1
|
Masone A, Zucchelli C, Caruso E, Musco G, Chiesa R. Therapeutic targeting of cellular prion protein: toward the development of dual mechanism anti-prion compounds. Neural Regen Res 2025; 20:1009-1014. [PMID: 38845221 PMCID: PMC11438348 DOI: 10.4103/nrr.nrr-d-24-00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 07/12/2024] Open
Abstract
PrP Sc , a misfolded, aggregation-prone isoform of the cellular prion protein (PrP C ), is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals. PrP Sc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, posing challenges for the development of effective therapies. Since PrP C is the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity, it represents an attractive therapeutic target for prion diseases. In this minireview, we briefly outline the approaches to target PrP C and discuss our recent identification of Zn(II)-BnPyP, a PrP C -targeting porphyrin with an unprecedented bimodal mechanism of action. We argue that in-depth understanding of the molecular mechanism by which Zn(II)-BnPyP targets PrP C may lead toward the development of a new class of dual mechanism anti-prion compounds.
Collapse
Affiliation(s)
- Antonio Masone
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Zhang J, Wang M, Wang D, Zhang X, Ma Y, Pardon E, Steyaert J, Abskharon R, Wang F, Ma J. Investigating the In Vivo Effects of Anti-Prion Protein Nanobodies on Prion Disease with AAV Vector. Pathogens 2025; 14:131. [PMID: 40005509 PMCID: PMC11858434 DOI: 10.3390/pathogens14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Prion diseases are fatal neurodegenerative disorders affecting humans and animals, and the central pathogenic event is the conversion of normal prion protein (PrPC) into the pathogenic PrPSc isoform. Previous studies have identified nanobodies that specifically recognize PrPC and inhibit the PrPC to PrPSc conversion in vitro. In this study, we investigated the potential for in vivo expression of anti-PrPC nanobodies and evaluated their impact on prion disease. The coding sequences of three nanobodies were packaged into recombinant adeno-associated virus (rAAV) and were administered via intracerebroventricular (ICV) injection in newborn mice. We found that the expression of these nanobodies remained robust for over 180 days, with no observed detrimental effects. To assess their therapeutic potential, we performed ICV injections of nanobody-expressing rAAVs in newborn mice, followed by intracerebral prion inoculation at 5-6 weeks of age. One nanobody exhibited a small yet statistically significant therapeutic effect, extending survival time from 176 days to 184 days. Analyses of diseased brains revealed that the nanobodies did not alter the pathological changes. Our findings suggest that high levels of anti-PrPC nanobodies are necessary to delay disease progression. Further optimization of the nanobodies, AAV vectors, or delivery methods is essential to achieve a significant therapeutic effect.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Mengfei Wang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dan Wang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiangyi Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Romany Abskharon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Fei Wang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiyan Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
So RWL, Amano G, Stuart E, Ebrahim Amini A, Aguzzi A, Collingridge GL, Watts JC. α-Synuclein strain propagation is independent of cellular prion protein expression in a transgenic synucleinopathy mouse model. PLoS Pathog 2024; 20:e1012517. [PMID: 39264912 PMCID: PMC11392418 DOI: 10.1371/journal.ppat.1012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
The cellular prion protein, PrPC, has been postulated to function as a receptor for α-synuclein, potentially facilitating cell-to-cell spreading and/or toxicity of α-synuclein aggregates in neurodegenerative disorders such as Parkinson's disease. Previously, we generated the "Salt (S)" and "No Salt (NS)" strains of α-synuclein aggregates that cause distinct pathological phenotypes in M83 transgenic mice overexpressing A53T-mutant human α-synuclein. To test the hypothesis that PrPC facilitates the propagation of α-synuclein aggregates, we produced M83 mice that either express or do not express PrPC. Following intracerebral inoculation with the S or NS strain, the absence of PrPC in M83 mice did not prevent disease development and had minimal influence on α-synuclein strain-specified attributes such as the extent of cerebral α-synuclein deposition, selective targeting of specific brain regions and cell types, the morphology of induced α-synuclein deposits, and the structural fingerprints of protease-resistant α-synuclein aggregates. Likewise, there were no appreciable differences in disease manifestation between PrPC-expressing and PrPC-lacking M83 mice following intraperitoneal inoculation of the S strain. Interestingly, intraperitoneal inoculation with the NS strain resulted in two distinct disease phenotypes, indicative of α-synuclein strain evolution, but this was also independent of PrPC expression. Overall, these results suggest that PrPC plays at most a minor role in the propagation, neuroinvasion, and evolution of α-synuclein strains in mice that express A53T-mutant human α-synuclein. Thus, other putative receptors or cell-to-cell propagation mechanisms may have a larger effect on the spread of α-synuclein aggregates during disease.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Aeen Ebrahim Amini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Graham L Collingridge
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Napper S, Schatzl HM. Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations. Front Immunol 2023; 14:1156451. [PMID: 37122761 PMCID: PMC10140515 DOI: 10.3389/fimmu.2023.1156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Esmaili M, Eldeeb M. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Mol Biol Rep 2023; 50:1743-1752. [PMID: 36446981 DOI: 10.1007/s11033-022-07806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Mohamed Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
8
|
Reimann RR, Puzio M, Rosati A, Emmenegger M, Schneider BL, Valdés P, Huang D, Caflisch A, Aguzzi A. Rapid ex vivo reverse genetics identifies the essential determinants of prion protein toxicity. Brain Pathol 2022; 33:e13130. [PMID: 36329611 PMCID: PMC10041163 DOI: 10.1111/bpa.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein PrPC mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrPC (GDL) can also initiate neurotoxicity by inducing an intramolecular R208 -H140 hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrPC . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways. To define the structural underpinnings of these phenomena, we transduced 19 individual PrPC variants to PrPC -deficient cerebellar organotypic cultured slices using adenovirus-associated viral vectors (AAV). We report that GDL toxicity requires a single N-proximal cationic residue (K27 or R27 ) within PrPC . Alanine substitution of K27 also prevented the toxicity of PrPC mutants that induce Shmerling syndrome, a neurodegenerative disease that is suppressed by co-expression of wild-type PrPC . K27 may represent an actionable target for compounds aimed at preventing prion-related neurodegeneration.
