1
|
Li C, Li X, Liu K, Xu J, Yu J, Liu Z, Mach N, Ni W, Liu C, Zhou P, Wang L, Hu S. Multiomic analysis of different horse breeds reveals that gut microbial butyrate enhances racehorse athletic performance. NPJ Biofilms Microbiomes 2025; 11:87. [PMID: 40410196 PMCID: PMC12102227 DOI: 10.1038/s41522-025-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Gut microbes play a vital role in host physiology, but whether specific bacterial functions contribute to the exceptional athletic performance of racehorses needs to be better understood. Here, we identify an association of gut butyrate-producing bacteria with athletic performance in racehorses (Thoroughbred horse). Butyrate-producing bacteria and microbial butyrate synthesis genes were significantly enriched in the racehorse gut, and the GC-MS results confirmed this conclusion. Using a mouse model, we demonstrated that sodium butyrate is sufficient to increase treadmill run time performance. We also show that butyrate improves the host response to exercise, significantly altering muscle fibre type in skeletal muscle, and increasing muscle mitochondrial function and activity. In addition, in-depth analysis of the published data showed that the gene for the synthesis of butyrate was also significantly enriched in the gut microbes of human athletes. Overall, our study indicates that gut microbial butyrate improves run time via the gut-muscle axis, providing novel insights into gut microbial functions and paving the way for improving athletic performance by targeted gut microbiome manipulation.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Junli Xu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinming Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China.
| | - Chen Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Yuen NKY, Eng M, Hudson NJ, Sole-Guitart A, Coyle MP, Bielefeldt-Ohmann H. Distinct cellular and molecular responses to infection in three target cell types from horses, a species naturally susceptible to Ross River virus. Microb Pathog 2025; 202:107408. [PMID: 40010657 DOI: 10.1016/j.micpath.2025.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Our current understanding of the pathogenesis of Ross River virus (RRV) infection has been derived from murine models, which do not reproduce clinical disease as experienced by infected humans and horses. This prompted us to establish more relevant host model systems to study host-virus interactions using ex vivo peripheral blood mononuclear cells (PBMCs) and in vitro primary synovial fibroblast and epidermal keratinocyte cultures. Transcriptomic analysis revealed that the expression of the transmembrane protein matrix remodelling associated 8 (mxra8), recently found to be responsible for RRV cell entry, was downregulated in all cell types when infected with RRV, compared to mock-infected controls. Potent antiviral and inflammatory responses were generated by both synovial fibroblasts and epidermal keratinocytes upon RRV infection. Upregulation of multiple genes, inducible by double-stranded RNA, together with upregulation of toll-like receptor (TLR) tlr-3, but not tlr-7, 8 and 9, suggests possible abortive replication of RRV in these cell types and potent antiviral mechanisms. This was corroborated by virus growth kinetic studies which indicated inefficient RRV replication in synovial fibroblasts and epidermal keratinocytes. Cellular metabolic flux studies on PBMCs and synovial fibroblasts showed that RRV infected cells had reduced mitochondrial function. In addition, compared to PBMCs of seronegative horses, an enhanced antiviral state and reduced inflammation related gene expression was seen in PBMCs of seropositive horses infected with RRV. Thus, despite potent antiviral and inflammatory responses via the interferon pathway exhibited in all cell types, restricting virus growth, mitochondria capacity and function of infected cells remained negatively impacted.
Collapse
Affiliation(s)
- Nicholas K Y Yuen
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia.
