is an efficient oncolytic agent. The fluorescently detected virus particles showed high intensity in both coculture spheres. Strategies for chemically introducing fluorescent dyes into NDV particles extract quantitative information from the infected cancer models. In conclusion, the results indicate that the NDV AMHA1 strain efficiently replicates and induces an antitumor effect in cancer–normal 3D coculture systems, indicating efficient clinical outcomes.
Collapse
Affiliation(s)
- Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
- *Correspondence: Ahmed Majeed Al-Shammari,
| | - Mahfodha Abbas Emran
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
31
|
Wu K, Vedelaar TA, Damle VG, Morita A, Mougnaud J, San Martin CR, Zhang Y, van der Pol DP, Ende-Metselaar H, Zybert IR, Schirhagl R. Applying NV center-based quantum sensing to study intracellular free radical response upon viral infections. Redox Biol 2022; 52:102279. [PMID: 35349928 PMCID: PMC8965164 DOI: 10.1016/j.redox.2022.102279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
|
32
|
Palombo M, Barbetta A, Cametti C, Favero G, Capuani S. Transient Anomalous Diffusion MRI Measurement Discriminates Porous Polymeric Matrices Characterized by Different Sub-Microstructures and Fractal Dimension. Gels 2022; 8:gels8020095. [PMID: 35200475 PMCID: PMC8871551 DOI: 10.3390/gels8020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Considering the current development of new nanostructured and complex materials and gels, it is critical to develop a sub-micro-scale sensitivity tool to quantify experimentally new parameters describing sub-microstructured porous systems. Diffusion NMR, based on the measurement of endogenous water's diffusion displacement, offers unique information on the structural features of materials and tissues. In this paper, we applied anomalous diffusion NMR protocols to quantify the subdiffusion of water and to measure, in an alternative, non-destructive and non-invasive modality, the fractal dimension dw of systems characterized by micro and sub-micro geometrical structures. To this end, three highly heterogeneous porous-polymeric matrices were studied. All the three matrices composed of glycidylmethacrylate-divynilbenzene porous monoliths obtained through the High Internal Phase Emulsion technique were characterized by pores of approximately spherical symmetry, with diameters in the range of 2-10 μm. Pores were interconnected by a plurality of window holes present on pore walls, which were characterized by size coverings in the range of 0.5-2 μm. The walls were characterized by a different degree of surface roughness. Moreover, complementary techniques, namely Field Emission Scanning Electron Microscopy (FE-SEM) and dielectric spectroscopy, were used to corroborate the NMR results. The experimental results showed that the anomalous diffusion α parameter that quantifies subdiffusion and dw = 2/α changed in parallel to the specific surface area S (or the surface roughness) of the porous matrices, showing a submicroscopic sensitivity. The results reported here suggest that the anomalous diffusion NMR method tested may be a valid experimental tool to corroborate theoretical and simulation results developed and performed for describing highly heterogeneous and complex systems. On the other hand, non-invasive and non-destructive anomalous subdiffusion NMR may be a useful tool to study the characteristic features of new highly heterogeneous nanostructured and complex functional materials and gels useful in cultural heritage applications, as well as scaffolds useful in tissue engineering.