Collapse
Affiliation(s)
| | - Martina Puzio
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Antonella Rosati
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Danzhi Huang
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Zurich Switzerland
| |
Collapse
|
9
|
Mercer RCC, Harris DA. Mechanisms of prion-induced toxicity. Cell Tissue Res 2022; 392:81-96. [PMID: 36070155 DOI: 10.1007/s00441-022-03683-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are devastating neurodegenerative diseases caused by the structural conversion of the normally benign prion protein (PrPC) to an infectious, disease-associated, conformer, PrPSc. After decades of intense research, much is known about the self-templated prion conversion process, a phenomenon which is now understood to be operative in other more common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide the current state of knowledge concerning a relatively poorly understood aspect of prion diseases: mechanisms of neurotoxicity. We provide an overview of proposed functions of PrPC and its interactions with other extracellular proteins in the central nervous system, in vivo and in vitro models used to delineate signaling events downstream of prion propagation, the application of omics technologies, and the emerging appreciation of the role played by non-neuronal cell types in pathogenesis.
Collapse
Affiliation(s)
- Robert C C Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Yagita K, Noguchi H, Koyama S, Hamasaki H, Komori T, Aishima S, Kosaka T, Ueda M, Komohara Y, Watanabe A, Sasagasako N, Ninomiya T, Oda Y, Honda H. Chronological Changes in the Expression Pattern of Hippocampal Prion Proteins During Disease Progression in Sporadic Creutzfeldt-Jakob Disease MM1 Subtype. J Neuropathol Exp Neurol 2022; 81:900-909. [PMID: 36063412 DOI: 10.1093/jnen/nlac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The differential effects of sporadic Creutzfeldt-Jakob disease (sCJD) on the hippocampus and other neocortical areas are poorly understood. We aimed to reveal the histological patterns of cellular prion protein (PrPC) and abnormal prion protein (PrPSc) in hippocampi of sCJD patients and normal controls (NCs). Our study examined 18 postmortem sCJD patients (MM1, 14 cases; MM1 + 2c, 3 cases; MM1 + 2t, 1 case) and 12 NCs. Immunohistochemistry was conducted using 4 primary antibodies, of which 3 targeted the N-terminus of the prion protein (PrP), and 1 (EP1802Y) targeted the C-terminal domain. PrPC expression was abundant in the hippocampus of NCs, and the distribution of PrPC at CA3/4 was reminiscent of synaptic complexes. In sCJD cases with a disease history of <2 years, antibodies against the N-terminus could not detect synapse-like PrP expression at CA4; however, EP1802Y could characterize the synapse-like expression. PrPSc accumulation and spongiform changes became evident after 2 years of illness, when PrPSc deposits were more noticeably detected by N-terminal-specific antibodies. Our findings highlighted the chronology of histopathological alterations in the CA4 region in sCJD patients.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, University of Saga, Saga, Japan
| | - Takayuki Kosaka
- Department of Neurology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Watanabe
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
A high-content neuron imaging assay demonstrates inhibition of prion disease-associated neurotoxicity by an anti-prion protein antibody. Sci Rep 2022; 12:9493. [PMID: 35680944 PMCID: PMC9184462 DOI: 10.1038/s41598-022-13455-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need to develop disease-modifying therapies to treat neurodegenerative diseases which pose increasing challenges to global healthcare systems. Prion diseases, although rare, provide a paradigm to study neurodegenerative dementias as similar disease mechanisms involving propagation and spread of multichain assemblies of misfolded protein ("prion-like" mechanisms) are increasingly recognised in the commoner conditions such as Alzheimer's disease. However, studies of prion disease pathogenesis in mouse models showed that prion propagation and neurotoxicity can be mechanistically uncoupled and in vitro assays confirmed that highly purified prions are indeed not directly neurotoxic. To aid development of prion disease therapeutics we have therefore developed a cell-based assay for the specific neurotoxicity seen in prion diseases rather than to simply assess inhibition of prion propagation. We applied this assay to examine an anti-prion protein mouse monoclonal antibody (ICSM18) known to potently cure prion-infected cells and to delay onset of prion disease in prion-infected mice. We demonstrate that whilst ICSM18 itself lacks inherent neurotoxicity in this assay, it potently blocks prion disease-associated neurotoxicity.
Collapse
|
12
|
Liu S, Li S, Lin J, Li J, Yang H. Aptamer-Induced-Dimerization Strategy Attenuates AβO Toxicity through Modulating the Trophic Activity of PrP C Signaling. J Am Chem Soc 2022; 144:9264-9270. [PMID: 35583938 DOI: 10.1021/jacs.2c00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) mainly focus on amyloid β oligomer (AβO) formation or clearance. However, most of them have failed to yield good clinical results. There is an urgent need to explore an alternative therapeutic target for AD treatments. Recent studies have indicated that the cellular prion protein (PrPC) is one of the cell-surface receptors of AβO that mediates related neurotoxicity. Besides, as a neuroprotective protein, the dimerization of PrPC seems to be critical for its trophic activity. We presume that modulating PrPC receptor activity could be another potential approach to abrogate AβO toxicity. In the present work, using an aptamer-induced dimerization (AID) strategy, we enforce PrPC dimerization and modulate its neurotrophic signaling. The AID strategy can attenuate AβO toxic action by (i) interfering with AβO-PrPC interaction and promoting neuroprotective shedding of PrPC; (ii) preventing the AβO-induced mitochondrial dysfunction and the caspase-3-induced apoptosis; and (iii) reducing the secretion of inflammatory cytokines and relieving the neuroinflammation microenvironment. Our findings suggest that the strategy targeting PrPC signaling may shed light on validating new therapeutic strategies in AD.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shiwei Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jirong Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
13
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
14
|
Linsenmeier L, Mohammadi B, Shafiq M, Frontzek K, Bär J, Shrivastava AN, Damme M, Song F, Schwarz A, Da Vela S, Massignan T, Jung S, Correia A, Schmitz M, Puig B, Hornemann S, Zerr I, Tatzelt J, Biasini E, Saftig P, Schweizer M, Svergun D, Amin L, Mazzola F, Varani L, Thapa S, Gilch S, Schätzl H, Harris DA, Triller A, Mikhaylova M, Aguzzi A, Altmeppen HC, Glatzel M. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. SCIENCE ADVANCES 2021; 7:eabj1826. [PMID: 34818048 PMCID: PMC8612689 DOI: 10.1126/sciadv.abj1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer’s disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Julia Bär
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Markus Damme
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Schwarz
- Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation, UKE, Hamburg, Germany
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Federica Mazzola
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Marina Mikhaylova
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
15
|
Adhikari UK, Tayebi M. Epitope-specific anti-PrP antibody toxicity: a comparative in-silico study of human and mouse prion proteins. Prion 2021; 15:155-176. [PMID: 34632945 PMCID: PMC8900626 DOI: 10.1080/19336896.2021.1964326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Despite having therapeutic potential, anti-PrP antibodies caused a major controversy due to their neurotoxic effects. For instance, treating mice with ICSM antibodies delayed prion disease onset, but both were found to be either toxic or innocuous to neurons by researchers following cross-linking PrPC. In order to elucidate and understand the reasons that led to these contradictory outcomes, we conducted a comprehensive in silico study to assess the antibody-specific toxicity. Since most therapeutic anti-PrP antibodies were generated against human truncated recombinant PrP91-231 or full-length mouse PrP23-231, we reasoned that host specificity (human vs murine) of PrPC might influence the nature of the specific epitopes recognized by these antibodies at the structural level possibly explaining the 'toxicity' discrepancies reported previously. Initially, molecular dynamics simulation and pro-motif analysis of full-length human (hu)PrP and mouse (mo)PrP 3D structure displayed conspicuous structural differences between huPrP and moPrP. We identified 10 huPrP and 6 moPrP linear B-cell epitopes from the prion protein 3D structure where 5 out of 10 huPrP and 3 out of 6 moPrP B-cell epitopes were predicted to be potentially toxic in immunoinformatics approaches. Herein, we demonstrate that some of the predicted potentially 'toxic' epitopes identified by the in silico analysis were similar to the epitopes recognized by the toxic antibodies such as ICSM18 (146-159), POM1 (138-147), D18 (133-157), ICSM35 (91-110), D13 (95-103) and POM3 (95-100). This in silico study reveals the role of host specificity of PrPC in epitope-specific anti-PrP antibody toxicity.
