1
|
Goloudina A, Le Chevalier F, Authié P, Charneau P, Majlessi L. Shared neoantigens for cancer immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200978. [PMID: 40256120 PMCID: PMC12008704 DOI: 10.1016/j.omton.2025.200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Exploration of neoantigens holds the potential to be productive in immuno-oncotherapy. Among tumor-specific antigens, neoantigens result from genetic instability that gives rise to non-synonymous somatic mutations, highly specific to tumor cells. In addition to point mutations, gene rearrangements, indels leading to frameshifts, chromosomal translocations or inversions that may lead to fusion proteins, alternative mRNA splicing, and integration of genetic material of oncogenic viruses into the host genome provide consistent sources of neoantigens that are absent in healthy tissues. Out of these alterations, 2%-3% may generate T cell neoepitopes, possibly detectable by TCRs. Neoantigens are absent in healthy tissues and are thus at low risk of triggering autoimmunity. In addition, the host lymphocytes have not been rendered tolerant toward them and it is possible to induce immune responses against them. Here, we overview the two categories of neoantigens, i.e., private and shared, and their use in immuno-oncotherapy in selected pre-clinical and clinical studies. The vast majority of commonly occurring tumor-specific mutations are cancer causing and are permanently expressed by all malignant tumor cells, preventing the latter from escaping vaccine-induced anti-neoantigen immunity. The use of public neoantigens combined with efficient vaccine platforms can provide non-personalized "off-the-shelf" therapeutic vaccine candidates for broad-spectrum immunotherapy purposes.
Collapse
Affiliation(s)
- Anastasia Goloudina
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
2
|
Liang Q, Wen F, Wang P, Jiang Y, Geng Y, Zha X. A patent review of IDH1 inhibitors (2018-present). Expert Opin Ther Pat 2025:1-28. [PMID: 40317206 DOI: 10.1080/13543776.2025.2500959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION isocitrate dehydrogenase 1 (IDH1), a key metabolic enzyme in the cytosol, catalyzes the oxidative decarboxylation of isocitrate to produce α-ketoglutarate (α-KG) and NADPH in the TCA cycle. Pan-cancer studies have demonstrated that IDH1 exhibits a higher mutation frequency and is implicated in a broader range of cancer types, indicating its potential as a promising anti-tumor target. AREAS COVERED We summarized patents from 2018 to the present that identify novel molecules, compounds, formulations, and methods for inhibiting mIDH1. The literature was retrieved from Web of Science and PubMed. Patent information was obtained via the State Intellectual Property Office's Patent Search and Analysis platform. Clinical data were sourced from the Cortellis Drug Discovery Intelligence database. The date of the most recent search was . EXPERT OPINION Due to multiple signaling pathway dysregulations and compensatory pathways in solid tumor, monotherapies targeting mutant IDH1 (mIDH1) often fail to achieve desired therapeutic outcomes. Consequently, the combination of mIDH1 inhibitors with other therapeutic agents can enhance the efficacy of antitumor treatments and mitigate the risk of drug resistance. Moreover, the development of novel dual or multiple inhibitors and functional molecules targeting mIDH1 May represent a more promising approach.
Collapse
Affiliation(s)
- Qing Liang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Peilin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yitong Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Geng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Bruhm DC, Vulpescu NA, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat Rev Cancer 2025; 25:341-358. [PMID: 40038442 DOI: 10.1038/s41568-025-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Genomic analyses of cell-free DNA (cfDNA) in plasma are enabling noninvasive blood-based biomarker approaches to cancer detection and disease monitoring. Current approaches for identification of circulating tumour DNA typically use targeted tumour-specific mutations or methylation analyses. An emerging approach is based on the recognition of altered genome-wide cfDNA fragmentation in patients with cancer. Recent studies have revealed a multitude of characteristics that can affect the compendium of cfDNA fragments across the genome, collectively called the 'cfDNA fragmentome'. These changes result from genomic, epigenomic, transcriptomic and chromatin states of an individual and affect the size, position, coverage, mutation, structural and methylation characteristics of cfDNA. Identifying and monitoring these changes has the potential to improve early detection of cancer, especially using highly sensitive multi-feature machine learning approaches that would be amenable to broad use in populations at increased risk. This Review highlights the rapidly evolving field of genome-wide analyses of cfDNA characteristics, their comparison to existing cfDNA methods, and recent related innovations at the intersection of large-scale sequencing and artificial intelligence. As the breadth of clinical applications of cfDNA fragmentome methods have enormous public health implications for cancer screening and personalized approaches for clinical management of patients with cancer, we outline the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas A Vulpescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachariah H Foda
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wei J, Sun H, Huang Z, Yang L, Wu J, Zhang J, Liu M, Li M, Luo J, Wang H. Beyond interacting with Rap1: Dissecting the roles of Rif1. Int J Biol Macromol 2025; 306:141560. [PMID: 40032092 DOI: 10.1016/j.ijbiomac.2025.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Rap1 interacting factor 1 (Rif1), an evolutionarily conserved protein discovered in budding yeast, is crucial for controlling telomere length when it interacts with Rap1. Recent research, however, has shown that Rif1 not only controls telomere length and homeostasis, but also plays a role in transcriptional silencing, DNA replication timing, DNA replication fork protection, DNA damage repair and chromatin architecture. In this review, we summarize the current understanding of Rif1 in structure, function, and regulation, especially its relevance to cancer hallmarks. Also, we discuss its role as a regulator in the pathogenesis of disease.
Collapse
Affiliation(s)
- Jiyu Wei
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hao Sun
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
5
|
Bomber M, Acharya P, Johnson AE, Sampathi S, Flaherty DK, Matlock BK, Ellis JD, Bartlett LN, Williams CS, Hiebert SW, Stengel KR. Mtg16 NHR1 mutations cause defects in lymphopoiesis and the response to anemia. Exp Hematol 2025:104793. [PMID: 40316246 DOI: 10.1016/j.exphem.2025.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
The ETO/MTG family of transcriptional co-repressors play a key role in adult stem cell function across multiple tissues and may be affected by mutation, deletion or translocation in solid tumors and leukemia. Structural studies of the first conserved domain identified residues that make specific contacts with E proteins, such as HEB and E2A. We generated mice with a mutation in a critical phenylalanine (F210A) in Mtg16 to test the physiological significance of Mtg16 association with E proteins and compared these mice to mice containing a nearby cancer-associated mutation (P209T). We found that Mtg16-/- and Mtg16F210A/F210A mice showed impaired lymphopoiesis following competitive bone marrow transplant, suggesting that the repression of E protein-dependent transcription is critical for B- and T-cell development. While Mtg16-/-, Mtg16P209T/P209T, and Mtg16F210A/F210A animals showed significant defects in burst forming potential (BFU-E) after phenylhydrazine treatment, only Mtg16-/- mice showed overt signs of anemia. Thus, we propose that, while Mtg16 is a critical regulator of HSPC function, response to hemolytic anemia, and lymphoid development, the interaction between Mtg16 and E-proteins is particularly important for lymphopoiesis.
