1
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
2
|
Nowicka B, Polkowska I, Zeliszewska-Duk P, Torres A, Duk M. Molecular Assessment of Plasma Concentrations of Selected Adipokines and IL-8 in Horses with Back Pain and Comorbid Asthma-Based on Clinical Cases. Animals (Basel) 2025; 15:310. [PMID: 39943080 PMCID: PMC11815831 DOI: 10.3390/ani15030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Similarly, in humans and horses, thoracic and lumbosacral back pain cause more disability and work interruptions worldwide than any other disease. Given that there are few effective treatments for back pain in humans and animals, primary prevention strategies and a reduction in pain factors may be crucial. In the analysed data obtained for the horses studied, the pattern of changes in adipocytokine concentrations, including resistin, visfatin and leptin, was noted for those with back pain compared to the control animals. Concentrations of selected adipocytokines in horses from the back pain group were different in animals with a coexisting diagnosis of asthma and back dysfunction. Very few studies are available on adipokine concentrations in horses. No information was found in relation to back pain and asthma in these animals. In humans, correlations of back pain and asthma with concentrations of selected adipokines have been described.
Collapse
Affiliation(s)
- Beata Nowicka
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Paulina Zeliszewska-Duk
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Anna Torres
- Department of Pediatrics and Adolescent Gynecology, Medical University of Lublin, Chodzki 4, 20-093 Lublin, Poland;
| | - Mariusz Duk
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| |
Collapse
|
3
|
Ramos R, Pham KT, Prince RC, Leiser-Miller LB, Prasad MS, Wang X, Nordberg RC, Bielajew BJ, Hu JC, Yamaga K, Oh JW, Peng T, Datta R, Astrowskaja A, Almet AA, Burns JT, Liu Y, Guerrero-Juarez CF, Tran BQ, Chu YL, Nguyen AM, Hsi TC, Lim NTL, Schoeniger S, Liu R, Pai YL, Vadivel CK, Ingleby S, McKechnie AE, van Breukelen F, Hoehn KL, Rasweiler JJ, Kohara M, Loughry WJ, Weldy SH, Cosper R, Yang CC, Lin SJ, Cooper KL, Santana SE, Bradley JE, Kiebish MA, Digman M, James DE, Merrill AE, Nie Q, Schilling TF, Astrowski AA, Potma EO, García-Castro MI, Athanasiou KA, Behringer RR, Plikus MV. Superstable lipid vacuoles endow cartilage with its shape and biomechanics. Science 2025; 387:eads9960. [PMID: 39787221 DOI: 10.1126/science.ads9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Kim T Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Richard C Prince
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | | | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Rachel C Nordberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Kosuke Yamaga
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Anatomy, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Tao Peng
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Rupsa Datta
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Aksana Astrowskaja
- Scientific Research Laboratory of Molecular Medicine, Grodna State Medical University, Grodna, Belarus
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - John T Burns
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yuchen Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Bryant Q Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yi-Lin Chu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Anh M Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Norman T-L Lim
- National Institute of Education, Singapore, Republic of Singapore
| | - Sandra Schoeniger
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ruiqi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yun-Ling Pai
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chella K Vadivel
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew E McKechnie
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- South African National Biodiversity Institute, Pretoria, South Africa
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Scott H Weldy
- Serrano Animal and Bird Hospital, Lake Forest, CA, USA
| | | | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Mammalogy, Burke Museum, University of Washington, Seattle, WA, USA
| | - Jeffrey E Bradley
- Department of Mammalogy, Burke Museum, University of Washington, Seattle, WA, USA
| | | | - Michelle Digman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, USA
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | | | - Eric O Potma
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Kim J, Kim E, Kim D, Yoon S. Weighted vest intervention during whole-body circuit training improves serum resistin, insulin resistance, and cardiometabolic risk factors in normal-weight obese women. J Exerc Sci Fit 2024; 22:463-473. [PMID: 39525516 PMCID: PMC11550068 DOI: 10.1016/j.jesf.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background and objectives Obesity is a well-known cause of cardiovascular disease and metabolic disorders. Normal-weight obesity, where the body mass index(BMI) is within the normal range but the body fat percentage is high, also adversely impacts cardiovascular and metabolic health. This study explored the effects of whole-body circuit training using a weighted vest on serum resistin, insulin resistance, and cardiovascular disease risk factors in normal-weight obese women. Methods Thirty-six normal-weight obese women were divided into three groups: Weighted Vest Circuit Training(WVCT)(n = 12), Body Weight Circuit Training(BWCT)(n = 12), and a Control group(CON)(n = 12). Participants in the WVCT and BWCT groups engaged in whole-body circuit training three times per week for eight weeks. Serum resistin, cardiovascular disease risk factors, and insulin resistance were measured before and after the intervention. Results The study revealed significant and impactful findings. There were substantial improvements in body composition(Skeletal Muscle Mass: +7.5 %, p = 0.042, d = 0.80), Serum Resistin(-38.2 %, p = 0.001, d = 0.85), insulin resistance(HOMA-IR: 27.1 %, p < 0.001, d = 0.88), and a reduction in IL-6 levels(-25.4 %, p = 0.082, d = 0.60) in the WVCT group compared to the BWCT and CON groups. The WVCT group outperformed the other groups, demonstrating greater effectiveness in reducing cardiovascular risk factors. Conclusion These findings have significant implications for healthcare. Whole-body circuit training with weighted vests has effectively improved body composition, reduced serum resistin, and lowered insulin resistance, reducing cardiovascular disease risk factors in normal-weight obese women. These results could inform and enhance the treatment and management of obesity-related cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Eunsook Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Dohyun Kim
- Department of Physical Education Graduate School, Korea University, Seoul, Republic of Korea
| | - Sungjin Yoon
- Department of Physical Education, College of Education, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, Republic of Korea
| |
Collapse
|
5
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Rompou AV, Bletsa G, Tsakogiannis D, Theocharis S, Vassiliu P, Danias N. An Updated Review of Resistin and Colorectal Cancer. Cureus 2024; 16:e65403. [PMID: 39184804 PMCID: PMC11344879 DOI: 10.7759/cureus.65403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Resistin is one of the most important adipokines, and its role lies mainly in controlling insulin sensitivity and inflammation. However, over the last years, the study of resistin gained increased popularity since it was proved that there is a considerable relationship between high levels of resistin and obesity as well as obesity-induced diseases, including diabetes, cardiovascular disorders, and cancer. Regarding cancer risk, circulating resistin levels have been correlated with several types of cancer, including colorectal, breast, lung, endometrial, gastroesophageal, prostate, renal, and pancreatic cancer. Colorectal cancer is regarded as a multi-pathway disease. Several pathophysiological features seem to promote colorectal cancer (CRC) such as chronic inflammation, insulin resistance, and obesity. Even though the molecular mechanisms involved in CRC development remain rather vague, it is widely accepted that several biochemical factors promote CRC by releasing augmented pro-inflammatory cytokines, like IGF-I, insulin, sex-steroid hormones, and adipokines. A wide range of research studies has focused on evaluating the impact of circulating resistin levels on CRC risk and determining the efficacy of chemotherapy in CRC patients by measuring resistin levels. Moreover, significant outcomes have emerged regarding the association of specific single nucleotide polymorphisms (SNPs) in the resistin gene and CRC risk. The present study reviewed the role of circulating resistin levels in CRC development and shed light on specific resistin gene SNPs implicated in the disease's development. Finally, we analyzed the impact of resistin levels on the effectiveness of chemotherapy and further discussed whether resistin can be regarded as a valuable biomarker for CRC prognosis and treatment. Resistin is one of the most important adipokines, and its role lies mainly in controlling insulin sensitivity and inflammation. However, over the last years, the study of resistin gained increased popularity since it was proved that there is a considerable relationship between high levels of resistin and obesity as well as obesity-induced diseases, including diabetes, cardiovascular disorders, and cancer. This review discusses the aberrant expression of resistin and its receptors, its diverse downstream signaling, and its impact on tumor growth, metastasis, angiogenesis, and therapy resistance to support its clinical exploitation in biomarker and therapeutic development.