| | - Melodie Eng
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Albert Sole-Guitart
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Mitchell P Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
3
|
Castiglione GM, Chen X, Xu Z, Dbouk NH, Bose AA, Carmona-Berrio D, Chi EE, Zhou L, Boronina TN, Cole RN, Wu S, Liu AD, Liu TD, Lu H, Kalbfleisch T, Rinker D, Rokas A, Ortved K, Duh EJ. Running a genetic stop sign accelerates oxygen metabolism and energy production in horses. Science 2025; 387:eadr8589. [PMID: 40146832 DOI: 10.1126/science.adr8589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Horses are among nature's greatest athletes, yet the ancestral molecular adaptations fueling their energy demands are poorly understood. Within a clinically important pathway regulating redox and metabolic homeostasis (NRF2/KEAP1), we discovered an ancient mutation-conserved in all extant equids-that increases mitochondrial respiration while decreasing tissue-damaging oxidative stress. This mutation is a de novo premature opal stop codon in KEAP1 that is translationally recoded into a cysteine through previously unknown mechanisms, producing an R15C mutation in KEAP1 that is more sensitive to electrophiles and reactive oxygen species. This recoding enables increased NRF2 activity, which enhances mitochondrial adenosine 5'-triphosphate production and cellular resistance to oxidative damage. Our study illustrates how recoding of a de novo stop codon, a strategy thought restricted to viruses, can facilitate adaptation in vertebrates.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Xin Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadir H Dbouk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Anamika A Bose
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | | | - Emiliana E Chi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shirley Wu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abby D Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thalia D Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haining Lu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Kyla Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Cappelletti E, Piras FM, Biundo M, Raimondi E, Nergadze SG, Giulotto E. CENP-A/CENP-B uncoupling in the evolutionary reshuffling of centromeres in equids. Genome Biol 2025; 26:23. [PMID: 39915813 PMCID: PMC11804003 DOI: 10.1186/s13059-025-03490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND While CENP-A is the epigenetic determinant of the centromeric function, the role of CENP-B, a centromeric protein binding a specific DNA sequence, the CENP-B-box, remains elusive. In the few mammalian species analyzed so far, the CENP-B box is contained in the major satellite repeat that is present at all centromeres, with the exception of the Y chromosome. We previously demonstrated that, in the genus Equus, numerous centromeres lack any satellite repeat. RESULTS In four Equus species, CENP-B is expressed but does not bind the majority of satellite-based centromeres, or the satellite-free ones, while it is localized at several ancestral, now-inactive, centromeres. Centromeres lacking CENP-B are functional and recruit normal amounts of CENP-A and CENP-C. The absence of CENP-B is related to the lack of CENP-B boxes rather than to peculiar features of the protein itself. CENP-B boxes are present in a previously undescribed repeat which is not the major satellite bound by CENP-A. Comparative sequence analysis suggests that this satellite was centromeric in the equid ancestor, lost centromeric function during evolution, and gave rise to a shorter CENP-A bound repeat not containing the CENP-B box but enriched in dyad symmetries. CONCLUSIONS We propose that the uncoupling between CENP-B and CENP-A may have played a role in the extensive evolutionary reshuffling of equid centromeres. This study provides new insights into the complexity of centromere organization in a largely biodiverse world where the majority of mammalian species still have to be studied.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| | - Francesca M Piras
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
| | - Marialaura Biundo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Husien HM, Saleh AA, Hassanine NNAM, Rashad AMA, Sharaby MA, Mohamed AZ, Abdelhalim H, Hafez EE, Essa MOA, Adam SY, Chen N, Wang M. The Evolution and Role of Molecular Tools in Measuring Diversity and Genomic Selection in Livestock Populations (Traditional and Up-to-Date Insights): A Comprehensive Exploration. Vet Sci 2024; 11:627. [PMID: 39728967 DOI: 10.3390/vetsci11120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV). The estimation of GEBV relies on the calculation of SNP effects using prediction equations derived from a subset of individuals in the reference population who possess both SNP genotypes and phenotypes for target traits. Compared to traditional methods, modern genomic selection methods offer advantages for sex-limited traits, low heritability traits, late-measured traits, and the potential to increase genetic gain by reducing generation intervals. The current availability of high-density genotyping and next-generation sequencing data allow for genome-wide scans for selection. This investigation provides an overview of the essential role of advanced molecular tools in studying genetic diversity and implementing genomic selection. It also highlights the significance of adaptive selection in light of new high-throughput genomic technologies and the establishment of selective comparisons between different genomes. Moreover, this investigation presents candidate genes and QTLs associated with various traits in different livestock species, such as body conformation, meat production and quality, carcass characteristics and composition, milk yield and composition, fertility, fiber production and characteristics, and disease resistance.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
