1
|
Qi Y, Jang D, Ryu J, Bai T, Shin Y, Gu W, Iyer A, Li G, Ma H, Liou JY, van der Meer M, Qiang Y, Fang H. Stabilized carbon coating on microelectrodes for scalable and interoperable neurotransmitter sensing. Nat Commun 2025; 16:3300. [PMID: 40195312 PMCID: PMC11977211 DOI: 10.1038/s41467-025-58388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Real-time monitoring of neurotransmitters is essential in driving basic neuroscience understandings and creating treatments for various brain disorders. However, current neurotransmitter sensing devices are highly limited in their spatiotemporal resolution and ability to integrate with neuronal recording. Here, we introduce a unique carbon coating approach to achieve high-performance voltammetry electrodes with extraordinary scalability and interoperability. Surprisingly, we discovered that mild annealing drastically improves the electrochemical stability of graphene-based carbon coating, enabling the transformation of conventional neuroelectrodes into fast-scan-cyclic-voltammetry-stable carbon sensors. We successfully validated sub-second detection of nanomolar dopamine in vivo using carbon-coated microelectrodes (CCMs) in rodents and demonstrated arrays of one hundred CCMs with high yield and uniformity. Furthermore, we developed a dual-modal neural probe that integrates the CCM with electrophysiological recording sites, allowing us to demonstrate that dopamine fluctuation in the ventral striatum of awake rats strongly correlates with the high gamma power in the brain with sub-second-level precision. Together, these advances pave the way for spatiotemporally scalable and multiplexed brain interfacing, with also broad applicability in electrochemical-related diagnostic and interventional approaches.
Collapse
Affiliation(s)
- Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Dongyeol Jang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Wen Gu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
- Lingang Laboratory, Shanghai, China
| | - Aditya Iyer
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Jyun-You Liou
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Xu Y, Chan MTJ, Yang M, Meng H, Chen CH. Time-resolved single-cell secretion analysis via microfluidics. LAB ON A CHIP 2025; 25:1282-1295. [PMID: 39789982 DOI: 10.1039/d4lc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1. Microwell real-time electrical detection: uses microelectrodes for precise, cell-specific, real-time measurement of secreted molecules. 2. Microwell real-time optical detection: employs advanced optical systems for real-time, multiplexed monitoring of cellular secretions. 3. Microvalve real-time optical detection: dynamically analyzes secretions under controlled in situ stimuli, enabling detailed kinetic studies at the single-cell level. 4. Droplet real-time optical detection: provides superior throughput by generating droplets containing single cells and sensors for high-throughput screening. 5. Microwell time-barcoded optical detection: utilizes sequential barcoding techniques to facilitate scalable assays for tracking multiple secretions over time. 6. Microvalve time-barcoded optical detection: incorporates automated time-barcoding via micro-valves for robust and scalable analysis. 7. Microwell time-barcoded sequencing: captures and labels secretions for sequencing, enabling multidimensional analysis, though currently limited to a few time points and extended intervals. This review specifically addresses the challenges of achieving high-resolution timing measurements with short intervals while maintaining scalability for single-cell screening. Future advancements in microfluidic devices, integrating innovative barcoding technologies, advanced imaging technologies, artificial intelligence-powered decoding and analysis, and automations are anticipated to enable highly sensitive, scalable, high-throughput single-cell dynamic analysis. These developments hold great promise for deepening our understanding of biosystems by exploring single-cell timing responses on a larger scale.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Mei Tsz Jewel Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Ming Yang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Heixu Meng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
3
|
Sun X, Yin L, Qiao Z, Younus M, Chen G, Wu X, Li J, Kang X, Xu H, Zhou L, Li Y, Gao M, Du X, Hang Y, Lin Z, Sun L, Wang Q, Jiao R, Wang L, Hu M, Wang Y, Huang R, Li Y, Wu Q, Shang S, Guo S, Lei Q, Shu H, Zheng L, Wang S, Zhu F, Zuo P, Liu B, Wang C, Zhang Q, Zhou Z. Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412229. [PMID: 39731325 PMCID: PMC11831442 DOI: 10.1002/advs.202412229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown. Here by using in vivo and ex vivo models, it is shown that the AP frequency per se modulates DA release through the D2 receptor (D2R), which contributes up to 50% of total DA release. D2R has a voltage-sensing site at D131 and can be deactivated in a frequency-dependent manner by membrane depolarization. This voltage-dependent D2R inhibition of DA release is mediated via the facilitation of voltage-gated Ca2+ channels (VGCCs). Collectively, this work establishes a novel mechanism that APs per se modulate DA overflow by disinhibiting the voltage-sensitive autoreceptor D2R and thus the facilitation of VGCCs, providing a pivotal pathway and insight into mammalian DA-dependent functions in vivo.
Collapse
|
4
|
Gao X, Wei H, Ma W, Wu W, Ji W, Mao J, Yu P, Mao L. Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst. Nat Commun 2024; 15:7915. [PMID: 39256377 PMCID: PMC11387648 DOI: 10.1038/s41467-024-52279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN4 exhibits the highest activity toward mimicking catalase and superoxide dismutase as well as eliminating hydroxyl radical, while also featuring high electrode reactivity toward dopamine oxidation. These dual functions endow the single-atom nanozyme-based sensor with anti-inflammatory capabilities, enabling accurate dopamine sensing in living male rat brain. This study provides an avenue for designing inflammation-free electrochemical sensing platforms with atomic-precision engineered single-atom catalysts.
Collapse
Affiliation(s)
- Xiaolong Gao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
5
|
Xue Z, Patel K, Bhatia P, Miller CL, Shergill RS, Patel BA. 3D-Printed Microelectrodes for Biological Measurement. Anal Chem 2024; 96:12701-12709. [PMID: 39039062 DOI: 10.1021/acs.analchem.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 μm in diameter to 400 μm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.
