1
|
Pölönen P, Mullighan CG, Teachey DT. Classification and risk stratification in T-lineage acute lymphoblastic leukemia. Blood 2025; 145:1464-1474. [PMID: 39357057 PMCID: PMC12002191 DOI: 10.1182/blood.2023022920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Cure rates for patients with acute lymphoblastic leukemia (ALL) have improved markedly in recent decades, in part because of risk stratification incorporating leukemia genomics, response to treatment, and clinical features to be able to determine at diagnosis which patients are more likely to relapse or have refractory disease. Although risk stratification is well developed for patients with B-lineage ALL, it remains challenging for those with T-lineage ALL (T-ALL). Prognostic factors validated across clinical trials and real-world data in T-ALL include age, central nervous system involvement, and measurable residual disease (MRD) response. Immunophenotype, including early T-cell precursor ALL, is widely used to classify T-ALL but is not consistently associated with outcome in multivariable risk models. Historically, few genetic alterations have been consistently associated with outcome, but recent comprehensive, large-scale genomic profiling has identified multiple genetic subtypes and alterations associated with outcome independent of MRD. This review highlights ongoing efforts to identify reliable prognostic biomarkers and underscores the potential of genomics-based classification to guide future T-ALL treatment strategies.
Collapse
Affiliation(s)
- Petri Pölönen
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - David T. Teachey
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
Tremblay CS, Saw J, Yan F, Boyle JA, Amarasinghe O, Abdollahi S, Vo ANQ, Shields BJ, Mayoh C, McCalmont H, Evans K, Steiner A, Parsons K, McCormack MP, Powell DR, Wong NC, Jane SM, Lock RB, Curtis DJ. Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia. Leukemia 2025; 39:577-589. [PMID: 39849166 PMCID: PMC11879882 DOI: 10.1038/s41375-024-02491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3. Despite a highly proliferative state, these FLT3-overexpressing cells had long-term self-renewal capacity and almost complete resistance to chemotherapy. Chromatin immunoprecipitation and assay for transposase-accessible chromatin sequencing demonstrated FLT3 and its ligand may be direct targets of the LMO2 stem-cell complex. Media conditioned by Lmo2 transgenic thymocytes revealed an autocrine FLT3-dependent signaling loop that could be targeted by the FLT3 inhibitor gilteritinib. Consequently, gilteritinib impaired in vivo growth of ETP-ALL and improved the sensitivity to chemotherapy. Furthermore, gilteritinib enhanced response to the BCL2 inhibitor venetoclax, which may enable "chemo-free" treatment of ETP-ALL. Together, these data provide a cellular and molecular explanation for enhanced cytokine signaling in LMO2-driven ETP-ALL beyond activating mutations and a rationale for clinical trials of FLT3 inhibitors in ETP-ALL.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Jesslyn Saw
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute (WEHI) of Medical Research, Parkville, VIC, Australia
| | - Jacqueline A Boyle
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Ovini Amarasinghe
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shokoufeh Abdollahi
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Anh N Q Vo
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Benjamin J Shields
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Anna Steiner
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Women in Lymphoma, Lymphoma Australia, Brisbane, QLD, Australia
| | - Kevin Parsons
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Stephen M Jane
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| |
Collapse
|
3
|
Vllahu M, Savarese M, Cantiello I, Munno C, Sarcina R, Stellato P, Leone O, Alfieri M. Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2025; 13:424. [PMID: 40002837 PMCID: PMC11852417 DOI: 10.3390/biomedicines13020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, comprising almost 25% of all malignancies diagnosed in children younger than 20 years, and its incidence is still increasing. ALL is a blood cancer arising from the unregulated proliferation of clonal lymphoid progenitor cells. To make a diagnosis of B-cell ALL, bone marrow morphology and immunophenotyping are needed; cerebrospinal fluid examination, and chromosomal analysis are currently used as stratification exams. Currently, almost 70% of children affected by B-cell ALL are characterized by well-known cytogenetic abnormalities. However, the integration of results with "omic" techniques (genomics, transcriptomics, proteomics, and metabolomics, both individually and integrated) able to analyze simultaneously thousands of molecules, has enabled a deeper definition of the molecular scenario of B-cell ALL and the identification of new genetic alterations. Studies based on omics have greatly deepened our knowledge of ALL, expanding the horizon from the traditional morphologic and cytogenetic point of view. In this review, we focus our attention on the "omic" approaches mainly used to improve the understanding and management of B-cell ALL, crucial for the diagnosis, prognosis, and treatment of the disease, offering a pathway toward more precise and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Megi Vllahu
- Department of Precision Medicine, Università of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Savarese
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Immacolata Cantiello
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Carmen Munno
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Rosalba Sarcina
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Pio Stellato
- Oncohematology Unit, Department of Oncology, Hematology and Cellular Therapies, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy
| | - Ornella Leone
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| |
Collapse
|
4
|
Zhou H, Zhu W, Ma Q, Liu N, Jin M, Feng Y, Zhao L, Sun R, Li R, Li H, Shi Y, Wang J, Liu L, Guo Z. Case report: The case of T-cell acute lymphoblastic leukemia treated with chemotherapy followed by anti-CD7 CAR-T cells using retroviral vector. Front Immunol 2025; 15:1519055. [PMID: 39877371 PMCID: PMC11772494 DOI: 10.3389/fimmu.2024.1519055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
CD7-targeted chimeric antigen receptor-T (CAR-T) cell therapy has shown great promise in the treatment of relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL). In this study, we reported a case of a 34-year-old male patient with T-ALL who finally developed multi-line drug resistance and refractoriness after multiple lines of high-intensity chemotherapy. After physician evaluation, this patient received allogeneic hematopoietic stem cell transplantation (allo-HSCT). Then, The patient remained in complete remission (CR) for four months before a relapse with 26.64% chimerism rate, so he was treated with allogeneic anti-CD7 CAR-T cells after chemotherapy reducing the tumor burden. The CAR-T product was a novel anti-CD7 CAR-T based on retroviral vectors (RV). After infusion, the patient achieved CR within 1 month after anti-CD7 CAR-T infusion and the remission has been ongoing for 9 months to date. Cytokine release syndrome (CRS) 1 was experienced while no immune effector cell-associated neurotoxicity syndrome (ICANS) was found. In addition, CAR copy number peaked at 350, 758 copies/μg on day 6. This case report of clinical treatment of T-ALL with anti-CD7 CAR-T cells prepared using a retroviral vector without gene editing and combined with chemotherapy, which demonstrated that the RV-based anti-CD7 CAR-T cells had good therapeutic effect and high safety in triple-refractory T-ALL patients.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenxiang Zhu
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Qihong Ma
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Ning Liu
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mengdi Jin
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yaru Feng
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Lijun Zhao
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Rui Sun
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Rongyou Li
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Huaxiu Li
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Yuanyuan Shi
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Jianxun Wang
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Liqiong Liu
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhi Guo
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Krstevska Bozhinovikj E, Matevska-Geshkovska N, Staninova Stojovska M, Gjorgievska E, Jovanovska A, Kocheva S, Dimovski A. CREBBP is a Major Prognostic Biomarker for Relapse in Childhood B-cell Acute Lymphoblastic Leukemia: A National Study of Unselected Cohort. Balkan J Med Genet 2024; 27:5-12. [PMID: 40070861 PMCID: PMC11892942 DOI: 10.2478/bjmg-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Although the identification of disease subtypes conveying prognostic significance along with minimal residual disease (MRD) assessment represent cornerstones for stratification in childhood acute lymphoblastic leukemia (ALL), approximately half of the relapses occur in patients from standard-risk groups. Identification of the drivers of treatment failure is crucial for detection of high-risk clones at diagnosis. We evaluated clinical variables and the most common genetic alterations in an unselected cohort of 55 patients with B-ALL treated according to the ALL-IC-BFM 2002 protocol, with a median follow-up of 46 months. Matched diagnosis-relapse samples underwent screening for additional alterations using whole-exome sequencing. Mutations in the CREBBP gene were found in 80% (4/5) of the patients with relapse, either present from the disease onset or acquired at relapse, while none of the examined patients in remission presented alterations in this gene. Deletions in TP53 and EBF1 (present in 2/5 and 1/5 of the patients with relapse, respectively) were infrequent or absent in the patients in remission, respectively. Screening for alterations in the CREBBP gene at diagnosis and/or at multiple time-points during chemotherapy could be incorporated into treatment protocols, as it may contribute to the identification of significant number of patients with predefined or acquired chemoresistant clones.