Collapse
Affiliation(s)
- Aliki Vaia Rompou
- Department of Colorectal Surgery, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Garyfalia Bletsa
- Department of Medicine, Research Center, Hellenic Anticancer Institute, Athens, GRC
| | | | - Stamatios Theocharis
- Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Nick Danias
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
7
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
8
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
9
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
10
|
Majid Z, Baqir BM, Al-Shimerty DF, Rayish Hadi N. Ghrelin attenuates the inflammatory response induced by experimental endotoxemia in mice. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:652-658. [PMID: 38865618 DOI: 10.36740/wlek202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVE Aim: The aim of this research is to assess the anti-inflammatory effect of ghrelin in mice models of polymicrobial sepsis. PATIENTS AND METHODS Materials and Methods: 35 male albino Swiss mice, ages 8-12 weeks, weighing 23-33g, were randomly separated into five groups n = 7; normal group was fed their usual diets until time of sampling, the sham group subjected to Anaesthesia and laparotomy, sepsis group subjected to cecal ligation and puncture, vehicle group was given an equivalent volume of intraperitoneal saline injections immediately after cecal ligation and puncture, and the ghrelin group was treated with 80 μg/kg of ghrelin intraperitoneal injections immediately following cecal ligation and puncture. Twenty hours after cecal ligation and puncture, mice were sacrificed; myocardial tissue and serum samples were collected. Serum IL-1β, NF-κB, and TLR4 levels were measured, and inflammatory response's effects on cardiac tissue were evaluated. RESULTS Results: The mean serum IL-1β, NF-κB, and TLR4 levels were markedly elevated in the sepsis and vehicle groups than in the normal and sham groups. The mean serum levels of IL-1β, NF-κB, and TLR4 were considerably lower in the ghrelin-treated group than in the vehicle and sepsis groups. Myocardium tissue of the normal and sham groups showed normal architecture. The sepsis and vehicle groups had a severe myocardial injury. The histological characteristics of ghrelin-treated mice differed slightly from those of the normal and sham groups. CONCLUSION Conclusions: Our study concluded that ghrelin exerts anti-inflammatory effects in polymicrobial sepsis, as indicated by a considerable decrease in the IL-1β, NF-κB and TLR4 serum levels.
Collapse
Affiliation(s)
- Zinah Majid
- SOUTHERN PRIMARY HEALTH SECTOR IN NAJAF, NAJAF, IRAQ
| | | | | | | |
Collapse
|
11
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
13
|
Markopoulos M, Barber TM, Bargiota A, Skevaki C, Papassotiriou I, Kumar S, Vlahos NF, Mastorakos G, Valsamakis G. Acute iv CRH administration significantly increases serum active ghrelin in postmenopausal PCOS women compared to postmenopausal controls. Endocrine 2023; 81:613-620. [PMID: 37249728 DOI: 10.1007/s12020-023-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE In women with Polycystic Ovarian Syndrome (PCOS), an increased risk of disordered eating has been described. There is growing interest regarding a possible interconnection between psychological states and increased appetite in women with PCOS. Acute stress is characterized by increased Corticotropin Releasing Hormone (CRH) secretion. The aim was to estimate the ghrelin concentrations during CRH test. METHODS Twenty postmenopausal women with PCOS and twenty age- and BMI- matched postmenopausal control women were recruited at Aretaieion University Hospital. In the morning (9 am) all subjects had anthropometric measurements (weight, height, waist circumference) and a fasting sample for hormonal measurements. An intravenous (iv) CRH stimulation test conducted over 1 min. Serum active ghrelin levels were measured at 0, 15, 30, 60, 90, 120 min after iv CRH administration. RESULTS The postmenopausal PCOS group had a higher waist circumference compared to postmenopausal controls. Active ghrelin concentrations increased significantly from 0 to 15 min, to 30 min, to 60 min, to 90 min and then decreased to 120 min. However, within the postmenopausal control group there were no significant changes in serum active ghrelin levels. Serum active ghrelin concentrations were significantly greater in the postmenopausal control group at 0, 15 and 120 min compared to the postmenopausal PCOS group. At 90 min active ghrelin concentrations were significantly greater in the postmenopausal PCOS group. Delta Area Under the Curve of active ghrelin (ΔAUCghr) was significantly greater in the postmenopausal PCOS group compared to controls. CONCLUSIONS In postmenopausal PCOS, but not in postmenopausal controls, iv CRH administration induces increased serum active ghrelin secretion, suggesting a possible anti-stress adaptive mechanism. An increase in serum active ghrelin may induce hunger as a side-effect of this presumed adaptive mechanism.
Collapse
Affiliation(s)
- Marios Markopoulos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | | | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, Larissa, Greece
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center, Phillips Universitat Marburg, German Center of Lung Research, Marburg, Germany
| | - Ioannis Papassotiriou
- First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Nikos F Vlahos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece.
- Warwick Medical School, Warwick, UK.
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, Larissa, Greece.
| |
Collapse
|
14
|
Zhou L, Song K, Luo W. Association between circulating resistin levels and thyroid dysfunction: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 13:1071922. [PMID: 36686437 PMCID: PMC9845899 DOI: 10.3389/fendo.2022.1071922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background As a product of adipose tissue, resistin exceeds other adipokines in its role in regulating appetite, energy expenditure, insulin sensitivity, inflammation, and immunity, similar to thyroid hormones. This study aimed to evaluate the association between resistin levels and thyroid dysfunction and to explore variations in circulating resistin levels before and after treatment for thyroid dysfunction. Methods This study was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. A comprehensive search of PubMed, Embase, and Cochrane databases was conducted until June 15, 2022, with no start date restriction, according to the preregistered protocol (PROSPERO-CRD42022336617). RevMan version 5.4 and R software package version 4.2.0 were used for statistical analyses. Results Fourteen studies with 1716 participants were included in this study. The findings of the meta-analysis confirmed that the resistin levels of patients with thyroid dysfunction were significantly higher than those of the euthyroid function control group (mean difference [MD] = 2.11, 95% confidence interval [CI] = 1.11-3.11, P < 0.00001). Furthermore, the resistin levels of patients with hyperthyroidism (MD = 3.23, 95% CI = 0.68-5.79, P = 0.01) and subclinical hypoidism (MD = 1.37, 95% CI = 0.31-2.42, P = 0.01) were significantly higher than those of euthyroid controls. The resistin levels of patients with thyroid dysfunction after treatment were significantly lower than those before treatment (MD = 1.00, 95% CI = 0.34-1.65, P = 0.003), especially in patients with hyperthyroidism (MD = 2.16, 95% CI = 1.00-3.32, P = 0.0003). Correlation analysis confirmed a positive correlation between resistin levels and free triiodothyronine (FT3) levels in patients with thyroid dysfunction (r = 0.27578, P = 0.001). Conclusions Our meta-analysis demonstrates that resistin levels are significantly higher in patients with thyroid dysfunction, and the resistin levels after treatment in patients with thyroid dysfunction are significantly lower than those before treatment. Correlation analysis shows a positive correlation between resistin levels and FT3 levels in patients with thyroid dysfunction. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022336617.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Postgraduate, Qinghai University, Xining, China
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| | - Kang Song
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| | - Wei Luo
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
15
|
Sayed HM, Awaad AS, Abdel Rahman FEZS, Al-Dossari M, Abd El-Gawaad NS, Ahmed OM. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals (Basel) 2022; 16:34. [PMID: 36678531 PMCID: PMC9863970 DOI: 10.3390/ph16010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to see how chrysin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) affected streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats as an animal model of type 2 diabetes mellitus (T2DM). Male Wistar rats were given a single intraperitoneal (i.p.) injection of 60 mg STZ/kg bodyweight (bw) 15 min after an i.p. injection of NA (120 mg/kg bw) to induce T2DM. The diabetic rats were given chrysin orally at a dose of 100 mg/kg bw every other day, BM-MSCs intravenously at a dose of 1 × 106 cells/rat/week, and their combination for 30 days after diabetes induction. The rats in the diabetic group displayed impaired oral glucose tolerance and a decrease in liver glycogen content and in serum insulin, C-peptide, and IL-13 levels. They also had significantly upregulated activities in terms of liver glucose-6-phosphatase and glycogen phosphorylase and elevated levels of serum free fatty acids, IL-1β, and TNF-α. In addition, the diabetic rats exhibited a significant elevation in the adipose tissue resistin protein expression level and a significant decrease in the expression of adiponectin, insulin receptor-beta subunit, insulin receptor substrate-1, and insulin receptor substrate-2, which were associated with a decrease in the size of the pancreatic islets and in the number of β-cells and insulin granules in the islets. The treatment of diabetic rats with chrysin and/or BM-MSCs significantly improved the previously deteriorated alterations, with chrysin combined with BM-MSCs being the most effective. Based on these findings, it can be concluded that combining chrysin with BM-MSCs produced greater additive therapeutic value than using them separately in NA/STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Hesham M. Sayed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ashraf S. Awaad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | | | - M. Al-Dossari
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| |
Collapse
|
16
|
Schulte LM, Jendras J, Twomey E, Ramirez-Bautista A, Bossuyt F. Gene expression of secretory proteins in the nuptial pads of three Lithobates species (Anura: Ranidae). AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Many amphibian species possess male-specific secretory breeding glands. In anurans, such specialized glands are often present as nuptial pads at the first digit of the hand, which are pressed against the female during amplexus. However, the role of nuptial pad secretions remains largely unknown. Here, we investigate the inner morphology as well as the RNA expression patterns of the nuptial pads of several Central American Lithobates species (Ranidae). As shown for the breeding glands of other amphibian species, the Lithobates nuptial pads are composed of large specialized mucus glands, excreting proteinaceous content to the surface. Whole-transcriptome sequencing revealed that for one of the species the most highly expressed transcripts encoding secretory proteins in the nuptial pads are sodefrin precursor-like factor (SPF) proteins, known to have a pheromone function in multiple amphibian species. The other two species, however, lack high expression of SPF transcripts but express other secretory proteins, whose roles in amphibian breeding glands remain unknown. Several of these proteins are highly expressed in all samples, suggesting a direct role during courtship or for the maintenance/development of the glands.