Collapse
Affiliation(s)
- Zehao Xue
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Kanisha Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Paankhuri Bhatia
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Chloe L Miller
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Ricoveer Singh Shergill
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| |
Collapse
|
6
|
Metlay AS, Chyi B, Sheehan CJ, Shallenberger JR, Mallouk TE. Fast Outer-Sphere Electron Transfer and High Specific Capacitance at Covalently Modified Carbon Electrodes. J Am Chem Soc 2024; 146:20086-20091. [PMID: 38980188 DOI: 10.1021/jacs.4c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Carbon electrodes typically display sluggish electron transfer kinetics due to the adsorption of adventitious molecules that effectively insulate the surface. Here, we describe a method for rendering graphitic carbon electrodes permanently hydrophilic by functionalization with 4-(diazonium)benzenesulfonic acid. In aqueous electrolytes, these hydrophilic carbon electrodes exhibit metal-like specific capacitance (∼40 μF/cm2) as measured by cyclic voltammetry, suggesting a change in the double-layer structure at the carbon surface. Additionally, the modified electrodes show fast charge transfer kinetics to outer-sphere one-electron redox couples such as ferro-/ferricyanide as well as improved electron transfer kinetics in alkaline aqueous redox flow batteries.
Collapse
Affiliation(s)
- Amy S Metlay
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brandon Chyi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colton J Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey R Shallenberger
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba Ibaraki 305-0044, Japan
| |
Collapse
|
7
|
Zhang FL, Yang XK, Qi YT, Tian SY, Huang WH. Nanoelectrochemistry reveals how presynaptic neurons regulate vesicle release to sustain synaptic plasticity under repetitive stimuli. Chem Sci 2024; 15:7651-7658. [PMID: 38784745 PMCID: PMC11110134 DOI: 10.1039/d4sc01664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Synaptic plasticity is the ability of synapses to modulate synaptic strength in response to dynamic changes within, as well as environmental changes. Although there is a considerable body of knowledge on protein expression and receptor migration in different categories of synaptic plasticity, the contribution and impact of presynaptic vesicle release and neurotransmitter levels towards plasticity remain largely unclear. Herein, nanoelectrochemistry using carbon fiber nanoelectrodes with excellent spatio-temporal resolution was applied for real-time monitoring of presynaptic vesicle release of dopamine inside single synapses of dopaminergic neurons, and exocytotic variations in quantity and kinetics under repetitive electrical stimuli. We found that the presynaptic terminal tends to maintain synaptic strength by rapidly recruiting vesicles, changing the dynamics of exocytosis, and maintaining sufficient neurotransmitter release in following stimuli. Except for small clear synaptic vesicles, dense core vesicles are involved in exocytosis to sustain the neurotransmitter level in later periods of repetitive stimuli. These data indicate that vesicles use a potential regulatory mechanism to establish short-term plasticity, and provide new directions for exploring the synaptic mechanisms in connection and plasticity.
Collapse
Affiliation(s)
- Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 P. R. China
| |
Collapse
|
8
|
Zhang S, Song L, Zheng R, Zhang F, Wang Q, Mao X, Fan JX, Liu B, Zhao YD, Chen W. Quantification of MicroRNA in a Single Living Cell via Ionic Current Rectification-Based Nanopore for Triple Negative Breast Cancer Diagnosis. Anal Chem 2024; 96:7411-7420. [PMID: 38652893 DOI: 10.1021/acs.analchem.3c05027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.
Collapse
Affiliation(s)
- Shujie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Laibo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruina Zheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qimeng Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiaosui Mao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
9
|
Ma Y, Ma Y, Liu K, Wang D, Liu R, Chen Q, Jiang D, Pan R. An ultra-sensitive platinized nanocavity electrode for analysis of cytosolic catecholamines in one living cell. Talanta 2024; 269:125503. [PMID: 38070283 DOI: 10.1016/j.talanta.2023.125503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The catecholamines, mainly dopamine (DA), are present in the cellular cytosol with low abundance, while, play key roles in various neurodegenerative disorders. Here, platinized nanocavity carbon electrodes are employed to analyze cytosolic catecholamines in a single living PC12 cell, which is not easily quantified using the classic electrodes. The confined structure and excellent conductivity in the platinized nanocavity accelerate the electron transfer of the DA, resulting in a low detection limit down to 50 nM. The sensitivity of DA detection is improved to be 10.73 pA mM-1 nm-1 in the response range of 50 nM-100 μM, which guarantees quantitative analysis of cytosolic catecholamines with low abundance. Eventually, the platinized nanocavity electrode is employed to detect cytosolic catecholamines in a single PC12 cell without an obvious interruption of cellular catecholamine level. The cytosolic catecholamines in a single PC12 cell is measured in situ to be 0.1 μM, which is achieved for the first time at the single cell level using the electrochemical method. The results demonstrate that the nanocavity electrode with a high sensitivity could offer a promising means to dynamically track catecholamines in a single cell.
Collapse
Affiliation(s)
- Yuanyuan Ma
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yanyu Ma
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Quanchi Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
10
|
Zhao Y, Fan WT, Jin KQ, Yan J, Qi YT, Huang WH, Liu YL. Real-Time Quantification of Nanoplastics-Induced Oxidative Stress in Stretching Alveolar Cells. ACS NANO 2024; 18:6176-6185. [PMID: 38359155 DOI: 10.1021/acsnano.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nanoplastics from air pollutants can be directly inhaled into the alveoli in the lungs and further enter blood circulation, and numerous studies have revealed the close relation between internalized nanoplastics with many physiological disorders via intracellular oxidative stress. However, the dynamic process of nanoplastics-induced oxidative stress in lung cells under breath-mimicked conditions is still unclear, due to the lack of methods that can reproduce the mechanical stretching of the alveolar and simultaneously monitor the oxidative stress response. Here, we describe a biomimetic platform by culturing alveoli epithelial cells on a stretchable electrochemical sensor and integrating them into a microfluidic device. This allows reproducing the respiration of alveoli by cyclic stretching of the alveoli epithelial cells and monitoring the nanoplastics-induced oxidative stress by the built-in sensor. By this device, we prove that cyclic stretches can greatly enhance the cellular uptake of nanoplastics with the dependencies of strain amplitude. Importantly, oxidative stress evoked by internalized nanoplastics can be quantitatively monitored in real time. This work will promote the deep understanding about the cytotoxicity of inhaled nanoplastics in the pulmonary mechanical microenvironment.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Abujamai J, Satar R, Ansari SA. Designing and Formulation of Nanocarriers for "Alzheimer's and Parkinson's" Early Detection and Therapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1251-1262. [PMID: 38351689 DOI: 10.2174/0118715273297024240201055550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 08/28/2024]
Abstract
The potential of nanotechnology in advancing the diagnosis and treatment of neurodegenerative diseases is explored in this comprehensive literature review. The findings of these studies suggest that nanotechnology has the capacity to improve existing therapeutic approaches, create novel and safe compounds, and develop more precise imaging techniques and diagnostic methods for neurodegenerative diseases. With the emergence of the nanomedicine era, a new and innovative approach of diagnosing and treating these conditions has been introduced. Notably, the researchers' development of a nanocarrier drug delivery tool demonstrates immense potential compared to conventional therapy, as it maximizes therapeutic efficacy and minimizes undesirable as side effects.