| | - Ahmed A Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Nada N A M Hassanine
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Amr M A Rashad
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Mahmoud A Sharaby
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Asmaa Z Mohamed
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba Abdelhalim
- Animal Production Research Institute, Agriculture Research Centre, Giza 12126, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Mohamed Osman Abdalrahem Essa
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Saber Y Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ning Chen
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
6
|
Ahlawat S, Niranjan SK, Arora R, Vijh RK, Kumar A, Sharma U, Raheja M, Popli K, Yadav S, Mehta SC. Advancing equine genomics: the development of a high density Axiom_Ashwa SNP chip for Indian horses and ponies. Funct Integr Genomics 2024; 24:195. [PMID: 39441226 DOI: 10.1007/s10142-024-01482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The unique horse and pony breeds of India are declining at an alarming rate. These horses have been integral to the Indian culture and customs for centuries and represent a valuable genetic resource. It is imperative to harness the potential of this equine genetic resource that urgently needs conservation. The study highlights the design and development of a high density SNP array, the Axiom_Ashwa to aid in the genetic analysis and conservation efforts for Indian horse and pony breeds. With 613,950 SNPs, this chip offers extensive genome coverage having an average inter-marker distance of 4 kb. The Axiom_Ashwa has been validated on a larger set of diverse indigenous samples as well as Thoroughbreds, demonstrating a high call rate of 99.4% and robustness for genotyping indigenous breeds. Linkage disequilibrium (LD) analysis showed higher average LD in Indian breeds compared to exotic breeds, suggesting a limited effective population size and recent bottlenecks. Phylogenetic and population stratification analyses using PCA and DAPC clearly distinguished horses, ponies and Thoroughbreds, confirming the efficacy of the Axiom_Ashwa chip. These findings underscore the urgent need for conservation efforts for Indian horse breeds, which have experienced significant drop in population size. The Axiom_Ashwa SNP chip offers advantages such as cost-effectiveness and high throughput, providing a more accurate genetic representation of Indian horses.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India.
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Meenal Raheja
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Kanika Popli
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Seema Yadav
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | - Sharat Chandra Mehta
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner, Rajasthan, 334 001, India
| |
Collapse
|
7
|
Holmes CM, Babasyan S, Eady N, Schnabel CL, Wagner B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol Spectr 2024; 12:e0109224. [PMID: 39162558 PMCID: PMC11448092 DOI: 10.1128/spectrum.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is one of the most prevalent respiratory pathogens in horses with a high impact on animal health worldwide. Entry of the virus into epithelial cells of the upper respiratory tract and rapid local viral replication is followed by infection of local lymphoid tissues leading to cell-associated viremia and disease progression. Pre-existing mucosal immunity has previously been shown to reduce viral shedding and prevent viremia, consequently limiting severe disease manifestations. Here, nasopharyngeal transcriptomic profiling was used to identify differentially expressed genes following EHV-1 challenge in horses with different EHV-1 immune statuses. Immune horses (n = 4) did neither develop clinical disease nor viremia and did not shed virus after experimental infection, while non-immune horses (n = 4) did all the above. RNA sequencing was performed on nasopharyngeal samples pre- and 24 hours post-infection (24hpi). At 24hpi, 109 and 44 genes were upregulated in immune horses and non-immune horses, respectively, and three genes were explored in further detail. Antileukoproteinase (SLPI) gene expression increased 2.1-fold within 24 hours in immune horses in concert with protein secretion. Interferon (IFN)-induced proteins with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) were upregulated in non-immune horses, corresponding with nasal IFN-α secretion and viral replication. By contrast, neither IFIT expression nor IFN-α secretion was induced by EHV-1 infection of immune horses. Transcriptomic profiling offered a tool to identify, for the first time, the role of SLPI in innate immunity against EHV-1, and further emphasized the central role of the type I IFN response in the anti-viral defense of non-immune horses. IMPORTANCE Equine herpesvirus type 1 (EHV-1) remains a considerable concern in the equine industry, with yearly outbreaks resulting in morbidity, mortality, and economic losses. In addition to its importance in equine health, EHV-1 is a respiratory pathogen and an alphaherpesvirus, and it may serve as a model for other viruses with similar pathogenicity or phylogeny. Large animal models allow the collection of high-volume samples longitudinally, permitting in-depth investigation of immunological processes. This study was performed on bio-banked nasopharyngeal samples from an EHV-1 infection experiment, where clinical outcomes had previously been determined. Matched nucleic acid and protein samples throughout infection permitted longitudinal quantification of the protein or related proteins of selected differentially expressed genes detected during the transcriptomic screen. The results of this manuscript identified novel innate immune pathways of the upper respiratory tract during the first 24 hours of EHV-1 infection, offering a first look at the components of early mucosal immunity that are indicative of protection.
