1
|
Schwarz T, Ptok J, Damagnez M, Menne C, Alizei ES, Lang-Meli J, Maas M, Habermann D, Hoffmann D, Schulze Zur Wiesch J, Lauer GM, Kefalakes H, Cornberg M, Kraft ARM, Gliga S, Bock HH, Horn PA, Maini MK, Thimme R, Wedemeyer H, Nattermann J, Heinemann FM, Luedde T, Neumann-Haefelin C, Walker A, Timm J. HBV shows different levels of adaptation to HLA class I-associated selection pressure correlating with markers of replication. J Hepatol 2025; 82:805-815. [PMID: 39536821 DOI: 10.1016/j.jhep.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Immune responses by CD8 T cells are essential for control of HBV replication. Although selection of escape mutations in CD8 T-cell epitopes has previously been described in HBV infection, its overall influence on HBV sequence diversity and correlation with markers of HBV replication remain unclear. METHODS Whole-genome sequencing was applied to HBV isolates from 532 patients with chronic HBV infection and high-resolution HLA class I genotyping. Using a Bayesian model (HAMdetector) for identification of HLA-associated mutational states (HAMs), the frequency and location of residues under CD8 T-cell selection pressure were determined and the levels of adaptation of individual isolates were quantified. RESULTS Using previously published thresholds for the identification of HAMs, a total of 295 residues showed evidence of CD8 T-cell escape, the majority of which were located in previously unidentified epitopes. Interestingly, HAMs were highly enriched in the HBV core protein compared to all other proteins. When individual HBV isolates were compared, different levels of adaptation to HLA class I immune pressure were noted. The level of adaptation increased with patient age and correlated with markers of replication, with low levels of adaptation in HBeAg-positive infection. Furthermore, the levels of adaptation negatively correlated with HBV viral load and HBsAg levels, consistent with high levels of HLA class I-associated selection pressure in patients with low replication levels. CONCLUSIONS HBV sequence diversity is shaped by HLA class I-associated selection pressure with the HBV core protein being a predominant target of selection. Importantly, different levels of adaptation to immune pressure were observed between HBV infection stages, which need to be considered in the context of T-cell-based therapies. IMPACT AND IMPLICATIONS The immune response mediated by CD8 T cells plays a critical role in controlling HBV infection and shows promise for therapeutic strategies aimed at achieving a functional cure. This study demonstrates that mutational escape within CD8 T-cell epitopes is common in HBV and represents a key factor in the failure of immune control. Notably, the HBV core protein emerges as the primary target of CD8 T-cell selection pressure. Additionally, the observed correlation between HBV adaptation levels and viral replication markers indicates that CD8 T-cell immunity may influence transitions between phases of chronic HBV infection.
Collapse
Affiliation(s)
- Tatjana Schwarz
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Ptok
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Maximilian Damagnez
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Christopher Menne
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Lang-Meli
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michelle Maas
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Smaranda Gliga
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Robert Thimme
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Walker
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Alves E, Currenti J, Crawford K, Chopra A, Ram R, Barnett L, Read JF, Al-kaabi M, James I, Carlson JM, Eton M, Stelmach S, Deshpande P, Pilkinton MA, McDonnell WJ, Bosco A, Mallal SA, John M, Kalams SA, Gaudieri S. HIV-1 adapts to HLA class II-associated selection pressure exerted by CD4 + and CD8 + T cells. SCIENCE ADVANCES 2025; 11:eadr4238. [PMID: 39951541 PMCID: PMC11827868 DOI: 10.1126/sciadv.adr4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Developing an effective HIV-1 vaccine is a global health priority, but HIV-1 mutational escape from T cells poses a challenge. While escape from human leukocyte antigen class I (HLA-I)-restricted CD8+ T cells is well characterized, less is known about HLA-II-restricted T cell escape. We used computational methods to identify 149 sites across the HIV-1 clade B genome under HLA-II-associated selection. Functional assays, including activation-induced intracellular cytokine staining and enzyme-linked immunospot for interferon-γ, revealed diverse mechanisms of HIV-1 adaptation to HLA-II-associated immune pressure, ranging from loss to sustained antigen recognition. T cell receptor and RNA sequencing demonstrated variable clonotype overlap of T cell clones to recognize adapted versus non-adapted peptides, with cells targeting adapted peptides exhibiting a dysfunctional transcriptomic state. Moreover, incorporating HLA-II-associated adaptation strengthened the correlation between Gag-specific viral adaptation and poor disease outcomes. Last, we mapped viral regions prone to HLA-II-associated adaptation and found that these adaptations can increase in frequency within populations.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Keeley Crawford
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James F. Read
- Asthma and Airway Disease Research Center, The BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Max Eton
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Stelmach
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, The BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Simon A. Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Neuner-Jehle N, Zeeb M, Thorball CW, Fellay J, Metzner KJ, Frischknecht P, Neumann K, Leeman C, Rauch A, Stöckle M, Huber M, Perreau M, Bernasconi E, Notter J, Hoffmann M, Leuzinger K, Günthard HF, Pasin C, Kouyos RD, the Swiss HIV Cohort Study (SHCS). Using viral diversity to identify HIV-1 variants under HLA-dependent selection in a systematic viral genome-wide screen. PLoS Pathog 2024; 20:e1012385. [PMID: 39116192 PMCID: PMC11335148 DOI: 10.1371/journal.ppat.1012385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The pathogenesis of HIV-1 infection is governed by a highly dynamic, time-dependent interaction between the host and the viral genome. In this study, we developed a novel systematic approach to assess the host-virus interaction, using average pairwise viral diversity as a proxy for time since infection, and applied this method to nearly whole viral genome sequences (n = 4,464), human leukocyte antigen (HLA) genotyping data (n = 1,044), and viral RNA load (VL) measurements during the untreated chronic phase (n = 829) of Swiss HIV Cohort Study participants. Our systematic genome-wide screen revealed for 98 HLA/viral-variant pairs a signature of immune-driven selection in the form of an HLA-dependent effect of infection time on the presence of HIV amino acid variants. Of these pairs, 12 were found to have an effect on VL. Furthermore, 28/58 pairs were validated by time-to-event analyses and 48/92 by computational HLA-epitope predictions. Our diversity-based approach allows a powerful and systematic investigation of the interaction between the virus and cellular immunity, revealing a notable subset of such interaction effects. From an evolutionary perspective, these observations underscore the complexity of HLA-mediated selection pressures on the virus that shape viral evolution and pathogenesis.
Collapse
Affiliation(s)
- Nadia Neuner-Jehle
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marius Zeeb
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian W. Thorball
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Paul Frischknecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Christine Leeman
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marcel Stöckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthieu Perreau
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Olten, Olten, Switzerland
| | | | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Al-kaabi M, Deshpande P, Firth M, Pavlos R, Chopra A, Basiri H, Currenti J, Alves E, Kalams S, Fellay J, Phillips E, Mallal S, John M, Gaudieri S. Epistatic interaction between ERAP2 and HLA modulates HIV-1 adaptation and disease outcome in an Australian population. PLoS Pathog 2024; 20:e1012359. [PMID: 38980912 PMCID: PMC11259285 DOI: 10.1371/journal.ppat.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/19/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Collapse
Affiliation(s)
- Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Martin Firth
- School of Physics, Mathematics and Computing, Department of Mathematics and Statistics, University of Western Australia, Crawley, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Hamed Basiri
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Spyros Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Zurich, Switzerland
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Lewitus E, Li Y, Bai H, Pham P, Rolland M. HIV-1 Gag, Pol, and Env diversified with limited adaptation since the 1980s. mBio 2024; 15:e0174923. [PMID: 38329340 PMCID: PMC10936417 DOI: 10.1128/mbio.01749-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Knowledge of HIV-1 global sequence diversity is critical for developing an effective prophylactic against HIV-1 infection. We developed the Hervé platform to analyze and visualize trends in HIV-1 diversification. Using Hervé, we analyzed 4,830 Env, 4,407 Gag, and 3,002 Pol publicly available independent sequences corresponding to subtypes A1, A6, B, C, D, F1, and G and circulating recombinant forms (CRFs) 01_AE, 02_AG, and 07_BC; sequences were sampled between 1980 and 2020 from 82 countries. HIV-1 diversified with a median of 1.82 amino acid substitutions per year in Env, 0.297 in Gag, and 0.779 in Pol. Yet, Env subtype B diversification plateaued post-2000. Pairwise diversity within subtypes and CRFs increased by 41.82% (range = 24.85%-54.41%) in Env, 56.93% (15.38%-89.16%) in Gag, and 46.12% (11.70%-70.57%) in Pol. Consensus sequences based on sequences sampled in each decade remained relatively stable over time. Similarly, at antibody epitope sites, only 0-8 residues that were minority variants became consensus over time in any subtype/CRF and only one known drug resistance mutation site differed from the reference (subtype G). The apparent contradiction between the fast diversification of HIV-1 and its limited adaptation illustrates that HIV-1 evolution is not directional and its consensus is at the intersection of millions of within-host selective processes occurring in a star-like manner. While a consensus sequence is a better representation of HIV-1 diversity than any individual sequence, consensus sequences have progressively become more distant from the circulating sequences they represent. IMPORTANCE Global surveillance of HIV-1 sequences is critical for designing relevant prophylactic and therapeutic interventions to infection. We designed an open-source platform, Hervé, for analyzing and visualizing the diversification dynamics of HIV-1 protein sequences. We characterized the evolution of over 12,000 HIV-1 Env, Gag, and Pol protein sequences from 1980-2020 and found that, despite a steady increase in intra-subtype and circulating recombinant form diversity, the most frequent residue at each site, i.e., the consensus, has varied only moderately.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Phuc Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| |
Collapse
|
6
|
Arman MS, Hasan MZ. A computational exploration of global and temporal dynamics of selection pressure on HIV-1 Vif polymorphism. Virus Res 2024; 341:199323. [PMID: 38237808 PMCID: PMC10831783 DOI: 10.1016/j.virusres.2024.199323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Virion infectivity factor (Vif), an accessory protein of HIV-1 (human immunodeficiency virus type 1), antagonizes host APOBEC3 protein (apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3) or A3 via proteasomal degradation, facilitating viral replication. HLA (Human leukocyte antigens) alleles, host restriction factors, and error-prone reverse transcription contribute to the global polymorphic dynamics of HIV, impacting effective vaccine design. Our computational analysis of over 50,000 HIV-1 M vif sequences from the Los Alamos National Laboratory (LANL) database (1998-2021) revealed positive selection pressure on the vif gene (nonsynonymous to synonymous ratio, dn/ds=1.58) and an average entropy score of 0.372 in protein level. Interestingly, over the years (1998-2021), a decreasing trend of dn/ds (1.68 to 1.47) and an increasing trend of entropy (0.309 to 0.399) was observed. The predicted mutational frequency against Vif consensus sequence decreased over time (slope = -0.00024, p < 0.0001). Sequence conservation was observed in Vif functional motifs F1, F2, F3, G, BC box, and CBF β binding region, while variability was observed mainly in N- and C- terminal and Zinc finger region, which were dominantly under immune pressure by host HLA-I-restricted CD8+ T cell. Computational analysis of ∆∆Gstability through protein stability prediction tools suggested that missense mutation may affect Vif stability, especially in the Vif-A3 binding interface. Notably, mutations R17K and Y44F in F1 and G box were predicted to destabilize the Vif-A3 binding interface by altering bond formations with adjacent amino acids. Therefore, our analysis demonstrates Vif adaptation with host physiology by maintaining sequence conservation, especially in A3 interacting functional motifs, highlighting important therapeutic candidate regions of Vif against HIV-1 infections.