Collapse
Affiliation(s)
- Lisa M. Schulte
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Julia Jendras
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Evan Twomey
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Aurelio Ramirez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, México
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets? BIOLOGY 2022; 11:biology11081237. [PMID: 36009862 PMCID: PMC9405285 DOI: 10.3390/biology11081237] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Non-alcoholic fatty liver disease (NAFLD) is an unmet medical need due to its increasingly high incidence, severe clinical consequences, and the absence of feasible diagnostic tools and effective drugs. This review summarizes the preclinical and clinical data on adipokines, cytokine-like hormones secreted by adipose tissue, and NAFLD. The aim is to establish the potential of adipokines as diagnostic and prognostic biomarkers, as well as their potential as therapeutic targets for NAFLD. The limitations of current research are also discussed, and future perspectives are outlined. Abstract Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic illness and the leading indication for liver transplantation in the future decades. NAFLD is also commonly associated with other high-incident non-communicable diseases, such as cardiovascular complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic impact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for NAFLD management are unavailable. The pathophysiology of NAFLD, recently defined as metabolic associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis communication because obesity-associated white adipose tissue (WAT) inflammation and metabolic dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hormones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis and progression; however, much uncertainty still exists. Here, the current knowledge on the roles of leptin, adiponectin, ghrelin, resistin, retinol-binding protein 4 (RBP4), visfatin, chemerin, and adipocyte fatty-acid-binding protein (AFABP) in NAFLD, taken from preclinical to clinical studies, is overviewed. The effect of therapeutic interventions on adipokines’ circulating levels are also covered. Finally, future directions to address the potential of adipokines as therapeutic targets and disease biomarkers for NAFLD are discussed.
Collapse
|
18
|
Zhao B, Bouchareb R, Lebeche D. Resistin deletion protects against heart failure injury by targeting DNA damage response. Cardiovasc Res 2022; 118:1947-1963. [PMID: 34324657 PMCID: PMC9239578 DOI: 10.1093/cvr/cvab234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Increased resistin (Retn) levels are associated with development of cardiovascular diseases. However, the role of Retn in heart failure (HF) is still unclear. Here we probed the functional and molecular mechanism underlying the beneficial effect of Retn deletion in HF. METHODS AND RESULTS Wild-type (WT) and adipose tissue-specific Retn-knockout (RKO) mice were subjected to transverse aortic constriction (TAC)-induced HF. Cardiac function and haemodynamic changes were measured by echocardiography and left ventricular catheterization. Adipose tissue Retn deletion attenuated while Retn cardiac-selective overexpression, via a recombinant adeno-associated virus-9 vector, exacerbated TAC-induced hypertrophy, cardiac dysfunction, and myocardial fibrosis in WT and RKO mice. Mechanistically, we showed that Gadd45α was significantly increased in RKO HF mice while cardiac overexpression of Retn led to its downregulation. miR148b-3p directly targets Gadd45α and inhibits its expression. Retn overexpression upregulated miR148b-3p expression and triggered DNA damage response (DDR) in RKO-HF mice. Inhibition of miR148b-3p in vivo normalized Gadd45α expression, decreased DDR, and reversed cardiac dysfunction and fibrosis. In vitro Retn overexpression in adult mouse cardiomyocytes activated miR148b-3p and reduced Gadd45α expression. Gadd45α overexpression in H9C2-cardiomyoblasts protected against hydrogen peroxide- and Retn-induced DDR. CONCLUSION These findings reveal that diminution in circulating Retn reduced myocardial fibrosis and apoptosis, and improved heart function in a mouse model of HF, at least in part, through attenuation of miR148b-3p and DDR. The results of this study indicate that controlling Retn levels may provide a potential therapeutic approach for treating pressure overload-induced HF.
Collapse
Affiliation(s)
- Baoyin Zhao
- Cardiovascular Research Institute, New York, NY 10029, USA
| | | | - Djamel Lebeche
- Cardiovascular Research Institute, New York, NY 10029, USA
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Presseller EK, Patarinski AGG, Fan SC, Lampe EW, Juarascio AS. Sensor technology in eating disorders research: A systematic review. Int J Eat Disord 2022; 55:573-624. [PMID: 35489036 DOI: 10.1002/eat.23715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Sensor technologies offer exciting potential to objectively measure psychopathological correlates of eating pathology and eating disorder (ED) research utilizing sensors has rapidly proliferated in the past several years. The aims of the present review are: (1) characterize the types of sensors that have been utilized in ED research, (2) identify the psychopathological factors relevant to EDs that have been assessed using sensors, (3) describe the data supporting the validity and reliability of these sensors, (4) discuss limitations associated with these sensors, and (5) identify gaps that persist within the ED literature with regard to use of sensor technologies. METHOD A systematic search was conducted of PubMed, PsycINFO, Web of Science, ProQuest, and "gray" literature sources. Eligible publications were empirical studies that utilized sensors to measure at least one psychological variable among clinical ED populations. RESULTS Sensors have been utilized with ED samples to measure eating behaviors, physical activity, sleep, autonomic nervous system activity, eyeblink startle response, visual attention, and visual-haptic object integration. The reliability and validity of these sensors varies widely and there are a number of significant gaps that remain in the literature with regard to the types of sensors utilized, context in which sensors have been used, and populations studied. DISCUSSION The existing literature utilizing sensors within ED research largely support the feasibility and acceptability of these tools. Sensors should continue to be utilized within the field, with a specific focus on examining the reliability and validity of these tools within ED samples and increasing the diversity of samples studied. PUBLIC SIGNIFICANCE STATEMENT Sensor technologies, such as those included in modern smartwatches, offer new opportunities to measure factors that may maintain or contribute to symptoms of eating disorders. This article describes the types of sensors that have been used in eating disorders research, challenges that may arise in using these sensors, and discusses new applications of these sensors that may be pursued in future research.
