1
|
Zeng Y, Zhang Y, Peng M, Yin J, Liu W, Zhao J, Tan S, Liu J, Chen M, Chen Z, Wu F, Chen C, Gao L, Dai J. Excellent Mechanical Performance of Cellulose Composite Papers for Flexible Self-Powered Photodetectors Using the ZnO/PbS Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5486-5495. [PMID: 39772420 DOI: 10.1021/acsami.4c18862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates. However, poor bonding with conductive materials results in poor conductivity stability, and limited thermal stability makes cellulose unsuitable for many preparation processes. This study designed polyvinylpyrrolidone (PVP)-coated silver nanowires (AgNWs) as conductive materials, integrating them with cellulose nanofibers (CNFs). The resulting AgNW/CNF composite paper demonstrated high tensile strength (183.9 MPa), low sheet resistance (2.38 Ohm sq-1), and excellent bending durability. Spin-coated PbS colloidal quantum dots (CQDs) films and low-temperature magnetron-sputtered ZnO films were used as functional layers to create a flexible self-powered photodetector. This device features low dark current density (2.35 × 10-9 mA cm-2 @0 V), fast photoresponse (40/24 ms), and stability under bending (up to 180°, 1 mm radius). It shows potential for applications in infrared optical communication and real-time heart rate monitoring, demonstrating the promise of cellulose substrate photodetectors for flexible electronics.
Collapse
Affiliation(s)
- Yuhui Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanbo Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junyang Yin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weijie Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianqiao Zhao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shizhou Tan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maohua Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyu Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Wang D, Quan M, Qin S, Fang Y, Xiao L, Qi W, Jiang Y, Zhou J, Gu M, Guan Y, Du Q, Liu Q, El‐Kassaby YA, Zhang D. Allelic variations of WAK106-E2Fa-DPb1-UGT74E2 module regulate fibre properties in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:970-986. [PMID: 37988335 PMCID: PMC10955495 DOI: 10.1111/pbi.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shitong Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weina Qi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yongsen Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyue Gu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yicen Guan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and FoodBlack MountainCanberraACTAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBCCanada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J Funct Biomater 2023; 14:472. [PMID: 37754886 PMCID: PMC10532010 DOI: 10.3390/jfb14090472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Center for Industrial Research—Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST–ICIR), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
4
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
5
|
Ragazzini I, Castagnoli R, Gualandi I, Cassani MC, Nanni D, Gambassi F, Scavetta E, Bernardi E, Ballarin B. A resistive sensor for humidity detection based on cellulose/polyaniline. RSC Adv 2022; 12:28217-28226. [PMID: 36320282 PMCID: PMC9530799 DOI: 10.1039/d2ra03982f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Ambient humidity is an important parameter that affects the manufacturing and storage of several industrial and agricultural goods. In the view of the Internet of Things (IoT), single sensors could be associated with an object for smart monitoring enabling optimum conditions to be maintained. Nevertheless, the production of cost-effective humidity sensors for indoor and outdoor environmental monitoring currently represents the main bottleneck in the development of this technology. Herein we report the results obtained with sensors exclusively made of cellulose and polyaniline (cell/PANI) under strictly controlled relative humidity (30–50 RH%) and temperature (21 ± 1 °C) achieved with a climatic chamber that simulates the conditions of indoor air humidity, and at different RH% in a lab test chamber set-up. Cell/PANI sensors, prepared with a simple, inexpensive, and easily scalable industrial paper process, show a linear trend with a slope of 1.41 μA RH%−1 and a percentage of sensitivity of 13%. Response time as well as percentage of sensitivity results are similar to those of a commercial digital-output relative humidity and temperature sensor (DHT22) employed in parallel for comparison. The commercial sensor DHT22 has a sensitivity of 14%. This low-cost sensor has potential applications in agriculture, food monitoring, and medical and industrial environments as a disposable sensor for humidity detection. Preparation of highly conductive polyaniline-coated cellulose sheets for the fabrication of humidity sensors via a simple, inexpensive, and robust method. These sensors show a linear, rapid, and reliable response for humidity cycling.![]()
Collapse
Affiliation(s)