Collapse
Affiliation(s)
- E Krstevska Bozhinovikj
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University Ss. Cyril and Methodius in Skopje, Mother Theresa 47, 1000Skopje, N. Macedonia
| | - N Matevska-Geshkovska
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University Ss. Cyril and Methodius in Skopje, Mother Theresa 47, 1000Skopje, N. Macedonia
| | - M Staninova Stojovska
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University Ss. Cyril and Methodius in Skopje, Mother Theresa 47, 1000Skopje, N. Macedonia
| | - E Gjorgievska
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University Ss. Cyril and Methodius in Skopje, Mother Theresa 47, 1000Skopje, N. Macedonia
| | - A Jovanovska
- University Clinic for Pediatric diseases, Faculty of Medicine, University Ss. Cyril and Methodius in Skopje, Mother Theresa 17, 1000, Skopje, N. Macedonia
| | - S Kocheva
- University Clinic for Pediatric diseases, Faculty of Medicine, University Ss. Cyril and Methodius in Skopje, Mother Theresa 17, 1000, Skopje, N. Macedonia
| | - A Dimovski
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University Ss. Cyril and Methodius in Skopje, Mother Theresa 47, 1000Skopje, N. Macedonia
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000, Skopje, N. Macedonia
| |
Collapse
|
7
|
Si HQ, Wang P, Long F, Zhong W, Meng YD, Rong Y, Meng XY, Wang FB. Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications. Mol Cancer 2024; 23:265. [PMID: 39614371 PMCID: PMC11605934 DOI: 10.1186/s12943-024-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA, are expected to revolutionize the current landscape of cancer diagnostics and treatment. However, the existing methods for cfDNA-based liquid biopsies for cancer have certain limitations, such as fragment interruption and GC bias, which are likely to be resolved by the emerging Oxford Nanopore Technologies (ONT), characterized by long read-length, fast read-times, high throughput, and polymerase chain reaction-free. In this review, we summarized the current literatures regarding the feasibility and applications of cfDNA-based liquid biopsies using ONT for cancer management, a possible game-changer that we believe is promising in detecting multimodal biomarkers and can be applied in a wide range of oncology utilities including early screening, diagnosis, and treatment monitoring.
Collapse
Affiliation(s)
- Hua-Qi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan-Dong Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang-Yu Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Rheingold SR, Bhojwani D, Ji L, Xu X, Devidas M, Kairalla JA, Shago M, Heerema NA, Carroll AJ, Breidenbach H, Borowitz M, Wood BL, Angiolillo AL, Asselin BL, Bowman WP, Brown P, Dreyer ZE, Dunsmore KP, Hilden JM, Larsen E, Maloney K, Matloub Y, Mattano LA, Winter SS, Gore L, Winick NJ, Carroll WL, Hunger SP, Raetz EA, Loh ML. Determinants of survival after first relapse of acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2024; 38:2382-2394. [PMID: 39261601 PMCID: PMC11518984 DOI: 10.1038/s41375-024-02395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Limited prognostic factors have been associated with overall survival (OS) post-relapse in childhood Acute Lymphoblastic Leukemia (ALL). Patients enrolled on 12 Children's Oncology Group frontline ALL trials (1996-2014) were analyzed to assess for additional prognostic factors associated with OS post-relapse. Among 16,115 patients, 2053 (12.7%) relapsed. Relapse rates were similar for B-ALL (12.5%) and T-ALL (11.2%) while higher for infants (34.2%). Approximately 50% of B-ALL relapses occurred late (≥36 months) and 72.5% involved the marrow. Conversely, 64.8% of T-ALL relapses occurred early (<18 months) and 47.1% involved the central nervous system. The 5-year OS post-relapse for the entire cohort was 48.9 ± 1.2%; B-ALL:52.5 ± 1.3%, T-ALL:35.5 ± 3.3%, and infant ALL:21.5 ± 3.9%. OS varied by early, intermediate and late time-to-relapse; 25.8 ± 2.4%, 49.5 ± 2.2%, and 66.4 ± 1.8% respectively for B-ALL and 29.8 ± 3.9%, 33.3 ± 7.6%, 58 ± 9.8% for T-ALL. Patients with ETV6::RUNX1 or Trisomy 4 + 10 had median time-to-relapse of 43 months and higher OS post-relapse 74.4 ± 3.1% and 70.2 ± 3.6%, respectively. Patients with hypodiploidy, KMT2A-rearrangement, and TCF3::PBX1 had short median time-to-relapse (12.5-18 months) and poor OS post-relapse (14.2 ± 6.1%, 31.9 ± 7.7%, 36.8 ± 6.6%). Site-of-relapse varied by cytogenetic subtype. This large dataset provided the opportunity to identify risk factors for OS post-relapse to inform trial design and highlight populations with dismal outcomes post-relapse.
Collapse
Affiliation(s)
- Susan R Rheingold
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Deepa Bhojwani
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lingyun Ji
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinxin Xu
- Children's Oncology Group, Monrovia, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John A Kairalla
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Mary Shago
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael Borowitz
- Department of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Barbara L Asselin
- Department of Pediatrics, Golisano Children's Hospital, Wilmot Cancer Center at University of Rochester Medical Center, Rochester, New York, NY, USA
| | | | | | - ZoAnn E Dreyer
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly P Dunsmore
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joanne M Hilden
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Eric Larsen
- Department of Pediatrics, Maine Medical Center, Portland, ME, USA
| | - Kelly Maloney
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Yousif Matloub
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Stuart S Winter
- Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, MN, USA
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Naomi J Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Childrens Health, Dallas, TX, USA
| | - William L Carroll
- Perlmutter Cancer Center, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Raetz
- Perlmutter Cancer Center, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Mignon L Loh
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
9
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Kentsis A. Toward a Unified Theory of Why Young People Develop Cancer. Cold Spring Harb Perspect Med 2024; 14:a041658. [PMID: 38692742 PMCID: PMC11444251 DOI: 10.1101/cshperspect.a041658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Epidemiologic and genetic studies have now defined specific patterns of incidence and distinct molecular features of cancers in young versus aging people. Here, I review a general framework for the causes of cancer in children and young adults by relating somatic genetic mosaicism and developmental tissue mutagenesis. This framework suggests how aging-associated cancers such as carcinomas, glioblastomas, and myelodysplastic leukemias are causally distinct from cancers that predominantly affect children and young adults, including lymphoblastic and myeloid leukemias, sarcomas, neuroblastomas, medulloblastomas, and other developmental cancers. I discuss the oncogenic activities of known developmental mutators RAG1/2, AID, and PGBD5, and describe strategies needed to define missing developmental causes of young-onset cancers. Thus, a precise understanding of the mechanisms of tissue-specific somatic mosaicism, developmental mutators, and their control by human genetic variation and environmental exposures is needed for improved strategies for cancer screening, prevention, and treatment.
Collapse
Affiliation(s)
- Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute and Department of Pediatrics, Weill Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
11
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
12
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Fregona V, Bayet M, Bouttier M, Largeaud L, Hamelle C, Jamrog LA, Prade N, Lagarde S, Hebrard S, Luquet I, Mansat-De Mas V, Nolla M, Pasquet M, Didier C, Khamlichi AA, Broccardo C, Delabesse É, Mancini SJ, Gerby B. Stem cell-like reprogramming is required for leukemia-initiating activity in B-ALL. J Exp Med 2024; 221:e20230279. [PMID: 37930337 PMCID: PMC10626194 DOI: 10.1084/jem.20230279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs). We show that PAX5::ELN disrupts the differentiation of preleukemic cells by enforcing the IL7r/JAK-STAT pathway. This disruption is associated with the induction of rare and quiescent pre-LSCs that sustain the leukemia-initiating activity, as assessed using the H2B-GFP model. Integration of transcriptomic and chromatin accessibility data reveals that those quiescent pre-LSCs lose B cell identity and reactivate an immature molecular program, reminiscent of human B-ALL chemo-resistant cells. Finally, our transcriptional regulatory network reveals the transcription factor EGR1 as a strong candidate to control quiescence/resistance of PAX5::ELN pre-LSCs as well as of blasts from human B-ALL.