Collapse
Affiliation(s)
- Camille M. Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Naya Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Pan J, Liu X, Baca M, Calvière-Tonasso L, Schiavinato S, Chauvey L, Tressières G, Perdereau A, Aury JM, Oliveira PH, Wincker P, Abdykanova A, Arsuaga JL, Bayarsaikhan J, Belinskiy AB, Carbonell E, Davoudi H, Lira Garrido J, Gilbert AS, Hermes T, Warinner C, Kalmykov AA, Lordkipanidze D, Mackiewicz P, Mohaseb AF, Richter K, Sayfullaev N, Shapiro B, Shnaider S, Southon J, Stefaniak K, Summers GD, van Asperen EN, Vanishvili N, Hill EA, Kuznetsov P, Reinhold S, Hansen S, Mashkour M, Berthon R, Taylor WTT, Houle JL, Hekkala E, Popović D, Orlando L. Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. Mol Ecol 2024; 33:e17527. [PMID: 39279684 DOI: 10.1111/mec.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
The extremely rich palaeontological record of the horse family, also known as equids, has provided many examples of macroevolutionary change over the last ~55 Mya. This family is also one of the most documented at the palaeogenomic level, with hundreds of ancient genomes sequenced. While these data have advanced understanding of the domestication history of horses and donkeys, the palaeogenomic record of other equids remains limited. In this study, we have generated genome-wide data for 25 ancient equid specimens spanning over 44 Ky and spread across Anatolia, the Caucasus, Central Asia and Mongolia. Our dataset includes the genomes from two extinct species, the European wild ass, Equus hydruntinus, and the sussemione Equus ovodovi. We document, for the first time, the presence of sussemiones in Mongolia and their survival around ~3.9 Kya, a finding that should be considered when discussing the timing of the first arrival of the domestic horse in the region. We also identify strong spatial differentiation within the historical ecological range of Asian wild asses, Equus hemionus, and incomplete reproductive isolation in several groups yet considered as different species. Finally, we find common selection signatures at ANTXR2 gene in European, Asian and African wild asses. This locus, which encodes a receptor for bacterial toxins, shows no selection signal in E. ovodovi, but a 5.4-kb deletion within intron 7. Whether such genetic modifications played any role in the sussemione extinction remains unknown.