Collapse
Affiliation(s)
- Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK;
- School of Computer Science and Informatics, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Andrea Barbetta
- Chemistry Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Cesare Cametti
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Gabriele Favero
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Silvia Capuani
- National Research Council—Institute for Complex Systems (CNR-ISC) c/o, Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- CREF, Museo Storico Della Fisica e Centro Studi e Ricerche Enrico Fermi, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-3928
| |
Collapse
|
33
|
Rogers GL, Huang C, Clark RDE, Seclén E, Chen HY, Cannon PM. Optimization of AAV6 transduction enhances site-specific genome editing of primary human lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:198-209. [PMID: 34703842 PMCID: PMC8517001 DOI: 10.1016/j.omtm.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus serotype 6 (AAV6) is a valuable reagent for genome editing of hematopoietic cells due to its ability to serve as a homology donor template. However, a comprehensive study of AAV6 transduction of hematopoietic cells in culture, with the goal of maximizing ex vivo genome editing, has not been reported. Here, we evaluated how the presence of serum, culture volume, transduction time, and electroporation parameters could influence AAV6 transduction. Based on these results, we identified an optimized protocol for genome editing of human lymphocytes based on a short, highly concentrated AAV6 transduction in the absence of serum, followed by electroporation with a targeted nuclease. In human CD4+ T cells and B cells, this protocol improved editing rates up to 7-fold and 21-fold, respectively, when compared to standard AAV6 transduction protocols described in the literature. As a result, editing frequencies could be maintained using 50- to 100-fold less AAV6, which also reduced cellular toxicity. Our results highlight the important contribution of cell culture conditions for ex vivo genome editing with AAV6 vectors and provide a blueprint for improving AAV6-mediated homology-directed editing of human T and B cells.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D E Clark
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eduardo Seclén
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Riyad JM, Weber T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther 2021; 28:683-696. [PMID: 33658649 PMCID: PMC8413391 DOI: 10.1038/s41434-021-00243-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
In the last two decades, recombinant adeno-associated virus has emerged as the most popular gene therapy vector. Recently AAV gene therapy has been approved by the FDA for the treatment of two rare genetic disorders, namely the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). As is the case for the treatment of SMA, if the AAV vector must be administered systemically, very high vector doses are often required for therapeutic efficacy. But higher vector doses inevitably increase the risk of adverse events. The tragic death of three children in a clinical trial to treat X-linked myotubular myopathy with an AAV vector has thrown this limitation into sharp relief. Regardless of the precise cause(s) that led to the death of the two children, it is critical that we develop better AAV vectors to achieve therapeutic levels of expression with lower vector doses. To transduce successfully a target cell, AAV has to overcome both systemic as well as cellular roadblocks. In this review, we discuss some of the most prominent cellular roadblocks that AAV must get past to deliver successfully its therapeutic payload. We also highlight recent advancements in our knowledge of AAV biology that can potentially be harnessed to improve AAV vector performance and thereby make AAV gene therapy safer.
Collapse
Affiliation(s)
- Jalish M Riyad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Weber
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Aho V, Salminen S, Mattola S, Gupta A, Flomm F, Sodeik B, Bosse JB, Vihinen-Ranta M. Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane. PLoS Pathog 2021; 17:e1010132. [PMID: 34910768 PMCID: PMC8673650 DOI: 10.1371/journal.ppat.1010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although chromatin marginalization initially restricted capsid transport to the nuclear envelope, a structural reorganization of the chromatin counteracted that to promote capsid transport later. Analyses of capsid motion revealed that it was subdiffusive, and that the diffusion coefficients were lower in the chromatin than in regions lacking chromatin. In addition, the diffusion coefficient in both regions increased during infection. Throughout the infection, the capsids were never enriched at the nuclear envelope, which suggests that instead of nuclear export the transport through the chromatin is the rate-limiting step for the nuclear egress of capsids. This provides motivation for further studies by validating the importance of intranuclear transport to the life cycle of HSV-1.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Felix Flomm
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
36
|
Mogre SS, Christensen JR, Reck-Peterson SL, Koslover EF. Optimizing microtubule arrangements for rapid cargo capture. Biophys J 2021; 120:4918-4931. [PMID: 34687720 DOI: 10.1016/j.bpj.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022] Open
Abstract
Cellular functions such as autophagy, cell signaling, and vesicular trafficking involve the retrograde transport of motor-driven cargo along microtubules. Typically, newly formed cargo engages in slow undirected movement from its point of origin before attaching to a microtubule. In some cell types, cargo destined for delivery to the perinuclear region relies on capture at dynein-enriched loading zones located near microtubule plus ends. Such systems include extended cell regions of neurites and fungal hyphae, where the efficiency of the initial diffusive loading process depends on the axial distribution of microtubule plus ends relative to the initial cargo position. We use analytic mean first-passage time calculations and numerical simulations to model diffusive capture processes in tubular cells, exploring how the spatial arrangement of microtubule plus ends affects the efficiency of retrograde cargo transport. Our model delineates the key features of optimal microtubule arrangements that minimize mean cargo capture times. Namely, we show that configurations with a single microtubule plus end abutting the distal tip and broadly distributed other plus ends allow for efficient capture in a variety of different scenarios for retrograde transport. Live-cell imaging of microtubule plus ends in Aspergillus nidulans hyphae indicates that their distributions exhibit these optimal qualitative features. Our results highlight important coupling effects between the distribution of microtubule tips and retrograde cargo transport, providing guiding principles for the spatial arrangement of microtubules within tubular cell regions.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California; Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California.