Collapse
Affiliation(s)
- Monica Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Anna E Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - David K Flaherty
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Brittany K Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luke N Bartlett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA.
| | - Kristy R Stengel
- Department of CellBiology, Albert Einstein College of Medicine and the Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461.
| |
Collapse
|
6
|
Luo L, Yuan F, Palovcak A, Li F, Yuan Q, Calkins D, Manalo Z, Li Y, Wang D, Zhou M, Zhou C, Li M, Tan YD, Bai F, Ban Y, Mason C, Roberts E, Bilbao D, Liu ZJ, Briegel K, Welford SM, Pei XH, Daunert S, Liu W, Zhang Y. Oncogenic properties of wild-type DNA repair gene FANCA in breast cancer. Cell Rep 2025; 44:115480. [PMID: 40146775 DOI: 10.1016/j.celrep.2025.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/10/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
FANCA is one of the 23 genes whose deficiencies lead to defective DNA interstrand crosslink repair and cancer-prone Fanconi anemia disease. Beyond its functions in DNA repair and tumor suppression, we report that high FANCA expression is strongly associated with breast cancer development. Overexpression of WT-FANCA significantly promotes breast cancer cell proliferation and tumor growth both in vitro and in vivo, while FANCA deficiency severely compromises the proliferation of breast cancer cells, but not non-tumorigenic breast epithelial cells. Heterozygous knockout of FANCA in breast cancer mouse models is sufficient to cause significant reduction of breast tumor growth in vivo. Furthermore, we have shown that high FANCA expression in breast cancer correlates with promoter hypomethylation in a TET-dependent manner, and TET inhibition recapitulates the proliferation defects caused by FANCA deficiency. Our study identifies the oncogenic properties of WT-FANCA and shows that FANCA is a promising target for breast cancer intervention.
Collapse
Affiliation(s)
- Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fang Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qingqi Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Calkins
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoe Manalo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Li
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dazhi Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mike Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Catherine Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuan-De Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Bai
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christian Mason
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhao-Jun Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karoline Briegel
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xin-Hai Pei
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wenjun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Espinoza-Ferrao S, Echeverría-Garcés G, Rivera-Orellana S, Bueno-Miño J, Castellanos-Molina E, Benítez-Núñez M, López-Cortés A. Global analysis of actionable genomic alterations in thyroid cancer and precision-based pharmacogenomic strategies. Front Pharmacol 2025; 16:1524623. [PMID: 40297138 PMCID: PMC12034932 DOI: 10.3389/fphar.2025.1524623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Thyroid cancer, a prevalent endocrine malignancy, has an age-standardized incidence rate of 9.1 per 100,000 people and a mortality rate of 0.44 per 100,000 as of 2024. Despite significant advances in precision oncology driven by large-scale international consortia, gaps persist in understanding the genomic landscape of thyroid cancer and its impact on therapeutic efficacy across diverse populations. Methods To address this gap, we performed comprehensive data mining and in silico analyses to identify pathogenic variants in thyroid cancer driver genes, calculate allele frequencies, and assess deleteriousness scores across global populations, including African, Amish, Ashkenazi Jewish, East and South Asian, Finnish and non-Finnish European, Latino, and Middle Eastern groups. Additionally, pharmacogenomic profiling, in silico drug prescription, and clinical trial data were analyzed to prioritize targeted therapeutic strategies. Results Our analysis examined 56,622 variants in 40 thyroid cancer-driver genes across 76,156 human genomes, identifying 5,001 known and predicted oncogenic variants. Enrichment analysis revealed critical pathways such as MAPK, PI3K-AKT-mTOR, and p53 signaling, underscoring their roles in thyroid cancer pathogenesis. High-throughput validation strategies confirmed actionable genomic alterations in RET, BRAF, NRAS, KRAS, and EPHA7. Ligandability assessments identified these proteins as promising therapeutic targets. Furthermore, our findings highlight the clinical potential of targeted drug inhibitors, including vandetanib, dabrafenib, and selumetinib, for improving treatment outcomes. Discussion This study underscores the significance of integrating genomic insights with pharmacogenomic strategies to address disparities in thyroid cancer treatment. The identification of population-specific oncogenic variants and actionable therapeutic targets provides a foundation for advancing precision oncology. Future efforts should focus on including underrepresented populations, developing population-specific prevention strategies, and fostering global collaboration to ensure equitable access to pharmacogenomic testing and innovative therapies. These initiatives have the potential to transform thyroid cancer care and align with the broader goals of personalized medicine.
Collapse
Affiliation(s)
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - José Bueno-Miño
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - Melanie Benítez-Núñez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
8
|
Tao Y, Shi Z, Liang X, Zheng Y, Dai L, Li X, Li Z, Liang W, Bai G, Li H, Lyu Y, Li J, Zhang T, Hu W, Zhou S, Shan Q, Fu X, Wang X. RNF7-Mediated ROS Targets Malignant Phenotype and Radiotherapy Sensitivity in Glioma With Different IDH1 Genotypes. Mol Carcinog 2025; 64:652-667. [PMID: 39783768 PMCID: PMC11890431 DOI: 10.1002/mc.23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear. IDH (isocitrate dehydrogenase) mutations, which induce metabolic reprogramming and result in notable heterogeneity among glioma with different IDH genotypes. Through analysis of public glioma databases, we identified a high expression of RNF7 in glioma and its correlation with patient prognosis. Moreover, we observed variations in RNF7 expression and its association with patient outcomes under different treatment modalities among different IDH genotypes. In this study, we demonstrated the critical role of RNF7 in the malignant phenotype of IDH1-mutant glioma and its contribution to radiation resistance. Subsequent functional enrichment analysis of RNF7 in glioma, coupled with validation through cellular experiments, confirmed its significant involvement in maintaining redox balance. Our findings suggest that RNF7 exerts a buffering effect against radiation-induced oxidative stress and counterbalances the redox stress induced by IDH1 mutation through its anti-ROS activity. Additionally, our follow-up investigations revealed that the upregulation of RNF7 after radiation exposure and in IDH1-mutant glioma cells is induced by ROS. Collectively, our study underscores the potential of RNF7 as a molecular biomarker in glioma. Elevated RNF7 expression often indicates a heightened metabolic resilience in glioma, leading to resistance against radiotherapy.