- Ilaria Ragazzini
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386
| | - Riccardo Castagnoli
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386
| | - Isacco Gualandi
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386,Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of BolognaViale del Risorgimento 2I-40136 BolognaItaly,Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of BolognaViale del Risorgimento 2I-40136 BolognaItaly
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386,Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of BolognaViale del Risorgimento 2I-40136 BolognaItaly
| | - Daniele Nanni
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386
| | - Francesca Gambassi
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386
| | - Erika Scavetta
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386,Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of BolognaViale del Risorgimento 2I-40136 BolognaItaly,Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of BolognaViale del Risorgimento 2I-40136 BolognaItaly
| | - Elena Bernardi
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386,Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of BolognaViale del Risorgimento 2I-40136 BolognaItaly
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, UdR INSTM BolognaVia Risorgimento 4I-40136BolognaItaly+390512093704+390512093386,Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of BolognaViale del Risorgimento 2I-40136 BolognaItaly,Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of BolognaViale del Risorgimento 2I-40136 BolognaItaly
| |
Collapse
|
6
|
Uto T, Ikeda Y, Sunagawa N, Tajima K, Yao M, Yui T. Molecular Dynamics Simulation of Cellulose Synthase Subunit D Octamer with Cellulose Chains from Acetic Acid Bacteria: Insight into Dynamic Behaviors and Thermodynamics on Substrate Recognition. J Chem Theory Comput 2021; 17:488-496. [PMID: 33382615 DOI: 10.1021/acs.jctc.0c01027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study reports the building of a computerized model and molecular dynamics (MD) simulation of cellulose synthase subunit D octamer (CesD) from Komagataeibacter hansenii. CesD was complexed with four cellulose chains having DP = 12 (G12) by model building, which revealed unexpected S-shaped pathways with bending regions. Combined conventional and accelerated MD simulations of CesD complex models were carried out, while the pyranose ring conformations of the glucose residues were restrained to avoid undesirable deviations of the ring conformation from the 4C1 form. The N-terminal regions and parts of the secondary structures of CesD established appreciable contacts with the G12 chains. Hybrid quantum mechanical (QM) and molecular mechanical (MM) simulations of the CesD complex model were performed. Glucose residues located at the pathway bends exhibited reversible changes to the ring conformation into either skewed or boat forms, which might be related to the function of CesD in regulating microfibril production.
Collapse
Affiliation(s)
- Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| | - Yuki Ikeda
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| | - Naoki Sunagawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Toshifumi Yui
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| |
Collapse
|
7
|
Chen L, Yun M, Cao Z, Liang Z, Liu W, Wang M, Yan J, Yang S, He X, Jiang B, Peng Q, Lin Y. Phenotypic Characteristics and Transcriptome of Cucumber Male Flower Development Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:758976. [PMID: 34745192 PMCID: PMC8570340 DOI: 10.3389/fpls.2021.758976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop, which is thermophilic not heat resistant. High-temperature stress always results in sterility at reproductive stage. In the present study, we evaluate the male flower developmental changes under normal (CK) and heat stress (HS) condition. After HS, the activities of peroxidase (POD) and superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were increased. In addition, the pollen fertility was significantly decreased; and abnormal tapetum and microspore were observed by paraffin section. Transcriptome analysis results presented that total of 5828 differentially expressed genes (DEGs) were identified after HS. Among these DEGs, 20 DEGs were found at four stages, including DNA binding transcription factor, glycosyltransferase, and wound-responsive family protein. The gene ontology term of carbohydrate metabolic process was significantly enriched in all anther stages, and many saccharides and starch synthase-related genes, such as invertase, sucrose synthase, and starch branching enzyme, were significantly different expressed in HS compared with CK. Furthermore, co-expression network analysis showed a module (midnightblue) strongly consistent with HS, and two hub genes (CsaV3_6G004180 and CsaV3_5G034860) were found with a high degree of connectivity to other genes. Our results provide comprehensive understandings on male flower development in cucumber under HS.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Maomao Yun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