Collapse
Affiliation(s)
- Emily K Presseller
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA.,Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Stephanie C Fan
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elizabeth W Lampe
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA.,Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Adrienne S Juarascio
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA.,Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Ogando PHM, Silveira-Rodrigues JG, Melo BP, Campos BT, Silva ADC, Barbosa EG, Aleixo IMS, Soares DD. Effects of high- and moderate-intensity resistance training sessions on glycemia of insulin-treated and non-insulin-treated type 2 diabetes mellitus individuals. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Abdel Aziz K, Al-Mugaddam F, Sugathan S, Saseedharan P, Jouini T, Elamin ME, Moselhy H, Aly El-Gabry D, Arnone D, Karam SM. Decreased acylated and total ghrelin levels in bipolar disorder patients recovering from a manic episode. BMC Psychiatry 2022; 22:209. [PMID: 35313855 PMCID: PMC8935687 DOI: 10.1186/s12888-022-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To date, only few studies have investigated ghrelin levels in bipolar disorders, and all have exclusively measured acylated ghrelin, with none investigating total ghrelin (acylated and des-acylated). We aimed to investigate peripheral levels of acylated and total ghrelin in subjects experiencing a manic episode of bipolar disorder. METHODS Peripheral levels of acylated and total ghrelin were measured in hospitalised medicated individuals recovering from a manic episode. Enzyme-linked immunosorbent assays (ELISA) were used to measure ghrelin levels in patients and compared with healthy controls. The relationship between ghrelin levels in bipolar disorder, self-reported hunger measures, demographic and clinical parameters was investigated with correlational analyses. RESULTS Twenty-four subjects (15 males, 9 females) recovering from mania and 27 matched healthy controls (13 males, 14 females) were recruited for the study. Mean values of both acylated (187 vs.520 pg/mL) and total ghrelin (396 vs. 648 pg/mL) were significantly reduced in bipolar disorder (p = 0.001). Ghrelin levels correlated positively with markers of illness severity and negatively with prescribed mood stabilizers, second-generation antipsychotics, weight and body mass index. CONCLUSION Peripheral measurements of acylated and total ghrelin were both reduced in bipolar disorder patients compared to healthy controls. Whilst illness severity promotes higher ghrelin levels, pharmacological treatment and weight gain exercise the opposite effect.
Collapse
Affiliation(s)
- Karim Abdel Aziz
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fadwa Al-Mugaddam
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Dept of Chemical Engineering and Biotechnology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tarek Jouini
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | | | - Hamdy Moselhy
- American Center for Psychiatry and Neurology (ACPN), Dubai, United Arab Emirates
| | - Dina Aly El-Gabry
- Okasha Institute of Psychiatry, Neuropsychiatry Department, Ain Shams University, Cairo, Egypt
| | - Danilo Arnone
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, Kings' College London, London, UK.
| | - Sherif M Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Askin L, Abus S, Tanriverdi O. Resistin and Cardiovascular Disease: A Review of the Current Literature Regarding Clinical and Pathological Relationships. Curr Cardiol Rev 2022; 18:e290721195114. [PMID: 34325643 PMCID: PMC9241124 DOI: 10.2174/1573403x17666210729101120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Serum resistin, mainly secreted by the bone marrow, monocytes, and macrophages, contributes to many processes, including endothelial dysfunction, Vascular Smooth Muscle Cell (VSMC) proliferation, and atherothrombosis demonstrating effects on the development of hypertension and Coronary Artery Disease (CAD). Previously published clinical studies have shown that plasma resistin levels are significantly associated with cardiovascular disease risk factors and adverse clinical outcomes associated with the condition. Resistin is associated with vascular smooth muscle cell dysfunction in vitro, most plausibly due to its relationship with oxidative stress in advanced atherosclerosis whereas in vivo studies have shown resistin to be associated with intimal hyperplasia. We aimed to summarize the role of resistin on cardiovascular disease (CVD), as we could not find any review focused on the role of resistin on CVD.
Collapse
Affiliation(s)
- Lutfu Askin
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Sabri Abus
- Department of cardiology, Kahta State Hospital, Kâhta, Turkey
| | - Okan Tanriverdi
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| |
Collapse
|
23
|
Schulte LM, Martel A, Cruz-Elizalde R, Ramírez-Bautista A, Bossuyt F. Love bites: male frogs (Plectrohyla, Hylidae) use teeth scratching to deliver sodefrin precursor-like factors to females during amplexus. Front Zool 2021; 18:59. [PMID: 34823558 PMCID: PMC8613984 DOI: 10.1186/s12983-021-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient transfer of chemical signals is important for successful mating in many animal species. Multiple evolutionary lineages of animals evolved direct sex pheromone transmission during traumatic mating-the wounding of the partner with specialized devices-which helps to avoid signal loss to the environment. Although such direct transmission modes of so-called allohormone pheromones are well-documented in invertebrates, they are considered rare in vertebrates. Males of several species of the frog genus Plectrohyla (Hylidae, Anura) have elongated teeth and develop swollen lips during the breeding season. Here we investigated the possibility that these structures are used to scratch the females' skin and apply allohormone pheromones during traumatic mating in several Plectrohyla species. RESULTS Our behavioural observations revealed that males press their upper jaw onto the females' dorsum during amplexus, leaving small skin scratches with their teeth. Histological examinations of the males' lips identified specialized mucus glands, resembling known amphibian pheromone glands. Whole-transcriptome sequencing of these breeding glands showed high expression of sodefrin precursor-like factor (SPF) proteins, which are known to have a pheromone function in multiple amphibian species. CONCLUSIONS Our study suggests SPF delivery via traumatic mating in several anuran species: the males have specialized breeding glands in the lips for production and secretion and use their elongated teeth as wounding devices for application. We hypothesize that these SPF proteins end up in the females' circulatory system, where understanding their exact function will require further molecular, physiological and behavioural testing.
Collapse
Affiliation(s)
- Lisa M Schulte
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - An Martel
- Wildlife Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Raciel Cruz-Elizalde
- Laboratorio de Zoología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N, Santa Fe Juriquilla, C. P. 76230, Querétaro, Mexico
| | - Aurelio Ramírez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas E Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
24
|
Cornelian Cherry ( Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-α, PPAR-γ Expression and Reduces I/M Ratio in Aorta, Increases LXR-α Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021; 13:nu13103621. [PMID: 34684622 PMCID: PMC8537201 DOI: 10.3390/nu13103621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits possess potential cardiovascular, lipid-lowering and hypoglycemic bioactivities. The aim of this study is to evaluate the influence of resin-purified cornelian cherry extract rich in iridoids and anthocyanins on several transcription factors, intima/media ratio in aorta and serum parameters, which determine or are valuable indicators of the adverse changes observed in the course of atherosclerosis, cardiovascular disease, and metabolic syndrome. For this purpose, male New Zealand rabbits were fed a diet enriched in 1% cholesterol for 60 days. Additionally, one group received 10 mg/kg b.w. of cornelian cherry extract and the second group 50 mg/kg b.w. of cornelian cherry extract. PPAR-α and PPAR-γ expression in the aorta, LXR-α expression in the liver; cholesterol, triglycerides, adipokines, apolipoproteins, glucose and insulin levels in serum; the intima and media diameter in the thoracic and abdominal aorta were determined. Administration of cornelian cherry extract resulted in an enhancement in the expression of all tested transcription factors, a decrease in triglycerides, leptin and resistin, and an increase in adiponectin levels. In addition, a significant reduction in the I/M ratio was observed for both the thoracic and abdominal aorta. The results we have obtained confirm the potential contribution of cornelian cherry extract to mitigation of the risk of developing and the intensity of symptoms of obesity-related cardiovascular diseases and metabolic disorders such as atherosclerosis or metabolic syndrome.
Collapse
|
25
|
Abdalla MMI. Salivary resistin level and its association with insulin resistance in obese individuals. World J Diabetes 2021; 12:1507-1517. [PMID: 34630903 PMCID: PMC8472494 DOI: 10.4239/wjd.v12.i9.1507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global burden of type 2 diabetes mellitus necessitates the implementation of strategies that are both more reliable and faster in order to improve the early identification of insulin resistance (IR) in high-risk groups, including overweight and obese individuals. The use of salivary biomarkers offers a promising alternative to serum collection because it is safer, more comfortable, and less painful to obtain saliva samples. As obesity is the foremost contributory factor in IR development, the adipocytokines such as leptin, adiponectin, resistin, and visfatin secreted from the adipose tissue have been studied as potential reliable biomarkers for IR. Measurement of salivary adipokines as predictors for IR has attracted widespread attention because of the strong correlation between their blood and salivary concentrations. One of the adipokines that is closely related to IR is resistin. However, there are conflicting findings on resistin's potential role as an etiological link between obesity and IR and the reliability of measuring salivary resistin as a biomarker for IR. Hence this study reviewed the available evidence on the potential use of salivary resistin as a biomarker for IR in order to attempt to gain a better understanding of the role of resistin in the development of IR in obese individuals.