| |
Collapse
|
37
|
Hoad M, Roby JA, Forwood JK. Structural characterization of the porcine adeno-associated virus Po1 capsid protein binding to the nuclear trafficking protein importin alpha. FEBS Lett 2021; 595:2793-2804. [PMID: 34661283 DOI: 10.1002/1873-3468.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022]
Abstract
Adeno-associated viruses (AAVs) are key vectors for gene therapy; thus, many aspects of their cell transduction pathway have been revealed in detail. However, the specific mechanisms AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the structural interactions between the AAV capsid (Cap) protein and the nuclear transport protein importin alpha (IMPα). A putative nuclear localization sequence (NLS) in the virion protein 1 capsid protein of the porcine AAV Po1 was identified. This region was complexed with IMPα and a structure solved at 2.26 Å. This is the first time that an NLS of AAV Cap complexed with IMPα has been determined structurally. Our results support the findings that AAV capsids enter the nucleus through binding the nuclear import adapter IMPα.
Collapse
Affiliation(s)
- Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Justin A Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
38
|
Xu Z, Zhu H, Wang H. Segmentation of the urothelium in optical coherence tomography images with dynamic contrast. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210012RR. [PMID: 34390233 PMCID: PMC8363479 DOI: 10.1117/1.jbo.26.8.086002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE Speckle variation induced by intracellular motion (IM) in the urothelium was observed in optical coherence tomography (OCT) images. IM can be used as a dynamic contrast to segment the urothelium by comparing two sequential OCT images. This method opens the possibility of specifically tracking the distribution of urothelial cancerous cells for identifying the microinvasion of bladder tumors. APPROACH OCT images were acquired ex vivo with fresh porcine bladder tissue. IM was analyzed by tracking speckle variation using autocorrelation function, then quantified with constrained regularization method for inverting data (CONTIN method) to identify the decorrelation time (DT) of the speckle variations. Variance analysis was also conducted to show IM amplitude and distribution in the urothelium. The segmentation of the urothelium was demonstrated with OCT images with a visible urothelial layer and OCT images with an invisible urothelial layer. RESULTS Significant speckle variation induced by IM was observed in the urothelium. However, the distribution of the IM is heterogeneous. The DTs are mostly concentrated between 1 and 30 ms. With the IM as a dynamic contrast, the urothelium can be accurately and exclusively segmented, even the urothelial layer is invisible in normal OCT images. CONCLUSIONS IM can be used as a dynamic contrast to exclusively track urothelial cell distribution. This contrast may provide a new mechanism for OCT to image the invasion depth and pattern of urothelial cancerous cells for accurately substaging of bladder cancer.