Collapse
Affiliation(s)
- Jakleen Abujamai
- Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rukhsana Satar
- Division of Biochemistry, Department of Physiology and Biochemistry, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
13
|
Li Y, Zhu X, Ding J, Qin W. Robust Potentiometric Microelectrodes for In Situ Sensing of Ion Fluxes with High Sensitivity. Anal Chem 2023; 95:18754-18759. [PMID: 37989258 DOI: 10.1021/acs.analchem.3c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Simple, reproducible, and reliable preparation of robust potentiometric microelectrodes is both challenging and of great importance for noninvasive real-time ion sensing. Herein, we report a simple strategy for the large-scale synthesis of nickel cobalt sulfide (NiCo2S4) nanowire arrays grown on carbon fibers for potentiometric microelectrodes. The highly uniform NiCo2S4 nanowire array serving as a transduction layer can provide a high capillary pressure and viscous resistance for loading the ion sensing membrane and exhibit a large redox capacitance for improving the stability. An all-solid-state lead-selective microelectrode, which presents a detection limit of 2.5 × 10-8 M in the simulated soil solution, was designed as a model for noninvasive, in situ, and real-time detection of ion fluxes near the rice root surface. Importantly, the microsensor enables sensitive detection of trace-level ion-fluxes. This work provides a simple yet general strategy for designing potentiometric microelectrodes.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Xu Zhu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
14
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
16
|
Liu K, Zhang Z, Liu R, Li JP, Jiang D, Pan R. Click-Chemistry-Enabled Nanopipettes for the Capture and Dynamic Analysis of a Single Mitochondrion inside One Living Cell. Angew Chem Int Ed Engl 2023; 62:e202303053. [PMID: 37334855 DOI: 10.1002/anie.202303053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zheng Zhang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Jie P Li
- The State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
17
|
Zhu Y, Zhuang Z, Liu Z, Guo Z, Huang X. Size-dependent electrochemical properties of copper oxide microchip on sensing of neurochemicals. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
18
|
Lu Z, Wei K, Ma H, Duan R, Sun M, Zou P, Yin J, Wang X, Wang Y, Wu C, Su G, Wu M, Zhou X, Ye J, Rao H. Bimetallic MOF synergy molecularly imprinted ratiometric electrochemical sensor based on MXene decorated with polythionine for ultra-sensitive sensing of catechol. Anal Chim Acta 2023; 1251:340983. [PMID: 36925281 DOI: 10.1016/j.aca.2023.340983] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Dual-signal ratiometric molecularly imprinted polymer (MIP) electrochemical sensors with bimetallic active sites and high-efficiency catalytic activity were fabricated for the sensing of catechol (CC) with high selectivity and sensitivity. The amino-functionalization bimetallic organic framework materials (Fe@Ti-MOF-NH2), coupled with two-dimensional layered titanium carbide (MXene) co-modified glassy carbon electrode provides an expanded surface while amplifying the output signal through the electropolymerization immobilization of polythionine (pTHi) and MIP. The oxidation of CC and pTHi were presented as the response signal and the internal reference signal. The oxidation peak current at +0.42 V rose with increased concentration of CC, while the peak currents of pTHi at -0.20 V remained constant. Compared to the common single-signal sensing system, this one (MIP/pTHi/MXene/Fe@Ti-MOF-NH2/GCE), a novel ratiometric MIP electrochemical sensor exhibited two segments wide dynamic range of 1.0-300 μM (R2 = 0.9924) and 300-4000 μM (R2 = 0.9912), as well as an ultralow detection limit of 0.54 μM (S/N = 3). Due to the specific recognition function of MIPs and the advantages of built-in correction of pTHi, the prepared surface imprinting sensor presented an excellent performance in selectivity and reproducibility. Besides, this sensor possessed superior anti-interference ability with ions and biomolecules, excellent reproducibility, repeatability, and acceptable stability. Furthermore, the proposed sensing system exhibits high specific recognition in the determination of environmental matrices and biological fluids in real samples with satisfactory results. Therefore, this signal-enhanced ratiometric MIP electrochemical sensing strategy can accurately and selectively analyze and detect other substances.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Kai Wei
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Hao Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Rongtao Duan
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Jiajian Yin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mingjun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen, 518000, Guangdong, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| |
Collapse
|
19
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
20
|
Peng M, Wang J, Li Z, Ren G, Li K, Gu C, Lin Y. Three-dimensional flexible and stretchable gold foam scaffold for real-time electrochemical sensing in cells and in vivo. Talanta 2023; 253:123891. [PMID: 36095938 DOI: 10.1016/j.talanta.2022.123891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Compared with typical two-dimensional electrodes, the three-dimensional (3D) cell culture platform can simulate the real cell survival environment for cell growth to accurately reproduce cell functions. Moreover, considering that living cells are exposed to various of mechanical force in the microenvironment, the construction of 3D electrodes with excellent flexible, stretchable, and biocompatibility is of great significance to real-time monitor mechanically evoked biomolecule release from cells. Herein, we demonstrated a straightforward and effective three-step approach to fabricate three-dimensional flexible and stretchable gold foam scaffold (3D Au foam scaffold) for construction of 3D cell culture integrated electrochemical sensing platform. The excellent biological and electrical properties of Au nanostructures and porous networks of the 3D scaffold endow the platform with desirable biocompatibility and sensitive electrochemical sensing performance. As a proof of concept, the 3D Au foam scaffold functionalized with cobalt based nanocubes (Co NCs/Au foam scaffold) was validated to provide 3D culture for human umbilical vein endothelial cells (HUVECs), and synchronously real-time monitor superoxide anion (O2•-) released by HUVECs under mechanical stretching. Furthermore, 3-mercaptopropionic acid (3-MPA) modified 3D Au foam (3-MPA/Au foam scaffold) was successfully used for real-time monitoring of catecholamines in rat brain. The results demonstrate the great potential of this 3D Au foam scaffold for real-time electrochemical monitoring biomolecules in vitro and in vivo, providing convenience for future research on mechanotransduction relevant processes.