Collapse
Affiliation(s)
- Vincent Fregona
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Manon Bayet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Mathieu Bouttier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laetitia Largeaud
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Camille Hamelle
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laura A. Jamrog
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Naïs Prade
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphanie Lagarde
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sylvie Hebrard
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Isabelle Luquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie Nolla
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marlène Pasquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Christine Didier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre Nationale de la Recherche Scientifique, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Cyril Broccardo
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Éric Delabesse
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane J.C. Mancini
- Université de Rennes, Etablissement Français du Sang, Inserm, MOBIDIC—UMR_S 1236, Rennes, France
| | - Bastien Gerby
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| |
Collapse
|
14
|
Contreras Yametti GP, Robbins G, Chowdhury A, Narang S, Ostrow TH, Kilberg H, Greenberg J, Kramer L, Raetz E, Tsirigos A, Evensen NA, Carroll WL. SETD2 mutations do not contribute to clonal fitness in response to chemotherapy in childhood B cell acute lymphoblastic leukemia. Leuk Lymphoma 2024; 65:78-90. [PMID: 37874744 PMCID: PMC11874253 DOI: 10.1080/10428194.2023.2273752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Mutations in genes encoding epigenetic regulators are commonly observed at relapse in B cell acute lymphoblastic leukemia (B-ALL). Loss-of-function mutations in SETD2, an H3K36 methyltransferase, have been observed in B-ALL and other cancers. Previous studies on mutated SETD2 in solid tumors and acute myelogenous leukemia support a role in promoting resistance to DNA damaging agents. We did not observe chemoresistance, an impaired DNA damage response, nor increased mutation frequency in response to thiopurines using CRISPR-mediated knockout in wild-type B-ALL cell lines. Likewise, restoration of SETD2 in cell lines with hemizygous mutations did not increase sensitivity. SETD2 mutations affected the chromatin landscape and transcriptional output that was unique to each cell line. Collectively our data does not support a role for SETD2 mutations in driving clonal evolution and relapse in B-ALL, which is consistent with the lack of enrichment of SETD2 mutations at relapse in most studies.
Collapse
Affiliation(s)
- Gloria P. Contreras Yametti
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Gabriel Robbins
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Ashfiyah Chowdhury
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Sonali Narang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Talia H. Ostrow
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Harrison Kilberg
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Joshua Greenberg
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Lindsay Kramer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Elizabeth Raetz
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Aristotelis Tsirigos
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Nikki A. Evensen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - William L. Carroll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY
- Department of Pathology, NYU Langone Health, New York, NY
| |
Collapse
|
15
|
Zhang Y, Patel RP, Kim KH, Cho H, Jo JC, Jeong SH, Oh SY, Choi YS, Kim SH, Lee JH, Angelos M, Guruprasad P, Cohen I, Ugwuanyi O, Lee YG, Pajarillo R, Cho JH, Carturan A, Paruzzo L, Ghilardi G, Wang M, Kim S, Kim SM, Lee HJ, Park JH, Cui L, Lee TB, Hwang IS, Lee YH, Lee YJ, Porazzi P, Liu D, Lee Y, Kim JH, Lee JS, Yoon DH, Chung J, Ruella M. Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study. Mol Cancer 2023; 22:200. [PMID: 38066564 PMCID: PMC10709913 DOI: 10.1186/s12943-023-01886-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION NCT05338931; Date: 2022-04-01.
Collapse
Affiliation(s)
- Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea
| | - Jae-Cheol Jo
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | - Sung Yong Oh
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | - Sung Hyun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Soohwan Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Sung-Min Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyun-Jong Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Ji-Ho Park
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Leiguang Cui
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Tae Bum Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - In-Sik Hwang
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Young-Ha Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Yong-Jun Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yoon Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Hoon Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Seo Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea.
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea.
| | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Suite 510, Samsung Cancer Research Building, 103 Daehak-Ro, Jongno-Gu, Seoul, Korea.
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Kim PY, Leung CT. Therapeutic potentials and challenges of cytostatic persister cancer cells. Oncotarget 2023; 14:944-945. [PMID: 38039406 PMCID: PMC10691818 DOI: 10.18632/oncotarget.28488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 12/03/2023] Open
Affiliation(s)
| | - Cheuk T. Leung
- Correspondence to:Cheuk T. Leung, Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA email
| |
Collapse
|
17
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
18
|
Hu Y, Salgado Figueroa D, Zhang Z, Veselits M, Bhattacharyya S, Kashiwagi M, Clark MR, Morgan BA, Ay F, Georgopoulos K. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 2023; 186:5269-5289.e22. [PMID: 37995656 PMCID: PMC10895928 DOI: 10.1016/j.cell.2023.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniela Salgado Figueroa
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Margaret Veselits
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sourya Bhattacharyya
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
19
|
Jia MZ, Li WJ, Wang CJ, Zhang Q, Gao C, Huang XT, Zhu T, Zhang RD, Cui L, Li ZG. Tracing back of relapse clones by Ig/TCR gene rearrangements reveals complex patterns of recurrence in pediatric acute lymphoblastic leukemia. Int J Lab Hematol 2023; 45:717-725. [PMID: 37194559 DOI: 10.1111/ijlh.14100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Relapse remained the major obstacle to improving the prognosis of children with acute lymphoblastic leukemia (ALL). This study aimed to investigate the changing patterns of Ig/TCR gene rearrangements between diagnosis and relapse and the clinical relevance and to explore the mechanism of leukemic relapse. METHODS Clonal Ig/TCR gene rearrangements were screened by multiplex PCR amplification in 85 paired diagnostic and relapse bone marrow (BM) samples from children with ALL. The new rearrangements presented at relapse were quantitatively assessed by the RQ-PCR approach targeting the patient-specific junctional region sequence in 19 diagnostic samples. The relapse clones were further back-traced to diagnostic and follow-up BM samples from 12 patients. RESULTS Comparison of Ig/TCR gene rearrangements between diagnosis and relapse showed that 40 (57.1%) B-ALL and 5 (33.3%) T-ALL patients exhibited a change from diagnosis to relapse, and 25 (35.7%) B-ALL patients acquired new rearrangements at relapse. The new relapse rearrangements were present in 15 of the 19 (78.9%) diagnostic samples as shown by RQ-PCR, with a median level of 5.26 × 10-2 . The levels of minor rearrangements correlated with B immunophenotype, WBC counts, age at diagnosis, and recurrence time. Furthermore, back-tracing rearrangements in 12 patients identified three patterns of relapse clone dynamics, which suggested the recurrence mechanisms not only through clonal selection of pre-existing subclones but also through an ongoing clonal evolution during remission and relapse. CONCLUSION Backtracking Ig/TCR gene rearrangements in relapse clones of pediatric ALL revealed complex patterns of clonal selection and evolution for leukemic relapse.