Collapse
|
26
|
Giandalia A, Alibrandi A, Giorgianni L, Lo Piano F, Consolo F, Longo Elia G, Asztalos B, Cucinotta D, Squadrito G, Russo GT. Resistin levels and inflammatory and endothelial dysfunction markers in obese postmenopausal women with type 2 diabetes mellitus. Diabetol Metab Syndr 2021; 13:98. [PMID: 34496965 PMCID: PMC8427860 DOI: 10.1186/s13098-021-00715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity-associated coronary heart disease (CHD) risk is higher in women than in men with type 2 diabetes (T2DM). Resistin, an adipokine secreted by adispose tissue, may contribute to this higher risk. AIMS To explore the relationships among resistin levels and common inflammatory and endothelial dysfunction markers and CHD risk in obese post-menopausal T2DM women. METHODS Serum levels of resistin, hsCRP, IL-6, Soluble vascular cell adhesion molecule (sVCAM), homocysteine (tHcy), HOMA-IR and metabolic parameters were determined in a group of 132 T2DM women with and without documented CHD and in 55 non-diabetic women. RESULTS Resistin, sVCAM, IL-6 and tHcy levels were comparable in T2DM and controls. CHD women showed higher resistin, sVCAM and tHcy levels than those without CHD, and for resistin this difference remained significant after age-adjustment (P = 0.013); conversely hsCRP were ~ 2X higher in T2DM women than in controls (P = 0.0132) without any difference according to CHD history. At univariate analysis resistin levels were significantly associated with age, waist circumference, hypertension, tHcy, hsPCR, sVCAM, IL-6, HDL-cholesterol, triglycerides and creatinine levels, but only creatinine, triglycerides, hsCRP, IL-6 and sVCAM were independently associated to resistin levels at stepwise regression analysis. Resistin levels were independently associated to CHD, increasing the risk by 1.15 times (0.986-1.344 95% CI), together with age, tHcy, LDL-C and hypertension. CONCLUSIONS Circulating resistin levels were comparable in obese/overweight T2DM and control women. In T2DM women, resistin levels correlated with markers of renal function, systemic inflammation and endothelial dysfunction and were independently associated with a higher CHD risk.
Collapse
Affiliation(s)
- A Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - A Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, Messina, Italy
| | - L Giorgianni
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Lo Piano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Consolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Longo Elia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Asztalos
- Lipid Metabolism Laboratory, JM-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - D Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
27
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
28
|
Taouis M, Benomar Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol Cell Endocrinol 2021; 533:111341. [PMID: 34082045 DOI: 10.1016/j.mce.2021.111341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Resistin has been firstly discovered in mice and was identified as an adipose tissue-secreted hormone or adipokine linking obesity and insulin resistance. In humans, resistin has been characterized as a hormone expressed and secreted by Immune cells especially by macrophages, and was linked to many inflammatory responses including inflammation of adipose tissue due to macrophages' infiltration. Human and mouse resistin display sequence and structural similarities and also dissimilarities that could explain their different expression pattern. In mice, strong pieces of evidence clearly associated high resistin plasma levels to obesity and insulin resistance suggesting that resistin could play an important role in the onset and progression of obesity and insulin resistance via resistin-induced inflammation. In humans, the link between resistin and obesity/insulin resistance is still a matter of debate and needs more epidemiological studies. Also, resistin has been linked to other chronic diseases such as cardiovascular diseases and cancers where resistin has been proposed in many studies as a biological marker.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France.
| | - Yacir Benomar
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France
| |
Collapse
|
29
|
Acharya KD, Noh HL, Graham ME, Suk S, Friedline RH, Gomez CC, Parakoyi AER, Chen J, Kim JK, Tetel MJ. Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites 2021; 11:metabo11080499. [PMID: 34436440 PMCID: PMC8398128 DOI: 10.3390/metabo11080499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.
Collapse
Affiliation(s)
- Kalpana D. Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Hye L. Noh
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Madeline E. Graham
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Sujin Suk
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Randall H. Friedline
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Cesiah C. Gomez
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Abigail E. R. Parakoyi
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Jun Chen
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jason K. Kim
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
- Correspondence:
| |
Collapse
|
30
|
Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK. Resistin: A journey from metabolism to cancer. Transl Oncol 2021; 14:101178. [PMID: 34293684 PMCID: PMC8319804 DOI: 10.1016/j.tranon.2021.101178] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Resistin levels have been associated with several pathological disorders such as metabolic disorders, cancers etc. Resistin exists in three isoforms namely RELM-α, β and γ. High resistin level activates inflammatory pathways, promotes metabolic disorders and is associated with carcinogenesis. Increase in the resistin level impairs the therapeutic response by inducing stemness or resistance, in cancer cells. Conventional drugs which alter resistin level could have therapeutic implications in several pathological disorders.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.
Collapse
Affiliation(s)
- Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
31
|
Cherneva Z, Valev D, Youroukova V, Cherneva R. Left ventricular diastolic dysfunction in non-severe chronic obstructive pulmonary disease - a step forward in cardiovascular comorbidome. PLoS One 2021; 16:e0247940. [PMID: 33684166 PMCID: PMC7939359 DOI: 10.1371/journal.pone.0247940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) augments the likelihood of having left ventricular diastolic dysfunction (LVDD)–precursor of heart failure with preserved ejection fraction (HFpEF). LVDD shares overlapping symptomatology (cough and dyspnea) with COPD. Stress induced LVDD is indicative of masked HFpEF. Our aim was to evaluate the predictive value of inflammatory, oxidative stress, cardio-pulmonary and echocardiographic parameters at rest for the diagnosis of stress LVDD in non-severe COPD patients, who complain of exertional dyspnea and are free of overt cardiovascular diseases. A total of 104 COPD patients (26 patients with mild and 78 with moderate COPD) underwent echocardiography before cardio-pulmonary exercise testing (CPET) and 1–2 minutes after peak exercise. Patients were divided into two groups based on peak average E/e’: patients with stress induced left ventricular diastolic dysfunction (LVDD)—E/e’ > 15 masked HFpEF and patients without LVDD—without masked HFpEF. CPET and echocardiographic parameters at rest were measured and their predictive value for stress E/e’ was analysed. Markers for inflammation (resistin, prostaglandine E2) and oxidative stress (8-isoprostanes) were also determined. Stress induced LVDD occurred in 67/104 patients (64%). Those patients showed higher VE/VCO2 slope. None of the CPET parameters was an independent predictor for stress LVDD.Except for prostglandine E2, none of the inflammatory or oxidative stress markers correlated to stress E/e’. The best independent predictors for stress LVDD (masked HFpEF) were RAVI, right ventricular parasternal diameter and RV E/A >0.75. Their combination predicted stress LVDD with the accuracy of 91.2%. There is a high prevalence of masked HFpEF in non-severe COPD with exertional dyspnea, free of overt cardiovascular disease. RAVI, right ventricular parasternal diameter and RV E/A >0.75 were the only independent clinical predictors of masked HFpEF. 288.