Collapse
Affiliation(s)
- Yiran Tao
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Zimin Shi
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Xianyin Liang
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Yuqian Zheng
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Lirui Dai
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary CenterWest China Hospital of Sichuan UniversityChengduSichuanThe People's Republic of China
| | - Xiang Li
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Zian Li
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Wulong Liang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Gaojie Bai
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Hao Li
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Yuan Lyu
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanThe People's Republic of China
- Maternal and Child Neurological Disorders International Joint Research CenterZhengzhouHenanThe People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciencesZhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Institute of NeuroscienceZhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Junqi Li
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanThe People's Republic of China
- Maternal and Child Neurological Disorders International Joint Research CenterZhengzhouHenanThe People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciencesZhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Institute of NeuroscienceZhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Tao Zhang
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanThe People's Republic of China
- Maternal and Child Neurological Disorders International Joint Research CenterZhengzhouHenanThe People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciencesZhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Institute of NeuroscienceZhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Weihua Hu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Shaolong Zhou
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Qiao Shan
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Xudong Fu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
| | - Xinjun Wang
- Department of NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanThe People's Republic of China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanThe People's Republic of China
- Maternal and Child Neurological Disorders International Joint Research CenterZhengzhouHenanThe People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciencesZhengzhou UniversityZhengzhouHenanThe People's Republic of China
| |
Collapse
|
9
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
10
|
Wang T, Guo T, Sun J, Zang X, Dong L, Zhang J, Chen S, Chen G, Ma S, Zhai X, Chu C, Wang C, Wang X, Xu D, Tan M. Loss of OBSCN expression promotes bladder cancer progression but enhances the efficacy of PD-L1 inhibitors. Cell Biosci 2025; 15:40. [PMID: 40149008 PMCID: PMC11948897 DOI: 10.1186/s13578-025-01379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND As the objective overall response rate to immune checkpoint inhibitors (ICIs) is less than 30% in late stage or metastatic bladder cancer (BLCA), elucidating the intrinsic mechanisms of immune evasion is of great importance for the discovery of predictive and prognostic biomarkers and the exploration of novel targets for intervention. Recent studies have shown that OBSCN and the cytoskeletal protein it encodes, obscurin, play an important role in tumour progression. However, no studies have reported the role of OBSCN in BLCA. METHODS RNA sequencing and clinical data were downloaded from multiple public databases including The Cancer Genome Atlas and the Gene Expression Omnibus. Immunohistochemistry (IHC) was performed on tissue microarrays including 80 BLCA patients from Shuguang Hospital. Kaplan-Meier curves with log-rank test, univariate and multivariate COX regression were performed to evaluate the prognostic efficacy of OBSCN expression. In vitro experiments were conducted to determine the role of OBSCN deficiency in promoting BLCA progression. Pan-cancer tumour immune microenvironment (TIME) analysis was performed to explore the potential correlation between OBSCN deficiency and immune evasion. RESULTS Pan-cancers and single-cell sequencing analysis revealed that the expression level and proportion of OBSCN was significantly decreased in BLCA cells compared to normal urothelium. Survival curves showed that BLCA patients with low OBSCN expression had a worse prognosis, yet a better clinical response to PD-L1 ICIs. Gene set variation analysis and Gene set enrichment analysis revealed that epithelial-mesenchymal transition (EMT) and immune-related processes were significantly enriched in BLCA samples with low OBSCN expression. In vitro experiments identified that OBSCN-deficient BLCA cells enhanced invasion, migration and EMT. Pan-cancer analysis of TIME revealed that neoantigen, tumor mutation burden, CD8+T cells and immune checkpoints were significantly negatively associated with OBSCN expression. IHC and Western blot assay identified that BLCA samples with low OBSCN expression had more CD8+ T-cell infiltration and higher PD-L1 expression. CONCLUSIONS This study confirmed that BLCA patients with low OBSCN expression had a worse prognosis but a superior response to ICIs, providing a reference for individualised treatment of BLCA patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Zang
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Urology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sicong Ma
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhai
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanmin Chu
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongliang Xu
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Gianneschi G, Scolpino A, Oleske J. Risk of autoimmunity, cancer seeding, and adverse events in human trials of whole-tissue autologous therapeutic vaccines. CANCER PATHOGENESIS AND THERAPY 2025; 3:129-134. [PMID: 40182122 PMCID: PMC11963168 DOI: 10.1016/j.cpt.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 04/05/2025]
Abstract
Background Whole-tissue autologous therapeutic vaccines (WATVs) are a form of cancer immunotherapy that use a patient's own pathological tissue. Concerns exist regarding the potential of WATVs to induce autoimmunity or the spread of cancer; however, their adverse events (AEs) have not been adequately studied. This literature review primarily aimed to evaluate the risks of autoimmunity and cancer seeding associated with using WATVs in human clinical trials. Its secondary objectives included assessing the incidence of AEs graded 1-5 using the Common Terminology Criteria for Adverse Events v5.0. Methods The inclusion criteria were any clinical trial using human subjects in which at least part of the cancer vaccine was derived from the patient's own tumor tissue, which likely preserved the unique tumor-associated antigens (TAAs) present in the patient's tumor (i.e., whole-tissue). Tumor vaccine trials that used limited TAAs or highly processed tumor antigens were excluded. Published clinical trials were searched using Google Scholar until March 2024. The authors elaborated on the risk of bias in such cases, as indicated. All reviewed publications were searched for evidence of autoimmunity, cancer seeding, and other AEs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement guided the review. Results Data from 55 human clinical trials, abstracts, case reports, and unpublished data were analyzed, including 3323 patients treated with WATVs for various cancers. The primary outcomes were: (1) no documented cases of WATV-induced autoimmunity, (2) no documented cases of WATV-induced spreading or seeding of noninfectious cancers, and (3) the observed 0.24% (2/838) risk of spreading or seeding infectious cancers was attributed to inadequate sterilization. The secondary outcomes were: (1) no deaths were attributed to WATV therapy, (2) 0.18% (6/3323) incidence of grade 4 AEs, (3) 0.42% (14/3323) incidence of grade 3 AEs, (4) the incidence of grades 1-2 AEs was 52.21% (478/916). Conclusions WATVs carry no risk of inducing autoimmunity and essentially no risk of cancer seeding if properly sterilized. WATVs also exhibit a side effect profile comparable to that of routine vaccinations, with common, mild, and transient adverse effects. The combined risk of grade 3 and 4 AEs was 0.60% (20/3323). No deaths were causally associated with WATV treatment.
Collapse
Affiliation(s)
- Garrett Gianneschi
- Department of Neurology, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Anthony Scolpino
- Division of Immunology, Department of Pediatrics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - James Oleske
- Division of Immunology, Department of Pediatrics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Li L, Li H, Zhang K, Zhao C, Wang F, Sun J, Wang J. The role and mechanism of hepatocyte nuclear factor 1β in the occurrence and development of different human tumors: A pan-cancer analysis. ENVIRONMENTAL TOXICOLOGY 2025; 40:471-480. [PMID: 39887605 DOI: 10.1002/tox.24254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 02/01/2025]
Abstract
Carcinomatosis is one of the leading threats to human public fitness. HNF1B is a critical transcription element in vertebrate proliferation and oncogenesis, which has been shown to play roles in reactive oxygen species (ROS) metabolism. Our previous results have identified HNF1B as a tumor suppressor that could inhibit the malignant progression of prostate cancer. Yet there is no pan-carcinomatosis analysis of HNF1B, which could help us better understand common and unique underlying mechanisms in mankind knubs to enhance novel and competent treatment. Here, in our research, we evaluated the utterance pattern and explored the function of HNF1B in 33 knub categories using the data from the Cancer Genome Atlas Program (TCGA), Gene Expression Omnibus (GEO), and CLNICAL PROTEOMICTUMOR ANALYSIS CONSORTIUM (CPTAC) dataset. We found different HNF1B roles in various cancer types. HNF1B was upregulated in CHOL, STAD, KIRP, and THCA, and was downregulated in GBM, KICH, COAD, KIRC, LUSC, SARC, PAAD, and TGCT. Prognostic analyses indicated that higher HNF1B displayed better illness outcomes in BLCA, READ, and PRAD, while poorer outcomes in LUSC and THYM. HNF1B mutation was most frequent in endometrial cancer but was not associated with disease prognosis. It was discovered that HNF1B utterance relevant to endothelial cell penetration status in BLCA, ESCA, LUAD, LUSC, and TGCT, and carcinomatosis-associated fibroblast infiltration was observed in ESCA, KIRC, LIHC, and TGCT. Moreover, functional enrichment analysis disclosed that metabolism-related functions were implicated in the function of HNF1B. Taken together, our pan- carcinomatosis analysis showed the complicated roles of HNF1B in a variety of carcinomatoses, being able to improve the extensive comprehension of HNF1B's role in tumorigenesis.