Collapse
Affiliation(s)
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
16
|
Adhikari UK, Sakiz E, Zhou X, Habiba U, Kumar S, Mikhael M, Senesi M, Guang Li C, Guillemin GJ, Ooi L, David MA, Collins S, Karl T, Tayebi M. Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Front Immunol 2021; 12:639008. [PMID: 34394070 PMCID: PMC8361482 DOI: 10.3389/fimmu.2021.639008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant. Conclusions This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.
Collapse
Affiliation(s)
| | - Elif Sakiz
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sachin Kumar
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Chun Guang Li
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
17
|
Zhan W, Muhuri M, Tai PWL, Gao G. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens? Front Immunol 2021; 12:673699. [PMID: 34046041 PMCID: PMC8144494 DOI: 10.3389/fimmu.2021.673699] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.
Collapse
Affiliation(s)
- Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
18
|
Chen C, Dong X. Therapeutic implications of prion diseases. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Fibrinogen Interaction with Astrocyte ICAM-1 and PrP C Results in the Generation of ROS and Neuronal Death. Int J Mol Sci 2021; 22:ijms22052391. [PMID: 33673626 PMCID: PMC7957521 DOI: 10.3390/ijms22052391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Many neuroinflammatory diseases, like traumatic brain injury (TBI), are associated with an elevated level of fibrinogen and short-term memory (STM) impairment. We found that during TBI, extravasated fibrinogen deposited in vasculo-astrocyte interfaces, which was associated with neurodegeneration and STM reduction. The mechanisms of this fibrinogen-astrocyte interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain astrocytes were treated with fibrinogen in the presence or absence of function-blocking antibody or peptide against its astrocyte receptors intercellular adhesion molecule-1 (ICAM-1) or cellular prion protein (PrPC), respectively. Fibrinogen interactions with astrocytic ICAM-1 and PrPC were characterized. The expression of pro-inflammatory markers, generations of reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, and neuronal death caused by astrocyte-conditioned medium were assessed. Data showed a strong association between fibrinogen and astrocytic ICAM-1 or PrPC, overexpression of pro-inflammatory cytokines and overproduction of ROS and NO, resulting in neuronal apoptosis and death. These effects were reduced by blocking the function of astrocytic ICAM-1 and PrPC, suggesting that fibrinogen association with its astrocytic receptors induce the release of pro-inflammatory cytokines, resulting in oxidative stress, and ultimately neuronal death. This can be a mechanism of neurodegeneration and the resultant STM reduction seen during TBI.
Collapse
|
20
|
Boutajangout A, Zhang W, Kim J, Abdali WA, Prelli F, Wisniewski T. Passive Immunization With a Novel Monoclonal Anti-PrP Antibody TW1 in an Alzheimer's Mouse Model With Tau Pathology. Front Aging Neurosci 2021; 13:640677. [PMID: 33716717 PMCID: PMC7947695 DOI: 10.3389/fnagi.2021.640677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Neurofibrillary tangles (NFTs) are a major pathologic hallmark of Alzheimer’s disease (AD). Several studies have shown that amyloid β oligomers (Aβo) and tau oligomers mediate their toxicity, in part, via binding to cellular prion protein (PrPC) and that some anti-PrP antibodies can block this interaction. We have generated a novel monoclonal anti-PrP antibody (TW1) and assessed the efficacy of passive immunization with it in a mouse model of AD with extensive tau pathology: hTau/PS1 transgenic (Tg) mice. These mice were injected intraperitoneally once a week with TW1 starting at 5 months of age. Behavior was assessed at 8 months of age and brain tissue was subsequently harvested for analysis of treatment efficacy at 9 months. Mice treated with TW1 did not show any significant difference in sensorimotor testing including traverse beam, rotarod, and locomotor activity compared to controls. Significant cognitive benefits were observed with the novel object recognition test (ORT) in the immunized mice (two-tailed, t-test p = 0.0019). Immunized mice also showed cognitive benefits on the closed field symmetrical maze (day 1 two-tailed t-test p = 0.0001; day 2 two-tailed t-test p = 0.0015; day 3 two-tailed t-test p = 0.0002). Reduction of tau pathology was observed with PHF-1 immunohistochemistry in the piriform cortex by 60% (two-tailed t-test p = 0.01) and in the dentate gyrus by 50% (two-tailed t-test p = 0.02) in animals treated with TW1 compared to controls. There were no significant differences in astrogliosis or microgliosis observed between treated and control mice. As assessed by Western blots using PHF-1, the TW1 therapy reduced phosphorylated tau pathology (two-tailed t-test p = 0.03) and improved the ratio of pathological soluble tau to tubulin (PHF1/tubulin; two-tailed t-test p = 0.0006). Reduction of tau pathology also was observed using the CP13 antibody (two-tailed t-test p = 0.0007). These results indicate that passive immunization with the TW1 antibody can significantly decrease tau pathology as assessed by immunohistochemical and biochemical methods, resulting in improved cognitive function in a tau transgenic mouse model of AD.