Collapse
Affiliation(s)
- Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Zafrul Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
7
|
Hake A, Germann A, de Beer C, Thielen A, Däumer M, Preiser W, von Briesen H, Pfeifer N. Insights to HIV-1 coreceptor usage by estimating HLA adaptation with Bayesian generalized linear mixed models. PLoS Comput Biol 2023; 19:e1010355. [PMID: 38127856 PMCID: PMC10769057 DOI: 10.1371/journal.pcbi.1010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/05/2024] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The mechanisms triggering the human immunodeficiency virus type I (HIV-1) to switch the coreceptor usage from CCR5 to CXCR4 during the course of infection are not entirely understood. While low CD4+ T cell counts are associated with CXCR4 usage, a predominance of CXCR4 usage with still high CD4+ T cell counts remains puzzling. Here, we explore the hypothesis that viral adaptation to the human leukocyte antigen (HLA) complex, especially to the HLA class II alleles, contributes to the coreceptor switch. To this end, we sequence the viral gag and env protein with corresponding HLA class I and II alleles of a new cohort of 312 treatment-naive, subtype C, chronically-infected HIV-1 patients from South Africa. To estimate HLA adaptation, we develop a novel computational approach using Bayesian generalized linear mixed models (GLMMs). Our model allows to consider the entire HLA repertoire without restricting the model to pre-learned HLA-polymorphisms. In addition, we correct for phylogenetic relatedness of the viruses within the model itself to account for founder effects. Using our model, we observe that CXCR4-using variants are more adapted than CCR5-using variants (p-value = 1.34e-2). Additionally, adapted CCR5-using variants have a significantly lower predicted false positive rate (FPR) by the geno2pheno[coreceptor] tool compared to the non-adapted CCR5-using variants (p-value = 2.21e-2), where a low FPR is associated with CXCR4 usage. Consequently, estimating HLA adaptation can be an asset in predicting not only coreceptor usage, but also an approaching coreceptor switch in CCR5-using variants. We propose the usage of Bayesian GLMMs for modeling virus-host adaptation in general.
Collapse
Affiliation(s)
- Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anja Germann
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Corena de Beer
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | | | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | - Hagen von Briesen
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Nico Pfeifer
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
9
|
Mokaleng B, Choga WT, Bareng OT, Maruapula D, Ditshwanelo D, Kelentse N, Mokgethi P, Moraka NO, Motswaledi MS, Tawe L, Koofhethile CK, Moyo S, Zachariah M, Gaseitsiwe S. No Difference in the Prevalence of HIV-1 gag Cytotoxic T-Lymphocyte-Associated Escape Mutations in Viral Sequences from Early and Late Parts of the HIV-1 Subtype C Pandemic in Botswana. Vaccines (Basel) 2023; 11:1000. [PMID: 37243104 PMCID: PMC10221913 DOI: 10.3390/vaccines11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
HIV is known to accumulate escape mutations in the gag gene in response to the immune response from cytotoxic T lymphocytes (CTLs). These mutations can occur within an individual as well as at a population level. The population of Botswana exhibits a high prevalence of HLA*B57 and HLA*B58, which are associated with effective immune control of HIV. In this retrospective cross-sectional investigation, HIV-1 gag gene sequences were analyzed from recently infected participants across two time periods which were 10 years apart: the early time point (ETP) and late time point (LTP). The prevalence of CTL escape mutations was relatively similar between the two time points-ETP (10.6%) and LTP (9.7%). The P17 protein had the most mutations (9.4%) out of the 36 mutations that were identified. Three mutations (A83T, K18R, Y79H) in P17 and T190A in P24 were unique to the ETP sequences at a prevalence of 2.4%, 4.9%, 7.3%, and 5%, respectively. Mutations unique to the LTP sequences were all in the P24 protein, including T190V (3%), E177D (6%), R264K (3%), G248D (1%), and M228L (11%). Mutation K331R was statistically higher in the ETP (10%) compared to the LTP (1%) sequences (p < 0.01), while H219Q was higher in the LTP (21%) compared to the ETP (5%) (p < 0.01). Phylogenetically, the gag sequences clustered dependently on the time points. We observed a slower adaptation of HIV-1C to CTL immune pressure at a population level in Botswana. These insights into the genetic diversity and sequence clustering of HIV-1C can aid in the design of future vaccine strategies.
Collapse
Affiliation(s)
- Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Wonderful Tatenda Choga
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Ontlametse Thato Bareng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone 999106, Botswana
| | - Natasha Onalenna Moraka
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Modisa Sekhamo Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
10
|
Li S, Zhang MY, Yuan J, Zhang YX. Nano-vaccines for gene delivery against HIV-1 infection. Expert Rev Vaccines 2023; 22:315-326. [PMID: 36945780 DOI: 10.1080/14760584.2023.2193266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Over the last four decades, human immunodeficiency virus type 1 (HIV-1) infection has been a major public health concern. It is acknowledged that an effective vaccine remains the best hope for eliminating the HIV-1 pandemic. The prophylaxis of HIV-1 infection remains a central theme because of the absence of an available HIV-1 vaccine. The incapability of conventional delivery strategies to induce potent immunity is a crucial task to overcome and ultimately lead to a major obstacle in HIV-1 vaccine research. AREAS COVERED The literature search was conducted in the following databases: PubMed, Web of Science, and Embase. Nano-platforms based vaccines have proven prophylaxis of various diseases for effectively activating the immune system. Nano-vaccines, including non-viral and viral vectored nano-vaccines, are in a position to improve the effectiveness of HIV-1 antigen delivery and enhance the innate and adaptive immune responses against HIV-1. Compared to traditional vaccination strategies, genetic immunization can elicit a long-term immune response to provide protective immunity for HIV-1 prevention. EXPERT OPINION The research progress on nano-vaccines for gene delivery against HIV-1 was discussed. The vaccine strategies based on nano-platforms that are being applied to stimulate effective HIV-1-specific cellular and humoral immune responses were particularly emphasized.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Yuan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
11
|
Magvan B, Kloeble AA, Ptok J, Hoffmann D, Habermann D, Gantumur A, Paluschinski M, Enebish G, Balz V, Fischer JC, Chimeddorj B, Walker A, Timm J. Sequence diversity of hepatitis D virus in Mongolia. Front Med (Lausanne) 2023; 10:1108543. [PMID: 37035318 PMCID: PMC10077969 DOI: 10.3389/fmed.2023.1108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The Hepatitis Delta Virus (HDV) is a defective, single-stranded RNA virusoid encoding for a single protein, the Hepatitis Delta Antigen (HDAg), which requires the hepatitis B virus (HBV) envelope protein (HBsAg) for its transmission. Currently, hepatitis D is the most aggressive form of viral hepatitis and treatment options are limited. Worldwide 12 million people are chronically infected with HDV being at high risk for progression to cirrhosis and development of liver cancer. Objectives Although it is well established that Mongolia is the country with the highest prevalence of HDV infections, the information on the molecular epidemiology and factors contributing to HDV sequence diversity are largely unclear. The aim of the study was to characterize the sequence diversity of HDV in rural areas from Mongolia and to determine the extent of HLA class I-associated selection pressure. Patients and methods From the HepMongolia cohort from rural areas in Mongolia, 451 HBsAg-positive individuals were selected and anti-HDV, HDV-RNA and the sequence of the large HDAg was determined. For all individuals the HLA class I locus was genotyped. Residues under selection pressure in the presence of individual HLA class I types were identified with the recently published analysis tool HAMdetector. Results Of 431 HBsAg positive patients, 281 were anti-HDV positive (65%), and HDV-RNA could be detected in 207 of 281 (74%) of patients. The complete large HDAg was successfully sequenced from 131 samples. Phylogenetic analysis revealed that all Mongolian HDV isolates belong to genotype 1, however, they separate into several different clusters without clear regional association. In turn, from phylogeny there is strong evidence for recent local transmission events. Importantly, we found multiple residues with strong support for HLA class I-associated selection pressure consistent with a functional CD8+ T cell response directed against HDV. Conclusion HDV isolates from Mongolia are highly diverse. The molecular epidemiology suggests circulation of multiple subtypes and provides evidence for ongoing recent transmissions.