Collapse
Affiliation(s)
- Liang Li
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Haikun Li
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Sun
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
13
|
Williamson MH, Clements WK. WNT16 primer. Differentiation 2025; 142:100833. [PMID: 39730242 PMCID: PMC12045490 DOI: 10.1016/j.diff.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Affiliation(s)
- McLean H Williamson
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
15
|
Adachi N, Hess DT, Ueyama T. A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification. J Lipid Res 2025; 66:100743. [PMID: 39800157 PMCID: PMC11870023 DOI: 10.1016/j.jlr.2025.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.
Collapse
Affiliation(s)
- Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Douglas T Hess
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
16
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
17
|
Shen C, Suo Y, Guo J, Su W, Zhang Z, Yang S, Wu Z, Fan Z, Zhou X, Hu H. Development and validation of a glycolysis-associated gene signature for predicting the prognosis, immune landscape, and drug sensitivity in bladder cancer. Front Immunol 2025; 15:1430583. [PMID: 39867879 PMCID: PMC11757262 DOI: 10.3389/fimmu.2024.1430583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined. Methods The fused merge dateset from TCGA, GSE13507 and GSE31684 were used for the analysis of glycolysis-related genes expression or subtyping; and corresponding clinical data of these BCa patients were also collected. In the merge cohort, we constructed a 18 multigene signature using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The four external cohorts (i.e., IMvigor210, GSE32894, GSE48276 and GSE48075) of BCa patients were used to validate the accuracy. We evaluated immune infiltration using seven published algorithms: CIBERSORT, QUANTISEQ, XCELL, TIMER, CIBERSORT-ABS, EPIC, and MCPCOUNTER. Subsequently, in order to analyze the correlation between risk groups(scores) and overall survival, recognised immunoregolatory cells or common chemotherapeutic agents, clinicopathological data and immune checkpoint-related genes of BCa patients, Wilcox rank test, chi-square test, cox regression and spearman's correlation were performed. Results Conspicuously, we could see that CD8+ T, cancer associated fibroblast, macrophage M2, NK, endothelial cells and so on were significantly dysregulated between the two risk groups. In addition, compared with the low-risk group, high-risk group predicted poor prognosis and relatively weak sensitivity of chemotherapy. Additionally, we also found that the expression level of partial genes in the model was significantly correlated with objective responses to anti-PD-1 or anti-PD-L1 treatment in the IMvigor210, GSE111636, GSE176307, GSE78220 or GSE67501 cohort; and its expression level was also varied in different objective response cases receiving tislelizumab combined with low-dose nab-paclitaxel therapy based on our mRNA sequencing (TRUCE-01). According to "GSEA" algorithm of R package "clusterProfiler", the most significantly enriched HALLMARK, KEGG pathway and GO term was separately the 'Epithelial Mesenchymal Transition', 'Ecm Receptor Interaction' and 'MF_Extracellular_matrix_structural_constitunet' in the high- vs. low-risk group. Subsequently, we verified the protein and mRNA expression of interested model-related genes from the Human Protein Atlas (HPA) and 10 paired BCa tissues collected by us. Furthermore, in vitro functional experiments demonstrated that FASN was a functional oncogene in BCa cells through promoting cell proliferation, migration, and invasion abilities. Conclusion In summary, the glycolysis-associated gene signature established by us exhibited a high predictive performance for the prognosis, immunotherapeutic responsiveness, and chemotherapeutic sensitivity of BCa. And, The model also might function as a chemotherapy and immune checkpoint inhibitor (ICI) treatment guidance.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jian Guo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Su
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoliang Zhou
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Deshmukh S, Kelly C, Tinoco G. IDH1/2 Mutations in Cancer: Unifying Insights and Unlocking Therapeutic Potential for Chondrosarcoma. Target Oncol 2025; 20:13-25. [PMID: 39546097 DOI: 10.1007/s11523-024-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Chondrosarcomas, a rare form of bone sarcomas with multiple subtypes, pose a pressing clinical challenge for patients with advanced or metastatic disease. The lack of US Food and Drug Administration (FDA)-approved medications underscores the urgent need for further research and development in this area. Patients and their families face challenges as there are no systemic therapeutic options available with substantial effectiveness. A significant number (50-80%) of chondrosarcomas have a mutation in the isocitrate dehydrogenase (IDH) genes. This review focuses on IDH-mediated pathogenesis and recent pharmacological advances with novel IDH inhibitors, explores their potential therapeutic value, and proposes potential future avenues for clinical trials combining IDH inhibitors with other systemic agents for chondrosarcomas.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ciara Kelly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Li Y, Sun X, Huang Z. USP7 facilitates deubiquitination of LRRC42 in colorectal cancer to accelerate tumorigenesis and augment Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119859. [PMID: 39393471 DOI: 10.1016/j.bbamcr.2024.119859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Colorectal cancer is a prevalent malignancy with an increasing incidence worldwide. Leucine-rich repeat-containing protein 42 (LRRC42) is known to be dysregulated in tumor tissues, yet its role in colorectal cancer remains largely unexplored. Herein, the function of LRRC42 in colorectal cancer was investigated using clinical samples, cellular experiments, animal models, and multiple omics techniques. The results demonstrated that LRRC42 was highly expressed in colorectal cancer tissues and was associated with poor clinical outcomes. Silencing LRRC42 suppressed cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis by reducing Bcl2 expression while elevating the expression of Bax, cleaved PARP and cleaved caspase 3. Conversely, LRRC42 overexpression exhibited the opposite effects. Consistent findings were observed in vivo. Additionally, ubiquitin specific peptidase 7 was identified as a potential LRRC42-interacting protein through immunoprecipitation-mass spectrometry, with ubiquitin specific peptidase 7 stabilizing LRRC42 expression by promoting its deubiquitination. Notably, LRRC42 overexpression partially reversed the effects of ubiquitin specific peptidase 7 silencing on tumor cell proliferation and apoptosis. mRNA sequencing analysis revealed that differentially expressed genes in LRRC42 overexpressing cells were linked to Wnt signaling pathway, suggesting that LRRC42 overexpression may activate this pathway. Furthermore, LRRC42 was proved to elevate the levels of ki67, cyclin D1 and WNT3, while reducing the level of p-β-catenin. These findings suggest that LRRC42 perhaps serve as a potential oncogenic factor in colorectal cancer, regulated by ubiquitin specific peptidase 7 and capable of activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Sun
- Department of Digestive Diseases 2, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Zhe Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
20
|
Nguyen AL, Facey COB, Boman BM. The Significance of Aldehyde Dehydrogenase 1 in Cancers. Int J Mol Sci 2024; 26:251. [PMID: 39796106 PMCID: PMC11720537 DOI: 10.3390/ijms26010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis. ALDH plays a significant role in various cellular functions, such as metabolism, oxidative stress response, detoxification, and cellular differentiation. Among the ALDH families, ALDH1 has gained considerable attention as a cancer stem cell (CSC) marker due to its significant role in the maintenance of stemness and the differentiation of stem cells (SCs), along with its involvement in tumorigenesis. A description of the cellular mechanisms and physiology of ALDH1 that underlies cancer development is provided. Moreover, current advances in ALDH1-targeting cancer therapies are discussed.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
22
|
Svec J, Onhajzer J, Korinek V. Origin, development and therapy of colorectal cancer from the perspective of a biologist and an oncologist. Crit Rev Oncol Hematol 2024; 204:104544. [PMID: 39490796 DOI: 10.1016/j.critrevonc.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The intestinal epithelium, a rapidly renewing tissue, is characterized by a continuous cell turnover that occurs through a well-coordinated process of cell proliferation and differentiation. This dynamic is crucial for the long-term function of the gastrointestinal tract. Disruption of this process can lead to colorectal carcinoma, a common malignancy worldwide. The first part of the review focuses on the cellular composition of the epithelium and the molecular mechanisms that control its functions, and describes the pathways that lead to epithelial transformation and tumor progression. This forms the basis for understanding the development and progression of advanced colorectal cancer. The second part deals with current therapeutic approaches and presents the latest treatment options, ongoing clinical trials and new drugs. In addition, the biological and medical perspectives of the adverse effects of therapies and models of regeneration of the intestinal epithelium are highlighted and, finally, future treatment options are discussed.