Collapse
Affiliation(s)
- Allal Boutajangout
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States.,Department of Pathology, New York University Langone Health, New York, NY, United States.,Department of Physiology and Neuroscience, New York University Langone Health, New York, NY, United States
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education) Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Justin Kim
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Wed Ali Abdali
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Frances Prelli
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States.,Department of Pathology, New York University Langone Health, New York, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States
| |
Collapse
|
21
|
Kushwaha R, Sinha A, Makarava N, Molesworth K, Baskakov IV. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun 2021; 9:22. [PMID: 33546775 PMCID: PMC7866439 DOI: 10.1186/s40478-021-01123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Under normal conditions, astrocytes perform a number of important physiological functions centered around neuronal support and synapse maintenance. In neurodegenerative diseases including Alzheimer’s, Parkinson’s and prion diseases, astrocytes acquire reactive phenotypes, which are sustained throughout the disease progression. It is not known whether in the reactive states associated with prion diseases, astrocytes lose their ability to perform physiological functions and whether the reactive states are neurotoxic or, on the contrary, neuroprotective. The current work addresses these questions by testing the effects of reactive astrocytes isolated from prion-infected C57BL/6J mice on primary neuronal cultures. We found that astrocytes isolated at the clinical stage of the disease exhibited reactive, pro-inflammatory phenotype, which also showed downregulation of genes involved in neurogenic and synaptogenic functions. In astrocyte-neuron co-cultures, astrocytes from prion-infected animals impaired neuronal growth, dendritic spine development and synapse maturation. Toward examining the role of factors secreted by reactive astrocytes, astrocyte-conditioned media was found to have detrimental effects on neuronal viability and synaptogenic functions via impairing synapse integrity, and by reducing spine size and density. Reactive microglia isolated from prion-infected animals were found to induce phenotypic changes in primary astrocytes reminiscent to those observed in prion-infected mice. In particular, astrocytes cultured with reactive microglia-conditioned media displayed hypertrophic morphology and a downregulation of genes involved in neurogenic and synaptogenic functions. In summary, the current study provided experimental support toward the non-cell autonomous mechanisms behind neurotoxicity in prion diseases and demonstrated that the astrocyte reactive phenotype associated with prion diseases is synaptotoxic.
Collapse
|
22
|
Marques CMS, Pedron T, Batista BL, Cerchiaro G. Cellular prion protein activates Caspase 3 for apoptotic defense mechanism in astrocytes. Mol Cell Biochem 2021; 476:2149-2158. [PMID: 33547547 DOI: 10.1007/s11010-021-04078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
The cellular prion protein (PrPC) is anchored in the plasma membrane of cells, and it is highly present in cells of brain tissue, exerting numerous cellular and cognitive functions. The present study proves the importance of PrPC in the cellular defense mechanism and metal homeostasis in astrocytes cells. Through experimental studies using cell lines of immortalized mice astrocytes (wild type and knockout for PrPC), we showed that PrPc is involved in the apoptosis cell death process by the activation of Caspase 3, downregulation of p53, and cell cycle maintenance. Metal homeostasis was determined by inductively coupled plasma mass spectrometry technique, indicating the crucial role of PrPC to lower intracellular calcium. The lowered calcium concentration and the Caspase 3 downregulation in the PrPC-null astrocytes resulted in a faster growth rate in cells, comparing with PrPC wild-type one. The presence of PrPC shows to be essential to cell death and healthy growth. In conclusion, our results show for the first time that astrocyte knockout cells for the cellular prion protein could modulate apoptosis-dependent cell death pathways.
Collapse
Affiliation(s)
- Caroline M S Marques
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Tatiana Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Bruno L Batista
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
23
|
Chida J, Hara H, Uchiyama K, Takahashi E, Miyata H, Kosako H, Tomioka Y, Ito T, Horiuchi H, Matsuda H, Kido H, Sakaguchi S. Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice. PLoS Pathog 2020; 16:e1008823. [PMID: 32845931 PMCID: PMC7489546 DOI: 10.1371/journal.ppat.1008823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/14/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein, PrPC, is a glycosylphosphatidylinositol anchored-membrane glycoprotein expressed most abundantly in neuronal and to a lesser extent in non-neuronal cells. Its conformational conversion into the amyloidogenic isoform in neurons is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. However, the normal functions of PrPC remain largely unknown, particularly in non-neuronal cells. Here we show that stimulation of PrPC with anti-PrP monoclonal antibodies (mAbs) protected mice from lethal infection with influenza A viruses (IAVs), with abundant accumulation of anti-inflammatory M2 macrophages with activated Src family kinases (SFKs) in infected lungs. A SFK inhibitor dasatinib inhibited M2 macrophage accumulation in IAV-infected lungs after treatment with anti-PrP mAbs and abolished the anti-PrP mAb-induced protective activity against lethal influenza infection in mice. We also show that stimulation of PrPC with anti-PrP mAbs induced M2 polarization in peritoneal macrophages through SFK activation in vitro and in vivo. These results indicate that PrPC could activate SFK in macrophages and induce macrophage polarization to an anti-inflammatory M2 phenotype after stimulation with anti-PrP mAbs, thereby eliciting protective activity against lethal infection with IAVs in mice after treatment with anti-PrP mAbs. These results also highlight PrPC as a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Yukiko Tomioka
- Laboratory of Laboratory Animal Science, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Haruo Matsuda
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
24
|
Senatore A, Frontzek K, Emmenegger M, Chincisan A, Losa M, Reimann R, Horny G, Guo J, Fels S, Sorce S, Zhu C, George N, Ewert S, Pietzonka T, Hornemann S, Aguzzi A. Protective anti-prion antibodies in human immunoglobulin repertoires. EMBO Mol Med 2020; 12:e12739. [PMID: 32776637 PMCID: PMC7506995 DOI: 10.15252/emmm.202012739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Prion immunotherapy may hold great potential, but antibodies against certain PrP epitopes can be neurotoxic. Here, we identified > 6,000 PrP-binding antibodies in a synthetic human Fab phage display library, 49 of which we characterized in detail. Antibodies directed against the flexible tail of PrP conferred neuroprotection against infectious prions. We then mined published repertoires of circulating B cells from healthy humans and found antibodies similar to the protective phage-derived antibodies. When expressed recombinantly, these antibodies exhibited anti-PrP reactivity. Furthermore, we surveyed 48,718 samples from 37,894 hospital patients for the presence of anti-PrP IgGs and found 21 high-titer individuals. The clinical files of these individuals did not reveal any enrichment of specific pathologies, suggesting that anti-PrP autoimmunity is innocuous. The existence of anti-prion antibodies in unbiased human immunological repertoires suggests that they might clear nascent prions early in life. Combined with the reported lack of such antibodies in carriers of disease-associated PRNP mutations, this suggests a link to the low incidence of spontaneous prion diseases in human populations.