Collapse
Affiliation(s)
- Jianfei Pan
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Laure Calvière-Tonasso
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Gaétan Tressières
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Aude Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aida Abdykanova
- Anthropology Department, American University of Central Asia, Bishkek, Kyrgyzstan
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- National Museum of Mongolia, Ulaanbaatar, Mongolia
| | | | - Eudald Carbonell
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana I Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Jaime Lira Garrido
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Allan S Gilbert
- Department of Sociology and Anthropology, Fordham University, New York, New York, USA
| | - Taylor Hermes
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | | | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Tbilisi, Georgia
- Tbilisi State University Tbilisi I. Chavchavadze Avenue 1, Tbilisi, Georgia
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Azadeh F Mohaseb
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Kristine Richter
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | - Nuritdin Sayfullaev
- Donish Institute of History, Archaeology and Ethnography, Dushanbe, Tajikistan
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Svetlana Shnaider
- International Laboratory "Archaeozoology in Siberia and Central Asia" ZooSCAn, IRL 2013, National Center for Scientific Research - Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia
| | - John Southon
- Earth System Science Department, University of California, Irvine, California, USA
| | | | - Geoffrey D Summers
- Ecole Nationale Supérieure d'Architecture de Nantes-Mauritius, Pierrefonds, Mauritius
- The Oriental Institute, Chicago University, Chicago, Illinois, USA
| | | | - Nikoloz Vanishvili
- Department of Vertebrate Paleontology, L. Davitashvili Institute of Paleobiology, Georgian National Museum, Tbilisi, Georgia
| | - Eden A Hill
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavel Kuznetsov
- The Museum of Archeology of the Volga Region Samara State University of Social Sciences and Education, Samara, Russia
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Marjan Mashkour
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Berthon
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - William Timothy Treal Taylor
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Evon Hekkala
- Department Biological Sciences, Fordham University, New York, New York, USA
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
9
|
Pokharel K, Weldenegodguad M, Reilas T, Kantanen J. EquCab_Finn: A new reference genome assembly for the domestic horse, Finnhorse. Anim Genet 2024; 55:766-771. [PMID: 38986537 DOI: 10.1111/age.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Finnhorse is Finland's native and national horse breed and it has genetic affinities to northern European and Asian horses. It has historical importance for agriculture, forest work and transport and as a war horse. Finnhorse has four breeding sections in the studbook and is under conservation and characterisation efforts. We sequenced and annotated the genome of a Finnhorse mare from the working horse section using PacBio and Omni-C data. This genome can complement the existing Thoroughbred reference genome (EquCab 3.0) and facilitate genetic studies of horses from northern Eurasia. We assembled 2.4 Gb of the genome with an N50 scaffold length of 83.8 Mb and the genome annotation resulted in a total of 19 748 protein coding genes of which 1200 were Finnhorse specific. The assembly has high quality and synteny with the current horse reference genome. We manually curated five genes of interest and deposited the final assembly in the European Nucleotide Archive under the accession no. PRJEB71364.
Collapse
Affiliation(s)
- Kisun Pokharel
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | - Tiina Reilas
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
10
|
Brown C, Stefaniuk-Szmukier M, Decloedt A, Beijerink N, Hamilton NA, Velie BD. Congenital heart defects in Arabian horses and the prospects of genetic testing: A review. Equine Vet J 2024; 56:884-891. [PMID: 38272847 DOI: 10.1111/evj.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Congenital heart defects (CHDs) can have profound and potentially life-threatening consequences on horses' health and performance capability. While CHDs are rare in the general horse population, the Arabian breed is disproportionately overrepresented and thus is widely suspected to be genetically predisposed. This review discusses the most common CHDs in Arabian horses, including ventricular septal defect (VSD), tetralogy of Fallot (TOF), patent duct arteriosus (PDA), tricuspid valve atresia (TVA) and atrial septal defect (ASD). This review also explores how future research into the genetic factors that likely underpin many CHDs can revolutionise the way these disorders are managed in Arabian horses.
Collapse
Affiliation(s)
- Caitlin Brown
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Annelies Decloedt
- Equine Cardioteam Ghent, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek Beijerink
- Veterinaire Specialisten Vught, Vught, The Netherlands
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha A Hamilton
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lawson JM, Salem SE, Miller D, Kahler A, van den Boer WJ, Shilton CA, Sever T, Mouncey RR, Ward J, Hampshire DJ, Foote AK, Bryan JS, Juras R, Pynn OD, Davis BW, Bellone RR, Raudsepp T, de Mestre AM. Naturally occurring horse model of miscarriage reveals temporal relationship between chromosomal aberration type and point of lethality. Proc Natl Acad Sci U S A 2024; 121:e2405636121. [PMID: 39102548 PMCID: PMC11331123 DOI: 10.1073/pnas.2405636121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.