Collapse
Affiliation(s)
- Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zaoming Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
21
|
Abakumova T, Vaneev A, Naumenko V, Shokhina A, Belousov V, Mikaelyan A, Balysheva K, Gorelkin P, Erofeev A, Zatsepin T. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases. J Nanobiotechnology 2022; 20:497. [PMID: 36424605 DOI: 10.1186/s12951-022-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractReactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.
Collapse
|
22
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
23
|
Zhang J, Hou S, Zhang J, Liang N, Zhao L. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121415. [PMID: 35636140 DOI: 10.1016/j.saa.2022.121415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DBA) as an important biomarker, plays a crucial role in disease diagnosis. In this study, we have developed a fast and simple aptamer-based fluorescence strategy which used single-wall carbon nanohorns (SWCNHs) as a quencher for dopamine detection. SWCNHs were negatively charged after pretreated, which improved its dispersion in solution. 5-carboxy-fluorescein (FAM) was used to label dopamine aptamer. In the absence of dopamine, FAM-modified aptamer could be absorbed onto the SWCNHs surface due to π-π interaction, resulting in the fluorescence intensity decreased. Dopamine could specifically bind with FAM-DNA to form G-quadruplex, which could not be absorbed onto the surface of SWCNHs. Hence, the fluorescence of FAM-DNA recovered, and the fluorescent intensity as a function of different concentrations of dopamine was measured. We obtained a detection limit of 5 μM for this detection system with a linear detection range of 0.02-2.20 mM. Furthermore, the feasibility of the innovative detection system has been verified by detecting dopamine in spiked serum samples.
Collapse
Affiliation(s)
- Jiayu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
24
|
Jarosova R, Niyangoda SS, Hettiarachchi P, Johnson MA. Impaired Dopamine Release and Latent Learning in Alzheimer's Disease Model Zebrafish. ACS Chem Neurosci 2022; 13:2924-2931. [PMID: 36113115 PMCID: PMC10127145 DOI: 10.1021/acschemneuro.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, fatal, neurodegenerative disorder for which only treatments of limited efficacy are available. Despite early mentions of dementia in the ancient literature and the first patient diagnosed in 1906, the underlying causes of AD are not well understood. This study examined the possible role of dopamine, a neurotransmitter that is involved in cognitive and motor function, in AD. We treated adult zebrafish (Danio rerio) with okadaic acid (OKA) to model AD and assessed the resulting behavioral and neurochemical changes. We then employed a latent learning paradigm to assess cognitive and motor function followed by neurochemical analysis with fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure the electrically stimulated dopamine release. The behavioral assay showed that OKA treatment caused fish to have lower motivation to reach the goal chamber, resulting in impeded learning and decreased locomotor activity compared to controls. Our voltammetric measurements revealed that the peak dopamine overflow in OKA-treated fish was about one-third of that measured in controls. These findings highlight the profound neurochemical changes that may occur in AD. Furthermore, they demonstrate that applying the latent learning paradigm and FSCV to zebrafish is a promising tool for future neurochemical studies and may be useful for screening drugs for the treatment of AD.
Collapse
Affiliation(s)
- Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
- Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Sayuri S. Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
25
|
Pan R, Wang D, Liu K, Chen HY, Jiang D. Electrochemical Molecule Trap-Based Sensing of Low-Abundance Enzymes in One Living Cell. J Am Chem Soc 2022; 144:17558-17566. [DOI: 10.1021/jacs.2c06962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100190, P. R. China
| | - Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| |
Collapse
|
26
|
Liu K, Liu R, Wang D, Pan R, Chen HY, Jiang D. Spatial Analysis of Reactive Oxygen Species in a 3D Cell Model Using a Sensitive Nanocavity Electrode. Anal Chem 2022; 94:13287-13292. [DOI: 10.1021/acs.analchem.2c03444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing100190, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing100190, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| |
Collapse
|
27
|
Gu N, Wang F, Li Y, Tang T, Cao C, Shen Y. Cell bioinformatics and technology. SCIENTIA SINICA CHIMICA 2022; 52:1673-1684. [DOI: 10.1360/ssc-2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Nishimoto R, Sato Y, Wu J, Saizaki T, Kubo M, Wang M, Abe H, Richard I, Yoshinobu T, Sorin F, Guo Y. Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing. BIOSENSORS 2022; 12:559. [PMID: 35892456 PMCID: PMC9394265 DOI: 10.3390/bios12080559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, bioelectronic devices are evolving from rigid to flexible materials and substrates, among which thermally-drawn-fiber-based bioelectronics represent promising technologies thanks to their inherent flexibility and seamless integration of multi-functionalities. However, electrochemical sensing within fibers remains a poorly explored area, as it imposes new demands for material properties-both the electrochemical sensitivity and the thermomechanical compatibility with the fiber drawing process. Here, we designed and fabricated microelectrode fibers made of carbon nanotube (CNT)-based hybrid nanocomposites and further evaluated their detailed electrochemical sensing performances. Carbon-black-impregnated polyethylene (CB-CPE) was chosen as the base material, into which CNT was loaded homogeneously in a concentration range of 3.8 to 10 wt%. First, electrical impedance characterization of CNT nanocomposites showed a remarkable decrease of the resistance with the increase in CNT loading ratio, suggesting that CNTs notably increased the effective electrical current pathways inside the composites. In addition, the proof-of-principle performance of fiber-based microelectrodes was characterized for the detection of ferrocenemethanol (FcMeOH) and dopamine (DA), exhibiting an ultra-high sensitivity. Additionally, we further examined the long-term stability of such composite-based electrode in exposure to the aqueous environment, mimicking the in vivo or in vitro settings. Later, we functionalized the surface of the microelectrode fiber with ion-sensitive membranes (ISM) for the selective sensing of Na+ ions. The miniature fiber-based electrochemical sensor developed here holds great potential for standalone point-of-care sensing applications. In the future, taking full advantage of the thermal drawing process, the electrical, optical, chemical, and electrochemical modalities can be all integrated together within a thin strand of fiber. This single fiber can be useful for fundamental multi-mechanistic studies for biological applications and the weaved fibers can be further applied for daily health monitoring as functional textiles.