Collapse
Affiliation(s)
- Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Regina Reimann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Geraldine Horny
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Sylvie Fels
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Caihong Zhu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Nathalie George
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Ewert
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Huin C, Cronier S, Guégan P, Béringue V, Rezaei H, Noinville S. Conformation-dependent membrane permeabilization by neurotoxic PrP oligomers: The role of the H2H3 oligomerization domain. Arch Biochem Biophys 2020; 692:108517. [PMID: 32738196 DOI: 10.1016/j.abb.2020.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
The relationship between prion propagation and the generation of neurotoxic species and clinical onset remains unclear. Several converging lines of evidence suggest that interactions with lipids promote various precursors to form aggregation-prone states that are involved in amyloid fibrils. Here, we compared the cytotoxicities of different soluble isolated oligomeric constructs from murine full-length PrP and from the restricted helical H2H3 domain with their effects on lipid vesicles. The helical H2H3 domain is suggested to be the minimal region of PrP involved in the oligomerization process. The discrete PrP oligomers of both the full-length sequence and the H2H3 domain have de novo β-sheeted structure when interacting with the membrane. They were shown to permeabilize synthetic negatively charged vesicles in a dose-dependent manner. Restricting the polymerization domain of the full-length PrP to the H2H3 helices strongly diminished the ability of the corresponding oligomers to associate with the lipid vesicles. Furthermore, the membrane impairment mechanism occurs differently for the full-length PrP oligomers and the H2H3 helices, as shown by dye-release and black lipid membrane experiments. The membrane damage caused by the full-length PrP oligomers is correlated to their neuronal toxicity at submicromolar concentrations, as shown by cell culture assays. Although oligomers of synthetic H2H3 could compromise in vitro cell homeostasis, they followed a membrane-disruptive pattern that was different from the full-length oligomers, as revealed by the role of PrPC in cell viability assays.
Collapse
Affiliation(s)
- Cécile Huin
- Sorbonne Universités, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005, Paris, France; University of Evry, F-91025, Evry, France
| | - Sabrina Cronier
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Philippe Guégan
- Sorbonne Universités, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005, Paris, France
| | - Vincent Béringue
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Human Rezaei
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Sylvie Noinville
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8233, MONARIS, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
26
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
27
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|
28
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
29
|
Cox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM, Haas LT, Hammersley J, Rees G, Dosanjh B, Groves M, Gardener M, Dobson C, Vaughan T, Chessell I, Billinton A, Strittmatter SM. Anti-PrP C antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol 2019; 6:554-574. [PMID: 30911579 PMCID: PMC6414488 DOI: 10.1002/acn3.730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Objective Amyloid-beta oligomers (Aßo) trigger the development of Alzheimer's disease (AD) pathophysiology. Cellular prion protein (PrPC) initiates synaptic damage as a high affinity receptor for Aßo. Here, we evaluated the preclinical therapeutic efficacy of a fully human monoclonal antibody against PrPC. This AZ59 antibody selectively targets the Aβo binding site in the amino-terminal unstructured domain of PrPC to avoid any potential risk of direct toxicity. Methods Potency of AZ59 was evaluated by binding to PrPC, blockade of Aβo interaction and interruption of Aβo signaling. AZ59 was administered to mice by weekly intraperitoneal dosing and brain antibody measured. APP/PS1 transgenic mice were treated with AZ59 and assessed by memory tests, by brain biochemistry and by histochemistry for Aß, gliosis and synaptic density. Results AZ59 binds PrPC with 100 pmol/L affinity and blocks human brain Aßo binding to PrPC, as well as prevents synaptotoxic signaling. Weekly i.p. dosing of 20 mg/kg AZ59 in a murine form achieves trough brain antibody levels greater than 10 nmol/L. Aged symptomatic APP/PS1 transgenic mice treated with AZ59 for 5-7 weeks show a full rescue of behavioral and synaptic loss phenotypes. This recovery occurs without clearance of plaque pathology or elimination of gliosis. AZ59 treatment also normalizes synaptic signaling abnormalities in transgenic brain. These benefits are dose-dependent and persist for at least 1 month after the last dose. Interpretation Preclinical data demonstrate that systemic AZ59 therapy rescues central synapses and memory function from transgenic Alzheimer's disease pathology, supporting a disease-modifying therapeutic potential.
Collapse
Affiliation(s)
- Timothy O. Cox
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Erik C. Gunther
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - A. Harrison Brody
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Marius T. Chiasseu
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Austin Stoner
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Levi M. Smith
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Laura T. Haas
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Jayne Hammersley
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Gareth Rees
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Bhupinder Dosanjh
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Maria Groves
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Matthew Gardener
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Claire Dobson
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Tristan Vaughan
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Iain Chessell
- NeuroscienceIMED Biotech UnitAstraZenecaGranta ParkCambridgeCB21 6GHUK
| | - Andrew Billinton
- NeuroscienceIMED Biotech UnitAstraZenecaGranta ParkCambridgeCB21 6GHUK
| | - Stephen M. Strittmatter
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| |
Collapse
|
30
|
Forloni G, Roiter I, Tagliavini F. Clinical trials of prion disease therapeutics. Curr Opin Pharmacol 2019; 44:53-60. [DOI: 10.1016/j.coph.2019.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
31
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
32
|
Purro SA, Mead S, Khalili-Shirazi A, Nicoll AJ, Collinge J. Reply to: Intrinsic Toxicity of Antibodies to the Globular Domain of the Prion Protein. Biol Psychiatry 2018; 84:e53-e54. [PMID: 29752071 DOI: 10.1016/j.biopsych.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Silvia A Purro
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Simon Mead
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Azadeh Khalili-Shirazi
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, United Kingdom.