Collapse
Affiliation(s)
- Ming-Zhu Jia
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei-Jing Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chan-Juan Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Qing Zhang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chao Gao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiao-Tong Huang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ting Zhu
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Caserta C, Nucera S, Barcella M, Fazio G, Naldini MM, Pagani R, Pavesi F, Desantis G, Zonari E, D'Angiò M, Capasso P, Lombardo A, Merelli I, Spinelli O, Rambaldi A, Ciceri F, Silvestri D, Valsecchi MG, Biondi A, Cazzaniga G, Gentner B. miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease. Leukemia 2023; 37:1994-2005. [PMID: 37640845 DOI: 10.1038/s41375-023-02009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Complete elimination of B-cell acute lymphoblastic leukemia (B-ALL) by a risk-adapted primary treatment approach remains a clinical key objective, which fails in up to a third of patients. Recent evidence has implicated subpopulations of B-ALL cells with stem-like features in disease persistence. We hypothesized that microRNA-126, a core regulator of hematopoietic and leukemic stem cells, may resolve intratumor heterogeneity in B-ALL and uncover therapy-resistant subpopulations. We exploited patient-derived xenograft (PDX) models with B-ALL cells transduced with a miR-126 reporter allowing the prospective isolation of miR-126(high) cells for their functional and transcriptional characterization. Discrete miR-126(high) populations, often characterized by MIR126 locus demethylation, were identified in 8/9 PDX models and showed increased repopulation potential, in vivo chemotherapy resistance and hallmarks of quiescence, inflammation and stress-response pathway activation. Cells with a miR-126(high) transcriptional profile were identified as distinct disease subpopulations by single-cell RNA sequencing in diagnosis samples from adult and pediatric B-ALL. Expression of miR-126 and locus methylation were tested in several pediatric and adult B-ALL cohorts, which received standardized treatment. High microRNA-126 levels and locus demethylation at diagnosis associate with suboptimal response to induction chemotherapy (MRD > 0.05% at day +33 or MRD+ at day +78).
Collapse
Affiliation(s)
- Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Nucera
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Riccardo Pagani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Pavesi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giacomo Desantis
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariella D'Angiò
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Capasso
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Genetics, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy.
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
21
|
Tang C, Xie AX, Liu EM, Kuo F, Kim M, DiNatale RG, Golkaram M, Chen YB, Gupta S, Motzer RJ, Russo P, Coleman J, Carlo MI, Voss MH, Kotecha RR, Lee CH, Tansey W, Schultz N, Hakimi AA, Reznik E. Immunometabolic coevolution defines unique microenvironmental niches in ccRCC. Cell Metab 2023; 35:1424-1440.e5. [PMID: 37413991 PMCID: PMC10603615 DOI: 10.1016/j.cmet.2023.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Amy X Xie
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renzo G DiNatale
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Ying-Bei Chen
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sounak Gupta
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ritesh R Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wesley Tansey
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
22
|
Montes-Rodríguez IM, Soto-Salgado M, Torres-Cintrón CR, Tomassini-Fernandini JC, Suárez E, Clavell LA, Cadilla CL. Incidence and Mortality Rates for Childhood Acute Lymphoblastic Leukemia in Puerto Rican Hispanics, 2012-2016. Cancer Epidemiol Biomarkers Prev 2023; 32:1030-1037. [PMID: 37222662 PMCID: PMC10524932 DOI: 10.1158/1055-9965.epi-22-1227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) accounts for 80% of all leukemias diagnosed in children. Although ALL age patterns are consistent across racial/ethnic groups, their incidence and mortality rates are highly variable. We assessed the age-standardized ALL incidence and mortality rates of Puerto Rican Hispanic (PRH) children and compared them with those of US mainland Hispanics (USH), non-Hispanic Whites (NHW), non-Hispanic Blacks (NHB), and Non-Hispanic Asian or Pacific Islanders (NHAPI). METHODS Differences between racial/ethnic groups were assessed by estimating the standardized rate ratio (SRR) for 2010 to 2014. Secondary data analyses of the Puerto Rico Central Cancer Registry and the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) databases were performed for the 2001 to 2016 period. RESULTS PRH children had 31% lower incidence rates than USH, but 86% higher incidence rates than NHB. In addition, the incidence trends of ALL increased significantly from 2001 to 2016 among PRH and USH, with 5% and 0.9% per year, respectively. Moreover, PRH have a lower 5-year overall survival (81.7%) when compared with other racial/ethnic groups. CONCLUSIONS PRH children were found to have disparities in ALL incidence and mortality rates compared with other racial/ethnic groups in the US. Additional research is warranted to identify the genetic and environmental risk factors that may be associated with the disparities observed. IMPACT This is the first study reporting the incidence and mortality rates of childhood ALL for PRH and making comparisons with other racial/ethnic groups in the US. See related commentary by Mejía-Aranguré and Núñez-Enríquez, p. 999.
Collapse
Affiliation(s)
| | - Marievelisse Soto-Salgado
- Division of Cancer Control and Population Sciences, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | - Carlos R. Torres-Cintrón
- Puerto Rico Central Cancer Registry, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | | | - Erick Suárez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | - Luis A. Clavell
- Division of Pediatric Oncology, San Jorge Children’s Hospital, San Juan, PR
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| |
Collapse
|
23
|
Bedics G, Egyed B, Kotmayer L, Benard-Slagter A, de Groot K, Bekő A, Hegyi LL, Bátai B, Krizsán S, Kriván G, Erdélyi DJ, Müller J, Haltrich I, Kajtár B, Pajor L, Vojcek Á, Ottóffy G, Ujfalusi A, Szegedi I, Tiszlavicz LG, Bartyik K, Csanádi K, Péter G, Simon R, Hauser P, Kelemen Á, Sebestyén E, Jakab Z, Matolcsy A, Kiss C, Kovács G, Savola S, Bödör C, Alpár D. PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia. Br J Cancer 2023; 129:455-465. [PMID: 37340093 PMCID: PMC10403542 DOI: 10.1038/s41416-023-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Recurrent genetic lesions provide basis for risk assessment in pediatric acute lymphoblastic leukemia (ALL). However, current prognostic classifiers rely on a limited number of predefined sets of alterations. METHODS Disease-relevant copy number aberrations (CNAs) were screened genome-wide in 260 children with B-cell precursor ALL. Results were integrated with cytogenetic data to improve risk assessment. RESULTS CNAs were detected in 93.8% (n = 244) of the patients. First, cytogenetic profiles were combined with IKZF1 status (IKZF1normal, IKZF1del and IKZF1plus) and three prognostic subgroups were distinguished with significantly different 5-year event-free survival (EFS) rates, IKAROS-low (n = 215): 86.3%, IKAROS-medium (n = 27): 57.4% and IKAROS-high (n = 18): 37.5%. Second, contribution of genetic aberrations to the clinical outcome was assessed and an aberration-specific score was assigned to each prognostically relevant alteration. By aggregating the scores of aberrations emerging in individual patients, personalized cumulative values were calculated and used for defining four prognostic subgroups with distinct clinical outcomes. Two favorable subgroups included 60% of patients (n = 157) with a 5-year EFS of 96.3% (excellent risk, n = 105) and 87.2% (good risk, n = 52), respectively; while 40% of patients (n = 103) showed high (n = 74) or ultra-poor (n = 29) risk profile (5-year EFS: 67.4% and 39.0%, respectively). CONCLUSIONS PersonALL, our conceptually novel prognostic classifier considers all combinations of co-segregating genetic alterations, providing a highly personalized patient stratification.
Collapse
Affiliation(s)
- Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Bátai
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Kriván
- Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Pajor
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Bartyik
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Réka Simon
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Li SQ, Chen M, Huang XY, Wang H, Chang YJ. Challenges facing minimal residual disease testing for acute myeloid leukemia and promising strategies to overcome them. Expert Rev Hematol 2023; 16:981-990. [PMID: 37978882 DOI: 10.1080/17474086.2023.2285985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Minimal residual disease (MRD) has been an important biomarker for relapse prediction and treatment choice in patients with acute myeloid leukemia (AML). False-positive or false-negative MRD results due to the low specificity and sensitivity of techniques such as multiparameter flow cytometry (MFC), real-time quantitative polymerase chain reaction, and next-generation sequencing, as well as the biological characteristics of residual leukemia cells, including antigen shift, clone involution, heterogeneous genome of the blast cells, and lack of specific targets, all restrict the clinical use of MRD. AREAS COVERED We summarized the challenges of the techniques for MRD detection, and their application in the clinical setting. We also discussed strategies to overcome these challenges, such as the MFC MRD method based on leukemia stem cells, single-cell DNA sequencing or single-cell RNA sequencing for the investigation of biological characteristics of residual leukemia cells, and the potential of omics techniques for MRD detection. We further noted out that prospective clinical trials are needed to answer clinical questions related to MRD in patients with AML. EXPERT OPINION MRD is an important biomarker for individual therapy of patients with AML. In the future, it is important to increase the specificity and sensitivity of the detection techniques.