Collapse
Affiliation(s)
- Zhuo Xu
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, Ohio, United States
| | - Hui Zhu
- Urology Section Louis Stokes Cleveland Veterans Affairs Medical Center. Cleveland, Ohio, United States
- Cleveland Clinic Foundation, Glickman Urological and Kidney Institute, Department of Urology, Ohio, United States
| | - Hui Wang
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, Ohio, United States
- Address all correspondence to Hui Wang,
| |
Collapse
|
39
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
40
|
Wang ZG, Liu SL, Pang DW. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Acc Chem Res 2021; 54:2991-3002. [PMID: 34180662 DOI: 10.1021/acs.accounts.1c00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent research has highlighted the immense potential of the quantum dot (QD)-based single-virus tracking (SVT) technique in virology. In these experiments, the infection behaviors of single viruses or viral components, labeled with QDs, could be tracked on time scales of milliseconds to hours in host cells. The trajectories of individual viruses are reconstructed with nanometer accuracy, and the underlying dynamic information on virus infection can be extracted to uncover the infection mechanisms of viruses. Therefore, QD-based single-virus tracking (QSVT) is an exquisitely selective and powerful approach to investigating how viruses are internalized in host cells dynamically to release their genome for viral replication and assembly that ensure the completion of viral life cycles.QDs are better candidates than organic dyes and fluorescent proteins for virus labeling and subsequent SVT due to the following considerations: (i) the high brightness of QDs makes it possible to label a virus with sufficient brightness using very few QDs or even just one QD; (ii) the extraordinary photostability of QDs allows one to track the infection process long term and quantify low probability events; (iii) the color-tunable emission property of QDs ensures multicolor labeling of various components of a virus simultaneously; and (iv) the abundant surface ligands of QDs facilitate the conjugation of a virus with a variety of labeling strategies. Therefore, the photoproperties of QDs make it possible to perform multicolor long-term SVT experiments quantitatively. Nowadays, the QD-based SVT (QSVT) technique has made prodigious achievements in unraveling the entry, trafficking, and uncoating mechanisms of viruses. This fascinating technique can provide spatiotemporal dynamic information on the viral journey in unprecedented detail and has revolutionized our understanding of virus infection.In this Account, we first introduce the advantages and the limitations of conventional SVT in virological research and the unique features of QDs as labels in the SVT field. We subsequently focus on the principles and related methods of QSVT and the current state of QD chemistry and QD-based virus labeling that resolves many issues associated with the tracking of individual viruses in live cells. Then we emphasize some new findings by this technique in the study of infection mechanisms. Finally, we will provide our insights into future challenges on this topic. With this Account, we hope to further stimulate the development of QSVT with a combined effort from different disciplines and, more importantly, to accelerate the applications of QSVT in virological research.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
41
|
Mattola S, Hakanen S, Salminen S, Aho V, Mäntylä E, Ihalainen TO, Kann M, Vihinen-Ranta M. Concepts to Reveal Parvovirus-Nucleus Interactions. Viruses 2021; 13:1306. [PMID: 34372512 PMCID: PMC8310053 DOI: 10.3390/v13071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/23/2023] Open
Abstract
Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Satu Hakanen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Sami Salminen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Vesa Aho
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| |
Collapse
|
42
|
Yang S, Ye YH, Zang J, Pei Y, Xia Y, Zhang J. Direct observation Brownian motion of individual nanoparticles in water using microsphere-assisted microscopy. OPTICS LETTERS 2021; 46:3099-3102. [PMID: 34197390 DOI: 10.1364/ol.427144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Observing Brownian motion of nanoscale objects through a traditional optical microscope is still a challenge. Here, we present a method to overcome this challenge by using a traditional optical microscope assisted with a removable microsphere-embedded thin film. The diffusion coefficient of individual unconstrained polystyrene (PS) nanoparticles with a diameter of 300 nm in water is calculated from their respective mean-square displacement versus time curves, and the measured diffusion coefficient shows good agreement with the theoretical Stokes-Einstein one, proving the feasibility of our method. In addition, the experimental results show that the movement of the PS nanoparticles is slowed down near a plane wall, and the diffusion coefficient is consistent with the theoretical constrained diffusion coefficient, which shows that our method can also study the constrained Brownian motion of nanoparticles constrained near a plane wall. Our research results are helpful for the application of microsphere-assisted microscopy in new fields and also provide a new method for nanoparticle tracking.