Collapse
Affiliation(s)
- Battur Magvan
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Anne Alina Kloeble
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anuujin Gantumur
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Gerelmaa Enebish
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Vera Balz
- Institute for Transplant Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Johannes C. Fischer
- Institute for Transplant Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
- *Correspondence: Andreas Walker,
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
- Jörg Timm,
| |
Collapse
|
12
|
Motozono C. [SARS-CoV-2-specific T cell recognition toward emerging variants]. Uirusu 2023; 73:173-182. [PMID: 39343552 DOI: 10.2222/jsv.73.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in the control of various viral infection. CTLs recognize a complex of HLA (human leukocyte antigen) class I molecule and epitope peptide derived from viral protein on the cell surface via T cell receptors and can destroy virally infected cells. It is becoming evident that SARS-CoV-2 specific T cells play a crucial role in the control of COVID-19. We characterized T cells specific for various SARS-CoV-2 variants and identified that a L452R mutation in the Delta spike protein evades HLA-A*24:02-restricted T cell responses and increases virus infectivity. In contrast, HLA-A*24:02-restricted T cells strongly suppresses Omicron BA.1 replication due to a G446S mutation, located just outside the N-terminus of the cognate epitope, in the Omicron BA.1 variant via enhanced antigen processing and presentation of the epitope. These data indicate that T cell specific for antigens derived from variable regions is highly susceptible for the mutation and its location. The detail analysis of antigen-specific T cell responses toward variants provides better insights for the rational design of vaccine antigens or immunotherapy to induce efficient cellular immunity against new emerging viruses/variants.
Collapse
Affiliation(s)
- Chihiro Motozono
- Division of infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University
| |
Collapse
|
13
|
Warger J, Gaudieri S. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Viruses 2022; 15:70. [PMID: 36680110 PMCID: PMC9866609 DOI: 10.3390/v15010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Host immunity can exert a complex array of selective pressures on a pathogen, which can drive highly mutable RNA viruses towards viral escape. The plasticity of a virus depends on its rate of mutation, as well as the balance of fitness cost and benefit of mutations, including viral adaptations to the host's immune response. Since its emergence, SARS-CoV-2 has diversified into genetically distinct variants, which are characterised often by clusters of mutations that bolster its capacity to escape human innate and adaptive immunity. Such viral escape is well documented in the context of other pandemic RNA viruses such as the human immunodeficiency virus (HIV) and influenza virus. This review describes the selection pressures the host's antiviral immunity exerts on SARS-CoV-2 and other RNA viruses, resulting in divergence of viral strains into more adapted forms. As RNA viruses obscure themselves from host immunity, they uncover weak points in their own armoury that can inform more comprehensive, long-lasting, and potentially cross-protective vaccine coverage.
Collapse
Affiliation(s)
- Jacob Warger
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Mandurah, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Alves E, Al-Kaabi M, Keane NM, Leary S, Almeida CAM, Deshpande P, Currenti J, Chopra A, Smith R, Castley A, Mallal S, Kalams SA, Gaudieri S, John M. Adaptation to HLA-associated immune pressure over the course of HIV infection and in circulating HIV-1 strains. PLoS Pathog 2022; 18:e1010965. [PMID: 36525463 PMCID: PMC9803285 DOI: 10.1371/journal.ppat.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marwah Al-Kaabi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M. Keane
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Coral-Ann M. Almeida
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alison Castley
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Zhang Y, Jiang N, Qi W, Li T, Zhang Y, Wu J, Zhang H, Zhou M, Cui P, Yu T, Fu Z, Zhou Y, Lin K, Wang H, Wei T, Zhu Z, Ai J, Qiu C, Zhang W. SARS-CoV-2 intra-host single-nucleotide variants associated with disease severity. Virus Evol 2022; 8:veac106. [PMID: 36505092 PMCID: PMC9728387 DOI: 10.1093/ve/veac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 frequently arise within infected individuals. Here, we explored the level and pattern of intra-host viral diversity in association with disease severity. Then, we analyzed information underlying these nucleotide changes to infer the impetus including mutational signatures and immune selection from neutralizing antibody or T-cell recognition. From 23 January to 31 March 2020, a set of cross-sectional samples were collected from individuals with homogeneous founder virus regardless of disease severity. Intra-host single-nucleotide variants (iSNVs) were enumerated using deep sequencing. Human leukocyte antigen (HLA) alleles were genotyped by Sanger sequencing. Medical records were collected and reviewed by attending physicians. A total of 836 iSNVs (3-106 per sample) were identified and distributed in a highly individualized pattern. The number of iSNVs paced with infection duration peaked within days and declined thereafter. These iSNVs did not stochastically arise due to a strong bias toward C > U/G > A and U > C/A > G substitutions in reciprocal proportion with escalating disease severity. Eight nonsynonymous iSNVs in the receptor-binding domain could escape from neutralization, and eighteen iSNVs were significantly associated with specific HLA alleles. The level and pattern of iSNVs reflect the in vivo viral-host interaction and the disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Yumeng Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingzhe Zhou
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Peng Cui
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tong Yu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhangfan Fu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Zhou
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongyu Wang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tongqing Wei
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | - Chao Qiu
- *Corresponding authors: E-mail: ; ; ;
| | | |
Collapse
|
16
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes MD, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in a phase II randomized clinical trial. Nat Microbiol 2022; 7:1906-1917. [PMID: 36289399 PMCID: PMC9675946 DOI: 10.1038/s41564-022-01254-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 mutations that cause resistance to monoclonal antibody (mAb) therapy have been reported. However, it remains unclear whether in vivo emergence of SARS-CoV-2 resistance mutations alters viral replication dynamics or therapeutic efficacy in the immune-competent population. As part of the ACTIV-2/A5401 randomized clinical trial (NCT04518410), non-hospitalized participants with symptomatic SARS-CoV-2 infection were given bamlanivimab (700 mg or 7,000 mg) or placebo treatment. Here¸ we report that treatment-emergent resistance mutations [detected through targeted Spike (S) gene next-generation sequencing] were significantly more likely to be detected after bamlanivimab 700 mg treatment compared with the placebo group (7% of 111 vs 0% of 112 participants, P = 0.003). No treatment-emergent resistance mutations among the 48 participants who received 7,000 mg bamlanivimab were recorded. Participants in which emerging mAb resistant virus mutations were identified showed significantly higher pretreatment nasopharyngeal and anterior nasal viral loads. Daily respiratory tract viral sampling through study day 14 showed the dynamic nature of in vivo SARS-CoV-2 infection and indicated a rapid and sustained viral rebound after the emergence of resistance mutations. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest that are associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment that results in prolonged high-level respiratory tract viral loads. Assessment of viral resistance should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
Affiliation(s)
- Manish C Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Flynn
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Regan
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joan A Dragavon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Ajay Nirula
- Lilly Research Laboratories, San Diego, CA, USA
| | | | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Courtney V Fletcher
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott F Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Robert W Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, CA, USA.