| | - John Collinge
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, United Kingdom.
| |
Collapse
|
33
|
A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity. PLoS Pathog 2018; 14:e1007335. [PMID: 30273408 PMCID: PMC6181439 DOI: 10.1371/journal.ppat.1007335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/11/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Antibodies to the prion protein, PrP, represent a promising therapeutic approach against prion diseases but the neurotoxicity of certain anti-PrP antibodies has caused concern. Here we describe scPOM-bi, a bispecific antibody designed to function as a molecular prion tweezer. scPOM-bi combines the complementarity-determining regions of the neurotoxic antibody POM1 and the neuroprotective POM2, which bind the globular domain (GD) and flexible tail (FT) respectively. We found that scPOM-bi confers protection to prion-infected organotypic cerebellar slices even when prion pathology is already conspicuous. Moreover, scPOM-bi prevents the formation of soluble oligomers that correlate with neurotoxic PrP species. Simultaneous targeting of both GD and FT was more effective than concomitant treatment with the individual molecules or targeting the tail alone, possibly by preventing the GD from entering a toxic-prone state. We conclude that simultaneous binding of the GD and flexible tail of PrP results in strong protection from prion neurotoxicity and may represent a promising strategy for anti-prion immunotherapy. Antibody immunotherapy is considered a viable strategy against prion disease. We previously showed that antibodies against the so-called globular domain of Prion Protein (PrP) can cause PrP dependent neurotoxicity; this does not happen for antibodies against the flexible tail of PrP, which therefore ought to be preferred for therapy. Here we show that simultaneous targeting of both globular domain and flexible tail by a bispecific, combination of a toxic and a non-toxic antibody, results in stronger protection against prion toxicity, even if the bispecific is administered when prion pathology is already conspicuous. We hypothesize that neurotoxicity arises from binding to specific “toxicity triggering sites” in the globular domain. We designed our bispecific with two aims: i) occupying one such site and preventing prion or other factors from docking to it and ii) binding to the flexible tail to engage the region of PrP necessary for neurotoxicity. We also show that neurotoxic antibodies cause the formation of soluble PrP oligomers that cause toxicity on PrP expressing cell lines; these are not formed in the presence of prion protective antibodies. We suggest that these soluble species might play a role in prion toxicity, similarly to what is generally agreed to happen in other neurodegenerative disorders.
Collapse
|
34
|
Intrinsic Toxicity of Antibodies to the Globular Domain of the Prion Protein. Biol Psychiatry 2018; 84:e51-e52. [PMID: 29752074 DOI: 10.1016/j.biopsych.2018.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
|
35
|
Mittal R, Karhu E, Wang JS, Delgado S, Zukerman R, Mittal J, Jhaveri VM. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications. J Cell Physiol 2018; 234:1130-1146. [PMID: 30206931 DOI: 10.1002/jcp.27072] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Intercellular communication is essential for the development and maintenance of multicellular organisms. Tunneling nanotubes (TNTs) are a recently recognized means of long and short distance communication between a wide variety of cell types. TNTs are transient filamentous membrane protrusions that connect cytoplasm of neighboring or distant cells. Cytoskeleton fiber-mediated transport of various cargoes occurs through these tubules. These cargoes range from small ions to whole organelles. TNTs have been shown to contribute not only to embryonic development and maintenance of homeostasis, but also to the spread of infectious particles and resistance to therapies. These functions in the development and progression of cancer and infectious disease have sparked increasing scrutiny of TNTs, as their contribution to disease progression lends them a promising therapeutic target. Herein, we summarize the current knowledge of TNT structure and formation as well as the role of TNTs in pathology, focusing on viral, prion, and malignant disease. We then discuss the therapeutic possibilities of TNTs in light of their varied functions. Despite recent progress in the growing field of TNT research, more studies are needed to precisely understand the role of TNTs in pathological conditions and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Elisa Karhu
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jay-Shing Wang
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Stefanie Delgado
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ryan Zukerman
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Gu H, Kirchhein Y, Zhu T, Zhao G, Peng H, Du E, Liu J, Mastrianni JA, Farlow MR, Dodel R, Du Y. IVIG Delays Onset in a Mouse Model of Gerstmann-Sträussler-Scheinker Disease. Mol Neurobiol 2018; 56:2353-2361. [PMID: 30027340 DOI: 10.1007/s12035-018-1228-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Our previous studies showed that intravenous immunoglobulin (IVIG) contained anti-Aβ autoantibodies that might be able to treat Alzheimer's disease (AD). Recently, we identified and characterized naturally occurring autoantibodies against PrP from IVIG. Although autoantibodies in IVIG blocked PrP fibril formation and PrP neurotoxicity in vitro, it remained unknown whether IVIG could reduce amyloid plaque pathology in vivo and be used to effectively treat animals with prion diseases. In this study, we used Gerstmann-Sträussler-Scheinker (GSS)-Tg (PrP-A116V) transgenic mice to test IVIG efficacy since amyloid plaque formation played an important role in GSS pathogenesis. Here, we provided strong evidence that demonstrates how IVIG could significantly delay disease onset, elongate survival, and improve clinical phenotype in Tg (PrP-A116V) mice. Additionally, in treated animals, IVIG could markedly inhibit PrP amyloid plaque formation and attenuate neuronal apoptosis at the age of 120 days in mice. Our results indicate that IVIG may be a potential, effective therapeutic treatment for GSS and other prion diseases.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yvonne Kirchhein
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Timothy Zhu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gang Zhao
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hongjun Peng
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Eileen Du
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
37
|
Identification of Alprenolol Hydrochloride as an Anti-prion Compound Using Surface Plasmon Resonance Imaging. Mol Neurobiol 2018; 56:367-377. [PMID: 29704200 DOI: 10.1007/s12035-018-1088-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/15/2018] [Indexed: 01/12/2023]
Abstract
Prion diseases are transmissible neurodegenerative disorders of humans and animals, which are characterized by the aggregation of abnormal prion protein (PrPSc) in the central nervous system. Although several small compounds that bind to normal PrP (PrPC) have been shown to inhibit structural conversion of the protein, an effective therapy for human prion disease remains to be established. In this study, we screened 1200 existing drugs approved by the US Food and Drug Administration (FDA) for anti-prion activity using surface plasmon resonance imaging (SPRi). Of these drugs, 31 showed strong binding activity to recombinant human PrP, and three of these reduced the accumulation of PrPSc in prion-infected cells. One of the active compounds, alprenolol hydrochloride, which is used clinically as a β-adrenergic blocker for hypertension, also reduced the accumulation of PrPSc in the brains of prion-infected mice at the middle stage of the disease when the drug was administered orally with their daily water from the day after infection. Docking simulation analysis suggested that alprenolol hydrochloride fitted into the hotspot within mouse PrPC, which is known as the most fragile structure within the protein. These findings provide evidence that SPRi is useful in identifying effective drug candidates for neurodegenerative diseases caused by abnormal protein aggregation, such as prion diseases.