8
|
Jaikishan I, Rajendrakumar P, Hariprasanna K, Balakrishna D, Bhat BV, Tonapi VA. Identification of differentially expressed transcripts at critical developmental stages in sorghum [ Sorghum bicolor (L.) Moench] in relation to grain yield heterosis. 3 Biotech 2019; 9:239. [PMID: 31168432 DOI: 10.1007/s13205-019-1777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Evaluation of a set of 10 F1 hybrids along with their female (27A and 7A) and male parents (C 43, RS 673, RS 627, CB 26, and CB 29) for grain yield and its component traits revealed that grain yield/plant followed by panicle weight, primary branches/panicle, and 100-seed weight exhibited high levels of heterosis. Eight hybrids exhibited 50% or more mid-parent heterosis for grain yield/plant, of which, one hybrid (27A × RS673) recorded heterobeltiosis above 50% (73.61%). Differential display analysis generated about 2995 reproducible transcripts, which were categorized as UPF1-expressed in any one of the parents and F1 (10.53-14.76%), BPnF1-expressed in both parents but not in F1 (4.56-11.44%), UPnF1-expressed in either of the parents and not in F1 (17.95-27.40%), F1nBP-expressed only in F1 but not in either of the parents (14.39-20.54%), and UET-expressed in both parents and F1 (34.52-42.43%). A comparison between high and low heterotic hybrids revealed that the proportions of UPF1 and F1nBP transcript patterns were much higher in the former (21.31% and 45.24%) as compared to the latter (16.67% and 32.14%) at the booting and flowering stage, respectively, indicating the role of over-dominance and dominance in the manifestation of grain yield heterosis. Significant positive correlations were observed for differential transcript patterns with mid-parent and better-parent heterosis for the components of grain yield such as primary branches (0.63 and 0.61 at p < 0.01) and 100-seed weight (0.64 and 0.52 at p < 0.01). Cloning and sequence analysis of 16 transcripts that were differentially expressed in hybrids and their parental lines revealed that they code for genes involved in basic cellular processes, cellulose biosynthesis, and assimilate partitioning between various organs and allocation between various pathways, pyrimidine, and polyamine biosynthesis, enhancing ATP production and regulation of plant growth and development.
Collapse
|
9
|
Liu C, Zeng L, Zhu S, Wu L, Wang Y, Tang S, Wang H, Zheng X, Zhao J, Chen X, Dai Q, Liu T. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res 2018; 25:173-181. [PMID: 29149285 PMCID: PMC5909428 DOI: 10.1093/dnares/dsx047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop.
Collapse
Affiliation(s)
- Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Lingqing Wu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hongwu Wang
- Xianning Agriculture Academy of sciences, Hubei, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jian Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaorong Chen
- Yichun Institute of Agricultural Sciences, Jiangxi, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
10
|
López-Cobo A, Martín-García B, Segura-Carretero A, Fernández-Gutiérrez A, Gómez-Caravaca AM. Comparison of Two Stationary Phases for the Determination of Phytosterols and Tocopherols in Mango and Its By-Products by GC-QTOF-MS. Int J Mol Sci 2017; 18:ijms18071594. [PMID: 28737686 PMCID: PMC5536081 DOI: 10.3390/ijms18071594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
Two different gas chromatography coupled to quadrupole-time of flight mass spectrometry (GC-QTOF-MS) methodologies were carried out for the analysis of phytosterols and tocopherols in the flesh of three mango cultivars and their by-products (pulp, peel, and seed). To that end, a non-polar column ((5%-phenyl)-methylpolysiloxane (HP-5ms)) and a mid-polar column (crossbond trifluoropropylmethyl polysiloxane (RTX-200MS)) were used. The analysis time for RTX-200MS was much lower than the one obtained with HP-5ms. Furthermore, the optimized method for the RTX-200MS column had a higher sensibility and precision of peak area than the HP-5ms methodology. However, RTX-200MS produced an overlapping between β-sitosterol and Δ⁵-avenasterol. Four phytosterols and two tocopherols were identified in mango samples. As far as we are concerned, this is the first time that phytosterols have been studied in mango peel and that Δ⁵-avenasterol has been reported in mango pulp. α- and γ-tocopherol were determined in peel, and α-tocopherol was the major tocopherol in this fraction (up to 81.2%); however, only α-tocopherol was determined in the pulp and seed. The peel was the fraction with the highest total concentration of phytosterols followed by seed and pulp, and "Sensación" was the cultivar with the highest concentration of total phytosterols in most cases. There were no significant differences between quantification of tocopherols with both columns. However, in most cases, quantification of phytosterols was higher with RTX-200MS than with HP-5ms column.