| | - Jonathan Z Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Files JK, Sterrett S, Henostroza S, Fucile C, Maroney K, Fram T, Mallal S, Kalams S, Carlson J, Rosenberg A, Erdmann N, Bansal A, Goepfert PA. HLA-II-Associated HIV-1 Adaptation Decreases CD4 + T-Cell Responses in HIV-1 Vaccine Recipients. J Virol 2022; 96:e0119122. [PMID: 36000845 PMCID: PMC9472760 DOI: 10.1128/jvi.01191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Epitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4+ T-cell responses in HIV-positive (HIV+) individuals. Many such escaped CD4+ T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4+ T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes. When evaluated in separate peptide pools, vaccine-encoded adapted epitopes (AE) induced CD4+ T-cell responses less frequently than nonadapted epitopes (NAE). We also demonstrated that in a polyvalent vaccine, where both forms of the same epitope were encoded, AE were less immunogenic. NAE-specific CD4+ T cells had increased, albeit low, levels of interferon gamma (IFN-γ) cytokine production. Single-cell transcriptomic analyses showed that NAE-specific CD4+ T cells expressed interferon-related genes, while AE-specific CD4+ T cells resembled a Th2 phenotype. Importantly, the magnitude of NAE-specific CD4+ T-cell responses, but not that of AE-specific responses, was found to positively correlate with Env-specific antibodies in a vaccine efficacy trial. Together, these findings show that HLA-II-associated viral adaptation reduces CD4+ T-cell responses in HIV-1 vaccine recipients and suggest that vaccines encoding a significant number of AE may not provide optimal B-cell help for HIV-specific antibody production. IMPORTANCE Despite decades of research, an effective HIV-1 vaccine remains elusive. Vaccine strategies leading to the generation of broadly neutralizing antibodies are likely needed to provide the best opportunity of generating a protective immune response against HIV-1. Numerous studies have demonstrated that T-cell help is necessary for effective antibody generation. However, immunogen sequences from recent HIV-1 vaccine efficacy trials include CD4+ T-cell epitopes that have evidence of immune escape. Our study shows that these epitopes, termed adapted epitopes, elicit lower frequencies of CD4+ T-cell responses in recipients from multiple HIV-1 vaccine trials. Additionally, the counterparts to these epitopes, termed nonadapted epitopes, elicited CD4+ T-cell responses that correlated with Env-specific antibodies in one efficacy trial. These results suggest that vaccine-encoded adapted epitopes dampen CD4+ T-cell responses, potentially impacting both HIV-specific antibody production and efficacious vaccine efforts.
Collapse
Affiliation(s)
- Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sebastian Henostroza
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Maroney
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Alexander Rosenberg
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul A. Goepfert
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
DeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, Alter G, Amara RR, Baric RS, Barouch DH, Bloom JD, Bloyet LM, Bonenfant G, Boon ACM, Boritz EA, Bratt DL, Bricker TL, Brown L, Buchser WJ, Carreño JM, Cohen-Lavi L, Darling TL, Davis-Gardner ME, Dearlove BL, Di H, Dittmann M, Doria-Rose NA, Douek DC, Drosten C, Edara VV, Ellebedy A, Fabrizio TP, Ferrari G, Fischer WM, Florence WC, Fouchier RAM, Franks J, García-Sastre A, Godzik A, Gonzalez-Reiche AS, Gordon A, Haagmans BL, Halfmann PJ, Ho DD, Holbrook MR, Huang Y, James SL, Jaroszewski L, Jeevan T, Johnson RM, Jones TC, Joshi A, Kawaoka Y, Kercher L, Koopmans MPG, Korber B, Koren E, Koup RA, LeGresley EB, Lemieux JE, Liebeskind MJ, Liu Z, Livingston B, Logue JP, Luo Y, McDermott AB, McElrath MJ, Meliopoulos VA, Menachery VD, Montefiori DC, Mühlemann B, Munster VJ, Munt JE, Nair MS, Netzl A, Niewiadomska AM, O'Dell S, Pekosz A, Perlman S, Pontelli MC, Rockx B, Rolland M, Rothlauf PW, Sacharen S, Scheuermann RH, Schmidt SD, Schotsaert M, Schultz-Cherry S, Seder RA, Sedova M, Sette A, Shabman RS, Shen X, Shi PY, Shukla M, Simon V, Stumpf S, Sullivan NJ, Thackray LB, Theiler J, et alDeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, Alter G, Amara RR, Baric RS, Barouch DH, Bloom JD, Bloyet LM, Bonenfant G, Boon ACM, Boritz EA, Bratt DL, Bricker TL, Brown L, Buchser WJ, Carreño JM, Cohen-Lavi L, Darling TL, Davis-Gardner ME, Dearlove BL, Di H, Dittmann M, Doria-Rose NA, Douek DC, Drosten C, Edara VV, Ellebedy A, Fabrizio TP, Ferrari G, Fischer WM, Florence WC, Fouchier RAM, Franks J, García-Sastre A, Godzik A, Gonzalez-Reiche AS, Gordon A, Haagmans BL, Halfmann PJ, Ho DD, Holbrook MR, Huang Y, James SL, Jaroszewski L, Jeevan T, Johnson RM, Jones TC, Joshi A, Kawaoka Y, Kercher L, Koopmans MPG, Korber B, Koren E, Koup RA, LeGresley EB, Lemieux JE, Liebeskind MJ, Liu Z, Livingston B, Logue JP, Luo Y, McDermott AB, McElrath MJ, Meliopoulos VA, Menachery VD, Montefiori DC, Mühlemann B, Munster VJ, Munt JE, Nair MS, Netzl A, Niewiadomska AM, O'Dell S, Pekosz A, Perlman S, Pontelli MC, Rockx B, Rolland M, Rothlauf PW, Sacharen S, Scheuermann RH, Schmidt SD, Schotsaert M, Schultz-Cherry S, Seder RA, Sedova M, Sette A, Shabman RS, Shen X, Shi PY, Shukla M, Simon V, Stumpf S, Sullivan NJ, Thackray LB, Theiler J, Thomas PG, Trifkovic S, Türeli S, Turner SA, Vakaki MA, van Bakel H, VanBlargan LA, Vincent LR, Wallace ZS, Wang L, Wang M, Wang P, Wang W, Weaver SC, Webby RJ, Weiss CD, Wentworth DE, Weston SM, Whelan SPJ, Whitener BM, Wilks SH, Xie X, Ying B, Yoon H, Zhou B, Hertz T, Smith DJ, Diamond MS, Post DJ, Suthar MS. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 2022; 605:640-652. [PMID: 35361968 PMCID: PMC9345323 DOI: 10.1038/s41586-022-04690-5] [Show More Authors] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.
Collapse
Affiliation(s)
- Marciela M DeGrace
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Elodie Ghedin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jesse D Bloom
- Fred Hutch Cancer Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaston Bonenfant
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Eli A Boritz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Debbie L Bratt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- CAMRIS, Contractor for NIAID, Bethesda, MD, USA
| | - Traci L Bricker
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Liliana Brown
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - William J Buchser
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liel Cohen-Lavi
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Tamarand L Darling
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Han Di
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meike Dittmann
- Microbiology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicole A Doria-Rose
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
| | - Venkata-Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thomas P Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Will M Fischer
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - William C Florence
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Godzik
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bart L Haagmans
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases Integrated Research Facility, Frederick, MD, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sarah L James
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lukasz Jaroszewski
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert M Johnson
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Astha Joshi
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Lisa Kercher
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bette Korber
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Eilay Koren
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Richard A Koup
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Mariel J Liebeskind
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James P Logue
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Adrian B McDermott
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | | | - Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jenny E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Sijy O'Dell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Marjorie C Pontelli
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Barry Rockx
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Morgane Rolland
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sinai Sacharen
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | - Stephen D Schmidt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert A Seder
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Mayya Sedova
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Reed S Shabman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maulik Shukla
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nancy J Sullivan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - James Theiler
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Samuel A Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Maria A Vakaki
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Leah R Vincent
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Li Wang
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David E Wentworth
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart M Weston
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Bin Zhou
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tomer Hertz
- Department of Microbiology, Immunology and Genetics Faculty of Health Sciences Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Michael S Diamond
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Diane J Post
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Bull MB, Gu H, Ma FNL, Perera LP, Poon LLM, Valkenburg SA. Next-generation T cell-activating vaccination increases influenza virus mutation prevalence. SCIENCE ADVANCES 2022; 8:eabl5209. [PMID: 35385318 PMCID: PMC8986104 DOI: 10.1126/sciadv.abl5209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To determine the potential for viral adaptation to T cell responses, we probed the full influenza virus genome by next-generation sequencing directly ex vivo from infected mice, in the context of an experimental T cell-based vaccine, an H5N1-based viral vectored vaccinia vaccine Wyeth/IL-15/5Flu, versus the current standard-of-care, seasonal inactivated influenza vaccine (IIV) and unvaccinated conditions. Wyeth/IL-15/5Flu vaccination was coincident with increased mutation incidence and frequency across the influenza genome; however, mutations were not enriched within T cell epitope regions, but high allele frequency mutations within conserved hemagglutinin stem regions and PB2 mammalian adaptive mutations arose. Depletion of CD4+ and CD8+ T cell subsets led to reduced frequency of mutants in vaccinated mice; therefore, vaccine-mediated T cell responses were important drivers of virus diversification. Our findings suggest that Wyeth/IL-15/5Flu does not generate T cell escape mutants but increases stochastic events for virus adaptation by stringent bottlenecks.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fionn N. L. Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1374, USA