Collapse
Affiliation(s)
- Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
23
|
Hwang SH, Baek SH, Lee MJ, Kook Y, Bae SJ, Ahn SG, Jeong J. Clinical Relevance of TP53 Mutation and Its Characteristics in Breast Cancer with Long-Term Follow-Up Date. Cancers (Basel) 2024; 16:3899. [PMID: 39682089 DOI: 10.3390/cancers16233899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The TP53 mutation is one of the most frequently identified mutations in human cancers and is typically associated with a poor prognosis. However, there are conflicting findings regarding its impact. We aimed to clarify the clinical relevance of TP53 mutations across all breast cancer subtypes and treatments utilizing long-term follow-up data. METHODS We retrospectively identified the data of breast cancer patients who underwent TP53 mutation testing. Stratified log-rank tests and Cox regression analysis were performed to compare oncologic outcomes based on TP53 mutation status and the characteristics of these mutations, including types and locations. Mutations in exons 5-9 were identified using polymerase chain reaction-denaturing high-performance liquid chromatography (PCR-DHPLC) and direct sequencing. RESULTS Between January 2007 and December 2015, 650 breast cancer patients underwent TP53 mutation testing in Gangnam Severance Hospital. The TP53 mutations were identified in 172 patients (26.5%), with 34 (19.8%) exhibiting missense hotspot mutations. Patients with TP53 mutations (TP53-mutated group) had worse prognosis, demonstrated by a 10-year recurrence-free survival (RFS) rate of 83.5% compared to 86.6% in patients without mutations (HR, 1.67; p = 0.026) and a 10-year overall survival (OS) rate of 88.1% versus 91.0% (HR, 3.02; p = 0.003). However, subgroup analyses within the TP53-mutated group did not reveal significant differences in oncologic outcomes based on mutation types and locations. CONCLUSIONS Our findings establish that TP53 mutations are linked to poorer oncologic outcomes in breast cancer across all subtypes. Yet, within the TP53-mutated group, the specific characteristics of TP53 mutations do not influence oncologic outcomes.
Collapse
Affiliation(s)
- Seung Hyun Hwang
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Breast and Thyroid Surgery, Sam Hospital, Anyang 14030, Republic of Korea
| | - Seung Ho Baek
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Min Ji Lee
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yoonwon Kook
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung Gwe Ahn
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
24
|
Ding G, Ma T, Zhang K, Chen G, Shen J, Zhang S, Li K, Zhao C, Wang F, Sun J, Wang J. A pan-cancer analysis of the role of WDFY2 in human tumors. Biotechnol Genet Eng Rev 2024; 40:1456-1471. [PMID: 36971139 DOI: 10.1080/02648725.2023.2194077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
WDFY2 is a protein that may provide valuable insights into the mechanisms underlying human tumors and aid in the development of novel therapies. Despite its potential importance, the role of WDFY2 in pan-cancer has not been systematically investigated. In this study, we comprehensively explored the expression pattern and function of WDFY2 across 33 cancers using various databases, including TCGA, CPTAC and GEO datasets. Our results indicate that WDFY2 is downregulated in most cancer types, including BRCA, KIRP, KICH, LUAD, KIRC, PCPG, PRAD, THCA, ACC, OV, TGCT and UCS, while it is upregulated in CESC, CHOL, COAD, HNSC, LUSC, READ, STAD and UCEC. Prognostic analyses showed that higher levels of WDFY2 were associated with worse disease outcomes in ACC, BLCA, COAD, READ, SARC, MESO and OV. WDFY2 mutations were most frequent in colorectal cancer but were not associated with disease prognosis. We also found that WDFY2 expression correlated with monocyte infiltration status in SKCM, endothelial cell infiltration in COAD, KIRC, MESO, OV and THCA, and cancer-associated fibroblast infiltration in COAD, LUAD and OV. Additionally, functional enrichment analysis revealed that WDFY2 is involved in metabolism. Overall, our comprehensive analysis sheds light on the role of WDFY2 in various cancers, providing a better understanding of its role in tumorigenesis.
Collapse
Affiliation(s)
- Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University
| | - Tianyan Ma
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Gang Chen
- Department of Vascular Interventional, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing Shen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sijie Zhang
- Department of Integrated Sciences, University of British Columbia, Vancouver, Canada
| | - Kai Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jian Sun
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
25
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Broome JA, Nguyen NP, Baumung CRE, Chen VC, Bushnell EAC. Gaining Insight into the Catalytic Mechanism of the R132H IDH1 Mutant: A Synergistic DFT Cluster and Experimental Investigation. Biochemistry 2024; 63:2682-2691. [PMID: 39318042 DOI: 10.1021/acs.biochem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human isocitrate dehydrogenase 1 (IDH1) is an enzyme that is found in humans that plays a critical role in aerobic metabolism. As a part of the citric acid cycle, IDH1 becomes responsible for catalyzing the oxidative decarboxylation of isocitrate to form α-ketoglutarate (αKG), with nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor. Strikingly, mutations of the IDH1 enzyme have been discovered in several cancers including glioblastoma multiforme (GBM), a highly aggressive form of brain cancer. It has been experimentally determined that single-residue IDH1 mutations occur at a very high frequency in GBM. Specifically, the IDH1 R132H mutation is known to produce (D)2-hydroxyglutarate (2HG), a recognized oncometabolite. Using the previously determined catalytic mechanism of IDH1, a DFT QM model was developed to study the mechanistic properties of IDH1 R132H compared to wild type enzyme. Validating these insights, biochemical in vitro assays of metabolites produced by mutant vs wild type enzymes were measured and compared. From the results discussed herein, we discuss the mechanistic impact of mutations in IDH1 on its ability to catalyze the formation of αKG and 2HG.
Collapse
Affiliation(s)
- Joshua A Broome
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Nguyen P Nguyen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Cassidy R E Baumung
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Vincent C Chen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Eric A C Bushnell
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
27
|
Zheng S, Su Z, He Y, You L, Zhang G, Chen J, Lu L, Liu Z. Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment. Front Immunol 2024; 15:1454977. [PMID: 39380994 PMCID: PMC11458406 DOI: 10.3389/fimmu.2024.1454977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene signature (HPRGS) and explore its clinical application value. Methods TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and HCC cDNA microarray were used for validation. Machine learning algorithms constructed a prognostic gene label for HCC. Kaplan-Meier (K-M), ROC curve, multiple analyses, algorithms, and online databases were used to analyze differences between high- and low-risk populations. A nomogram was constructed to facilitate clinical application. Results We identified 119 differential genes based on transcriptome sequencing data from five independent HCC cohorts, and 53 of these genes were associated with overall survival (OS). Using 101 machine learning algorithms, the 10 most prognostic genes were selected. We constructed an HCC HPRGS with four genes (SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis showed significant differences between the low- and high-risk patients. The low-risk group had a higher response to transcatheter arterial chemoembolization (TACE) and immunotherapy. Treatment response of high- and low-risk groups to small-molecule drugs was predicted. Linifanib was a potential drug for high-risk populations. Multivariate analysis confirmed that HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram provided a clinical practice reference. Conclusion We constructed an HPRGS for HCC, which can accurately predict OS and guide the treatment decisions for patients with HCC.