Collapse
Affiliation(s)
- Rino Nishimoto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Yuichi Sato
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai 980-0845, Japan;
| | - Jingxuan Wu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Tomoki Saizaki
- School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.S.); (M.K.)
| | - Mahiro Kubo
- School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.S.); (M.K.)
| | - Mengyun Wang
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Inès Richard
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (I.R.); (F.S.)
| | - Tatsuo Yoshinobu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Fabien Sorin
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (I.R.); (F.S.)
| | - Yuanyuan Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai 980-0845, Japan;
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
29
|
Jia Q, Venton BJ, DuBay KH. Structure and Dynamics of Adsorbed Dopamine on Solvated Carbon Nanotubes and in a CNT Groove. Molecules 2022; 27:3768. [PMID: 35744896 PMCID: PMC9228466 DOI: 10.3390/molecules27123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Advanced carbon microelectrodes, including many carbon-nanotube (CNT)-based electrodes, are being developed for the in vivo detection of neurotransmitters such as dopamine (DA). Our prior simulations of DA and dopamine-o-quinone (DOQ) on pristine, flat graphene showed rapid surface diffusion for all adsorbed species, but it is not known how CNT surfaces affect dopamine adsorption and surface diffusivity. In this work, we use molecular dynamics simulations to investigate the adsorbed structures and surface diffusion dynamics of DA and DOQ on CNTs of varying curvature and helicity. In addition, we study DA dynamics in a groove between two aligned CNTs to model the spatial constraints at the junctions within CNT assemblies. We find that the adsorbate diffusion on a solvated CNT surface depends upon curvature. However, this effect cannot be attributed to changes in the surface energy roughness because the lateral distributions of the molecular adsorbates are similar across curvatures, diffusivities on zigzag and armchair CNTs are indistinguishable, and the curvature dependence disappears in the absence of solvent. Instead, adsorbate diffusivities correlate with the vertical placement of the adsorbate's moieties, its tilt angle, its orientation along the CNT axis, and the number of waters in its first hydration shell, all of which will influence its effective hydrodynamic radius. Finally, DA diffuses into and remains in the groove between a pair of aligned and solvated CNTs, enhancing diffusivity along the CNT axis. These first studies of surface diffusion on a CNT electrode surface are important for understanding the changes in diffusion dynamics of dopamine on nanostructured carbon electrode surfaces.
Collapse
Affiliation(s)
| | | | - Kateri H. DuBay
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (Q.J.); (B.J.V.)
| |
Collapse
|
30
|
Wang M, Liu Y, Du J, Zhou J, Cao L, Li X. Cisplatin Inhibits Neurotransmitter Release during Exocytosis from Single Chromaffin Cells Monitored with Single Cell Amperometry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Yuying Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Jinchang Du
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Junlan Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Lijiao Cao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Xianchan Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| |
Collapse
|
31
|
Goines S, Deng M, Glasscott MW, Leung JWC, Dick JE. Enhancing scanning electrochemical microscopy's potential to probe dynamic co-culture systems via hyperspectral assisted-imaging. Analyst 2022; 147:2396-2404. [PMID: 35579029 PMCID: PMC9287841 DOI: 10.1039/d2an00319h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Precise determination of boundaries in co-culture systems is difficult to achieve with scanning electrochemical microscopy alone. Thus, biological scanning electrochemical microscope platforms generally consist of a scanning electrochemical microscope positioner mounted on the stage of an inverted microscope for correlated electrochemical and optical imaging. Use of a fluorescence microscope allows for site-specific fluorescence labeling to obtain more clearly resolved spatial and electrochemical data. Here, we construct a unique hyperspectral assisted-biological scanning electrochemical microscope platform to widen the scope of biological imaging. Specifically, we incorporate a variable fluorescence bandpass source into a biological scanning electrochemical microscope platform for simultaneous optical, spectral, and electrochemical imaging. Not only does this platform serve as a cost-effective alternative to white light laser imaging, but additionally it provides multi-functional analysis of biological samples. Here, we demonstrate the efficacy of our platform to discern the electrochemical contribution of site-specific cells by optically and spectroscopically resolving boundaries as well as cell types within a complex biological system.
Collapse
Affiliation(s)
- Sondrica Goines
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mingchu Deng
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Matthew W Glasscott
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Fan WT, Zhao Y, Wu WT, Qin Y, Yan J, Liu YL, Huang WH. Redox Homeostasis Alteration in Endothelial Mechanotransduction Monitored by Dual Stretchable Electrochemical Sensors. Anal Chem 2022; 94:7425-7432. [PMID: 35543487 DOI: 10.1021/acs.analchem.2c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo, endothelial cells are permanently subjected to dynamic cyclic stretch and adapt to it through the release of vasoactive substances. Among them, reactive oxygen species (ROS) and nitric oxide (NO) are indispensable redox molecules, the contents of which and their ratio are closely implicated with endothelial redox homeostasis. However, simultaneous and quantitative monitoring of ROS and NO release in endothelial mechanotransduction remains a great challenge. Herein, a stretchable electrochemical device is developed with a dual electrode based on gold nanotubes decorated with uniform and tiny platinum nanoparticles. This hybrid nanostructure endows the sensor with high sensitivity toward both hydrogen peroxide (H2O2) (as the most stable ROS) and NO electrooxidation. Importantly, the two species can be well discriminated by applying different potentials, which allows simultaneous monitoring of H2O2 and NO release in stretch-induced endothelial mechanotransduction by the same device. The results of quantitative analysis suggest that endothelial redox homeostasis and its alteration are strongly related to vascular biomechanical and biochemical milieus. Further investigation reveals that the interplay of ROS and NO signaling has an important role in the regulation of endothelial redox state. This work will greatly facilitate the deep understanding of the molecular mechanism of endothelial dysfunction and vascular disorder.