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Habermann D, Kharimzadeh H, Walker A, Li Y, Yang R, Kaiser R, Brumme ZL, Timm J, Roggendorf M, Hoffmann D. HAMdetector: A Bayesian regression model that integrates information to detect HLA-associated mutations. Bioinformatics 2022; 38:2428-2436. [PMID: 35238330 DOI: 10.1093/bioinformatics/btac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION A key process in anti-viral adaptive immunity is that the Human Leukocyte Antigen system (HLA) presents epitopes as Major Histocompatibility Complex I (MHC I) protein-peptide complexes on cell surfaces and in this way alerts CD8+ cytotoxic T-Lymphocytes (CTLs). This pathway exerts strong selection pressure on viruses, favoring viral mutants that escape recognition by the HLA/CTL system. Naturally, such immune escape mutations often emerge in highly variable viruses, e.g. HIV or HBV, as HLA-associated mutations (HAMs), specific to the hosts MHC I proteins. The reliable identification of HAMs is not only important for understanding viral genomes and their evolution, but it also impacts the development of broadly effective anti-viral treatments and vaccines against variable viruses. By their very nature, HAMs are amenable to detection by statistical methods in paired sequence/HLA data. However, HLA alleles are very polymorphic in the human host population which makes the available data relatively sparse and noisy. Under these circumstances, one way to optimize HAM detection is to integrate all relevant information in a coherent model. Bayesian inference offers a principled approach to achieve this. RESULTS We present a new Bayesian regression model for the detection of HAMs that integrates a sparsity-inducing prior, epitope predictions, and phylogenetic bias assessment, and that yields easily interpretable quantitative information on HAM candidates. The model predicts experimentally confirmed HAMs as having high posterior probabilities, and it performs well in comparison to state-of-the-art models for several data sets from individuals infected with HBV, HDV, and HIV. AVAILABILITY The source code of this software is available at https://github.com/HAMdetector/Escape.jl under a permissive MIT license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel Habermann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Hadi Kharimzadeh
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
| | - Yang Li
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology,Chinese Academy of Science, Wuhan, P. R. China
| | - Rongge Yang
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology,Chinese Academy of Science, Wuhan, P. R. China
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, 50935, Germany
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jörg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
| | - Michael Roggendorf
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, 45117, Germany.,Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.,Center for Computational Sciences and Simulation, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
High Level of Pre-Treatment HIV-1 Drug Resistance and Its Association with HLA Class I-Mediated Restriction in the Pumwani Sex Worker Cohort. Viruses 2022; 14:v14020273. [PMID: 35215866 PMCID: PMC8879707 DOI: 10.3390/v14020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background: We analyzed the prevalence of pre-antiretroviral therapy (ART) drug resistance mutations (DRMs) in a Kenyan population. We also examined whether host HLA class I genes influence the development of pre-ART DRMs. Methods: The HIV-1 proviral DNAs were amplified from blood samples of 266 ART-naïve women from the Pumwani Sex Worker cohort of Nairobi, Kenya using a nested PCR method. The amplified HIV genomes were sequenced using next-generation sequencing technology. The prevalence of pre-ART DRMs was investigated. Correlation studies were performed between HLA class I alleles and HIV-1 DRMs. Results: Ninety-eight percent of participants had at least one DRM, while 38% had at least one WHO surveillance DRM. M184I was the most prevalent clinically important variant, seen in 37% of participants. The DRMs conferring resistance to one or more integrase strand transfer inhibitors were also found in up to 10% of participants. Eighteen potentially relevant (p < 0.05) positive correlations were found between HLA class 1 alleles and HIV drug-resistant variants. Conclusions: High levels of HIV drug resistance were found in all classes of antiretroviral drugs included in the current first-line ART regimens in Africa. The development of DRMs may be influenced by host HLA class I-restricted immunity.
Collapse
|
22
|
Kamori D, Hasan Z, Carlson J, Kawana-Tachikawa A, Gatanaga H, Oka S, Ueno T. Impact of Human Leukocyte Antigen-Associated Polymorphisms on Variability of HIV-1 Accessory and Regulatory Proteins. AIDS Res Hum Retroviruses 2021; 37:962-966. [PMID: 33757299 DOI: 10.1089/aid.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 escapes by acquiring mutations that differentially influence the course of infection. Unlike HIV-1 structural and enzymatic proteins, it remains elusive what extent the host immune-mediated selection pressure influences the variability of the accessory (Vif, Vpu, Vpr, and Nef) and regulatory (Tat and Rev) proteins. To address this, we analyzed the viral sequences encoding accessory and regulatory proteins from 446 human leukocyte antigen (HLA)-typed, chronically HIV-1 subtype B-infected, and treatment-naive individuals in Japan. We observed that Vpu and Vpr were the most and least polymorphic proteins with the average Shannon entropy scores of 0.63 and 0.38, respectively. Phylogenetically corrected methods identified a total of 161 HLA-associated polymorphisms; whereby Nef and Vpu had the highest (26.6%) and lowest (1.2%) proportion of amino acid sites associated with HLA-class I alleles, respectively. These results add further insight on the role of HLA-mediated selection pressure on HIV-1 sequence polymorphisms of HIV-1 accessory and regulatory proteins.
Collapse
Affiliation(s)
- Doreen Kamori
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Zafrul Hasan
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jonathan Carlson
- Department of Immunomics, Microsoft Research, Los Angeles, California, USA
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Gatanaga
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
24
|
Currenti J, Law BM, Qin K, John M, Pilkinton MA, Bansal A, Leary S, Ram R, Chopra A, Gangula R, Yue L, Warren C, Barnett L, Alves E, McDonnell WJ, Sooda A, Heath SL, Mallal S, Goepfert P, Kalams SA, Gaudieri S. Cross-Reactivity to Mutated Viral Immune Targets Can Influence CD8 + T Cell Functionality: An Alternative Viral Adaptation Strategy. Front Immunol 2021; 12:746986. [PMID: 34764960 PMCID: PMC8577586 DOI: 10.3389/fimmu.2021.746986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of T cell immunogenicity due to mutations in virally encoded epitopes is a well-described adaptation strategy to limit host anti-viral immunity. Another described, but less understood, adaptation strategy involves the selection of mutations within epitopes that retain immune recognition, suggesting a benefit for the virus despite continued immune pressure (termed non-classical adaptation). To understand this adaptation strategy, we utilized a single cell transcriptomic approach to identify features of the HIV-specific CD8+ T cell responses targeting non-adapted (NAE) and adapted (AE) forms of epitopes containing a non-classical adaptation. T cell receptor (TCR) repertoire and transcriptome were obtained from antigen-specific CD8+ T cells of chronic (n=7) and acute (n=4) HIV-infected subjects identified by either HLA class I tetramers or upregulation of activation markers following peptide stimulation. CD8+ T cells were predominantly dual tetramer+, confirming a large proportion of cross-reactive TCR clonotypes capable of recognizing the NAE and AE form. However, single-reactive CD8+ T cells were identified in acute HIV-infected subjects only, providing the potential for the selection of T cell clones over time. The transcriptomic profile of CD8+ T cells was dependent on the autologous virus: subjects whose virus encoded the NAE form of the epitope (and who transitioned to the AE form at a later timepoint) exhibited an 'effective' immune response, as indicated by expression of transcripts associated with polyfunctionality, cytotoxicity and apoptosis (largely driven by the genes GZMB, IFNɣ, CCL3, CCL4 and CCL5). These data suggest that viral adaptation at a single amino acid residue can provide an alternative strategy for viral survival by modulating the transcriptome of CD8+ T cells and potentially selecting for less effective T cell clones from the acute to chronic phase.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Becker M.P. Law
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, WA, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Christian Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anuradha Sooda
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
25
|
Umviligihozo G, Muok E, Nyirimihigo Gisa E, Xu R, Dilernia D, Herard K, Song H, Qin Q, Bizimana J, Farmer P, Hare J, Gilmour J, Allen S, Karita E, Hunter E, Yue L. Increased Frequency of Inter-Subtype HIV-1 Recombinants Identified by Near Full-Length Virus Sequencing in Rwandan Acute Transmission Cohorts. Front Microbiol 2021; 12:734929. [PMID: 34690973 PMCID: PMC8529237 DOI: 10.3389/fmicb.2021.734929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022] Open
Abstract
Most studies of HIV-1 transmission have focused on subtypes B and C. In this study, we determined the genomic sequences of the transmitted founder (TF) viruses from acutely infected individuals enrolled between 2005 and 2011 into IAVI protocol C in Rwanda and have compared these isolates to viruses from more recent (2016-2019) acute/early infections in three at risk populations - MSM, high risk women (HRW), and discordant couples (DC). For the Protocol C samples, we utilized near full-length single genome (NFLG) amplification to generate 288 HIV-1 amplicons from 26 acutely infected seroconverters (SC), while for the 21 recent seroconverter samples (13 from HRW, two from DC, and six from MSM), we PCR amplified overlapping half-genomes. Using PacBio SMRT technology combined with the MDPseq workflow, we performed multiplex sequencing to obtain high accuracy sequences for each amplicon. Phylogenetic analyses indicated that the majority of recent transmitted viruses from DC and HRW clustered within those of the earlier Protocol C cohort. However, five of six sequences from the MSM cohort branched together and were greater than 97% identical. Recombination analyses revealed a high frequency (6/26; 23%) of unique inter-subtype recombination in Protocol C with 19% AC and 4% CD recombinant viruses, which contrasted with only 6.5% of recombinants defined by sequencing of the pol gene previously. The frequency of recombinants was significantly higher (12/21; 57%) in the more recent isolates, although, the five related viruses from the MSM cohort had identical recombination break points. While major drug resistance mutations were absent from Protocol C viruses, 4/21 of recent isolates exhibited transmitted nevirapine resistance. These results demonstrate the ongoing evolution and increased prevalence of recombinant and drug resistant transmitted viruses in Rwanda and highlight the importance of defining NFLG sequences to fully understand the nature of TF viruses and in particular the prevalence of unique recombinant forms (URFs) in transmission cohorts.