Collapse
Affiliation(s)
- Si-Qi Li
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| | - Man Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Xi-Yi Huang
- Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, P.R.C
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Ying-Jun Chang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| |
Collapse
|
25
|
Sarno J, Domizi P, Liu Y, Merchant M, Pedersen CB, Jedoui D, Jager A, Nolan GP, Gaipa G, Bendall SC, Bava FA, Davis KL. Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:2935. [PMID: 37217509 DOI: 10.1038/s41467-023-38456-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.
Collapse
Affiliation(s)
- Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Pablo Domizi
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Yuxuan Liu
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Milton Merchant
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Christina Bligaard Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dorra Jedoui
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Astraea Jager
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, (MB), Italy
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Felice-Alessio Bava
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
27
|
Ly C, Ogana H, Kim HN, Hurwitz S, Deeds EJ, Kim YM, Rowat AC. Altered physical phenotypes of leukemia cells that survive chemotherapy treatment. Integr Biol (Camb) 2023; 15:zyad006. [PMID: 37247849 DOI: 10.1093/intbio/zyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes. To quantify physical phenotypes of chemotherapy-treated leukemia cells, we use cells derived from B-ALL patients that are treated for 7 days with a standard multidrug chemotherapy regimen of vincristine, dexamethasone, and L-asparaginase (VDL). We conduct physical phenotyping of VDL-treated versus control cells by tracking the sequential deformations of single cells as they flow through a series of micron-scale constrictions in a microfluidic device; we call this method Quantitative Cyclical Deformability Cytometry. Using automated image analysis, we extract time-dependent features of deforming cells including cell size and transit time (TT) with single-cell resolution. Our findings show that VDL-treated B-ALL cells have faster TTs and transit velocity than control cells, indicating that VDL-treated cells are more deformable. We then test how effectively physical phenotypes can predict the presence of VDL-treated cells in mixed populations of VDL-treated and control cells using machine learning approaches. We find that TT measurements across a series of sequential constrictions can enhance the classification accuracy of VDL-treated cells in mixed populations using a variety of classifiers. Our findings suggest the predictive power of cell physical phenotyping as a complementary prognostic tool to detect the presence of cells that survive chemotherapy treatment. Ultimately such complementary physical phenotyping approaches could guide treatment strategies and therapeutic interventions. Insight box Cancer cells that survive chemotherapy treatment are major contributors to patient relapse, but the ability to predict recurrence remains a challenge. Here we investigate the physical properties of leukemia cells that survive treatment with chemotherapy drugs by deforming individual cells through a series of micron-scale constrictions in a microfluidic channel. Our findings reveal that leukemia cells that survive chemotherapy treatment are more deformable than control cells. We further show that machine learning algorithms applied to physical phenotyping data can predict the presence of cells that survive chemotherapy treatment in a mixed population. Such an integrated approach using physical phenotyping and machine learning could be valuable to guide patient treatments.
Collapse
Affiliation(s)
- Chau Ly
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha Hurwitz
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric J Deeds
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy C Rowat
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Chitadze G, Stengel A, John-Klaua C, Bruckmüller J, Trautmann H, Kotrova M, Darzentas F, Kelm M, Pal K, Darzentas N, Bastian L, Kehden B, Wessels W, Ströh AS, Oberg HH, Altrock PM, Baer C, Meggendorfer M, Gökbuget N, Baldus CD, Haferlach C, Brüggemann M. Somatic TP53 mutations are preleukemic events in acute lymphoblastic leukemia. Blood 2023; 141:1640-1644. [PMID: 36450137 PMCID: PMC10651768 DOI: 10.1182/blood.2022017249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Guranda Chitadze
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
- Clinical Research Unit CATCH-ALL, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Cathrin John-Klaua
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julien Bruckmüller
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Solana Research GmbH, Windeby, Germany
| | - Heiko Trautmann
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Michaela Kotrova
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Franziska Darzentas
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Miriam Kelm
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Karol Pal
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nikos Darzentas
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Lorenz Bastian
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
- Clinical Research Unit CATCH-ALL, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Britta Kehden
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Wiebke Wessels
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Aeint-Steffen Ströh
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | | | | | - Nicola Gökbuget
- Department of Medicine II, Goethe University Hospital, Frankfurt, Germany
| | - Claudia D. Baldus
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
- Clinical Research Unit CATCH-ALL, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
- Clinical Research Unit CATCH-ALL, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Woodward EL, Yang M, Moura-Castro LH, van den Bos H, Gunnarsson R, Olsson-Arvidsson L, Spierings DCJ, Castor A, Duployez N, Zaliova M, Zuna J, Johansson B, Foijer F, Paulsson K. Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia. Nat Commun 2023; 14:1658. [PMID: 36966135 PMCID: PMC10039905 DOI: 10.1038/s41467-023-37356-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
High hyperdiploid acute lymphoblastic leukemia (HeH ALL), one of the most common childhood malignancies, is driven by nonrandom aneuploidy (abnormal chromosome numbers) mainly comprising chromosomal gains. In this study, we investigate how aneuploidy in HeH ALL arises. Single cell whole genome sequencing of 2847 cells from nine primary cases and one normal bone marrow reveals that HeH ALL generally display low chromosomal heterogeneity, indicating that they are not characterized by chromosomal instability and showing that aneuploidy-driven malignancies are not necessarily chromosomally heterogeneous. Furthermore, most chromosomal gains are present in all leukemic cells, suggesting that they arose early during leukemogenesis. Copy number data from 577 primary cases reveals selective pressures that were used for in silico modeling of aneuploidy development. This shows that the aneuploidy in HeH ALL likely arises by an initial tripolar mitosis in a diploid cell followed by clonal evolution, in line with a punctuated evolution model.
Collapse
Affiliation(s)
- Eleanor L Woodward
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Larissa H Moura-Castro
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebeqa Gunnarsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anders Castor
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Nicolas Duployez
- Laboratory of Hematology, Centre Hospitalier Universitaire (CHU) Lille, Lille, France
- Unité Mixte de Recherche en Santé (UMR-S) 1172, INSERM/University of Lille, Lille, France
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Bertil Johansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Thakur R, Bhatia P, Singh M, Sreedharanunni S, Sharma P, Singh A, Trehan A. Therapy-Acquired Clonal Mutations in Thiopurine Drug-Response Genes Drive Majority of Early Relapses in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Diagnostics (Basel) 2023; 13:diagnostics13050884. [PMID: 36900028 PMCID: PMC10001400 DOI: 10.3390/diagnostics13050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
METHODS Forty pediatric (0-12 years) B-ALL DNA samples (20 paired Diagnosis-Relapse) and an additional six B-ALL DNA samples (without relapse at 3 years post treatment), as the non-relapse arm, were retrieved from the biobank for advanced genomic analysis. Deep sequencing (1050-5000X; mean 1600X) was performed using a custom NGS panel of 74 genes incorporating unique molecular barcodes. RESULTS A total 47 major clones (>25% VAF) and 188 minor clones were noted in 40 cases after bioinformatic data filtering. Of the forty-seven major clones, eight (17%) were diagnosis-specific, seventeen (36%) were relapse-specific and 11 (23%) were shared. In the control arm, no pathogenic major clone was noted in any of the six samples. The most common clonal evolution pattern observed was therapy-acquired (TA), with 9/20 (45%), followed by M-M, with 5/20 (25%), m-M, with 4/20 (20%) and unclassified (UNC) 2/20 (10%). The TA clonal pattern was predominant in early relapses 7/12 (58%), with 71% (5/7) having major clonal mutations in the NT5C2 or PMS2 gene related to thiopurine-dose response. In addition, 60% (3/5) of these cases were preceded by an initial hit in the epigenetic regulator, KMT2D. Mutations in common relapse-enriched genes comprised 33% of the very early relapses, 50% of the early and 40% of the late relapses. Overall, 14/46 (30%) of the samples showed the hypermutation phenotype, of which the majority (50%) had a TA pattern of relapse. CONCLUSIONS Our study highlights the high frequency of early relapses driven by TA clones, demonstrating the need to identify their early rise during chemotherapy by digital PCR.