Collapse
Affiliation(s)
- Zheina Cherneva
- Medical Institute of the Ministry of Internal Affairs, Sofia, Bulgaria
- * E-mail:
| | - Dinko Valev
- University First Multiple Clinic for Active Treatment, Sofia, Bulgaria
| | - Vania Youroukova
- University Hospital for Respiratory Diseases“St. Sophia”, Sofia, Bulgaria
| | - Radostina Cherneva
- University Hospital for Respiratory Diseases“St. Sophia”, Sofia, Bulgaria
| |
Collapse
|
32
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
33
|
Wen F, Shi Z, Liu X, Tan Y, Wei L, Zhu X, Zhang H, Zhu X, Meng X, Ji W, Yang M, Lu Z. Acute Elevated Resistin Exacerbates Mitochondrial Damage and Aggravates Liver Steatosis Through AMPK/PGC-1α Signaling Pathway in Male NAFLD Mice. Horm Metab Res 2021; 53:132-144. [PMID: 33302316 DOI: 10.1055/a-1293-8250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resistin was identified as a link between obesity and insulin resistance and is associated with many diseases in mice. Deciphering the related development and molecular mechanism is necessary for the treatment of these diseases. Previous studies have revealed that increased resistin levels are correlated with lipid accumulation and play a role in non-alcoholic fatty liver disease (NAFLD) development. However, the exact mechanisms underlying these processes remain unclear. To further clarify whether acute elevated resistin level exacerbated liver steatosis, a high-fat diet-induced NAFLD animal model was used and treated with or without resistin for 6 days. We discovered that resistin altered mitochondrial morphology, decreased mitochondrial content, and increased lipid accumulation in HFD mice. qRT-PCR and western blot analysis showed that acute elevated resistin significantly altered the gene expression of mitochondrial biogenesis and liver lipid metabolism molecules in HFD mice. Consequently, in vitro experiments verified that resistin reduced the mitochondrial content, impaired the mitochondrial function and increased the lipid accumulation of palmitate-treated HepG2 cells. Additionally, we demonstrated that resistin upregulated proinflammatory factors, which confirmed that resistin promoted the development of inflammation in NAFLD mice and palmitate-treated HepG2 cells. Signaling-transduction analysis demonstrated that acute elevated resistin aggravated liver steatosis through AMPK/PGC-1α pathway in male mice. This reveals a novel pathway through which lipogenesis is induced by resistin and suggests that maintaining mitochondrial homeostasis may be key to treatments for preventing resistin-induced NAFLD aggravation.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Zhuoyan Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xiaoping Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Yuguang Tan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Hui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xiaohuan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xiangmiao Meng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Weixia Ji
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Mengting Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Zhaoxuan Lu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| |
Collapse
|
34
|
Shen L, Zhu Y, Xiao J, Qian B, Jiang T, Deng J, Peng G, Yu S, Cao S, Zuo Z, Ma X, Zhong Z, Ren Z, Wang Y, Zhou Z, Liu H, Zong X, Hu Y. Relationships between placental adiponectin, leptin, visfatin and resistin and birthweight in cattle. Reprod Fertil Dev 2021; 32:402-408. [PMID: 31739842 DOI: 10.1071/rd18247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
Adipokines can affect intrauterine development while calf birthweight (CBW) is a breeding standard of calves, which reflects the status of fetal intrauterine development. To explore the correlation between placental adipokines and CBW, 54 healthy Chinese Holstein cows were used in the present study. The cows were grouped according to the CBW of their calves. Placentas were collected immediately after delivery and enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction were used to detect the placental expression levels of adiponectin, leptin, visfatin and resistin. Our results show that the mRNA transcription and blood placental content of adiponectin, leptin, visfatin and resistin increased with increasing CBW. The analysis showed that the mRNA transcription levels of placental adiponectin, leptin and resistin were positively correlated with CBW. The mRNA and protein expression levels of adiponectin, leptin and visfatin between the three groups were significantly correlated. Placental resistin mRNA levels correlated positively with adiponectin mRNA, but not leptin or visfatin. The protein expression levels of resistin were significantly positively correlated with those of adiponectin, leptin and visfatin. These results suggest that placental adipokines play important roles in regulating calf intrauterine growth.
Collapse
Affiliation(s)
- Liuhong Shen
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Yingkun Zhu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Jinbang Xiao
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Bolin Qian
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Tao Jiang
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Junliang Deng
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Shumin Yu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Suizhong Cao
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China; and Corresponding author.
| | - Zhicai Zuo
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Xiaoping Ma
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Zhijun Zhong
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Zhihua Ren
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Ya Wang
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Ziyao Zhou
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Haifeng Liu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Xiaolan Zong
- Sichuan Agricultural University, Chengdu Campus, Academic Affairs Office, Chengdu, Sichuan, 611130, China
| | - Yanchun Hu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| |
Collapse
|
35
|
Lee J, Walter MF, Korach KS, Noguchi CT. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol Metab 2020; 45:101142. [PMID: 33309599 PMCID: PMC7809438 DOI: 10.1016/j.molmet.2020.101142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Erythropoietin (EPO), the cytokine required for erythropoiesis, contributes to metabolic regulation of fat mass and glycemic control. EPO treatment in mice on high-fat diets (HFD) improved glucose tolerance and decreased body weight gain via reduced fat mass in males and ovariectomized females. The decreased fat accumulation with EPO treatment during HFD in ovariectomized females was abrogated with estradiol supplementation, providing evidence for estrogen-related gender-specific EPO action in metabolic regulation. In this study, we examined the cross-talk between estrogen mediated through estrogen receptor α (ERα) and EPO for the regulation of glucose metabolism and fat mass accumulation. Methods Wild-type (WT) mice and mouse models with ERα knockout (ERα−/−) and targeted deletion of ERα in adipose tissue (ERαadipoKO) were used to examine EPO treatment during high-fat diet feeding and after diet-induced obesity. Results ERα−/− mice on HFD exhibited increased fat mass and glucose intolerance. EPO treatment on HFD reduced fat accumulation in male WT and ERα−/− mice and female ERα−/− mice but not female WT mice. EPO reduced HFD increase in adipocyte size in WT mice but not in mice with deletion of ERα independent of EPO-stimulated reduction in fat mass. EPO treatment also improved glucose and insulin tolerance significantly greater in female ERα−/− mice and female ERαadipoKO compared with WT controls. Increased metabolic activity by EPO was associated with browning of white adipocytes as shown by reductions in white fat-associated genes and induction of brown fat-specific uncoupling protein 1 (UCP1). Conclusions This study clearly identified the role of estrogen signaling in modifying EPO regulation of glucose metabolism and the sex-differential EPO effect on fat mass regulation. Cross-talk between EPO and estrogen was implicated for metabolic homeostasis and regulation of body mass in female mice. Erythropoietin regulates fat mass in male but not female mice on high-fat diets. Female estrogen receptor alpha deletion restores erythropoietin fat mass regulation. Estrogen receptor alpha deletion increases erythropoietin regulation of glucose tolerance. Erythropoietin reduced white fat-associated genes and increased uncoupling protein 1. Erythropoietin and estrogen cross-talk is implicated for metabolic homeostasis.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary F Walter
- Clinical Laboratory Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
37
|
Dahman LSB, Al-Daghri NM, Alfadda AA, Sallam RM, McTernan PG. Assessment of NF-κB-SN50’s Effect on Adipose Tumor Necrosis Factor-Alpha and Angiotensinogen Secretion and Expression. THE 1ST INTERNATIONAL ELECTRONIC CONFERENCE ON BIOMOLECULES: NATURAL AND BIO-INSPIRED THERAPEUTICS FOR HUMAN DISEASES 2020:15. [DOI: https:/doi.org/10.3390/iecbm2020-08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Affiliation(s)
- Lotfi S. Bin Dahman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Medical Biochemistry Department, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Yemen
| | - Nasser M. Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem M. Sallam
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo 11381, Egypt
| | - Philip G. McTernan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham NG1 8NS, UK
| |
Collapse
|
38
|
Abstract
Cachexia is common in end-stage renal disease (ESRD) patients, and it is an important risk factor for poor quality of life and increased mortality and morbidity. Chronic inflammation is an important cause of cachexia in ESRD patients. In the present review, we examine recent evidence suggesting that adipokines or adipocytokines such as leptin, adiponectin, resistin, tumor necrosis factor α, interleukin-6, and interleukin-1β may play important roles in uremic cachexia. We also review the physiology and the potential roles of gut hormones, including ghrelin, peptide YY, and cholecystokinin in ESRD. Understanding the molecular pathophysiology of these novel hormones in ESRD may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Robert H. Mak
- Division of Pediatric Nephrology, Oregon Health and Science University, Portland, Oregon
- Division of Pediatric Nephrology, University of California at San Diego, La Jolla, California, U.S.A
| | - Wai Cheung
- Division of Pediatric Nephrology, Oregon Health and Science University, Portland, Oregon
- Division of Pediatric Nephrology, University of California at San Diego, La Jolla, California, U.S.A
| |
Collapse
|
39
|
Rocha M, Apostolova N, Diaz-Rua R, Muntane J, Victor VM. Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome. Trends Endocrinol Metab 2020; 31:725-741. [PMID: 32265079 DOI: 10.1016/j.tem.2020.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is one of the main current threats to human health. Both T2D and its numerous clinical complications are related to mitochondrial dysfunction and oxidative stress. Over the past decade, great progress has been made in extending our knowledge about the signaling events regulated by mitochondria. However, the links among mitochondrial impairment, oxidative stress, autophagy, endoplasmic reticulum (ER) stress, and activation of the inflammasome still need to be clarified. In light of this deficit, we aim to provide a review of the existing literature concerning the complicated crosstalk between mitochondrial impairment, autophagy, ER stress, and the inflammasome in the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | | | - Ruben Diaz-Rua
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntane
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Seville, Spain; Department of General Surgery, University Hospital 'Virgen del Rocío'/CSIC/University of Seville/IBiS/CSIC/University of Seville, Spain
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
40
|
Borse SP, Chhipa AS, Sharma V, Singh DP, Nivsarkar M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med Princ Pract 2020; 30:109-121. [PMID: 32818934 PMCID: PMC8114074 DOI: 10.1159/000511002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) accounts for >90% of the cases of diabetes in adults. Resistance to insulin action is the major cause that leads to chronic hyperglycemia in diabetic patients. T2DM is the consequence of activation of multiple pathways and factors involved in insulin resistance and β-cell dysfunction. Also, the etiology of T2DM involves the complex interplay between genetics and environmental factors. This interplay can be governed efficiently by lifestyle modifications to achieve better management of diabetes. The present review aims at discussing the major factors involved in the development of T2DM that remain unfocussed during the anti-diabetic therapy. The review also focuses on lifestyle modifications that are warranted for the successful management of T2DM. In addition, it attempts to explain flaws in current strategies to combat diabetes. The employability of phytoconstituents as multitargeting molecules and their potential use as effective therapeutic adjuvants to first line hypoglycemic agents to prevent side effects caused by the synthetic drugs are also discussed.