Collapse
Affiliation(s)
| | - Erick Muok
- Centre for Family Health Research, Kigali, Rwanda
| | | | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Dario Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Kimberley Herard
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Heeyah Song
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Qianhong Qin
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | | | - Paul Farmer
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | | | - Jill Gilmour
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | | | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
26
|
Xue WQ, Wang TM, Huang JW, Zhang JB, He YQ, Wu ZY, Liao Y, Yuan LL, Mu J, Jia WH. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol 2021; 7:veab010. [PMID: 34567789 PMCID: PMC8458747 DOI: 10.1093/ve/veab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV), a widespread oncovirus, is associated with multiple cancers including nasopharyngeal carcinoma (NPC), gastric cancer and diverse lymphoid malignancies. Recent studies reveal that specific EBV strains or subtypes are associated with NPC development in endemic regions. However, these NPC specific subtypes were only identified in a portion of infected individuals due possibly to the limited samples size studied or the complicated population structures of the virus. To identify additional high-risk EBV subtypes, we conducted a comprehensive genetic analysis of 22 critical viral proteins by using the largest dataset of 628 EBV genomes and 792 sequences of single target genes/proteins from GenBank. The phylogenetic, principal component and genetic structure analyses of these viral proteins were performed through worldwide populations. In addition to the general Asia-Western/Africa geographic segregation, population structure analysis showed a 'Chinese-unique' cluster (96.57% isolates from China) was highly enriched in the NPC patients, compared to the healthy individuals (89.6% vs. 44.5%, P < 0.001). The newly identified EBV subtypes, which contains four Chinese-specific NPC-associated amino acid substitutions (BALF2 V317M, BNRF1 G696R, V1222I and RPMS1 D51E), showed a robust positive association with the risk of NPC in China (Odds Ratio = 4.80, 20.00, 18.24 and 32.00 for 1, 2, 3 and 4 substitutions, respectively, P trend <0.001). Interestingly, the coincidence of positively selected sites with NPC-associated substitutions suggests that adaptive nonsynonymous mutation on critical proteins, such as BNRF1, may interact with host immune system and contribute to the carcinogenesis of NPC. Our findings provide a comprehensive overview of EBV genetic structure for worldwide populations and offer novel clues to EBV carcinogenesis from the aspect of evolution.
Collapse
Affiliation(s)
- Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jing-Wen Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Lei-Lei Yuan
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville 20852, MD, USA
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Corresponding author: E-mail:
| |
Collapse
|
27
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes M, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 Resistance with Monoclonal Antibody Therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.03.21263105. [PMID: 34545376 PMCID: PMC8452115 DOI: 10.1101/2021.09.03.21263105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
|
28
|
Zhang H, Deng S, Ren L, Zheng P, Hu X, Jin T, Tan X. Profiling CD8 + T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Rep 2021; 36:109708. [PMID: 34506741 PMCID: PMC8390359 DOI: 10.1016/j.celrep.2021.109708] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Cellular immunity is important in determining the disease severity of COVID-19 patients. However, current understanding of SARS-CoV-2 epitopes mediating cellular immunity is limited. Here we apply T-Scan, a recently developed method, to identify CD8+ T cell epitopes from COVID-19 patients of four major HLA-A alleles. Several identified epitopes are conserved across human coronaviruses, which might mediate pre-existing cellular immunity to SARS-CoV-2. In addition, we identify and validate four epitopes that were mutated in the newly circulating variants, including the Delta variant. The mutations significantly reduce T cell responses to the epitope peptides in convalescent and vaccinated samples. We further determine the crystal structure of HLA-A∗02:01/HLA-A∗24:02 in complex with the epitope KIA_S/NYN_S, respectively, which reveals the importance of K417 and L452 of the spike protein for binding to HLA. Our data suggest that evading cellular immunity might contribute to the increased transmissibility and disease severity associated with the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shasha Deng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Peiyi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
29
|
Bull MB, Cohen CA, Leung NH, Valkenburg SA. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread. Viruses 2021; 13:1779. [PMID: 34578360 PMCID: PMC8472936 DOI: 10.3390/v13091779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Nancy H.L. Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China;
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| |
Collapse
|
30
|
Leary S, Gaudieri S, Parker MD, Chopra A, James I, Pakala S, Alves E, John M, Lindsey BB, Keeley AJ, Rowland-Jones SL, Swanson MS, Ostrov DA, Bubenik JL, Das SR, Sidney J, Sette A, COVID-19 Genomics UK (COG-UK) consortium, de Silva TI, Phillips E, Mallal S. Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathog Immun 2021; 6:27-49. [PMID: 34541432 PMCID: PMC8439434 DOI: 10.20411/pai.v6i2.460] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host's anti-viral immune response, in turn affecting the frequency of variants over time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS Deep-sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. Results: Sequence analysis suggests that the 3 adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep-sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans, resulting in both coding changes and novel sub-genomic RNA transcripts, suggests this as a mechanism for diversification and adaptation within its new host.
Collapse
Affiliation(s)
- Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Matthew D. Parker
- Sheffield Biomedical Research Centre, Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Suman Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Benjamin B. Lindsey
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alexander J. Keeley
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah L. Rowland-Jones
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Jodi L. Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, United States
| | - COVID-19 Genomics UK (COG-UK) consortium
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Sheffield Biomedical Research Centre, Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida, United States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, United States
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
31
|
Leary S, Gaudieri S, Parker MD, Chopra A, James I, Pakala S, Alves E, John M, Lindsey BB, Keeley AJ, Rowland-Jones SL, Swanson MS, Ostrov DA, Bubenik JL, Das S, Sidney J, Sette A, de Silva TI, Phillips E, Mallal S. Generation of a novel SARS-CoV-2 sub-genomic RNA due to the R203K/G204R variant in nucleocapsid: homologous recombination has potential to change SARS-CoV-2 at both protein and RNA level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.04.10.029454. [PMID: 33880475 PMCID: PMC8057240 DOI: 10.1101/2020.04.10.029454] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host’s anti-viral immune response, in turn affecting the frequency of variants over-time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS Deep sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. RESULTS Sequence analysis suggests that the three adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence (CS) of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans resulting in both coding changes and novel sub-genomic RNA transcripts suggests this as a mechanism for diversification and adaptation within its new host.
Collapse
|
32
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
Impaired ability of Nef to counteract SERINC5 is associated with reduced plasma viremia in HIV-infected individuals. Sci Rep 2020; 10:19416. [PMID: 33173092 PMCID: PMC7656250 DOI: 10.1038/s41598-020-76375-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Nef plays an essential role in enhancing virion infectivity by antagonizing the host restriction molecule SERINC5. Because Nef is highly polymorphic due to the selective forces of host cellular immunity, we hypothesized that certain immune-escape polymorphisms may impair Nef’s ability to antagonize SERINC5 and thereby influence viral fitness in vivo. To test this hypothesis, we identified 58 Nef polymorphisms that were overrepresented in HIV-infected patients in Japan sharing the same HLA genotypes. The number of immune-associated Nef polymorphisms was inversely correlated with the plasma viral load. By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load. A series of biochemical experiments showed that the double mutations Y120F/Q125H, but not either single mutation, impaired Nef’s ability to antagonize SERINC5 and was associated with decreasing virion infectivity and viral replication in primary lymphocytes. In contrast, other Nef functions such as CD4, CCR5, CXCR4 and HLA class I downregulation and CD74 upregulation remained unchanged. Taken together, our results suggest that the differential ability of Nef to counteract SERINC5 by naturally occurring immune-associated mutations was associated with the plasma viral load in vivo.
Collapse
|
34
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
35
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sk MF, Jonniya NA, Kar P. Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5892-5909. [DOI: 10.1080/07391102.2020.1794965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
37
|
Kist NC, Lambert B, Campbell S, Katzourakis A, Lunn D, Lemey P, Iversen AKN. HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evol 2020; 6:veaa085. [PMID: 33343925 PMCID: PMC7733611 DOI: 10.1093/ve/veaa085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogen-driven selection and past interbreeding with archaic human lineages have resulted in differences in human leukocyte antigen (HLA)-allele frequencies between modern human populations. Whether or not this variation affects pathogen subtype diversification is unknown. Here we show a strong positive correlation between ethnic diversity in African countries and both human immunodeficiency virus (HIV)-1 p24gag and subtype diversity. We demonstrate that ethnic HLA-allele differences between populations have influenced HIV-1 subtype diversification as the virus adapted to escape common antiviral immune responses. The evolution of HIV Subtype B (HIV-B), which does not appear to be indigenous to Africa, is strongly affected by immune responses associated with Eurasian HLA variants acquired through adaptive introgression from Neanderthals and Denisovans. Furthermore, we show that the increasing and disproportionate number of HIV-infections among African Americans in the USA drive HIV-B evolution towards an Africa-centric HIV-1 state. Similar adaptation of other pathogens to HLA variants common in affected populations is likely.