Collapse
Affiliation(s)
- Ana López-Cobo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
- Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion Building, 18100 Granada, Spain.
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
- Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion Building, 18100 Granada, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
- Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion Building, 18100 Granada, Spain.
| | - Alberto Fernández-Gutiérrez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
- Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion Building, 18100 Granada, Spain.
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
11
|
Seçmeler Ö, Güçlü Üstündağ Ö. Behavior of lipophilic bioactives during olive oil processing. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Özge Seçmeler
- Faculty of Engineering; Department of Food Engineering; Yeditepe University; Istanbul Turkey
| | - Özlem Güçlü Üstündağ
- Faculty of Engineering; Department of Food Engineering; Yeditepe University; Istanbul Turkey
| |
Collapse
|
12
|
Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. PLANT PHYSIOLOGY 2015; 168:3-17. [PMID: 25786828 PMCID: PMC4424011 DOI: 10.1104/pp.114.254664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains.
Collapse
Affiliation(s)
- Daniel P Oehme
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Matthew T Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Monika S Doblin
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Michael J Gidley
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Antony Bacic
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| |
Collapse
|
13
|
Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Höfte H, Gonneau M, Vernhettes S. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex. PLANT PHYSIOLOGY 2014; 165:1521-1532. [PMID: 24948829 PMCID: PMC4119035 DOI: 10.1104/pp.114.241216] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-β-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-β-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.
Collapse
Affiliation(s)
- Thomas Vain
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Elizabeth Faris Crowell
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Hélène Timpano
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Eric Biot
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Thierry Desprez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Nasim Mansoori
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Luisa M Trindade
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Silvère Pagant
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Stéphanie Robert
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Herman Höfte
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Martine Gonneau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Samantha Vernhettes
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| |
Collapse
|
14
|
Kim JH, Mun S, Ko HU, Yun GY, Kim J. Disposable chemical sensors and biosensors made on cellulose paper. NANOTECHNOLOGY 2014; 25:092001. [PMID: 24521757 DOI: 10.1088/0957-4484/25/9/092001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
Collapse
Affiliation(s)
- Joo-Hyung Kim
- Department of Mechanical Engineering, Inha University, Incheon 402-751, Korea
| | | | | | | | | |
Collapse
|
15
|
Dhar P, Bhardwaj U, Kumar A, Katiyar V. Cellulose Nanocrystals: A Potential Nanofiller for Food Packaging Applications. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1162.ch017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Prodyut Dhar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Umesh Bhardwaj
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
16
|
Wu XE, Guo YZ, Chen MY, Chen XD. Fabrication of flexible and disposable enzymatic biofuel cells. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 2013; 14:125. [PMID: 23442184 PMCID: PMC3610122 DOI: 10.1186/1471-2164-14-125] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms. Thus, high-throughput transcriptome sequencing is essential to generate enormous ramie transcript sequences for the purpose of gene discovery, especially genes such as the cellulose synthase (CesA) gene. RESULTS Using Illumina paired-end sequencing, about 53 million sequencing reads were generated. De novo assembly yielded 43,990 unigenes with an average length of 824 bp. By sequence similarity searching for known proteins, a total of 34,192 (77.7%) genes were annotated for their function. Out of these annotated unigenes, 16,050 and 13,042 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 19,846 unigenes were mapped to 126 KEGG pathways, and 565 genes were assigned to http://starch and sucrose metabolic pathway which was related with cellulose biosynthesis. Additionally, 51 CesA genes involved in cellulose biosynthesis were identified. Analysis of tissue-specific expression pattern of the 51 CesA genes revealed that there were 36 genes with a relatively high expression levels in the stem bark, which suggests that they are most likely responsible for the biosynthesis of bast fiber. CONCLUSION To the best of our knowledge, this study is the first to characterize the ramie transcriptome and the substantial amount of transcripts obtained will accelerate the understanding of the ramie vegetative growth and development mechanism. Moreover, discovery of the 36 CesA genes with relatively high expression levels in the stem bark will present an opportunity to understand the ramie bast fiber formation and development mechanisms.