Collapse
|
38
|
Osborne C, West E, Bate C. The phospholipase A 2 pathway controls a synaptic cholesterol ester cycle and synapse damage. J Cell Sci 2018; 131:jcs.211789. [PMID: 29588394 DOI: 10.1242/jcs.211789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) acts as a scaffold protein that organises signalling complexes. In synaptosomes, the aggregation of PrPC by amyloid-β (Aβ) oligomers attracts and activates cytoplasmic phospholipase A2 (cPLA2), leading to synapse degeneration. The signalling platform is dependent on cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs). The activation of cPLA2 requires cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs), enzymes dependent upon platelet activating factor (PAF) released by activated cPLA2 This demonstrates a positive feedback system in which activated cPLA2 increased cholesterol concentrations, which in turn facilitated cPLA2 activation. PAF was also required for the incorporation of the tyrosine kinase Fyn and cyclooxygenase (COX)-2 into Aβ-PrPC-cPLA2 complexes. As a failure to deactivate signalling complexes can lead to pathology, the mechanisms involved in their dispersal were studied. PAF facilitated the incorporation of acyl-coenzyme A:cholesterol acyltransferase (ACAT)-1 into Aβ-PrPC-cPLA2-COX-2-Fyn complexes. The esterification of cholesterol reduced cholesterol concentrations, causing dispersal of Aβ-PrPC-cPLA2-COX-2-Fyn complexes and the cessation of signalling. This study identifies PAF as a key mediator regulating the cholesterol ester cycle, activation of cPLA2 and COX-2 within synapses, and synapse damage.
Collapse
Affiliation(s)
- Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| |
Collapse
|
39
|
T. Islam AM, Adlard PA, Finkelstein DI, Lewis V, Biggi S, Biasini E, Collins SJ. Acute Neurotoxicity Models of Prion Disease. ACS Chem Neurosci 2018; 9:431-445. [PMID: 29393619 DOI: 10.1021/acschemneuro.7b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Prion diseases are phenotypically diverse, transmissible, neurodegenerative disorders affecting both animals and humans. Misfolding of the normal prion protein (PrPC) into disease-associated conformers (PrPSc) is considered the critical etiological event underpinning prion diseases, with such misfolded isoforms linked to both disease transmission and neurotoxicity. Although important advances in our understanding of prion biology and pathogenesis have occurred over the last 3-4 decades, many fundamental questions remain to be resolved, including consensus regarding the principal pathways subserving neuronal dysfunction, as well as detailed biophysical characterization of PrPSc species transmitting disease and/or directly associated with neurotoxicity. In vivo and in vitro models have been, and remain, critical to furthering our understanding across many aspects of prion disease patho-biology. Prion animal models are arguably the most authentic in vivo models of neurodegeneration that exist and have provided valuable and multifarious insights into pathogenesis; however, they are expensive and time-consuming, and it can be problematic to clearly discern evidence of direct PrPSc neurotoxicity in the overall context of pathogenesis. In vitro models, in contrast, generally offer greater tractability and appear more suited to assessments of direct acute neurotoxicity but have until recently been relatively simplistic, and overall there remains a relative paucity of validated, biologically relevant models with heightened reliability as far as translational insights, contributing to difficulties in redressing our knowledge gaps in prion disease pathogenesis. In this review, we provide an overview of the spectrum and methodological diversity of in vivo and in vitro models of prion acute toxicity, as well as the pathogenic insights gained from these studies.
Collapse
Affiliation(s)
| | | | | | | | - S. Biggi
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - E. Biasini
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | | |
Collapse
|
40
|
Abstract
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases. The relevance of β-amyloid oligomers and cellular prion protein (PrPC) binding has been a focus of interest in Alzheimer's disease (AD). At the molecular level, β-amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. In addition to β-amyloid, participation of PrPC in α-synuclein binding and brain spreading also appears to be relevant in α-synucleopathies. This review summarizes current knowledge about PrPC as a putative receptor for amyloid proteins and the physiological consequences of these interactions.
Collapse
Affiliation(s)
- José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2018; 7:38638-38657. [PMID: 27229535 PMCID: PMC5122417 DOI: 10.18632/oncotarget.9575] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.
Collapse
|
42
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
43
|
Taschuk R, Scruten E, Woodbury M, Cashman N, Potter A, Griebel P, Tikoo SK, Napper S. Induction of PrP Sc-specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease. Prion 2018; 11:368-380. [PMID: 28968152 PMCID: PMC5639826 DOI: 10.1080/19336896.2017.1367083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ongoing epidemic of chronic wasting disease (CWD) within cervid populations indicates the need for novel approaches for disease management. A vaccine that either reduces susceptibility to infection or reduces shedding of prions by infected animals, or a combination of both, could be of benefit for disease control. The development of such a vaccine is challenged by the unique nature of prion diseases and the requirement for formulation and delivery in an oral format for application in wildlife settings. To address the unique nature of prions, our group targets epitopes, termed disease specific epitopes (DSEs), whose exposure for antibody binding depends on disease-associated misfolding of PrPC into PrPSc. Here, a DSE corresponding to the rigid loop (RL) region, which was immunogenic following parenteral vaccination, was translated into an oral vaccine. This vaccine consists of a replication-incompetent human adenovirus expressing a truncated rabies glycoprotein G recombinant fusion with the RL epitope (hAd5:tgG-RL). Oral immunization of white-tailed deer with hAd5:tgG-RL induced PrPSc-specific systemic and mucosal antibody responses with an encouraging safety profile in terms of no adverse health effects nor prolonged vector shedding. By building upon proven strategies of formulation for wildlife vaccines, these efforts generate a particular PrPSc-specific oral vaccine for CWD as well as providing a versatile platform, in terms of carrier protein and biological vector, for generation of other oral, peptide-based CWD vaccines.