Collapse
Affiliation(s)
- Jessica M. Lawson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Shebl E. Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Donald Miller
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Anne Kahler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Wilhelmina J. van den Boer
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Charlotte A. Shilton
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Tia Sever
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Rebecca R. Mouncey
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Jenna Ward
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Daniel J. Hampshire
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Alastair K. Foote
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Jill S. Bryan
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Oliver D. Pynn
- Rossdales Veterinary Surgeons, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA95617
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA95617
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Amanda M. de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| |
Collapse
|
12
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Özkan M, Gürün K, Yüncü E, Vural KB, Atağ G, Akbaba A, Fidan FR, Sağlıcan E, Altınışık EN, Koptekin D, Pawłowska K, Hodder I, Adcock SE, Arbuckle BS, Steadman SR, McMahon G, Erdal YS, Bilgin CC, Togan İ, Geigl EM, Götherström A, Grange T, Özer F, Somel M. The first complete genome of the extinct European wild ass (Equus hemionus hydruntinus). Mol Ecol 2024; 33:e17440. [PMID: 38946459 DOI: 10.1111/mec.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.
Collapse
Affiliation(s)
- Mustafa Özkan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Akbaba
- Department of Anthropology, Ankara University, Ankara, Turkey
- Alparslan University, Muş, Turkey
| | - Fatma Rabia Fidan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Ekin Sağlıcan
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ezgi N Altınışık
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Kamilla Pawłowska
- Department of Palaeoenvironmental Research, Adam Mickiewicz University, Poznań, Poland
| | - Ian Hodder
- Department of Anthropology, Stanford University, Stanford, California, USA
| | - Sarah E Adcock
- Institute for the Study of the Ancient World, New York University, New York, New York, USA
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon R Steadman
- Department of Sociology/Anthropology, SUNY Cortland, Cortland, New York, USA
| | - Gregory McMahon
- Classics, Humanities and Italian Studies Department, University of New Hampshire, Durham, New Hampshire, USA
| | - Yılmaz Selim Erdal
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - C Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Füsun Özer
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
14
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Brodesser DM, Kummer S, Eichberger JA, Schlangen K, Corteggio A, Borzacchiello G, Bertram CA, Brandt S, Pratscher B. Deregulation of Metalloproteinase Expression in Gray Horse Melanoma Ex Vivo and In Vitro. Cells 2024; 13:956. [PMID: 38891088 PMCID: PMC11172212 DOI: 10.3390/cells13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The ability of human melanoma cells to switch from an epithelial to a mesenchymal phenotype contributes to the metastatic potential of disease. Metalloproteinases (MPs) are crucially involved in this process by promoting the detachment of tumor cells from the primary lesion and their migration to the vasculature. In gray horse melanoma, epithelial-mesenchymal transition (EMT) is poorly understood, prompting us to address MP expression in lesions versus intact skin by transcriptome analyses and the immunofluorescence staining (IF) of gray horse tumor tissue and primary melanoma cells. RNAseq revealed the deregulation of several MPs in gray horse melanoma and, notably, a 125-fold upregulation of matrix metalloproteinase 1 (MMP1) that was further confirmed by RT-qPCR from additional tumor material. The IF staining of melanoma tissue versus intact skin for MMP1 and tumor marker S100 revealed MMP1 expression in all lesions. The co-expression of S100 was observed at different extents, with some tumors scoring S100-negative. The IF staining of primary tumor cells explanted from the tumors for MMP1 showed that the metalloproteinase is uniformly expressed in the cytoplasm of 100% of tumor cells. Overall, the presented data point to MP expression being deregulated in gray horse melanoma, and suggest that MMP1 has an active role in gray horse melanoma by driving EMT-mediated tumor cell dissemination via the degradation of the extracellular matrix. Whilst S100 is considered a reliable tumor marker in human MM, gray horse melanomas do not seem to regularly express this protein.