Collapse
Affiliation(s)
- Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | | | | | | | | | | |
Collapse
|
18
|
Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 2013. [PMID: 23442184 DOI: 10.1186/1471‐2164‐14‐125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms. Thus, high-throughput transcriptome sequencing is essential to generate enormous ramie transcript sequences for the purpose of gene discovery, especially genes such as the cellulose synthase (CesA) gene. RESULTS Using Illumina paired-end sequencing, about 53 million sequencing reads were generated. De novo assembly yielded 43,990 unigenes with an average length of 824 bp. By sequence similarity searching for known proteins, a total of 34,192 (77.7%) genes were annotated for their function. Out of these annotated unigenes, 16,050 and 13,042 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 19,846 unigenes were mapped to 126 KEGG pathways, and 565 genes were assigned to http://starch and sucrose metabolic pathway which was related with cellulose biosynthesis. Additionally, 51 CesA genes involved in cellulose biosynthesis were identified. Analysis of tissue-specific expression pattern of the 51 CesA genes revealed that there were 36 genes with a relatively high expression levels in the stem bark, which suggests that they are most likely responsible for the biosynthesis of bast fiber. CONCLUSION To the best of our knowledge, this study is the first to characterize the ramie transcriptome and the substantial amount of transcripts obtained will accelerate the understanding of the ramie vegetative growth and development mechanism. Moreover, discovery of the 36 CesA genes with relatively high expression levels in the stem bark will present an opportunity to understand the ramie bast fiber formation and development mechanisms.
Collapse
Affiliation(s)
- Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | | | | | | | | | | |
Collapse
|
19
|
Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L. Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 2013; 92:1752-60. [DOI: 10.1016/j.carbpol.2012.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/14/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
20
|
Guo J, Catchmark JM. Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.07.060] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Zhang JW, Xu L, Wu YR, Chen XA, Liu Y, Zhu SH, Ding WN, Wu P, Yi KK. OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.). MOLECULAR PLANT 2012; 5:176-86. [PMID: 21976713 DOI: 10.1093/mp/ssr084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant roots move through the soil by elongation. This is vital to their ability to anchor the plant and acquire water and minerals from the soil. In order to identify new genes involved in root elongation in rice, we screened an ethyl methane sulfonate (EMS)-mutagenized rice library, and isolated a short root mutant, Osglu3-1. The map-based cloning results showed that the mutant was due to a point mutation in OsGLU3, which encodes a putative membrane-bound endo-1,4-β-glucanase. Osglu3-1 displayed less crystalline cellulose content in its root cell wall, shorter root cell length, and a slightly smaller root meristem as visualized by restricted expression of OsCYCB1,1:GUS. Exogenous application of glucose can suppress both the lower root cell wall cellulose content and short root phenotypes of Osglu3-1. Consistently, OsGLU3 is ubiquitously expressed in various tissues with strong expression in root tip, lateral root, and crown root primodia. The fully functional OsGLU3-GFP was detected in plasma membrane, and FM4-64-labeled compartments in the root meristem and elongation zones. We also found that phosphate starvation, an environmental stress, altered cell wall cellulose content to modulate root elongation in a OsGLU3-dependant way.
Collapse
Affiliation(s)
- Jin-Wei Zhang
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
PEI Y, ZHANG L, WANG H, ZHANG X, XU M. SUPERMOLECULAR STRUCTURE AND PROPERTIES OF CELLULOSE/GELATIN COMPOSITE FILMS. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Guerriero G, Fugelstad J, Bulone V. What do we really know about cellulose biosynthesis in higher plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:161-75. [PMID: 20377678 DOI: 10.1111/j.1744-7909.2010.00935.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.