Collapse
Affiliation(s)
- Shengzhou Zheng
- Department of Emergency, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lihu Lu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
28
|
Echeverría-Garcés G, Ramos-Medina MJ, González A, Vargas R, Cabrera-Andrade A, Armendáriz-Castillo I, García-Cárdenas JM, Ramírez-Sánchez D, Altamirano-Colina A, Echeverría-Espinoza P, Freire MP, Ocaña-Paredes B, Rivera-Orellana S, Guerrero S, Quiñones LA, López-Cortés A. Worldwide analysis of actionable genomic alterations in lung cancer and targeted pharmacogenomic strategies. Heliyon 2024; 10:e37488. [PMID: 39296198 PMCID: PMC11409134 DOI: 10.1016/j.heliyon.2024.e37488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Based on data from the Global Cancer Statistics 2022, lung cancer stands as the most lethal cancer worldwide, with age-adjusted incidence and mortality rates of 23.6 and 16.9 per 100,000 people, respectively. Despite significant strides in precision oncology driven by large-scale international research consortia, there remains a critical need to deepen our understanding of the genomic landscape across diverse racial and ethnic groups. To address this challenge, we performed comprehensive in silico analyses and data mining to identify pathogenic variants in genes that drive lung cancer. We subsequently calculated the allele frequencies and assessed the deleteriousness of these oncogenic variants among populations such as African, Amish, Ashkenazi Jewish, East and South Asian, Finnish and non-Finnish European, Latino, and Middle Eastern. Our analysis examined 117,707 variants within 86 lung cancer-associated genes across 75,109 human genomes, uncovering 8042 variants that are known or predicted to be pathogenic. We prioritized variants based on their allele frequencies and deleterious scores, and identified those with potential significance for response to anti-cancer therapies through in silico drug simulations, current clinical pharmacogenomic guidelines, and ongoing late-stage clinical trials targeting lung cancer-driving proteins. In conclusion, it is crucial to unite global efforts to create public health policies that emphasize prevention strategies and ensure access to clinical trials, pharmacogenomic testing, and cancer research for these groups in developed nations.
Collapse
Affiliation(s)
- Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ariana González
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Dasa Genómica Latam, Buenos Aires, Argentina
| | - Rodrigo Vargas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Department of Molecular Biology, Galileo University, Guatemala City, Guatemala
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Luis A Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
29
|
Alasmar A, Al-Alami Z, Zein S, Al-Smadi A, Al Bashir S, Alorjani MS, Al-Zoubi RM, Al Zoubi M. Novel Mutations in AKT1 Gene in Prostate Cancer Patients in Jordan. Curr Issues Mol Biol 2024; 46:9856-9866. [PMID: 39329938 PMCID: PMC11430622 DOI: 10.3390/cimb46090586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
The AKT1 oncogene is related to various cancers due to its critical role in the PIC3CA/AKT1 pathway; however, most of the studies screened the hotspot mutation AKT1 (E17K) with various incidences. Low frequency or lack of AKT1 (E17K) mutation was reported in prostate cancer (PC) patients. This study aims to explore genetic alterations in the AKT1 PH domain by extending the sequencing to include AKT1 gene exons 3 and 4. Genomic DNA was extracted from 84 Formalin-Fixed Paraffin-Embedded samples of PC patients in Jordan, and then subjected to PCR and sequencing for the targeted exons. This study revealed the presence of two novel mutations (N53Y and Q59K) and a high frequency of mutations in exon 4, with a lack of mutations in the E17K hotspot. Nine missense and two synonymous mutations were detected in exon 4 (Phe27Tyr, Phe27Leu, Ala58Thr, Ser56Phe, Arg41Trp, Phe35Leu, Asp32Glu, Phe35Tyr, and Gln43Lys) and (Ser56 and Glu40), respectively. Two synonymous mutations were detected in exon 3 (Leu12 and Ser2). It is concluded that there is a high frequency of AKT1 mutation in PC patients in Jordan with two novel missense mutations in the Pleckstrin homology (PH) domain. E17K hotspot mutation was not detected in any tested samples, which underlined the significant role of mutations in other AKT1 exons in PC development.
Collapse
Affiliation(s)
- Ala’a Alasmar
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Zina Al-Alami
- Department of Basic Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Sima Zein
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Asmaa Al-Smadi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Samir Al Bashir
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.B.); (M.S.A.)
| | - Mohammed S. Alorjani
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.B.); (M.S.A.)
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| |
Collapse
|
30
|
Wu X, Liu R, Zhang Z, Yang J, Liu X, Jiang L, Fang M, Wang S, Lai L, Song Y, Li Z. The RhoB p.S73F mutation leads to cerebral palsy through dysregulation of lipid homeostasis. EMBO Mol Med 2024; 16:2002-2023. [PMID: 39080495 PMCID: PMC11393352 DOI: 10.1038/s44321-024-00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/14/2024] Open
Abstract
Cerebral palsy (CP) is a prevalent neurological disorder that imposes a significant burden on children, families, and society worldwide. Recently, the RhoB p.S73F mutation was identified as a de novo mutation associated with CP. However, the mechanism by which the RhoB p.S73F mutation causes CP is currently unclear. In this study, rabbit models were generated to mimic the human RhoB p.S73F mutation using the SpG-BE4max system, and exhibited the typical symptoms of human CP, such as periventricular leukomalacia and spastic-dystonic diplegia. Further investigation revealed that the RhoB p.S73F mutation could activate ACAT1 through the LYN pathway, and the subsequently altered lipid levels may lead to neuronal and white matter damage resulting in the development of CP. This study presented the first mammalian model of genetic CP that accurately replicates the RhoB p.S73F mutation in humans, provided further insights between RhoB and lipid metabolism, and novel therapeutic targets for human CP.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruonan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongtian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liqiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengmeng Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoutang Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
31
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
33
|
Shultz KD, Al Anbari YF, Wright NT. I told you to stop: obscurin's role in epithelial cell migration. Biochem Soc Trans 2024; 52:1947-1956. [PMID: 39051125 DOI: 10.1042/bst20240564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.
Collapse
Affiliation(s)
- Kamrin D Shultz
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Yasmin F Al Anbari
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
34
|
Sun J, Chen Y, Bi R, Yuan Y, Yu H. Bioinformatic approaches of liquid-liquid phase separation in human disease. Chin Med J (Engl) 2024; 137:1912-1925. [PMID: 39033393 PMCID: PMC11332758 DOI: 10.1097/cm9.0000000000003249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 07/23/2024] Open
Abstract
ABSTRACT Biomolecular aggregation within cellular environments via liquid-liquid phase separation (LLPS) spontaneously forms droplet-like structures, which play pivotal roles in diverse biological processes. These structures are closely associated with a range of diseases, including neurodegenerative disorders, cancer and infectious diseases, highlighting the significance of understanding LLPS mechanisms for elucidating disease pathogenesis, and exploring potential therapeutic interventions. In this review, we delineate recent advancements in LLPS research, emphasizing its pathological relevance, therapeutic considerations, and the pivotal role of bioinformatic tools and databases in facilitating LLPS investigations. Additionally, we undertook a comprehensive analysis of bioinformatic resources dedicated to LLPS research in order to elucidate their functionality and applicability. By providing comprehensive insights into current LLPS-related bioinformatics resources, this review highlights its implications for human health and disease.