Collapse
|
43
|
Höller C, Schnoering G, Eghlidi H, Suomalainen M, Greber UF, Poulikakos D. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. SCIENCE ADVANCES 2021; 7:eabd8758. [PMID: 34215575 PMCID: PMC11057703 DOI: 10.1126/sciadv.abd8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Understanding and controlling the individual behavior of nanoscopic matter in liquids, the environment in which many such entities are functioning, is both inherently challenging and important to many natural and man-made applications. Here, we transport individual nano-objects, from an assembly in a biological ionic solution, through a nanochannel network and confine them in electrokinetic nanovalves, created by the collaborative effect of an applied ac electric field and a rationally engineered nanotopography, locally amplifying this field. The motion of so-confined fluorescent nano-objects is tracked, and its kinetics provides important information, enabling the determination of their particle diffusion coefficient, hydrodynamic radius, and electrical conductivity, which are elucidated for artificial polystyrene nanospheres and subsequently for sub-100-nm conjugated polymer nanoparticles and adenoviruses. The on-chip, individual nano-object resolution method presented here is a powerful approach to aid research and development in broad application areas such as medicine, chemistry, and biology.
Collapse
Affiliation(s)
- Christian Höller
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Gabriel Schnoering
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Hadi Eghlidi
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Maarit Suomalainen
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland.
| |
Collapse
|
44
|
Mahato J, Bhattacharya S, Sharma DK, Chowdhury A. Polarization-resolved single-molecule tracking reveals strange dynamics of fluorescent tracers through a deep rubbery polymer network. Phys Chem Chem Phys 2021; 23:10835-10844. [PMID: 33908423 DOI: 10.1039/d0cp05864e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tracking the movement of fluorescent single-molecule (SM) tracers has provided several new insights into the local structure and dynamics in complex environments such as soft materials and biological systems. However, SM tracking (SMT) remains unreliable at molecular length scales, as the localization error (LE) of SM trajectories (∼30-50 nm) is considerably larger than the size of molecular tracers (∼1-2 nm). Thus, instances of tracer (im)mobility in heterogeneous media, which provide indicators for underlying anomalous-transport mechanisms, remain obscured within the realms of SMT. Since the translation of passive tracers in an isotropic media is associated with fast dipolar rotation, we propose that authentic pauses within the LE can be revealed by probing the hindrance of SM reorientational dynamics. Here, we demonstrate how polarization-resolved SMT (PR-SMT) can provide emission anisotropy at each super-localized position, thereby revealing the tumbling propensity of SMs during random walks. For rhodamine 6G tracers undergoing heterogeneous transport in a hydrated polyvinylpyrrolidone (PVP) network, analysis of PR-SMT trajectories enabled us to discern instances of genuine immobility and localized motion within the LE. Our investigations on 100 SMs in (plasticized) PVP films reveal a wide distribution of dwell times and pause frequencies, demonstrating that most probes intermittently experience complete translational and rotational immobilization. This indicates that tracers serendipitously encounter compact, rigid polymer cavities during transport, implying the existence of nanoscale glass-like domains sparsely distributed in a predominantly deep-rubbery polymer network far above the glass transition.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sukanya Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dharmendar K Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
45
|
Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, Decuzzi P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng Transl Med 2021; 6:e10213. [PMID: 33786376 PMCID: PMC7995196 DOI: 10.1002/btm2.10213] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.
Collapse
Affiliation(s)
- Michele Schlich
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
| | - Roberto Palomba
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Gabriella Costabile
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Shoshy Mizrahy
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael
- Cancer Biology Research CenterTel Aviv UniversityTel AvivIsrael
| | - Martina Pannuzzo
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael
- Cancer Biology Research CenterTel Aviv UniversityTel AvivIsrael
| | - Paolo Decuzzi
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| |
Collapse
|
46
|
Nuclear Import of Adeno-Associated Viruses Imaged by High-Speed Single-Molecule Microscopy. Viruses 2021; 13:v13020167. [PMID: 33499411 PMCID: PMC7911914 DOI: 10.3390/v13020167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the detailed nuclear import kinetics of adeno-associated virus (AAV) through the nuclear pore complex (NPC) is essential for the application of AAV capsids as a nuclear delivery instrument as well as a target for drug development. However, a comprehensive understanding of AAV transport through the sub-micrometer NPCs in live cells calls for new techniques that can conquer the limitations of conventional fluorescence microscopy and electron microscopy. With recent technical advances in single-molecule fluorescence microscopy, we are now able to image the entire nuclear import process of AAV particles and also quantify the transport dynamics of viral particles through the NPCs in live human cells. In this review, we initially evaluate the necessity of single-molecule live-cell microscopy in the study of nuclear import for AAV particles. Then, we detail the application of high-speed single-point edge-excitation sub-diffraction (SPEED) microscopy in tracking the entire process of nuclear import for AAV particles. Finally, we summarize the major findings for AAV nuclear import by using SPEED microscopy.