Collapse
Affiliation(s)
- Gea Guerriero
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Yang Q, Lue A, Qi H, Sun Y, Zhang X, Zhang L. Properties and Bioapplications of Blended Cellulose and Corn Protein Films. Macromol Biosci 2009; 9:849-56. [DOI: 10.1002/mabi.200900008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Natera SHA, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A. Analysis of the Oryza sativa Plasma Membrane Proteome Using Combined Protein and Peptide Fractionation Approaches in Conjunction with Mass Spectrometry. J Proteome Res 2008; 7:1159-87. [DOI: 10.1021/pr070255c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Siria H. A. Natera
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Kristina L. Ford
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Andrew M. Cassin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - John H. Patterson
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Edward J. Newbigin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Antony Bacic
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
27
|
Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2007; 9:57-65. [PMID: 18052127 DOI: 10.1021/bm700769p] [Citation(s) in RCA: 534] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques.
Collapse
Affiliation(s)
- Samira Elazzouzi-Hafraoui
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
28
|
Joshi CP, Mansfield SD. The cellulose paradox--simple molecule, complex biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:220-6. [PMID: 17468038 DOI: 10.1016/j.pbi.2007.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Cellulose is the most abundant biopolymer on earth. Despite its simple structure, omnipresence in the plant kingdom, and ever increasing global importance as industrial raw material, the genetic and biochemical regulation of cellulose biosynthesis continues to be unclear. Over the past ten years, the advances in functional genomics have significantly improved our understanding of the processes of cellulose biosynthesis in higher plants. However, for each question answered myriad new unanswered ones have arisen.
Collapse
Affiliation(s)
- Chandrashekhar P Joshi
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | |
Collapse
|
29
|
Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s1677-04202007000100001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annually, plants produce about 180 billion tons of cellulose making it the largest reservoir of organic carbon on Earth. Cellulose is a linear homopolymer of beta(1-4)-linked glucose residues. The coordinated synthesis of glucose chains is orchestrated by specific plasma membrane-bound cellulose synthase complexes (CelS). The CelS is postulated to be composed of approximately 36 cellulose synthase (CESA) subunits. The CelS synthesizes 36 glucose chains in close proximity before they are further organized into microfibrils that are further associated with other cell wall polymers. The 36 glucose chains in a microfibril are stabilized by intra- and inter-hydrogen bonding which confer great stability on microfibrils. Several elementary microfibrils come together to form macrofibrils. Many CESA isoforms appear to be involved in the cellulose biosynthetic process and at least three types of CESA isoforms appear to be necessary for the functional organization of CelS in higher plants.
Collapse
|
30
|
Roberts AW, Bushoven JT. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2007; 63:207-19. [PMID: 17006591 DOI: 10.1007/s11103-006-9083-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/25/2006] [Indexed: 05/12/2023]
Abstract
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive beta-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema.
Collapse
Affiliation(s)
- Alison W Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | | |
Collapse
|
31
|
Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP. Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. PLANTA 2006; 224:828-37. [PMID: 16575593 DOI: 10.1007/s00425-006-0269-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 03/10/2006] [Indexed: 05/08/2023]
Abstract
In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.
Collapse
Affiliation(s)
- Suchita Bhandari
- Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
32
|
CAO YU, SHEN DEYAN, LU YONGLAI, HUANG YONG. A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). ANNALS OF BOTANY 2006; 97:1091-4. [PMID: 16533832 PMCID: PMC2803402 DOI: 10.1093/aob/mcl059] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.
Collapse
Affiliation(s)
- YU CAO
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- For correspondence. E-mail ;
| | - DEYAN SHEN
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - YONGLAI LU
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - YONG HUANG
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- For correspondence. E-mail ;
| |
Collapse
|
33
|
Affiliation(s)
- Antony Bacic
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia
- E-mail:
| |
Collapse
|
34
|
Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:145-67. [PMID: 17177793 DOI: 10.1111/j.1467-7652.2005.00169.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants.