Collapse
Affiliation(s)
- Rozy Thakur
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Prateek Bhatia
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
- Correspondence: ; Tel.: +91-0172-2755329
| | - Minu Singh
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pankaj Sharma
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aditya Singh
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amita Trehan
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
31
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
32
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
33
|
Sampathi S, Chernyavskaya Y, Haney MG, Moore LH, Snyder IA, Cox AH, Fuller BL, Taylor TJ, Yan D, Badgett TC, Blackburn JS. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front Oncol 2022; 12:958673. [PMID: 36591474 PMCID: PMC9795051 DOI: 10.3389/fonc.2022.958673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, and patients with relapsed ALL have a poor prognosis. Detection of ALL blasts remaining at the end of treatment, or minimal residual disease (MRD), and spread of ALL into the central nervous system (CNS) have prognostic importance in ALL. Current methods to detect MRD and CNS disease in ALL rely on the presence of ALL blasts in patient samples. Cell-free DNA, or small fragments of DNA released by cancer cells into patient biofluids, has emerged as a robust and sensitive biomarker to assess cancer burden, although cfDNA analysis has not previously been applied to ALL. Methods We present a simple and rapid workflow based on NanoporeMinION sequencing of PCR amplified B cell-specific rearrangement of the (IGH) locus in cfDNA from B-ALL patient samples. A cohort of 5 pediatric B-ALL patient samples was chosen for the study based on the MRD and CNS disease status. Results Quantitation of IGH-variable sequences in cfDNA allowed us to detect clonal heterogeneity and track the response of individual B-ALL clones throughout treatment. cfDNA was detected in patient biofluids with clinical diagnoses of MRD and CNS disease, and leukemic clones could be detected even when diagnostic cell-count thresholds for MRD were not met. These data suggest that cfDNA assays may be useful in detecting the presence of ALL in the patient, even when blasts are not physically present in the biofluid sample. Conclusions The Nanopore IGH detection workflow to monitor cell-free DNA is a simple, rapid, and inexpensive assay that may ultimately serve as a valuable complement to traditional clinical diagnostic approaches for ALL.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Yelena Chernyavskaya
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Meghan G. Haney
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - L. Henry Moore
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Isabel A. Snyder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Anna H. Cox
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Brittany L. Fuller
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Tamara J. Taylor
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Donglin Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States,Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Tom C. Badgett
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,*Correspondence: Jessica S. Blackburn,
| |
Collapse
|
34
|
Ahn J, Kim T, Jung S, Ahn S, Song G, Kim M, Yang D, Lee J, Kim MY, Moon JH, Zhang Z, Kim H, Kim DDH. Next-generation sequencing-based analysis to assess the pattern of relapse in patients with Philadelphia-positive acute lymphoblastic leukemia. EJHAEM 2022; 3:1145-1153. [PMID: 36467841 PMCID: PMC9713221 DOI: 10.1002/jha2.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, we performed serial monitoring using targeted DNA sequencing to identify genetic alterations in adults with Philadelphia-positive acute lymphoblastic leukemia (Ph-ALL). Deep sequencing was performed by targeting the coding regions of 45 genes with recurrent driver mutations and 1129 single nucleotide polymorphism sites. Of the 43 patients that we examined, at least one case of genetic alterations was detected in 38 (88%) of the 43 patients at diagnosis (somatic mutations in 10 patients [23%] and copy number aberrations [CNA] in 36 patients [84%]). The most frequently detected CNA lesions were in IKZF1 (n = 25, 58%) and the most frequently mutated gene was SETD2 (n = 5). At least one genetic abnormality (loss, gain, or persistence) was observed in all the samples obtained at relapse that were available for analysis (n = 15), compared with the samples obtained at diagnosis (disappearance of any previously detected genetic alterations: 11 patients [73%]; new genetic abnormalities: nine patients [60%]; and persistent genetic abnormalities: eight patients [53%]]. The most frequently deleted lesions were in IKZF1 (n = 9, 60%), and the most frequently mutated gene was ABL1 (eight patients, 53%). Our data indicate that leukemic progression may be associated with complex genetic alterations in Ph-ALL during the course of treatment.
Collapse
Affiliation(s)
- Jae‐Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada
| | - Sung‐Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Seo‐Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Ga‐Young Song
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Mihee Kim
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Deok‐Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Je‐Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Mi Yeon Kim
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | - Joon Ho Moon
- Department of Hematology‐OncologyKyungpook National University Hospital, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - Hyeoung‐Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | | |
Collapse
|
35
|
Jia Z, Gu Z. PAX5 alterations in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:1023606. [PMID: 36387144 PMCID: PMC9640836 DOI: 10.3389/fonc.2022.1023606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
PAX5, a master regulator of B cell development and maintenance, is one of the most common targets of genetic alterations in B-cell acute lymphoblastic leukemia (B-ALL). PAX5 alterations consist of copy number variations (whole gene, partial, or intragenic), translocations, and point mutations, with distinct distribution across B-ALL subtypes. The multifaceted functional impacts such as haploinsufficiency and gain-of-function of PAX5 depending on specific variants have been described, thereby the connection between the blockage of B cell development and the malignant transformation of normal B cells has been established. In this review, we provide the recent advances in understanding the function of PAX5 in orchestrating the development of both normal and malignant B cells over the past decade, with a focus on the PAX5 alterations shown as the initiating or driver events in B-ALL. Recent large-scale genomic analyses of B-ALL have identified multiple novel subtypes driven by PAX5 genetic lesions, such as the one defined by a distinct gene expression profile and PAX5 P80R mutation, which is an exemplar leukemia entity driven by a missense mutation. Although altered PAX5 is shared as a driver in B-ALL, disparate disease phenotypes and clinical outcomes among the patients indicate further heterogeneity of the underlying mechanisms and disturbed gene regulation networks along the disease development. In-depth mechanistic studies in human B-ALL and animal models have demonstrated high penetrance of PAX5 variants alone or concomitant with other genetic lesions in driving B-cell malignancy, indicating the altered PAX5 and deregulated genes may serve as potential therapeutic targets in certain B-ALL cases.
Collapse
Affiliation(s)
- Zhilian Jia
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
36
|
Kim LM, Kim PY, Gebreyohannes YK, Leung CT. Sustained Oncogenic Signaling in the Cytostatic State Enables Targeting of Nonproliferating Persistent Cancer Cells. Cancer Res 2022; 82:3045-3057. [PMID: 35792658 PMCID: PMC9444958 DOI: 10.1158/0008-5472.can-21-2908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Many advanced therapeutics possess cytostatic properties that suppress cancer cell growth without directly inducing death. Treatment-induced cytostatic cancer cells can persist and constitute a reservoir from which recurrent growth and resistant clones can develop. Current management approaches primarily comprise maintenance and monitoring because strategies for targeting nonproliferating cancer cells have been elusive. Here, we used targeted therapy paradigms and engineered cytostatic states to explore therapeutic opportunities for depleting treatment-mediated cytostatic cancer cells. Sustained oncogenic AKT signaling was common, while nonessential, in treatment-mediated cytostatic cancer cells harboring PI3K-pathway mutations, which are associated with cancer recurrence. Engineering oncogenic signals in quiescent mammary organotypic models showed that sustained, aberrant activation of AKT sensitized cytostatic epithelial cells to proteasome inhibition. Mechanistically, sustained AKT signaling altered cytostatic state homeostasis and promoted an oxidative and proteotoxic environment, which imposed an increased proteasome dependency for maintaining cell viability. Under cytostatic conditions, inhibition of the proteasome selectively induced apoptosis in the population with aberrant AKT activation compared with normal cells. Therapeutically exploiting this AKT-driven proteasome vulnerability was effective in depleting treatment-mediated cytostatic cancer cells independent of breast cancer subtype, epithelial origin, and cytostatic agent. Moreover, transient targeting during cytostatic treatment conditions was sufficient to reduce recurrent tumor growth in spheroid and mouse models. This work identified an AKT-driven proteasome-vulnerability that enables depletion of persistent cytostatic cancer cells harboring PTEN-PI3K pathway mutations, revealing a viable strategy for targeting nonproliferating persistent cancer cell populations before drug resistance emerges. SIGNIFICANCE This study finds that sustained oncogenic signaling in therapy-induced cytostatic cancer cells confers targetable vulnerabilities to deplete persistent cancer cell populations and reduce cancer recurrence.