Collapse
Affiliation(s)
- Ryan Taschuk
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Erin Scruten
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Murray Woodbury
- c Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Neil Cashman
- d Department of Neurology , University of British Columbia , Vancouver , BC , Canada
| | - Andrew Potter
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Philip Griebel
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Suresh K Tikoo
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada.,b School of Public Health, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Scott Napper
- a Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon , Saskatchewan , Canada.,e Department of Biochemistry , University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| |
Collapse
|
44
|
Native prion protein homodimers are destabilized by oligomeric amyloid β 1-42 species as shown by single-molecule imaging. Neuroreport 2018; 29:106-111. [PMID: 29120943 DOI: 10.1097/wnr.0000000000000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prion proteins (PrPc) are receptors for amyloid β 1-42 (Aβ1-42) oligomers, but we do not know the impact of Aβ1-42 binding to PrPc on the interaction of membrane-bound PrPc with molecules that regulate downstream biological pathways. Stability of the PrPc dimeric complex and subsequent intermolecular interactions with membranous or cytoplasmic molecules are important for physiological functions of PrPc including neuroprotection. The principal aim of this study was to determine whether homodimer lifetime of PrPc is affected by the presence of Aβ1-42 oligomers. Single-molecule imaging analysis was carried out by total internal reflection fluorescence microscopy in PrPc-transfected CHO-K1 cells in the absence or presence of characterized Aβ1-42 oligomers. The contribution of different Aβ1-42 oligomer conformations to Alzheimer's disease pathophysiology and to the associated neurotoxicity is unknown. To be precise, with the oligomeric species used in our study, we biochemically analyzed the molecular weight of oligomers formed from Aβ1-42 monomers under our experimental conditions. The lifetime of PrPc homodimers was 210 ms, and in the presence of Aβ1-42 oligomers, the lifetime was significantly reduced (to 92 ms). The reduction of PrPc homodimer lifetime by Aβ1-42 oligomers may impair PrPc-mediated downstream neuroprotective signaling.
Collapse
|
45
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
46
|
Bate C, Williams A. Monomeric amyloid-β reduced amyloid-β oligomer-induced synapse damage in neuronal cultures. Neurobiol Dis 2017; 111:48-58. [PMID: 29272738 DOI: 10.1016/j.nbd.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) in the brain. Aβ oligomers are believed to cause synapse damage resulting in the memory deficits that are characteristic of this disease. Since the loss of synaptic proteins in the brain correlates closely with the degree of dementia in Alzheimer's disease, the process of Aβ-induced synapse damage was investigated in cultured neurons by measuring the loss of synaptic proteins. Soluble Aβ oligomers, derived from Alzheimer's-affected brains, caused the loss of cysteine string protein and synaptophysin from neurons. When applied to synaptosomes Aβ oligomers increased cholesterol concentrations and caused aberrant activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, Aβ monomer preparations did not affect cholesterol concentrations or activate synaptic cPLA2, nor did they damage synapses. The Aβ oligomer-induced aggregation of cellular prion proteins (PrPC) at synapses triggered the activation of cPLA2 that leads to synapse degeneration. Critically, Aβ monomer preparations did not cause the aggregation of PrPC; rather they reduced the Aβ oligomer-induced aggregation of PrPC. The presence of Aβ monomer preparations also inhibited the Aβ oligomer-induced increase in cholesterol concentrations and activation of cPLA2 in synaptosomes and protected neurons against the Aβ oligomer-induced synapse damage. These results support the hypothesis that Aβ monomers are neuroprotective. We hypothesise that synapse damage may result from a pathological Aβ monomer:oligomer ratio rather than the total concentrations of Aβ within the brain.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK.
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
47
|
Bate C. Breaking the Cycle, Cholesterol Cycling, and Synapse Damage in Response to Amyloid-β. J Exp Neurosci 2017; 11:1179069517733096. [PMID: 29238218 PMCID: PMC5721958 DOI: 10.1177/1179069517733096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Soluble amyloid-β (Aβ) oligomers, a key driver of pathogenesis in Alzheimer disease, bind to cellular prion proteins (PrPC) expressed on synaptosomes resulting in increased cholesterol concentrations, movement of cytoplasmic phospholipase A2 (cPLA2) to lipid rafts and activation of cPLA2. The formation of Aβ-PrPC-cPLA2 complexes was controlled by the cholesterol ester cycle. Thus, Aβ activated cholesterol ester hydrolases which released cholesterol from stores of cholesterol esters; the increased cholesterol concentrations stabilised Aβ-PrPC-cPLA2 complexes. Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC-cPLA2. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; inhibition of cholesterol ester hydrolases protected neurons, whereas inhibition of cholesterol esterification increased the Aβ-induced synapse damage. Here, I speculate that a failure to deactivate signalling pathways can lead to pathology. Consequently, the esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms and synapse degeneration.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield,UK
| |
Collapse
|
48
|
McDonald AJ, Wu B, Harris DA. An inter-domain regulatory mechanism controls toxic activities of PrP C. Prion 2017; 11:388-397. [PMID: 28960140 DOI: 10.1080/19336896.2017.1384894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The normal function of PrPC, the cellular prion protein, has remained mysterious since its first description over 30 years ago. Amazingly, although complete deletion of the gene encoding PrPC has little phenotypic consequence, expression in transgenic mice of PrP molecules carrying certain internal deletions produces dramatic neurodegenerative phenotypes. In our recent paper, 1 we have demonstrated that the flexible, N-terminal domain of PrPC possesses toxic effector functions, which are regulated by a docking interaction with the structured, C-terminal domain. Disruption of this inter-domain interaction, for example by deletions of the hinge region or by binding of antibodies to the C-terminal domain, results in abnormal ionic currents and degeneration of dendritic spines in cultured neuronal cells. This mechanism may contribute to the neurotoxicity of PrPSc and possibly other protein aggregates, and could play a role in the physiological activity of PrPC. These results also provide a warning about the potential toxic side effects of PrP-directed antibody therapies for prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Alex J McDonald
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - Bei Wu
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - David A Harris
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
49
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
50
|
West E, Osborne C, Bate C. The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-β. J Cell Sci 2017; 130:3050-3059. [PMID: 28760925 DOI: 10.1242/jcs.205484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023] Open
Abstract
Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2 The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2 Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration.
Collapse
Affiliation(s)
- Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|