Collapse
Affiliation(s)
- Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 2022; 23:257-274. [PMID: 35361961 PMCID: PMC11163306 DOI: 10.1038/s41583-022-00577-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
34
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
35
|
Gouda M, Tadda MA, Zhao Y, Farmanullah F, Chu B, Li X, He Y. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front Nutr 2022; 9:806692. [PMID: 35387198 PMCID: PMC8979111 DOI: 10.3389/fnut.2022.806692] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
There is a global interest in the novel consumption, nutritional trends, and the market of new prebiotic sources and their potential functional impacts. Commercially available nutritional supplements based on microalgae that are approved to be edible by FDA, like Arthrospira platensis (Cyanobacteria) and Chlorella vulgaris (Chlorophyta) become widely attractive. Microalgae are rich in carbohydrates, proteins, and polyunsaturated fatty acids that have high bioactivity. Recently, scientists are studying the microalgae polysaccharides (PS) or their derivatives (as dietary fibers) for their potential action as a novel prebiotic source for functional foods. Besides, the microalgae prebiotic polysaccharides are used for medication due to their antioxidant, anticancer, and antihypertensive bioactivities. This review provides an overview of microalgae prebiotics and other macromolecules' health benefits. The phytochemistry of various species as alternative future sources of novel polysaccharides were mentioned. The application as well as the production constraints and multidisciplinary approaches for evaluating microalgae phytochemistry were discussed. Additionally, the association between this potential of combining techniques like spectroscopic, chromatographic, and electrochemical analyses for microalgae sensation and analysis novelty compared to the chemical methods was emphasized.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Science, National Research Centre, Giza, Egypt
| | - Musa A. Tadda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Yinglei Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - F. Farmanullah
- Faculty of Veterinary and Animal Sciences, National Center for Livestock Breeding Genetics and Genomics LUAWMS, Uthal, Pakistan
| | - Bingquan Chu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Jia Q, Yang C, Venton BJ, DuBay KH. Atomistic Simulations of Dopamine Diffusion Dynamics on a Pristine Graphene Surface. Chemphyschem 2022; 23:e202100783. [PMID: 34939307 PMCID: PMC9933135 DOI: 10.1002/cphc.202100783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Indexed: 11/08/2022]
Abstract
Carbon microelectrodes enable in vivo detection of neurotransmitters, and new electrodes aim to optimize the carbon surface. However, atomistic detail on the diffusion and orientation of neurotransmitters near these surfaces is lacking. Here, we employ molecular dynamics simulations to investigate the surface diffusion of dopamine (DA), its oxidation product dopamine-o-quinone (DOQ), and their protonated forms on the pristine basal plane of flat graphene. We find that all DA species rapidly adsorb to the surface and remain adsorbed, even without a holding potential or graphene surface defects. We also find that the diffusivities of the adsorbed and the fully solvated DA are similar and that the protonated species diffuse more slowly on the surface than their corresponding neutral forms, while the oxidized species diffuse more rapidly. Structurally, we find that the underlying graphene lattice has little influence over the molecular adsorbate's lateral position, and the vertical placement of the amine group on dopamine is highly dependent upon its charge. Finally, we find that solvation has a large effect on surface diffusivities. These first results from molecular dynamics simulations of dopamine at the aqueous-graphene interface show that dopamine diffuses rapidly on the surface, even without an applied potential, and provide a basis for future simulations of neurotransmitter structure and dynamics on advanced carbon materials electrodes.
Collapse
|
37
|
Yu D, Wang Q, Fang Y, Kang Z, Liu L, He J, Han X, Yu H, Dong S. Study on simplified strategies for procedure of rapid detection of water toxicity. Talanta 2021; 235:122787. [PMID: 34517645 DOI: 10.1016/j.talanta.2021.122787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/10/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
In this work, a simplified procedure of detection of water toxicity based on Pt ultramicroelectrode (UME) and mixed microorganism cultured without sterilization was the first proposed. A stable Pt UME was successfully prepared with a special glass tube as insulation and support material, which was used as working electrode in the biosensor. The Pt UME exhibits the typical cyclic voltammogram (CV) of Pt UME with sigmoid shape and possesses good stability, enlarged current response and tunable dimension. In addition, it was an effective and simple method for toxicity biosensor using mixed microorganisms cultured in unsterilized lysogeny broth (LB) as the bioreceptor. K3[Fe(CN)6] was used as an electron mediator. Under the optimal conditions of 30 mM K3[Fe(CN)6], OD600 = 1 cell concentration, and 50 mM phosphate-buffered solution (PBS), the half-maximal inhibitory concentration (IC50) values measured for Cd2+, Cu2+ and Ni2+ were 3.99 mg/L, 1.16 mg/L and 2.37 mg/L, respectively. The results indicated that the biosensor with large diameter Pt UME and mixed microorganisms cultured in unsterilized LB realized rapid and simple detection of water toxicity.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, PR China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, PR China
| | - Ling Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, PR China
| | - Xuerong Han
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, 130022, Jilin, PR China.
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, PR China; School of Life Science and Technology, Changchun University Science and Technology, Changchun, 130022, Jilin, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, PR China; University of Science and Technology of China, Hefei, 230026, Anhui, PR China.
| |
Collapse
|
38
|
Liu J, Liu Z, Wang W, Tian Y. Real-time Tracking and Sensing of Cu + and Cu 2+ with a Single SERS Probe in the Live Brain: Toward Understanding Why Copper Ions Were Increased upon Ischemia. Angew Chem Int Ed Engl 2021; 60:21351-21359. [PMID: 34228388 DOI: 10.1002/anie.202106193] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Indexed: 11/07/2022]
Abstract
The imbalance of Cu+ and Cu2+ in the brain is closely related to neurodegenerative diseases. However, it still lacks of effective analytical methods for simultaneously determining the concentrations of Cu+ and Cu2+ . Herein, we created a novel SERS probe (CuSP) to real-time track and accurately quantify extracellular concentrations of Cu+ and Cu2+ in the live brain. The present CuSP probe demonstrated specific ability for recognition of Cu+ and Cu2+ in a dual-recognition mode. Then, a microarray consisting of 8 CuSP probes with high tempo-spatial resolution and good accuracy was constructed for tracking and simultaneously biosensing of Cu+ and Cu2+ in the cerebral cortex of living brain. Using our powerful tool, it was found that that the concentrations of Cu2+ and Cu+ were increased by ≈4.26 and ≈1.80 times upon ischemia, respectively. Three routes were first discovered for understanding the mechanisms of the increased concentrations of Cu+ and Cu2+ during ischemia.