Collapse
Affiliation(s)
| | | | | | - Cheuk T. Leung
- Corresponding author: Cheuk T. Leung, Address: 321 Church Street SE, 6-120 Jackson Hall, Minneapolis, MN 55455, USA, , Phone: 612-626-5309
| |
Collapse
|
37
|
Wu Y, Biswas D, Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response. Semin Cancer Biol 2022; 84:89-102. [PMID: 33631295 PMCID: PMC9253787 DOI: 10.1016/j.semcancer.2021.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Intratumour heterogeneity (ITH) is pervasive across all cancers studied and may provide the evolving tumour multiple routes to escape immune surveillance. Immune checkpoint inhibitors (CPIs) are rapidly becoming standard of care for many cancers. Here, we discuss recent work investigating the influence of ITH on patient response to immune checkpoint inhibitor (CPI) therapy. At its simplest, ITH may confound the diagnostic accuracy of predictive biomarkers used to stratify patients for CPI therapy. Furthermore, ITH is fuelled by mechanisms of genetic instability that can both engage immune surveillance and drive immune evasion. A greater appreciation of the interplay between ITH and the immune system may hold the key to increasing the proportion of patients experiencing durable responses from CPI therapy.
Collapse
Affiliation(s)
- Yin Wu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK.
| |
Collapse
|
38
|
Song Y, Fang Q, Mi Y. Prognostic significance of copy number variation in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:981036. [PMID: 35992882 PMCID: PMC9386345 DOI: 10.3389/fonc.2022.981036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are widespread in both pediatric and adult cases of B-cell acute lymphoblastic leukemia (B-ALL); however, their clinical significance remains unclear. This review primarily discusses the most prevalent CNVs in B-ALL to elucidate their clinical value and further personalized management of this population. The discovery of the molecular mechanism of gene deletion and the development of targeted drugs will further enhance the clinical prognosis of B-ALL.
Collapse
Affiliation(s)
| | - Qiuyun Fang
- *Correspondence: Qiuyun Fang, ; Yingchang Mi,
| | | |
Collapse
|
39
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
The Promise of Single-cell Technology in Providing New Insights Into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e734. [PMID: 35651714 PMCID: PMC9148686 DOI: 10.1097/hs9.0000000000000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.
Collapse
|
41
|
Nakajima K, Kubota H, Kato I, Isobe K, Ueno H, Kozuki K, Tanaka K, Kawabata N, Mikami T, Tamefusa K, Nishiuchi R, Saida S, Umeda K, Hiramatsu H, Adachi S, Takita J. PAX5 alterations in an infant case of KMT2A-rearranged leukemia with lineage switch. Cancer Sci 2022; 113:2472-2476. [PMID: 35467057 PMCID: PMC9277256 DOI: 10.1111/cas.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Lineage switch is a rare event at leukemic relapse. While mostly known to occur in KMT2A-rearranged infant leukemia, the underlying mechanism is yet to be depicted. This case report describes a female infant who achieved remission of KMT2A-MLLT3-rearranged acute monocytic leukemia, but six months thereafter, relapsed as KMT2A-MLLT3-rearranged acute lymphocytic leukemia. Whole exome sequencing of the bone marrow obtained pre-post lineage switch revealed two somatic mutations of PAX5 in the relapse sample. These two PAX5 alterations were suggested to be loss of function, thus to have played the driver role in the lineage switch from AML to ALL.
Collapse
Affiliation(s)
- Koji Nakajima
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyotaka Isobe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kagehiro Kozuki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kuniaki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoko Kawabata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Tamefusa
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Ritsuo Nishiuchi
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Leahy AB, Devine KJ, Li Y, Liu H, Myers R, DiNofia A, Wray L, Rheingold SR, Callahan C, Baniewicz D, Patino M, Newman H, Hunger SP, Grupp SA, Barrett DM, Maude SL. Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy. Blood 2022; 139:2173-2185. [PMID: 34871373 PMCID: PMC8990372 DOI: 10.1182/blood.2021012727] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.
Collapse
Affiliation(s)
- Allison Barz Leahy
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Cancer Care Innovation, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kaitlin J Devine
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yimei Li
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Hongyan Liu
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Regina Myers
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Amanda DiNofia
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lisa Wray
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Susan R Rheingold
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Colleen Callahan
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diane Baniewicz
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maria Patino
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Haley Newman
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stephen P Hunger
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephan A Grupp
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David M Barrett
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Shannon L Maude
- Division of Oncology and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
44
|
Jensen KS, Oskarsson T, Lähteenmäki PM, Flaegstad T, Jónsson ÓG, Svenberg P, Schmiegelow K, Heyman M, Norén-Nyström U, Schrøder H, Albertsen BK. Temporal changes in incidence of relapse and outcome after relapse of childhood acute lymphoblastic leukemia over three decades; a Nordic population-based cohort study. Leukemia 2022; 36:1274-1282. [PMID: 35314777 DOI: 10.1038/s41375-022-01540-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
Relapse remains the main obstacle to curing childhood acute lymphoblastic leukemia (ALL). The aims of this study were to compare incidence of relapse, prognostic factors, and survival after relapse between three consecutive Nordic Society of Pediatric Hematology and Oncology trials. Relapse occurred as a primary event in 638 of 4 458 children (1.0-14.9 years) diagnosed with Ph-negative ALL between 1992 and 2018. The 5-year cumulative incidence of relapse was 17.3% (95% CI 15.4-19.2%) and 16.5% (95% CI 14.3-18.8%) for patients in the ALL1992 and ALL2000 trials, respectively, but decreased to 8.4% (95% CI 7.0-10.1%) for patients in the ALL2008 trial. No changes in duration of first complete remission and site of relapse were observed over time; however, high hyperdiploidy, and t(12;21) decreased in the ALL2008 trial. The 4-year overall survival after relapse was 56.6% (95% CI 52.5-60.5%) and no statistically significant temporal improvements were observed. Age ≥10 years, T-cell immunophenotype, bone-marrow involvement, early and very early relapse, hypodiploidy, and Down syndrome all independently predicted worse outcome after relapse. Improvements in the primary treatment of childhood ALL has resulted in fewer relapses. However, failure to improve outcome of remaining relapses suggests a selection of harder-to-cure relapses and calls for new therapeutic strategies.
Collapse
Affiliation(s)
- Karen Schow Jensen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trausti Oskarsson
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Päivi M Lähteenmäki
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Department of Pediatric and Adolescent Hematology/Oncology, Turku University Hospital, FICAN-west, and Turku University, Turku, Finland
| | - Trond Flaegstad
- Department of Pediatrics, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway
| | | | - Petter Svenberg
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mats Heyman
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Henrik Schrøder
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Klug Albertsen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Krivdova G, Voisin V, Schoof EM, Marhon SA, Murison A, McLeod JL, Gabra MM, Zeng AGX, Aigner S, Yee BA, Shishkin AA, Van Nostrand EL, Hermans KG, Trotman-Grant AC, Mbong N, Kennedy JA, Gan OI, Wagenblast E, De Carvalho DD, Salmena L, Minden MD, Bader GD, Yeo GW, Dick JE, Lechman ER. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Rep 2022; 38:110481. [PMID: 35263585 PMCID: PMC11185845 DOI: 10.1016/j.celrep.2022.110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Collapse
Affiliation(s)
- Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino M Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Program of Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Aaron C Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON M4N3M5, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada.