Collapse
|
47
|
Dupont A, Glück IM, Ponti D, Stirnnagel K, Hütter S, Perrotton F, Stanke N, Richter S, Lindemann D, Lamb DC. Identification of an Intermediate Step in Foamy Virus Fusion. Viruses 2020; 12:v12121472. [PMID: 33371254 PMCID: PMC7766700 DOI: 10.3390/v12121472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.
Collapse
Affiliation(s)
- Aurélie Dupont
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- LIPhy, University Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Dorothee Ponti
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Kristin Stirnnagel
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Sylvia Hütter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Florian Perrotton
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
| | - Nicole Stanke
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefanie Richter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Dirk Lindemann
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
- Correspondence: (D.L.); (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems Initiative München (NIM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Correspondence: (D.L.); (D.C.L.)
| |
Collapse
|
48
|
In vivo cell tracking with viral vector mediated genetic labeling. J Neurosci Methods 2020; 350:109021. [PMID: 33316318 DOI: 10.1016/j.jneumeth.2020.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Cell tracking is a useful technique to monitor specific cell populations for their morphology, development, proliferation, migration, interaction, function, and other properties, both in vitro and in vivo. Using different materials and methodologies to label the target cells directly or indirectly, the dynamic biological processes in living organisms can be visualized with appropriate detection techniques. Viruses, with the unique ability to deliver exogenous genes into host cells, have been used as vectors to mediate gene transfer. Genetic labeling of target cells by viral vectors endows the cells to express reporter genes with high efficiency and specificity. In conjunction with corresponding imaging techniques, cells labeled with different genetic reporters mediated by different viral vectors can be monitored across spatial and temporal scales to fulfill various purposes and address different questions. In the present review, we introduce the basic principle of viral vectors in cell tracking and highlight the examples of cell tracking in various research areas.
Collapse
|
49
|
Vahid MR, Hanzon B, Ober RJ. Effect of Pixelation on the Parameter Estimation of Single Molecule Trajectories. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 7:98-113. [PMID: 33604418 PMCID: PMC7879562 DOI: 10.1109/tci.2020.3039951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The advent of single molecule microscopy has revolutionized biological investigations by providing a powerful tool for the study of intercellular and intracellular trafficking processes of protein molecules which was not available before through conventional microscopy. In practice, pixelated detectors are used to acquire the images of fluorescently labeled objects moving in cellular environments. Then, the acquired fluorescence microscopy images contain the numbers of the photons detected in each pixel, during an exposure time interval. Moreover, instead of having the exact locations of detection of the photons, we only know the pixel areas in which the photons impact the detector. These challenges make the analysis of single molecule trajectories, from pixelated images, a complex problem. Here, we investigate the effect of pixelation on the parameter estimation of single molecule trajectories. In particular, we develop a stochastic framework to calculate the maximum likelihood estimates of the parameters of a stochastic differential equation that describes the motion of the molecule in living cells. We also calculate the Fisher information matrix for this parameter estimation problem. The analytical results are complicated through the fact that the observation process in a microscope prohibits the use of standard Kalman filter type approaches. The analytical framework presented here is illustrated with examples of low photon count scenarios for which we rely on Monte Carlo methods to compute the associated probability distributions.
Collapse
Affiliation(s)
- Milad R. Vahid
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Biomedical Data ScienceStanford UniversityStanfordCA94305USA
| | - Bernard Hanzon
- Department of MathematicsUniversity College CorkT12YX86CorkIreland
| | - Raimund J. Ober
- Centre for Cancer ImmunologyFaculty of Medicine, University of SouthamptonSouthamptonSO16 6YDU.K.
| |
Collapse
|
50
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|