Collapse
Affiliation(s)
- Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yilong Chen
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haopeng Yu
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Lin L, Dong J, Xu S, Xiao J, Yu C, Niu F, Wei Z. Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly. Nat Commun 2024; 15:6824. [PMID: 39122694 PMCID: PMC11315924 DOI: 10.1038/s41467-024-50940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
MICAL proteins represent a unique family of actin regulators crucial for synapse development, membrane trafficking, and cytokinesis. Unlike classical actin regulators, MICALs catalyze the oxidation of specific residues within actin filaments to induce robust filament disassembly. The potent activity of MICALs requires tight control to prevent extensive damage to actin cytoskeleton. However, the molecular mechanism governing MICALs' activity regulation remains elusive. Here, we report the cryo-EM structure of MICAL1 in the autoinhibited state, unveiling a head-to-tail interaction that allosterically blocks enzymatic activity. The structure also reveals the assembly of C-terminal domains via a tripartite interdomain interaction, stabilizing the inhibitory conformation of the RBD. Our structural, biochemical, and cellular analyses elucidate a multi-step mechanism to relieve MICAL1 autoinhibition in response to the dual-binding of two Rab effectors, revealing its intricate activity regulation mechanisms. Furthermore, our mutagenesis study of MICAL3 suggests the conserved autoinhibition and relief mechanisms among MICALs.
Collapse
Affiliation(s)
- Leishu Lin
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Dong
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shun Xu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinman Xiao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengfeng Niu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China.
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Zhiyi Wei
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China.
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
36
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
37
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
38
|
Wang Z, Gu H, Qin P, Wang J. DriverDetector: An R package providing multiple statistical methods for cancer driver genes detection and tools for downstream analysis. Heliyon 2024; 10:e33582. [PMID: 39816349 PMCID: PMC11733820 DOI: 10.1016/j.heliyon.2024.e33582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 01/18/2025] Open
Abstract
Identifying driver genes in cancer is a difficult task because of the heterogeneity of cancer as well as the complex interactions among genes. As sequencing data become more readily available, there is a growing need for detecting cancer driver genes based on statistical and mathematical modeling methods. Currently, plenty of driver gene identification algorithms have been published, but they fail to achieve consistent results. In order to obtain gene sets with high confidence, we present DriverDetector, an R package providing a convenient workflow for cancer driver genes detection and downstream analysis. We develop the background mutation rate calculating module based on the distance between genes in covariate space and binomial test, followed by the driver gene selection module which integrates 11 methods, including two already recognized approaches, a de novo method, and five variants of Fisher's method which are applied to driver gene identification for the first time. Through verification on 12 TCGA datasets, each method is able to identify a set of confirmed driver genes while the number of resulting genes vary significantly across different methods. For robust driver genes detection, a voting strategy based on 10 of the statistical methods is further applied. Results show that the collective prediction based on the voting strategy demonstrates superiority in achieving the consistency of prediction while ensuring a reasonable number of predicted genes and confirmed drivers. By comparing the results of each cancer dataset, we also find that sample size has a huge impact on the number of predicted genes. For downstream analysis, DriverDetector automatically generates plenty of plots and tables to elaborate the results. We propose DriverDetector as a user-friendly tool promoting early diagnosis of cancer and the development of targeted drugs.
Collapse
Affiliation(s)
- Zeyuan Wang
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Hong Gu
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Pan Qin
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, Second Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116023, Liaoning, China
| |
Collapse
|
39
|
Yang XA, Wang Y, Gong M, Zhao Z, Lv F, Zhang X, Li Y. RNF149 negatively regulates LPS/TLR4 signal transduction by ubiquitination-mediated CD63 degradation. Heliyon 2024; 10:e34350. [PMID: 39104473 PMCID: PMC11298846 DOI: 10.1016/j.heliyon.2024.e34350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
This study aims to investigate the role of RNF149 and tetraspanin CD63 in lipopolysaccharide/Toll-like receptor 4 (LPS/TLR4) signal transduction. TNF-α was assessed using enzyme-linked immunosorbent assay. The distribution of TLR4 was examined through flow cytometry after CD63 knockdown. Real-time polymerase chain reaction was used to analyze the expression of the target genes RNF149 and CD63 under different conditions. Western blotting was employed to detect gene expression, while immunoprecipitation and confocal microscopy were used to evaluate protein interactions. Transcriptome array data from stimulated monocytes (GSE7547) was obtained from GEO and subjected to bioinformatic analysis. It is suggested that CD63 may serve as a substrate of RNF149, with RNF149 capable of directly interacting with CD63. RNF149 degrades CD63 through covalent modification of CD63 at lysine 29 of the ubiquitin monomer, leading to the formation of a multiubiquitin chain. Both RNF149 and CD63 interact with TLR4, with CD63 promoting LPS/TLR4 signaling and RNF149 inhibits it. CD63 does not impact the distribution of TLR4 on the cell surface and does not directly interact with TIRAP, IRAK4, or TRAF6, but does interact with Myd88.RNF149 plays a negative regulatory role in LPS/TLR4 signal transduction by mediating ubiquitination-induced CD63 degradation.
Collapse
Affiliation(s)
- Xiu-An Yang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China
| | - Yingying Wang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Mingyu Gong
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Zicheng Zhao
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Fengchun Lv
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
- Graduate School of Chengde Medical University, 067000 Chengde, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Varlı M, Kim E, Oh S, Pulat S, Zhou R, Gamage CDB, Gökalsın B, Sesal NC, Kim KK, Paik MJ, Kim H. Chrysophanol inhibits of colorectal cancer cell motility and energy metabolism by targeting the KITENIN/ErbB4 oncogenic complex. Cancer Cell Int 2024; 24:253. [PMID: 39030594 PMCID: PMC11264950 DOI: 10.1186/s12935-024-03434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Expression of the KITENIN/ErbB4 oncogenic complex is associated with metastasis of colorectal cancer to distant organs and lymph nodes and is linked with poor prognosis and poor survival. METHODS Here, we used in vitro and in silico methods to test the ability of chrysophanol, a molecule of natural origin, to suppress the progression of colorectal cancer by targeting the KITENIN/ErbB4 complex. RESULTS Chrysophanol binds to ErbB4, disrupting the ErbB4/KITENIN complex and causing autophagic degradation of KITENIN. We demonstrated that chrysophanol binds to ErbB4 according to a molecular docking model. Chrysophanol reversed KITENIN-mediated effects on cell motility, aerobic glycolysis, and expression of downstream effector genes. Moreover, under conditions of KITENIN overexpression, chrysophanol suppressed the production of onco-metabolites. CONCLUSION Chrysophanol suppresses oncogenic activities by targeting the KITENIN/ErbB4 complex.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju, 61452, Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Chathurika D B Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Barış Gökalsın
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Gwangju, 61469, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
41
|
Mahmood AS. Genetic polymorphism and immunological evaluation of PD-1 in Iraqi patients with acute myeloid leukemia. J Adv Pharm Technol Res 2024; 15:225-230. [PMID: 39290538 PMCID: PMC11404430 DOI: 10.4103/japtr.japtr_107_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 09/19/2024] Open
Abstract
PD-1 has a noteworthy function in developing acute myeloid leukemia (AML). The expression of PD-1 on effector T cells is regulated at the protein level depending on the interactions between cells. The objective of the study was to evaluate the PD-1 concentration levels and the polymorphism genetic variants (rs36084323 G/A) in Iraqi Arab patients with AML. Sanger's DNA sequencing was used, and the assessments were done by enzyme-linked immunosorbent assay and PD-1 gene polymorphism SNP rs36084323 G/A. The frequency of rs36084323 was significantly different between AML and control, with a lower risk for AML seen in patients with GA genotype (odds ratio; 95% confidence interval: 0.53; 0.32-0.87). PD-1 elevated AML compared to control (213.1 pg/mL vs. 178.8 pg/mL). in AML patients, there is upregulation in PD-1, which indicates that PD-1 is a possible biomarker for AML. PD-1 rs36084323 G/A may have a role in AML risk.