Collapse
Affiliation(s)
- Jiaqi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
39
|
Liu J, Liu Z, Wang W, Tian Y. Real‐time Tracking and Sensing of Cu
+
and Cu
2+
with a Single SERS Probe in the Live Brain: Toward Understanding Why Copper Ions Were Increased upon Ischemia. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiaqi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
40
|
Chen B, Perry D, Teahan J, McPherson IJ, Edmondson J, Kang M, Valavanis D, Frenguelli BG, Unwin PR. Artificial Synapse: Spatiotemporal Heterogeneities in Dopamine Electrochemistry at a Carbon Fiber Ultramicroelectrode. ACS MEASUREMENT SCIENCE AU 2021; 1:6-10. [PMID: 36785735 PMCID: PMC9836071 DOI: 10.1021/acsmeasuresciau.1c00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An artificial synapse is developed that mimics ultramicroelectrode (UME) amperometric detection of single cell exocytosis. It comprises the nanopipette of a scanning ion conductance microscope (SICM), which delivers rapid pulses of neurotransmitter (dopamine) locally and on demand at >1000 defined locations of a carbon fiber (CF) UME in each experiment. Analysis of the resulting UME current-space-time data reveals spatiotemporal heterogeneous electrode activity on the nanoscale and submillisecond time scale for dopamine electrooxidation at typical UME detection potentials. Through complementary surface charge mapping and finite element method (FEM) simulations, these previously unseen variations in electrochemical activity are related to heterogeneities in the surface chemistry of the CF UME.
Collapse
Affiliation(s)
- Baoping Chen
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - James Teahan
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ian J. McPherson
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - James Edmondson
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Dimitrios Valavanis
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Shi Z, Wu X, Zou Z, Yu L, Hu F, Li Y, Guo C, Li CM. Screen-printed analytical strip constructed with bacteria-templated porous N-doped carbon nanorods/Au nanoparticles for sensitive electrochemical detection of dopamine molecules. Biosens Bioelectron 2021; 186:113303. [PMID: 33990036 DOI: 10.1016/j.bios.2021.113303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Dopamine (DA) as an important neurotransmitter plays an important role in physiological activities, and its abnormal level can cause diseases such as Parkinson's disease. However, the clinical analysis of DA mainly relies on time-consuming and expensive liquid chromatography and molecular spectrometer. We present here a design and fabrication of inexpensive strip sensor constructed from screen printed electrodes for sensitive and selective detection of DA. The ink used for printing the strips contains Shewanella putrefaciens-templated porous N-doped carbon nanorods (N-doped CN) and Au nanoparticles (Au NPs), in which the N-doping enhances CN's negative charge to electrostatically attract the positively charged DA with strong adsorption for achieving fast electron transfer. Moreover, results indicate that the Au NPs impregnation in N-doped CN renders much more catalytic reaction sites toward DA oxidation current. The strip sensor exhibits high sensitivity for DA detection with a broad linear range of 0.02-700 μM and a low detection limit of 0.007 μM as well as good selectivity and superior flexibility for great potential in wearable applications. The strip sensor further performs an accurate detection of DA in human serum, providing a powerful analytical tool for diagnosis of DA related diseases in clinical analysis.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Zhuo Zou
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqin, 400715, China
| | - Fangxin Hu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuan Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China; Institute for Clean Energy and Advanced Materials, Southwest University, Chongqin, 400715, China; Institute of Advanced Cross-field Science, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
42
|
Zhang F, Tang Y, Jiang H, Yang X, Huang W. Harpagide Inhibits Microglial Activation and Protects Dopaminergic Neurons as Revealed by Nanoelectrode Amperometry
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fu‐Li Zhang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Yun Tang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Xiao‐Ke Yang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
43
|
Yang XK, Zhang FL, Wu WT, Tang Y, Yan J, Liu YL, Amatore C, Huang WH. Quantitative Nano-amperometric Measurement of Intravesicular Glutamate Content and its Sub-Quantal Release by Living Neurons. Angew Chem Int Ed Engl 2021; 60:15803-15808. [PMID: 33929780 DOI: 10.1002/anie.202100882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/10/2022]
Abstract
Quantitative measurements of intravesicular glutamate (Glu) and of transient exocytotic release contents directly from individual living neurons are highly desired for understanding the mechanisms (full or sub-quantal release?) of synaptic transmission and plasticity. However, this could not be achieved so far due to the lack of adequate experimental strategies relying on selective and sensitive Glu nanosensors. Herein, we introduce a novel electrochemical Glu nanobiosensor based on a single SiC nanowire that can selectively measure in real-time Glu fluxes released via exocytosis by large Glu vesicles (ca. 125 nm diameter) present in single hippocampal axonal varicosities as well as their intravesicular content before exocytosis. These measurements revealed a sub-quantal release mode in living hippocampal neurons, viz., only ca. one third to one half of intravesicular Glu molecules are released by individual vesicles during exocytotic events. Importantly, this fraction remained practically the same when hippocampal neurons were pretreated with L-Glu-precursor L-glutamine, while it significantly increased after zinc treatment, although in both cases the intravesicular contents were drastically affected.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fu-Li Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun Tang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Yan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, UPMC Univ. Paris 06, CNRS, 24 rue Lhomond, 75005, Paris, France
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
44
|
Qin Y, Hu X, Fan W, Yan J, Cheng S, Liu Y, Huang W. A Stretchable Scaffold with Electrochemical Sensing for 3D Culture, Mechanical Loading, and Real-Time Monitoring of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003738. [PMID: 34047055 PMCID: PMC8327466 DOI: 10.1002/advs.202003738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Indexed: 06/11/2023]
Abstract
In the field of three-dimensional (3D) cell culture and tissue engineering, great advance focusing on functionalized materials and desirable culture systems has been made to mimic the natural environment of cells in vivo. Mechanical loading is one of the critical factors that affect cell/tissue behaviors and metabolic activities, but the reported models or detection methods offer little direct and real-time information about mechanically induced cell responses. Herein, for the first time, a stretchable and multifunctional platform integrating 3D cell culture, mechanical loading, and electrochemical sensing is developed by immobilization of biomimetic peptide linked gold nanotubes on porous and elastic polydimethylsiloxane. The 3D scaffold demonstrates very good compatibility, excellent stretchability, and stable electrochemical sensing performance. This allows mimicking the articular cartilage and investigating its mechanotransduction by 3D culture, mechanical stretching of chondrocytes, and synchronously real-time monitoring of stretch-induced signaling molecules. The results disclose a previously unclear mechanotransduction pathway in chondrocytes that mechanical loading can rapidly activate nitric oxide signaling within seconds. This indicates the promising potential of the stretchable 3D sensing in exploring the mechanotransduction in 3D cellular systems and engineered tissues.