Collapse
Affiliation(s)
- Nicolaas C Kist
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ben Lambert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Medical School Building St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Samuel Campbell
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Daniel Lunn
- Department of Statistics, University of Oxford, St Giles’, Oxford OX1 3LB, UK
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven B-3000, Belgium
| | - Astrid K N Iversen
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
38
|
Clinical and evolutionary consequences of HIV adaptation to HLA: implications for vaccine and cure. Curr Opin HIV AIDS 2020; 14:194-204. [PMID: 30925534 DOI: 10.1097/coh.0000000000000541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in our understanding of HIV adaptation to human leukocyte antigen (HLA)-associated immune pressures and its relevance to HIV prevention and cure research. RECENT FINDINGS Recent research has confirmed that HLA is a major driver of individual and population-level HIV evolution, that HIV strains are adapting to the immunogenetic profiles of the different human ethnic groups in which they circulate, and that HIV adaptation has substantial clinical and immunologic consequences. As such, adaptation represents a major challenge to HIV prevention and cure. At the same time, there are opportunities: Studies of HIV adaptation are revealing why certain HLA alleles are protective in some populations and not others; they are identifying immunogenic viral epitopes that harbor high mutational barriers to escape, and they may help illuminate novel, vaccine-relevant HIV epitopes in regions where circulating adaptation is extensive. Elucidation of HLA-driven adapted and nonadapted viral forms in different human populations and HIV subtypes also renders 'personalized' immunogen selection, as a component of HIV cure strategies, conceptually feasible. SUMMARY Though adaptation represents a major challenge to HIV prevention and cure, achieving an in-depth understanding of this phenomenon can help move the design of such strategies forward.
Collapse
|
39
|
Damilano G, Sued O, Satorres S, Ruiz MJ, Ghiglione Y, Guzman F, Turk G, Quiroga F, Cahn P, Salomón H, Dilernia D. Bioinformatic analysis of post-transmission viral readaptation in Argentine patients with acute HIV-1 infection. INFECTION GENETICS AND EVOLUTION 2020; 81:104207. [PMID: 31991176 DOI: 10.1016/j.meegid.2020.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
During the acute phase of HIV-1 infection, a strong readaptation occurs in the viral population. Our objective was to analyze the post-transmission mutations associated with escape to the cytotoxic immune response and its relationship with the progression of the infection. In this study, a total of 17 patients were enrolled during acute/early primary HIV infection and 8 subjects that were the HIV positive partner resulting in 8 transmission pairs. Genotyping of the genetic polymorphisms of HLA class I A and B was performed using PCR-SSOP. Viral RNA extraction was from plasma. 570 single Gag-gene amplifications were obtained by limiting-dilution RT-PCR. Epitope prediction was performed with NetMHC CBS prediction server for the 19 HLA-A and B alleles. Cytotoxic response prediction was performed by using the IEDB Analysis Resource. From our results, we deduce that the transmitted CTL / gag escape frequency in the founder virus was at least double compared to the post-transmission events. Additionally, by means of an algorithm that combines these frequencies, we observed that the founder viruses better adapted to the HLA A / B alleles of the recipient could contribute to a greater progression of the infection. Our results suggest that there is a large adaptation of HIV-1 to the HLA A / B alleles prevalent in our population. However, despite this adaptive advantage, the virus needs to make "readjustments" through new escape and compensatory mutations. Interestingly, according to our results, this readaptation could have a role in the progression of the infection.
Collapse
Affiliation(s)
- G Damilano
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina.
| | - O Sued
- Fundación Huésped-Buenos Aires, Argentina
| | - S Satorres
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San luis (UNSL), Argentina
| | - M J Ruiz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Y Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - F Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile
| | - G Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - F Quiroga
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - P Cahn
- Hospital General de Agudos "Dr. JA Fernández", Buenos Aires, Argentina
| | - H Salomón
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - D Dilernia
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
40
|
Currenti J, Chopra A, John M, Leary S, McKinnon E, Alves E, Pilkinton M, Smith R, Barnett L, McDonnell WJ, Lucas M, Noel F, Mallal S, Conrad JA, Kalams SA, Gaudieri S. Deep sequence analysis of HIV adaptation following vertical transmission reveals the impact of immune pressure on the evolution of HIV. PLoS Pathog 2019; 15:e1008177. [PMID: 31821379 PMCID: PMC6924686 DOI: 10.1371/journal.ppat.1008177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) can adapt to an individual’s T cell immune response via genomic mutations that affect antigen recognition and impact disease outcome. These viral adaptations are specific to the host’s human leucocyte antigen (HLA) alleles, as these molecules determine which peptides are presented to T cells. As HLA molecules are highly polymorphic at the population level, horizontal transmission events are most commonly between HLA-mismatched donor/recipient pairs, representing new immune selection environments for the transmitted virus. In this study, we utilised a deep sequencing approach to determine the HIV quasispecies in 26 mother-to-child transmission pairs where the potential for founder viruses to be pre-adapted is high due to the pairs being haplo-identical at HLA loci. This scenario allowed the assessment of specific HIV adaptations following transmission in either a non-selective immune environment, due to recipient HLA mismatched to original selecting HLA, or a selective immune environment, mediated by matched donor/recipient HLA. We show that the pattern of reversion or fixation of HIV adaptations following transmission provides insight into the replicative cost, and likely compensatory networks, associated with specific adaptations in vivo. Furthermore, although transmitted viruses were commonly heavily pre-adapted to the child’s HLA genotype, we found evidence of de novo post-transmission adaptation, representing new epitopes targeted by the child’s T cell response. High-resolution analysis of HIV adaptation is relevant when considering vaccine and cure strategies for individuals exposed to adapted viruses via transmission or reactivated from reservoirs. Highly mutable pathogens utilise genetic variations within T cell epitopes as a mechanism of immune escape (viral adaptation). The diversity of the human leucocyte antigen (HLA) molecules that present viral targets to T cells in human populations partially protects against rapid population-level accumulation of human immunodeficiency virus (HIV) adaptations through horizontal transmissions. In contrast, vertical transmissions occur between haplo-identical mother/child pairs, and potentially include adaptive changes through father-mother-child transmission, representing a pathway to complete pre-adaptation to HLA alleles in child hosts over only two transmission events. We utilised next-generation sequencing to examine HIV evolution in the unique setting of vertical HIV transmission. We predict the in vivo replicative cost and immune benefit of specific HIV adaptations that could be used to inform vaccine design and cure strategies to combat viral immune adaptation.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michaela Lucas
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joseph A. Conrad
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
41
|
Fellay J, Pedergnana V. Exploring the interactions between the human and viral genomes. Hum Genet 2019; 139:777-781. [PMID: 31729546 DOI: 10.1007/s00439-019-02089-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Over the last decade, genome-wide association studies led to major advances in identifying human genetic variants associated with infectious disease susceptibility. On the pathogen side, comparable methods are now applied to identify disease-modulating pathogen variants. As host and pathogen variants jointly determine disease outcomes, the most recent development has been to explore simultaneously host and pathogen genomes, through so-called genome-to-genome studies. In this review, we provide some background on the development of genome-to-genome analysis and we detail the first wave of studies in this emerging field, which focused on patients chronically infected with HIV and hepatitis C virus. We also discuss the need for novel statistical methods to better tackle the issues of population stratification and multiple testing. Finally, we speculate on future research areas where genome-to-genome analysis may prove to be particularly effective.
Collapse
Affiliation(s)
- Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Precision Medicine Unit, University Hospital and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Vincent Pedergnana
- French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM), Montpellier, France
| |
Collapse
|
42
|
Boppana S, Sterrett S, Files J, Qin K, Fiore-Gartland A, Cohen KW, De Rosa SC, Bansal A, Goepfert PA. HLA-I Associated Adaptation Dampens CD8 T-Cell Responses in HIV Ad5-Vectored Vaccine Recipients. J Infect Dis 2019; 220:1620-1628. [PMID: 31301135 PMCID: PMC6782105 DOI: 10.1093/infdis/jiz368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 01/08/2023] Open
Abstract
HLA-I-associated human immunodeficiency virus (HIV) adaptation is known to negatively affect disease progression and CD8 T-cell responses. We aimed to assess how HLA-I-associated adaptation affects HIV vaccine-induced CD8 T-cell responses in 2 past vaccine efficacy trials. We found that vaccine-encoded adapted epitopes were less immunogenic than vaccine-encoded nonadapted epitopes, and adapted epitope-specific responses were less polyfunctional than nonadapted epitope-specific responses. Along those lines, vaccine recipients with higher HLA-I adaptation to the Gag vaccine insert mounted less polyfunctional CD8 T-cell responses at the protein level. Breadth of response, which correlated with viral control in recipients who became infected, is also dampened by HLA-I adaptation. These findings suggest that HLA-I-associated adaptation is an important consideration for strategies aiming to induce robust CD8 T-cell responses.