Collapse
Affiliation(s)
- Naser Farrokhi
- School of Agriculture and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A. Genomics of cellulose biosynthesis in poplars. THE NEW PHYTOLOGIST 2004; 164:53-61. [PMID: 33873484 DOI: 10.1111/j.1469-8137.2004.01155.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genetic improvement of cellulose production in commercially important trees is one of the formidable goals of current forest biotechnology research. To achieve this goal, we must first decipher the enigmatic and complex process of cellulose biosynthesis in trees. The recent availability of rich genomic resources in poplars make Populus the first tree genus for which genetic augmentation of cellulose may soon become possible. Fortunately, because of the structural conservation of key cellulose biosynthesis genes between Arabidopsis and poplar genomes, the lessons learned from exploring the functions of Arabidopsis genes may be applied directly to poplars. However, regulation of these genes will most likely be distinct in these two-model systems because of their inherent biological differences. This research review covers the current state of knowledge about the three major cellulose biosynthesis-related gene families from poplar genomes: cellulose synthases, sucrose synthases and korrigan cellulases. Furthermore, we also suggest some future research directions that may have significant economical impacts on global forest product industries.
Collapse
Affiliation(s)
- Chandrashekhar P Joshi
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Suchita Bhandari
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Priya Ranjan
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Udaya C Kalluri
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Xiaoe Liang
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Takeshi Fujino
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Anita Samuga
- Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| |
Collapse
|
36
|
Scheible WR, Pauly M. Glycosyltransferases and cell wall biosynthesis: novel players and insights. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:285-95. [PMID: 15134749 DOI: 10.1016/j.pbi.2004.03.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants need an enormous biosynthetic machinery to synthesize the complex polysaccharides that are present in the plant cell wall. The isolation, characterization and mapping of wall mutants, together with biochemical approaches, have led to significant advances in our understanding of both wall polysaccharide synthesis at a molecular level and the function of polysaccharides in plant growth and development. Moreover, potential regulation mechanisms and associated protein factors are emerging from recent data.
Collapse
Affiliation(s)
- Wolf-Rüdiger Scheible
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany.
| | | |
Collapse
|
37
|
Hirose E, Akahori M. Comparative morphology of the stolonic vessel in a didemnid ascidian and some related tissues in colonial ascidians. Zoolog Sci 2004; 21:445-55. [PMID: 15118232 DOI: 10.2108/zsj.21.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stolonic vessel is a tubular projection of the epidermis from the anterior part of the abdomen in the didemnid ascidians, and the vessel has been supposed to be closely related to the stolons, vascular appendages, and the posterior ends of the abdomen in other aplousobranch ascidians. We compared the morphology of the stolonic vessels of Diplosoma virens with similar or related tissue in other colonial ascidians, e.g. stolons of Clavelina, vascular appendages of Distaplia and Eudistoma, tunic vesicle of Aplidium, and vascular ampullae of Botrylloides. The epidermis of the stolonic vessel is composed of cuboidal cells in lateral wall and columnar cells at the distal tip of the vessel. The cuboidal cells have microvilli that probably anchor the stolonic vessel to the tunic. The columnar cells contain round granules that may concern with the secretion of some tunic components. The secretion of the granules, however, could not observed in this study. The stolonic vessel of D. virens is similar in morphology to the vascular ampullae of Botrylloides and the tunic vesicle of Aplidium rather than the other tissue examined here. Since the cell morphology is supposed to reflect its function but not the phylogenetic relationship, the present study could not provide conclusive evidences to prove the homology and the phylogenetic relationship among the tubular, epidermal projections in the colonial ascidians.