Collapse
Affiliation(s)
- Daniela M. Brodesser
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Stefan Kummer
- VetImaging, VetCore Facility, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Julia A. Eichberger
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Karin Schlangen
- Section for Biosimulation and Bioinformatics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna (MUV), Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy;
| | - Christof A. Bertram
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Sabine Brandt
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| |
Collapse
|
16
|
Durward-Akhurst SA, Marlowe JL, Schaefer RJ, Springer K, Grantham B, Carey WK, Bellone RR, Mickelson JR, McCue ME. Predicted genetic burden and frequency of phenotype-associated variants in the horse. Sci Rep 2024; 14:8396. [PMID: 38600096 PMCID: PMC11006912 DOI: 10.1038/s41598-024-57872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Disease-causing variants have been identified for less than 20% of suspected equine genetic diseases. Whole genome sequencing (WGS) allows rapid identification of rare disease causal variants. However, interpreting the clinical variant consequence is confounded by the number of predicted deleterious variants that healthy individuals carry (predicted genetic burden). Estimation of the predicted genetic burden and baseline frequencies of known deleterious or phenotype associated variants within and across the major horse breeds have not been performed. We used WGS of 605 horses across 48 breeds to identify 32,818,945 variants, demonstrate a high predicted genetic burden (median 730 variants/horse, interquartile range: 613-829), show breed differences in predicted genetic burden across 12 target breeds, and estimate the high frequencies of some previously reported disease variants. This large-scale variant catalog for a major and highly athletic domestic animal species will enhance its ability to serve as a model for human phenotypes and improves our ability to discover the bases for important equine phenotypes.
Collapse
Affiliation(s)
- S A Durward-Akhurst
- Department of Veterinary Clinical Sciences, University of Minnesota, C339 VMC, 1353 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - J L Marlowe
- Department of Veterinary Clinical Sciences, University of Minnesota, C339 VMC, 1353 Boyd Avenue, St. Paul, MN, 55108, USA
| | - R J Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - K Springer
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - B Grantham
- Interval Bio LLC, 408 Stierline Road, Mountain View, CA, 94043, USA
| | - W K Carey
- Interval Bio LLC, 408 Stierline Road, Mountain View, CA, 94043, USA
| | - R R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Population Health and Reproduction and Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - J R Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 295F Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN, 55108, USA
| | - M E McCue
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
17
|
Thompson MA, McCann BE, Rhen T, Simmons R. Population genomics provide insight into ancestral relationships and diversity of the feral horses of Theodore Roosevelt National Park. Ecol Evol 2024; 14:e11197. [PMID: 38571790 PMCID: PMC10985374 DOI: 10.1002/ece3.11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Theodore Roosevelt National Park (TRNP) manages a herd of feral horses (Equus caballus) which was present on the landscape prior to the establishment of the park. The population presents a unique scenario in that it has experienced fairly intensive and well-documented management since the park's establishment, including herd size reductions, intentional introduction of diversity, and subsequent attempts to remove introduced lineages. This provides an interesting case study on the genetic effects of diverse evolutionary forces on an isolated feral population. To explore the effects of these forces and clarify the relationship of this feral herd with other horses, we used genome-wide markers to examine the population structure of a combined dataset containing common established breeds. Using the Illumina Equine 70k BeadChip, we sampled SNPs across the genome for 118 TRNP horses and evaluated the inbreeding coefficient f and runs of homozygosity (RoH). To identify breed relationships, we compared 23 representative TRNP samples with 792 horses from 35 different breeds using genomic population structure analyses. Mean f of TRNP horses was 0.180, while the mean f for all other breeds in the dataset was 0.116 (SD 0.079). RoH analysis indicates that the TRNP population has experienced recent inbreeding in a timeframe consistent with their management. With Bayesian clustering, PCA, and maximum likelihood phylogeny, TRNP horses show genetic differentiation from other breeds, likely due to isolation, historical population bottlenecks, and genetic drift. However, maximum likelihood phylogeny places them with moderate confidence (76.8%) among draft breeds, which is consistent with the known history of breeds used on early North Dakota ranches and stallions subsequently introduced to the park herd. These findings will help resolve speculation about the origins of the herd and inform management decisions for the TRNP herd.