Collapse
Affiliation(s)
- Aseel S Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
42
|
Gybeľ T, Čada Š, Klementová D, Schwalm MP, Berger BT, Šebesta M, Knapp S, Bryja V. Splice variants of CK1α and CK1α-like: Comparative analysis of subcellular localization, kinase activity, and function in the Wnt signaling pathway. J Biol Chem 2024; 300:107407. [PMID: 38796065 PMCID: PMC11255964 DOI: 10.1016/j.jbc.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/β-catenin pathway, which promotes the degradation of β-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/β-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of β-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/β-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate β-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/β KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-β-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/β-catenin pathway at the level of β-catenin and Axin.
Collapse
Affiliation(s)
- Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Darja Klementová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marek Šebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
43
|
Sun Q, Tian Q, Bravo Iniguez A, Sun X, Zhang H, Deavila J, Du M, Zhu MJ. AMPK Deficiency Increases DNA Methylation and Aggravates Colorectal Tumorigenesis in AOM/DSS Mice. Genes (Basel) 2024; 15:835. [PMID: 39062614 PMCID: PMC11276171 DOI: 10.3390/genes15070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium (AOM/DSS)-promoted colitis-associated CRC induction. A stable AMPK-deficient Caco-2 cell line was also established for the mechanistic studies. The data showed that AMPK deficiency accelerated CRC development, characterized by increased tumor number, tumor size, and hyperplasia in AOM/DSS-treated mice. The aggravated colorectal tumorigenesis resulting from AMPK ablation was associated with reduced α-ketoglutarate production and ten-eleven translocation hydroxylase 2 (TET2) transcription, correlated with the reduced mismatch repair protein mutL homolog 1 (MLH1) protein. Furthermore, in AMPK-deficient Caco-2 cells, the mRNA expression of mismatch repair and tumor suppressor genes, intracellular α-ketoglutarate, and the protein level of TET2 were also downregulated. AMPK deficiency also increased hypermethylation in the CpG islands of Mlh1 in both colonic tissues and Caco-2 cells. In conclusion, AMPK deficiency leads to reduced α-ketoglutarate concentration and elevates the suppressive epigenetic modifications of tumor suppressor genes in gut epithelial cells, thereby increasing the risk of colorectal tumorigenesis. Given the modifiable nature of AMPK activity, it holds promise as a prospective molecular target for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Alejandro Bravo Iniguez
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Hui Zhang
- Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| | - Jeanene Deavila
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA; (J.D.); (M.D.)
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA; (J.D.); (M.D.)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| |
Collapse
|
44
|
Xu D, Yin S, Shu Y. NF2: An underestimated player in cancer metabolic reprogramming and tumor immunity. NPJ Precis Oncol 2024; 8:133. [PMID: 38879686 PMCID: PMC11180135 DOI: 10.1038/s41698-024-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2) is a tumor suppressor gene implicated in various tumors, including mesothelioma, schwannomas, and meningioma. As a member of the ezrin, radixin, and moesin (ERM) family of proteins, merlin, which is encoded by NF2, regulates diverse cellular events and signalling pathways, such as the Hippo, mTOR, RAS, and cGAS-STING pathways. However, the biological role of NF2 in tumorigenesis has not been fully elucidated. Furthermore, cross-cancer mutations may exert distinct biological effects on tumorigenesis and treatment response. In addition to the functional inactivation of NF2, the codeficiency of other genes, such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), BRCA1-associated protein-1 (BAP1), and large tumor suppressor 2 (LATS2), results in unique tumor characteristics that should be considered in clinical treatment decisions. Notably, several recent studies have explored the metabolic and immunological features associated with NF2, offering potential insights into tumor biology and the development of innovative therapeutic strategies. In this review, we consolidate the current knowledge on NF2 and examine the potential connection between cancer metabolism and tumor immunity in merlin-deficient malignancies. This review may provide a deeper understanding of the biological roles of NF2 and guide possible therapeutic avenues.
Collapse
Affiliation(s)
- Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyuan Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Xiang L, Zhao JH, Tang Y, Tan JW, Li LB, Gong C. Prognostic prediction of patients having classical papillary thyroid carcinoma with a 4 mRNA-based risk model. Medicine (Baltimore) 2024; 103:e38472. [PMID: 38847736 PMCID: PMC11155612 DOI: 10.1097/md.0000000000038472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
The dysregulation of protein-coding genes involved in various biological functions is closely associated with the progression of thyroid cancer. This study aimed to investigate the effects of dysregulated gene expressions on the prognosis of classical papillary thyroid carcinoma (cPTC). Using expression profiling datasets from the Cancer Genome Atlas (TCGA) database, we performed differential expression analysis to identify differentially expressed genes (DEGs). Cox regression and Kaplan-Meier analysis were used to identify DEGs, which were used to construct a risk model to predict the prognosis of cPTC patients. Functional enrichment analysis unveiled the potential significance of co-expressed protein-encoding genes in tumors. We identified 4 DEGs (SALL3, PPBP, MYH1, and SYNDIG1), which were used to construct a risk model to predict the prognosis of cPTC patients. These 4 genes were independent of clinical parameters and could be functional in cPTC carcinogenesis. Furthermore, PPBP exhibited a strong correlation with poorer overall survival (OS) in the advanced stage of the disease. This study suggests that the 4-gene signature could be an independent prognostic biomarker to improve prognosis prediction in cPTC patients older than 46.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Jun-Hui Zhao
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Yao Tang
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Jun-Wu Tan
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Liang-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Cheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| |
Collapse
|
46
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
47
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
48
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
49
|
Zheng W, Guo Y, Kahar A, Bai J, Zhu Q, Huang X, Li Y, Xu B, Jia X, Wu G, Zhang C, Zhu Y. RUNX1-induced upregulation of PTGS2 enhances cell growth, migration and invasion in colorectal cancer cells. Sci Rep 2024; 14:11670. [PMID: 38778047 PMCID: PMC11111780 DOI: 10.1038/s41598-024-60296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
- The Affiliated People's Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Yingchang Guo
- Department of Interventional Therapy, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Aihemaiti Kahar
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qinhui Zhu
- Department of General Surgery, Shangcai People's Hospital, Zhumadian, 463800, Henan, China
| | - Xinli Huang
- Department of General Surgery, Suiping People's Hospital, Zhumadian, 463100, Henan, China
| | - Yuan Li
- Department of Anesthesiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Bingyi Xu
- Weihui People's Hospital, Weihui, 453100, Henan, China
| | - Xueshan Jia
- Development Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
50
|
Umapathy VR, Natarajan PM, Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review. Molecules 2024; 29:2402. [PMID: 38792263 PMCID: PMC11123887 DOI: 10.3390/molecules29102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, BIHER, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|