Collapse
Affiliation(s)
- Yu Qin
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Xue‐Bo Hu
- College of Chemistry and Chemical EngineeringInstitute for Conservation and Utilization of Agro‐Bioresources in Dabie MountainsXinyang Normal UniversityXinyang464000China
| | - Wen‐Ting Fan
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Jing Yan
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Shi‐Bo Cheng
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yan‐Ling Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
45
|
Datta-Chaudhuri T. Closed-loop neuromodulation will increase the utility of mouse models in Bioelectronic Medicine. Bioelectron Med 2021; 7:10. [PMID: 34193309 PMCID: PMC8244222 DOI: 10.1186/s42234-021-00071-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development. Recent progress is examined and the outlook for the future of implantable devices for mice is discussed.
Collapse
Affiliation(s)
- Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA.
| |
Collapse
|
46
|
Yang X, Zhang F, Wu W, Tang Y, Yan J, Liu Y, Amatore C, Huang W. Quantitative Nano‐amperometric Measurement of Intravesicular Glutamate Content and its Sub‐Quantal Release by Living Neurons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Ke Yang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Fu‐Li Zhang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Tao Wu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yun Tang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Jing Yan
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- PASTEUR, Départment de Chimie École Normale Supérieure PSL Research University Sorbonne University UPMC Univ. Paris 06 CNRS 24 rue Lhomond 75005 Paris France
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
47
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
48
|
Consoli DC, Brady LJ, Bowman AB, Calipari ES, Harrison FE. Ascorbate deficiency decreases dopamine release in gulo -/- and APP/PSEN1 mice. J Neurochem 2021; 157:656-665. [PMID: 32797675 PMCID: PMC7882008 DOI: 10.1111/jnc.15151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Dopamine (DA) has important roles in learning, memory, and motivational processes and is highly susceptible to oxidation. In addition to dementia, Alzheimer's disease (AD) patients frequently exhibit decreased motivation, anhedonia, and sleep disorders, suggesting deficits in dopaminergic neurotransmission. Vitamin C (ascorbate, ASC) is a critical antioxidant in the brain and is often depleted in AD patients as a result of disease-related oxidative stress and dietary deficiencies. To probe the effects of ASC deficiency and AD pathology on the DAergic system, gulo-/- mice, which like humans depend on dietary ASC to maintain adequate tissue levels, were crossed with APP/PSEN1 mice and provided sufficient or depleted ASC supplementation from weaning until 12 months of age. Ex vivo fast-scan cyclic voltammetry showed that chronic ASC depletion and APP/PSEN1 genotype both independently decreased dopamine release in the nucleus accumbens, a hub for motivational behavior and reward, while DA clearance was similar across all groups. In striatal tissue containing nucleus accumbens, low ASC treatment led to decreased levels of DA and its metabolites 3,4-dihydroxyohenyl-acetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Decreased enzyme activity observed through lower pTH/TH ratio was driven by a cumulative effect of ASC depletion and APP/PSEN1 genotype. Together the data show that deficits in dopaminergic neurotransmission resulting from age and disease status are magnified in conditions of low ASC which decrease DA availability during synaptic transmission. Such deficits may contribute to the non-cognitive behavioral changes observed in AD including decreased motivation, anhedonia, and sleep disorders.
Collapse
Affiliation(s)
- David C. Consoli
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Lillian J. Brady
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Fiona E. Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| |
Collapse
|
49
|
Yu SY, Ruan YF, Liu YL, Han DM, Zhou H, Zhao WW, Jiang D, Xu JJ, Chen HY. Photocontrolled Nanopipette Biosensor for ATP Gradient Electroanalysis of Single Living Cells. ACS Sens 2021; 6:1529-1535. [PMID: 33847485 DOI: 10.1021/acssensors.1c00463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emerging nanopipette tools have demonstrated substantial potential for advanced single-cell analysis, which plays vital roles from fundamental cellular biology to biomedical diagnostics. Highly recyclable nanopipettes with easy and quick regeneration are of special interest for precise and multiple measurements. However, existing recycle strategies are generally plagued by operational complexity and limited efficiency. Light, acting in a noncontact way, should be the ideal external stimulus to address this issue. Herein, we present the photocontrolled nanopipette capable of probing cellular adenosine triphosphate (ATP) gradient at single-cell level with good sensitivity, selectivity, and reversibility, which stems from the use of ATP-specific azobenzene (Azo)-incorporated DNA aptamer strands (AIDAS) and thereby the sensible transduction of variable nanopore size by the ionic currents passing through the aperture. Photoisomerized conformational change of the AIDAS by alternative UV/vis light stimulation ensures its noninvasive regeneration and repeated detection. Inducement and inhibition of the cellular ATP could also be probed by this nanosensor.
Collapse
Affiliation(s)
- Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
50
|
Yu SY, Zhang TY, Liu YL, Song J, Han DM, Zhao WW, Jiang D, Xu JJ, Chen HY. Twin Nanopipettes for Real-Time Electrochemical Monitoring of Cytoplasmic Microviscosity at a Single-Cell Level. Anal Chem 2021; 93:6831-6838. [PMID: 33877817 DOI: 10.1021/acs.analchem.1c00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytoplasmic microviscosity (CPMV) plays essential roles in governing the diffusion-mediated cellular processes and has been recognized as a reliable indicator of the cellular response of many diseases and malfunctions. Current CPMV studies are exclusively established by probe-assisted optical methods, which nevertheless necessitate the complicated synthesis and delivery of optical probes into cells and thus the issues of biocompatibility and bio-orthogonality. Using twin nanopipettes integrated with a patch-clamp system, a practical electrochemical single-cell measurement is presented, which is capable of real-time and long-term CPMV detection without cell disruption. Specifically, upon the operation of the twin nanopipettes, the cellular CPMV status, which is correlated to cytoplasmic ionic mobility, could be sensibly transduced via the ionic current passing through the nanosystem. The average CPMV value of HeLa cells was detected as ca. 86 cP. Notably, the correlation between chemotherapy and CPMV alterations makes this approach possible for the real-time and long-term assessment of the evolution of external stimuli, as exemplified by the two natural products taxol and colchicine. Integrated with the patch-clamp setup, this study features the first use of twin nanopipettes for electrochemical CPMV monitoring of single living cells, and it is expected to inspire more interest in the exploitation of dual- and multiple nanopipettes for advanced single-cell analysis.
Collapse
Affiliation(s)
- Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|