Collapse
Affiliation(s)
- Swapnil P Borse
- AYUSH-Center of Excellence, Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences, Savitribai Phule Pune University (SPPU), Pune, India
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vipin Sharma
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, India,
| |
Collapse
|
41
|
Shi S, Liu Z, Xue Z, Chen X, Chu Y. A plasma metabonomics study on the therapeutic effects of the Si-miao-yong-an decoction in hyperlipidemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112780. [PMID: 32222575 DOI: 10.1016/j.jep.2020.112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Si-miao-yong-an decoction (SMYAD) is a famous traditional Chinese medicinal formula that has been used for centuries in ancient China for treating thromboangiitis obliterans. Because of its long history of use, it has been used to treat patients in China for thousands of years. In recent years, SMYAD has been widely used for treating cardiovascular and endocrine diseases. It was shown to significantly increase high-density lipoprotein-cholesterol levels and reduce total cholesterol and low-density lipoprotein-cholesterol levels in the serum. AIM OF THE STUDY Herein, a serum metabonomics approach based on the HPLC-MS/MS method was adopted to evaluate the therapeutic effect of SMYAD on high-fat diet-induced hyperlipidemia, and investigate the mechanisms for treating hyperlipidemia. MATERIALS AND METHODS Firstly, the change in body weight, liver histopathology, and serum biochemistry, including that in the levels of hepatotoxicity-related enzymes, oxidative stress indexes, and inflammatory factors were monitored in rats, to evaluate the therapeutic effect of SMYAD on high-fat diet-induced hyperlipidemia. Then, a serum metabolomics approach was applied, to cluster different groups using principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), as well as to screen out sensitive and reliable biomarkers. Finally, the metabolic pathways associated with specific biomarkers were analyzed, to understand the possible mechanism underlying the action of SMYAD. RESULTS The results indicated that SMYAD had significant anti-hyperlipidemic, anti-oxidant, and anti-inflammatory effects. Based on the results of serum metabolomics analysis, the hyperlipidemic rats showed completely different results compared to the control rats; metabolite profiles of rats from the SMYAD treatment groups showed a trend comparable to those of the normal control group in a dose-dependent manner. Besides, twelve biomarkers associated with pyruvate metabolism, taurine and hypotaurine metabolism, TCA cycle, bile acid metabolism, and glucose metabolism were identified and confirmed, to clarify the mechanism of action of SMYAD. CONCLUSION Using metabonomics technology, it was predicted that the therapeutic effects of SMYAD were associated with its anti-oxidation as well as anti-inflammatory activities and the adjustment of the pyruvate, taurine as well as hypotaurine metabolism pathways in the hyperlipidemic state. This study provided evidence regarding the clinical application of SMYAD and thoroughly explored the mechanism underlying the action of this traditional Chinese medicine.
Collapse
Affiliation(s)
- Shan Shi
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ziying Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengyuan Xue
- Liaoning Inspection, Examination & Certification Centre, Shenyang, 110035, China
| | - Xiaohui Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yang Chu
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
42
|
Abdel Aziz SM, Ahmed OM, Abd EL-Twab SM, Al-Muzafar HM, Amin KA, Abdel-Gabbar M. Antihyperglycemic Effects and Mode of Actions of Musa paradisiaca Leaf and Fruit Peel Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9276343. [PMID: 32047529 PMCID: PMC7007756 DOI: 10.1155/2020/9276343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The present study aimed to evaluate the antihyperglycemic effects of Musa paradisiaca (M. paradisiaca) leaf and fruit peel hydroethanolic extracts and to suggest their probable mode of actions in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. The leaf and fruit peel hydroethanolic extracts were analyzed by GC-MS that indicated the presence of phytol, octadecatrienoic acid, hexadecanoic acid, and octadecadienoic acid as major components in the leaf extract and vitamin E, octadecenamide, β-sitosterol, and stigmasterol as major phytochemicals in the fruit peel extract. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight) dissolved in citrate buffer (pH 4.5), 15 minutes after intraperitoneal injection of NA (120 mg/kg body weight). The NA/STZ-induced diabetic rats were, respectively, treated with M. paradisiaca leaf and fruit peel hydroethanolic extracts at a dose of 100 mg/kg body weight/day by oral administration for 28 days. The treatment of NA/STZ-induced diabetic rats with leaf and fruit peel extracts significantly improved the impaired oral glucose tolerance and significantly increased the lowered serum insulin and C-peptide levels. The HOMA-IR (as the index of insulin resistance) and QUICKI (as a marker for insulin sensitivity), as well as HOMA-β cell function were significantly alleviated as a result of treatment of diabetic rats with leaf and fruit peel extracts. In association, the elevated serum-free fatty acids, TNF-α, and IL-6 levels were significantly decreased. In addition, the suppressed adipose tissue PPARγ, GLUT4, adiponectin, and insulin receptor β-subunit mRNA expressions were upregulated while the elevated adipose tissue resistin expression was downregulated in diabetic rats as a result of treatment with the leaf and peel extract. Based on these results, it can be concluded that M. paradisiaca leaf and fruit peel hydroethanolic extracts have antihyperglycemic effects which may be mediated via their insulinotropic and insulin-sensitizing effects.
Collapse
Affiliation(s)
- Sarah M. Abdel Aziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa M. Abd EL-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hessah Mohammed Al-Muzafar
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Mohamed Abdel-Gabbar
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
43
|
Richard AJ, Stephens JM. Adipocyte-Derived Hormones. HORMONAL SIGNALING IN BIOLOGY AND MEDICINE 2020:461-486. [DOI: 10.1016/b978-0-12-813814-4.00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Bawah AT, Seini MM, Abaka-Yawason A, Alidu H, Nanga S. Leptin, resistin and visfatin as useful predictors of gestational diabetes mellitus. Lipids Health Dis 2019; 18:221. [PMID: 31836012 PMCID: PMC6909521 DOI: 10.1186/s12944-019-1169-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Lipids and adipokines including leptin, resistin and visfatin play various roles in the pathophysiology of Gestational Diabetes Mellitus (GDM). This study was aimed at determining whether serum leptin, resistin and visfatin are significantly altered during the first trimester of pregnancies that subsequently develop GDM and whether such changes are useful in predicting the disease. Methods This was a case-case control study which compared first trimester biochemical and anthropometric parameters in 70 pregnant women who subsequently developed GDM and 70 pregnant women without GDM at the Volta Regional Hospital, Ho, Ghana. Lipid profile and some selected adipokines were analyzed and first trimester body mass index (BMI) was determined. Results There were significant differences (p < 0.05) in leptin, resistin, and visfatin as well as significant dyslipidemia among those with GDM compared to those without GDM. Furthermore, the area under the Receiver Operating Characteristic Curves (AUCs) for leptin, resistin and visfatin were; 0.812, 0.836 and 0.799 respectively. Increased first trimester leptin (OR = 1.166; CI = 1.104–1.233; p < 0.0001), resistin (p < 0.0001) and visfatin (p < 0.0001) were associated with GDM. Conclusion Hyperleptinemia, hyperesistinemia and hypervisfatinemia precede GDM and can serve as good predictive indices for gestational diabetes mellitus.