Collapse
Affiliation(s)
- Euichi Hirose
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-2213, Japan. ,jp
| | | |
Collapse
|
38
|
Nakashima K, Yamada L, Satou Y, Azuma JI, Satoh N. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 2004; 214:81-8. [PMID: 14740209 DOI: 10.1007/s00427-003-0379-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Urochordates are the only animals that produce cellulose, a polysaccharide existing primarily in the extracellular matrices of plant, algal, and bacterial cells. Here we report a Ciona intestinalis homolog of cellulose synthase, which is the core catalytic subunit of multi-enzyme complexes where cellulose biosynthesis occurs. The Ciona cellulose synthase gene, Ci-CesA, is a fusion of a cellulose synthase domain and a cellulase (cellulose-hydrolyzing enzyme) domain. Both the domains have no animal homologs in public databases. Exploiting this fusion of atypical genes, we provided evidence of a likely lateral transfer of a bacterial cellulose synthase gene into the urochordate lineage. According to fossil records, this likely lateral acquisition of the cellulose synthase gene may have occurred in the last common ancestor of extant urochordates more than 530 million years ago. Whole-mount in situ hybridization analysis revealed the expression of Ci-CesA in C. intestinalis embryos, and the expression pattern of Ci-CesA was spatiotemporally consistent with observed cellulose synthesis in vivo. We propose here that urochordates may use a laterally acquired "homologous" gene for an analogous process of cellulose synthesis.
Collapse
Affiliation(s)
- Keisuke Nakashima
- Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
39
|
Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC. Mixed Linkage (1→3),(1→4)-β-d-Glucans of Grasses. Cereal Chem 2004. [DOI: 10.1094/cchem.2004.81.1.115] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marcos S. Buckeridge
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica CP 4005 CEP 01061-970, São Paulo, SP Brazil
| | - Catherine Rayon
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Present address: UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, BP 17, Auzeville, F-31326 Castanet Tolosan, France
| | - Breeanna Urbanowicz
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Present address: Department of Plant Biology, 228 Plant Science Building, Cornell University, Ithaca, NY 14853
| | - Marco Aurélio S. Tiné
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica CP 4005 CEP 01061-970, São Paulo, SP Brazil
| | - Nicholas C. Carpita
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Corresponding author. Phone: +1-765-494-4653. Fax:+1-765-494-0393. E-mail:
| |
Collapse
|
40
|
|
41
|
Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:1-15. [PMID: 12782146 DOI: 10.1016/s1388-1981(03)00033-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular functions. In plants, sphingolipids show structural features differing from those found in animals and fungi, and much less is known about their biosynthesis and function. This review focuses on the sphingolipid modifications found in plants and on recent advances in the functional characterization of genes gaining new insight into plant sphingolipid biosynthesis. Recent studies indicate that plant sphingolipids may be also involved in signal transduction, membrane stability, host-pathogen interactions and stress responses.
Collapse
Affiliation(s)
- Petra Sperling
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststr. 18, Hamburg D-22609, Germany.
| | | |
Collapse
|
42
|
Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 2002; 298:2157-67. [PMID: 12481130 DOI: 10.1126/science.1080049] [Citation(s) in RCA: 1202] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Collapse
Affiliation(s)
- Paramvir Dehal
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP. Cellulose biosynthesis in plants: from genes to rosettes. PLANT & CELL PHYSIOLOGY 2002; 43:1407-20. [PMID: 12514238 DOI: 10.1093/pcp/pcf164] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Modern techniques of gene cloning have identified the CesA genes as encoding the probable catalytic subunits of the plant CelS, the cellulose synthase enzyme complex visualized in the plasma membrane as rosettes. At least 10 CesA isoforms exist in Arabidopsis and have been shown by mutant analyses to play distinct role/s in the cellulose synthesis process. Functional specialization within this family includes differences in gene expression, regulation and, possibly, catalytic function. Current data points towards some CesA isoforms potentially being responsible for initiation or elongation of the recently identified sterol beta-glucoside primer within different cell types, e.g. those undergoing either primary or secondary wall cellulose synthesis. Different CesA isoforms may also play distinct roles within the rosette, and there is some circumstantial evidence that CesA genes may encode the catalytic subunit of the mixed linkage glucan synthase or callose synthase. Various other proteins such as the Korrigan endocellulase, sucrose synthase, cytoskeletal components, Rac13, redox proteins and a lipid transfer protein have been implicated to be involved in synthesizing cellulose but, apart from CesAs, only Korrigan has been definitively linked with cellulose synthesis. These proteins should prove valuable in identifying additional CelS components.
Collapse
|