Collapse
Affiliation(s)
- Sushma Boppana
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Jacob Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Kai Qin
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
43
|
Qin K, Boppana S, Du VY, Carlson JM, Yue L, Dilernia DA, Hunter E, Mailliard RB, Mallal SA, Bansal A, Goepfert PA. CD8 T cells targeting adapted epitopes in chronic HIV infection promote dendritic cell maturation and CD4 T cell trans-infection. PLoS Pathog 2019; 15:e1007970. [PMID: 31398241 PMCID: PMC6703693 DOI: 10.1371/journal.ppat.1007970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
HIV-1 frequently escapes from CD8 T cell responses via HLA-I restricted adaptation, leading to the accumulation of adapted epitopes (AE). We previously demonstrated that AE compromise CD8 T cell responses during acute infection and are associated with poor clinical outcomes. Here, we examined the impact of AE on CD8 T cell responses and their biological relevance in chronic HIV infection (CHI). In contrast to acute infection, the majority of AE are immunogenic in CHI. Longitudinal analyses from acute to CHI showed an increased frequency and magnitude of AE-specific IFNγ responses compared to NAE-specific ones. These AE-specific CD8 T cells also were more cytotoxic to CD4 T cells. In addition, AE-specific CD8 T cells expressed lower levels of PD1 and CD57, as well as higher levels of CD28, suggesting a more activated and less exhausted phenotype. During CHI, viral sequencing identified AE-encoding strains as the dominant quasispecies. Despite increased CD4 T cell cytotoxicity, CD8 T cells responding to AE promoted dendritic cell (DC) maturation and CD4 T cell trans-infection perhaps explaining why AE are predominant in CHI. Taken together, our data suggests that the emergence of AE-specific CD8 T cell responses in CHI confers a selective advantage to the virus by promoting DC-mediated CD4 T cell trans-infection. HIV-1 infection remains a critical public health threat across the world. Over the past two decades, CD8 T cells have been clearly shown to exert immune pressure on HIV and drive viral adaptation. Previously, our group reported that such HLA-I associated adaptations can predict clinical outcomes and are beneficial to HIV-1 as CD8 T cells are unable to recognize epitopes with adaptation in acute HIV infection. However, it is still unclear how HIV-1 adaptation impacts CD8 T cells during chronic HIV infection. In this study, we observed an enhancement of CD8 T cell responses targeting adapted epitopes in chronic infection. Although these responses were cytotoxic, they also exhibited a “helper” effect by promoting viral infection of CD4 T cells via interaction with dendritic cells. This phenomenon may contribute to the persistence of adapted viruses. In summary, these findings present a novel mechanism of CD8 T cell driven HIV-1 adaptation.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sushma Boppana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor Y. Du
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dario A. Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| |
Collapse
|
44
|
Palmer DS, Turner I, Fidler S, Frater J, Goedhals D, Goulder P, Huang KHG, Oxenius A, Phillips R, Shapiro R, Vuuren CV, McLean AR, McVean G. Mapping the drivers of within-host pathogen evolution using massive data sets. Nat Commun 2019; 10:3017. [PMID: 31289267 PMCID: PMC6616926 DOI: 10.1038/s41467-019-10724-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
Differences among hosts, resulting from genetic variation in the immune system or heterogeneity in drug treatment, can impact within-host pathogen evolution. Genetic association studies can potentially identify such interactions. However, extensive and correlated genetic population structure in hosts and pathogens presents a substantial risk of confounding analyses. Moreover, the multiple testing burden of interaction scanning can potentially limit power. We present a Bayesian approach for detecting host influences on pathogen evolution that exploits vast existing data sets of pathogen diversity to improve power and control for stratification. The approach models key processes, including recombination and selection, and identifies regions of the pathogen genome affected by host factors. Our simulations and empirical analysis of drug-induced selection on the HIV-1 genome show that the method recovers known associations and has superior precision-recall characteristics compared to other approaches. We build a high-resolution map of HLA-induced selection in the HIV-1 genome, identifying novel epitope-allele combinations.
Collapse
Affiliation(s)
- Duncan S Palmer
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK.
| | - Isaac Turner
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, W2 1PG, UK
| | - John Frater
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Dominique Goedhals
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Philip Goulder
- Division of Infectious Diseases, University of the Free State, and 3 Military Hospital, Bloemfontein, 9300, South Africa
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
| | - Kuan-Hsiang Gary Huang
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Einstein Medical Center Philadelphia, 5501 Old York Road, PA, 19141, USA
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093, Zurich, Switzerland
| | - Rodney Phillips
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7LE, UK
- Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, BO 320, Botswana
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, 02215, USA
| | - Cloete van Vuuren
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Angela R McLean
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Zoology Department, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Gil McVean
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
45
|
Bertels F, Leemann C, Metzner KJ, Regoes R. Parallel evolution of HIV-1 in a long-term experiment. Mol Biol Evol 2019; 36:2400-2414. [PMID: 31251344 PMCID: PMC6805227 DOI: 10.1093/molbev/msz155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Environmental Systems Sciences, ETH Zurich, Zurich.,Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Roland Regoes
- Department of Environmental Systems Sciences, ETH Zurich, Zurich
| |
Collapse
|
46
|
Adusei-Poku MA, Matsuoka S, Bonney EY, Abana CZ, Duker EO, Nii-Trebi NI, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Kawana-Tachikawa A, Ishikawa K, Ampofo WK, Matano T. Human Leukocyte Antigen-Associated HIV-1 CRF02_AG gag and vif Polymorphisms in Ghana. Jpn J Infect Dis 2019; 72:374-380. [PMID: 31257246 DOI: 10.7883/yoken.jjid.2019.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In human immunodeficiency virus type-1 (HIV-1) infections, cytotoxic T-lymphocyte (CTL) responses targeting human leukocyte antigen (HLA)-restricted viral epitopes exert strong suppressive pressure on viral replication and frequently select for mutations resulting in viral escape from CTL recognition. Numerous data on these HLA-associated mutations in HIV-1 subtypes B and C have been amassed with few reports described in other subtypes. In the present study, we investigated the HLA-associated mutations in HIV-1 subtype CRF02_AG prevailing in Ghana, Western Africa. We determined viral gag sequences in 246 out of 324 HIV-1-infected Ghanaians. Phylogeny analysis revealed that 200 (81.3%) individuals were infected with HIV-1 CRF02_AG. Full gag and vif sequences were obtained from 199 and 138, respectively, out of the 200 individuals infected with CRF02_AG and subjected to determination of HLA-associated mutations. The analysis found HLA-associated HIV-1 CRF02_AG non-synonymous polymorphisms at 19 sites; 13 in gag and six in vif, including those that were newly determined. Generation of this data is an important contribution to our understanding of HIV-1 CRF02_AG and host T cell interaction.
Collapse
Affiliation(s)
- Mildred A Adusei-Poku
- Joint Research Center for Human Retrovirus Infection, Kumamoto University.,AIDS Research Center, National Institute of Infectious Diseases
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases
| | - Evelyn Y Bonney
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana
| | - Christopher Z Abana
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana
| | - Ewurabena O Duker
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana
| | - Nicholas I Nii-Trebi
- School of Biomedical and Allied Health, College of Health Sciences, University of Ghana
| | | | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo
| | | | - Ai Kawana-Tachikawa
- Joint Research Center for Human Retrovirus Infection, Kumamoto University.,AIDS Research Center, National Institute of Infectious Diseases.,Institute of Medical Science, University of Tokyo
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases
| | - William K Ampofo
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana
| | - Tetsuro Matano
- Joint Research Center for Human Retrovirus Infection, Kumamoto University.,AIDS Research Center, National Institute of Infectious Diseases.,Institute of Medical Science, University of Tokyo
| |
Collapse
|
47
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW A therapy that might cure HIV is a very important goal for the 30-40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies. RECENT FINDINGS Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy. There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.
Collapse
Affiliation(s)
- Thor A Wagner
- Seattle Children's Research Institute, 1900 Ninth Ave, 8th Floor, Seattle, WA, 98101, USA. .,University of Washington, 1959 NE Pacific St., Box 356320, Seattle, WA, 98195-6320, USA.
| |
Collapse
|
49
|
Shadabi E, Liang B, Plummer F, Luo M. Identification and Characterization of Positively Selected Mutations in Nef of Four HIV-1 Major Subtypes from Los Alamos National Laboratory. Curr HIV Res 2019; 16:130-142. [PMID: 29600767 DOI: 10.2174/1570162x16666180330140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
Collapse
Affiliation(s)
- Elnaz Shadabi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Gutierrez B, Escalera-Zamudio M, Pybus OG. Parallel molecular evolution and adaptation in viruses. Curr Opin Virol 2019; 34:90-96. [PMID: 30703578 PMCID: PMC7102768 DOI: 10.1016/j.coviro.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Abstract
Parallel molecular evolution is the independent evolution of the same genotype or phenotype from distinct ancestors. The simple genomes and rapid evolution of many viruses mean they are useful model systems for studying parallel evolution by natural selection. Parallel adaptation occurs in the context of several viral behaviours, including cross-species transmission, drug resistance, and host immune escape, and its existence suggests that at least some aspects of virus evolution and emergence are repeatable and predictable. We introduce examples of virus parallel evolution and summarise key concepts. We outline the difficulties in detecting parallel adaptation using virus genomes, with a particular focus on phylogenetic and structural approaches, and we discuss future approaches that may improve our understanding of the phenomenon.
Collapse
Affiliation(s)
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|