Collapse
Affiliation(s)
- Ahmed Tijani Bawah
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Health and Allied Health Sciences, PMB 31, Ho, Ghana.
| | | | - Albert Abaka-Yawason
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Health and Allied Health Sciences, PMB 31, Ho, Ghana
| | - Huseini Alidu
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Health and Allied Health Sciences, PMB 31, Ho, Ghana
| | - Salifu Nanga
- School of Basic and Biomedical Science, University of Health and Allied Science, Ho, Ghana
| |
Collapse
|
45
|
Ibrahim SM, Bastawy AA. The Relevance of Single-nucleotide Polymorphism +62 G>A to the Expression of Resistin Gene Affecting Serum Resistin Levels in Metabolic Syndrome in the Egyptian Population. Curr Pharm Biotechnol 2019; 21:626-634. [PMID: 31820685 DOI: 10.2174/1389201021666191210122851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic Syndrome (MS) is a clinical condition consisting of risk factors associated with type two diabetes and developing cardiovascular disease. It has been suggested that resistin is a linkage between obesity, inflammation and type two diabetes. This study aims to investigate whether Resistin Gene (RETN) polymorphism (+62G>A) is linked to MS and resistin levels among the Egyptian population. METHODS This study was performed with 310 Egyptian volunteers: 160 MS subjects and 150 controls. Anthropometric parameters and biochemical variables were determined. The RETN +62G>A polymorphism was genotyped by PCR-RFLP technique. RESULTS The resistin levels of the MS group were significantly higher than those of the control group. Resistin levels were positively correlated with anthropometric parameters and liver biomarkers in the MS group. According to RETN +62G>A polymorphism, carriers with the A allele (GA/AA) had significantly increased resistin levels than subjects with the GG genotype, consequently, the RETN +62G >A polymorphism was found to be related to MS, biochemical parameters and anthropometric variables. CONCLUSION These findings propose that the RETN +62G>A polymorphism has a great impact on the circulating resistin concentrations, and that resistin levels are strongly related to MS. Therefore, this RETN polymorphism is related to the risk of the prevalence of MS in the Egyptians.
Collapse
Affiliation(s)
- Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Modern Sciences and Arts University, Postal Code: 202, Cairo, Egypt
| | - Afaf A Bastawy
- Biochemistry Department, Faculty of Pharmacy, Modern Sciences and Arts University, Postal Code: 202, Cairo, Egypt
| |
Collapse
|
46
|
Mohammad P, Esfandiar KZ, Abbas S, Ahoora R. Effects of moderate-intensity continuous training and high-intensity interval training on serum levels of Resistin, Chemerin and liver enzymes in Streptozotocin-Nicotinamide induced Type-2 diabetic rats. J Diabetes Metab Disord 2019; 18:379-387. [PMID: 31890663 PMCID: PMC6914745 DOI: 10.1007/s40200-019-00422-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) in serum resistin, chemerin, insulin, liver enzymes and lipid profiles levels. METHODS 24 Wistar rats with mean weight of 200 ± 50 g were randomly assigned to non-diabetic rats (ND-Cnt), diabetic control (D-Cnt), diabetic training groups. The diabetic training group received 10 weeks of HIIT (D-HIIT) and MICT (D-MICT) following the induction of diabetes. Evaluating resistin, chemerin and insulin hormones levels through ELISA. FBS and liver enzyme levels were measured by biochemical kits. RESULTS HIIT and MICT resulted in a significant decrease in resistin, chemerin and fasting blood glucose (P < 0.05) compared to the D-Cnt (P < 0.05). Serum values of FBS, lipid profiles and liver enzyme (P < 0.05) decreased significantly more in the HIIT group compared with the MICT group (P < 0.05). As well as, the resistin level positively and significantly associated with values of ALT and chemerin level positively and significantly associated with values of ALT, ALP and AST in all rat (P < 0.05). CONCLUSION In general, our findings demonstrated that the HIIT leads to better improvements in serum liver enzyme levels, FBS and lipid profiles compared to MICT. HIIT therefore appears to be an important time-efficient treatment for treatment with type 2 diabetes rats.
Collapse
Affiliation(s)
- Parastesh Mohammad
- Faculty of Sport Sciences, Department of Sports Physiology and Pathology, Arak University, Arak, 38156-8-8349 Iran
| | - Khosravi Zadeh Esfandiar
- Faculty of Sport Sciences, Department of Sports Management, Arak University, Arak, 38156-8-8349 Iran
| | - Saremi Abbas
- Faculty of Sport Sciences, Department of Sports Management, Arak University, Arak, 38156-8-8349 Iran
| | - Rekabtalae Ahoora
- Faculty of Sport Sciences, Department of Sports Physiology and Pathology, Arak University, Arak, 38156-8-8349 Iran
| |
Collapse
|
47
|
Val CH, de Oliveira MC, Lacerda DR, Barroso A, Batista NV, Menezes-Garcia Z, de Assis DRR, Cramer AT, Brant F, Teixeira MM, Glória Souza D, Ferreira AM, Machado FS. SOCS2 modulates adipose tissue inflammation and expansion in mice. J Nutr Biochem 2019; 76:108304. [PMID: 31816561 DOI: 10.1016/j.jnutbio.2019.108304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Obesity is usually triggered by a nutrient overload that favors adipocyte hypertrophy and increases the number of pro-inflammatory cells and mediators into adipose tissue. These mediators may be regulated by suppressors of cytokine signaling (SOCS), such as SOCS2, which is involved in the regulation of the inflammatory response of many diseases, but its role in obesity is not yet known. We aimed to investigate the role of SOCS2 in metabolic and inflammatory dysfunction induced by a high-refined carbohydrate-containing diet (HC). MATERIAL AND METHODS Male C57BL/6 wild type (WT) and SOCS2 deficient (SOCS2-/-) mice were fed chow or an HC diet for 8 weeks. RESULTS In general, SOCS2 deficient mice, independent of the diet, showed higher adipose tissue mass compared with their WT counterparts that were associated with decreased lipogenesis rate in adipose tissue, lipolysis in adipocyte culture and energy expenditure. An anti-inflammatory profile was observed in adipose tissue of SOCS2-/- by reduced secretion of cytokines, such as TNF and IL-6, and increased M2-like macrophages and regulatory T cells compared with WT mice. Also, SOCS2 deficiency reduced the differentiation/expansion of pro-inflammatory cells in the spleen but increased Th2 and Treg cells compared with their WT counterparts. CONCLUSION The SOCS2 protein is an important modulator of obesity that regulates the metabolic pathways related to adipocyte size. Additionally, SOCS2 is an inflammatory regulator that appears to be essential for controlling the release of cytokines and the differentiation/recruitment of cells into adipose tissue during the development of obesity.
Collapse
Affiliation(s)
- Cynthia Honorato Val
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | - Andreia Barroso
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - Fátima Brant
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
48
|
Catalina MOS, Redondo PC, Granados MP, Cantonero C, Sanchez-Collado J, Albarran L, Lopez JJ. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem 2019; 26:4119-4144. [PMID: 29210636 DOI: 10.2174/0929867325666171205162248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.
Collapse
Affiliation(s)
| | - Pedro C Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Maria P Granados
- Aldea Moret's Medical Center, Extremadura Health Service, 10195-Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
49
|
Type II diabetes mellitus and obesity: Common links, existing therapeutics and future developments. J Biosci 2019. [DOI: 10.1007/s12038-019-9962-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|