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
46
|
Qian J, Li Z, Pei K, Li Z, Li C, Yan M, Qian M, Song Y, Zhang H, He Y. Effects of NRAS Mutations on Leukemogenesis and Targeting of Children With Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2022; 10:712484. [PMID: 35211470 PMCID: PMC8861515 DOI: 10.3389/fcell.2022.712484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Through the advancements in recent decades, childhood acute lymphoblastic leukemia (ALL) is gradually becoming a highly curable disease. However, the truth is there remaining relapse in ∼15% of ALL cases with dismal outcomes. RAS mutations, in particular NRAS mutations, were predominant mutations affecting relapse susceptibility. KRAS mutations targeting has been successfully exploited, while NRAS mutation targeting remains to be explored due to its complicated and compensatory mechanisms. Using targeted sequencing, we profiled RAS mutations in 333 primary and 18 relapsed ALL patients and examined their impact on ALL leukemogenesis, therapeutic potential, and treatment outcome. Cumulative analysis showed that RAS mutations were associated with a higher relapse incidence in children with ALL. In vitro cellular assays revealed that about one-third of the NRAS mutations significantly transformed Ba/F3 cells as measured by IL3-independent growth. Meanwhile, we applied a high-throughput drug screening method to characterize variable mutation-related candidate targeted agents and uncovered that leukemogenic-NRAS mutations might respond to MEK, autophagy, Akt, EGFR signaling, Polo−like Kinase, Src signaling, and TGF−β receptor inhibition depending on the mutation profile.
Collapse
Affiliation(s)
- Jiabi Qian
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Hematology and Oncology, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institute of Pediatrics, Institutes of Biomedical Sciences, Children's Hospital of Fudan University, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kunlin Pei
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ziping Li
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China
| | - Chunjie Li
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China
| | - Muxia Yan
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Maoxiang Qian
- Department of Hematology and Oncology, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institute of Pediatrics, Institutes of Biomedical Sciences, Children's Hospital of Fudan University, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Yuanbin Song
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
47
|
Evaluating outcomes of adult patients with acute lymphoblastic leukemia and lymphoblastic lymphoma treated on the GMALL 07/2003 protocol. Ann Hematol 2022; 101:581-593. [PMID: 35088172 DOI: 10.1007/s00277-021-04738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Chemotherapy-based approaches still constitute an essential feature in the treatment paradigm of adult acute lymphoblastic leukemia (ALL). The German Multicenter Study Group (GMALL) is a well-established protocol for ALL. In this study, we assessed our recent experience with the GMALL 07/2003 protocol reviewing all adult ALL patients who were treated with GMALL in three major centers in Israel during 2007-2020. The analysis comprised 127 patients with a median age of 41 years (range 17-83). Sixty-two were B-ALL (49%), 20 (16%) patients were Philadelphia chromosome positive ALL, and 45 (35%) were T-ALL. The 2-year and 5-year overall survival rates were 71% and 57%, respectively. The 2-year relapse rate was 30% with 2-year and 5-year leukemia-free survival rates of 59% and 50%, respectively. Adolescents and young adults experienced significantly longer overall survival (84 months versus 51 months; p=0.047) as well as leukemia-free survival compared with older patients (66 months versus 54 months, p=0.003; hazard ratio=0.39, 95% confidence interval, 0.19-0.79; p=0.009). T-ALL patients had longer survival compared to B-ALL patients while survival was comparable among Philadelphia chromosome positive patients and Philadelphia chromosome negative patients. An increased number of cytogenetic clones at diagnosis were tightly associated with adverse prognosis (15-month survival for ≥2 clones versus 81 months for normal karyotype; p=0.003). Positive measurable residual disease studies following consolidation were predictive for increased risk of relapse (64% versus 22%; p=0.003) and shorter leukemia-free survival (11 months versus 42 months; p=0.0003). While GMALL is an effective adult regimen, a substantial patient segment still experiences relapse.
Collapse
|
48
|
Craig DJ, Bailey MM, Noe OB, Williams KK, Stanbery L, Hamouda DM, Nemunaitis JJ. Subclonal landscape of cancer drives resistance to immune therapy. Cancer Treat Res Commun 2022; 30:100507. [PMID: 35007928 DOI: 10.1016/j.ctarc.2021.100507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Tumor mutation burden (TMB) is often used as a biomarker for immunogenicity and prerequisite for immune checkpoint inhibitor (ICI) therapy. However, it is becoming increasingly evident that not all tumors with high TMB respond to ICIs as expected. It has been shown that the ability of T-cells to infiltrate the tumor microenvironment and elicit a specific immune response is dependent not only on the TMB, but also on intra-tumor heterogeneity and the fraction of low-frequency subclonal mutations that make up the tumor. High intra-tumor heterogeneity leads to inefficient recognition of tumor neoantigens by T-cells due to their diluted frequency and spatial heterogeneity. Clinical studies have shown that tumors with a high degree of intra-tumor heterogeneity respond poorly to ICI therapy, and previous cytotoxic treatment may increase the intra-tumor heterogeneity and render second-line ICI therapy less effective. This paper reviews the role of ICI therapy when following chemotherapy or radiation to determine if they may be better suited as first-line therapy in patients with high TMB, low intra-tumor heterogeneity, and high PD-1, PD-L1, or CTLA-4 expression.
Collapse
Affiliation(s)
- Daniel J Craig
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | - Olivia B Noe
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | | | | | | |
Collapse
|
49
|
Antić Ž, Yu J, Bornhauser BC, Lelieveld SH, van der Ham CG, van Reijmersdal SV, Morgado L, Elitzur S, Bourquin JP, Cazzaniga G, Eckert C, Camós M, Sutton R, Cavé H, Moorman AV, Sonneveld E, Geurts van Kessel A, van Leeuwen FN, Hoogerbrugge PM, Waanders E, Kuiper RP. Clonal dynamics in pediatric B-cell precursor acute lymphoblastic leukemia with very early relapse. Pediatr Blood Cancer 2022; 69:e29361. [PMID: 34597466 DOI: 10.1002/pbc.29361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.
Collapse
Affiliation(s)
- Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jiangyan Yu
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Simon V van Reijmersdal
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lionel Morgado
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, University of Milan Bicocca, Monza, Italy
| | - Cornelia Eckert
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mireia Camós
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Hematology Laboratory, Hospital Sant Joan de Deu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1131, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
50
|
Levy G, Kicinski M, Van der Straeten J, Uyttebroeck A, Ferster A, De Moerloose B, Dresse MF, Chantrain C, Brichard B, Bakkus M. Immunoglobulin Heavy Chain High-Throughput Sequencing in Pediatric B-Precursor Acute Lymphoblastic Leukemia: Is the Clonality of the Disease at Diagnosis Related to Its Prognosis? Front Pediatr 2022; 10:874771. [PMID: 35712632 PMCID: PMC9197340 DOI: 10.3389/fped.2022.874771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing (HTS) of the immunoglobulin heavy chain (IgH) locus is a recent very efficient technique to monitor minimal residual disease of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). It also reveals the sequences of clonal rearrangements, therefore, the multiclonal structure, of BCP-ALL. In this study, we performed IgH HTS on the diagnostic bone marrow of 105 children treated between 2004 and 2008 in Belgium for BCP-ALL in the European Organization for Research and Treatment of Cancer (EORTC)-58951 clinical trial. Patients were included irrespectively of their outcome. We described the patterns of clonal complexity at diagnosis and investigated its association with patients' characteristics. Two indicators of clonal complexity were used, namely, the number of foster clones, described as clones with similar D-N2-J rearrangements but other V-rearrangement and N1-joining, and the maximum across all foster clones of the number of evolved clones from one foster clone. The maximum number of evolved clones was significantly higher in patients with t(12;21)/ETV6:RUNX1. A lower number of foster clones was associated with a higher risk group after prephase and t(12;21)/ETV6:RUNX1 genetic type. This study observes that clonal complexity as accessed by IgH HTS is linked to prognostic factors in childhood BCP-ALL, suggesting that it may be a useful diagnostic tool for BCP-ALL status and prognosis.
Collapse
Affiliation(s)
- Gabriel Levy
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,Department of Pediatric Oncology and Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Michal Kicinski
- European Organization for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Jona Van der Straeten
- Molecular Hematology Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Alina Ferster
- Department of Pediatric Hematology-Oncology, Children's University Hospital Queen Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Marie-Francoise Dresse
- Department of Pediatrics, Centre Hospitalier Régional (CHR) de la Citadelle, Liège, Belgium
| | - Christophe Chantrain
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Chrétien (CHC) MontLégia, Liège, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Oncology and Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marleen Bakkus
- Molecular Hematology Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|