Collapse
Affiliation(s)
- Melissa A. Thompson
- Department of BiologyUniversity of North DakotaGrand ForksNorth DakotaUSA
- Theodore Roosevelt National ParkNational Park ServiceMedoraNorth DakotaUSA
| | - Blake E. McCann
- Theodore Roosevelt National ParkNational Park ServiceMedoraNorth DakotaUSA
| | - Turk Rhen
- Department of BiologyUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Rebecca Simmons
- Department of BiologyUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
18
|
Miller JR, Adjeroh DA. Machine learning on alignment features for parent-of-origin classification of simulated hybrid RNA-seq. BMC Bioinformatics 2024; 25:109. [PMID: 38475727 DOI: 10.1186/s12859-024-05728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Parent-of-origin allele-specific gene expression (ASE) can be detected in interspecies hybrids by virtue of RNA sequence variants between the parental haplotypes. ASE is detectable by differential expression analysis (DEA) applied to the counts of RNA-seq read pairs aligned to parental references, but aligners do not always choose the correct parental reference. RESULTS We used public data for species that are known to hybridize. We measured our ability to assign RNA-seq read pairs to their proper transcriptome or genome references. We tested software packages that assign each read pair to a reference position and found that they often favored the incorrect species reference. To address this problem, we introduce a post process that extracts alignment features and trains a random forest classifier to choose the better alignment. On each simulated hybrid dataset tested, our machine-learning post-processor achieved higher accuracy than the aligner by itself at choosing the correct parent-of-origin per RNA-seq read pair. CONCLUSIONS For the parent-of-origin classification of RNA-seq, machine learning can improve the accuracy of alignment-based methods. This approach could be useful for enhancing ASE detection in interspecies hybrids, though RNA-seq from real hybrids may present challenges not captured by our simulations. We believe this is the first application of machine learning to this problem domain.
Collapse
Affiliation(s)
- Jason R Miller
- Department of Computer Science, Mathematics, Engineering, Shepherd University, Shepherdstown, WV, USA.
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway.
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA.
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
19
|
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55:3-19. [PMID: 37990577 DOI: 10.1111/age.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
The recent advances in high-throughput next-generation sequencing technologies have heralded the arrival of the Big Data era. As a result, the use of pharmacogenetics in drug discovery and individualized drug therapy has transformed the field of precision medicine. This paradigm shift in drug development programs has effectively reshaped the old drug development practices, which were primarily concerned with the physiological status of patients for drug development. Pharmacogenomics bridges the gap between pharmacodynamics and pharmacokinetics, advancing current diagnostic and treatment strategies and enabling personalized and targeted drug therapy. The primary goals of pharmacogenetic studies are to improve drug efficacy and minimize toxicities, to identify novel drug targets, to estimate drug dosage for personalized medicine, and to incorporate it as a routine diagnostic for disease susceptibility. Although pharmacogenetics has numerous applications in individualized drug therapy and drug development, it is in its infancy in veterinary medicine. The objective of this review is to present an overview of historical landmarks, current developments in various animal species, challenges and future perspectives of genomics in drug development and dosage optimization for individualized medicine in veterinary subjects.
Collapse
Affiliation(s)
- Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
20
|
Alhaddad H, Powell BB, Pinto LD, Sutter N, Brooks SA, Alhajeri BH. Geometric morphometrics of face profile across horse breeds and within Arabian horses. J Equine Vet Sci 2024; 132:104980. [PMID: 38070586 DOI: 10.1016/j.jevs.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Horse traits under selection are largely quantitative and affected by multiple genes. Horse face shape is an example of a continuous trait, which due to the reliance on observational assessments, is classified into; "dished", "straight", and "roman-nosed". This categorization is often inadequate to convey the full spectrum of the face shape variation especially for genetic studies. The first objective of the current study was to use geometric morphometric methods to quantitatively phenotype face shapes and examine its variation across horse breeds. The second objective was to analyze the face shape variation within Arabian horses since face shape is (1) favored, valued, and genetically selected in certain lineages (e.g. Egyptian), (2) is evaluated by registries and scored in shows, and (3) in its extreme forms pose health concerns. We digitized landmarks on lateral profile photos, particularly on the dorsal curvature of the rostrum, and subjected these landmarks to Generalized Procrustes Analysis to generate independent shape and size variables which were statistically compared across breeds and within Arabians. Horse breeds varied in nasal curvature, ranging from extremely concave to extremely convex, with over 70 % of horse breeds exhibiting intermediate concavity (i.e., straight profile). Interestingly, Arabian horses possessed the highest diversity in face profile and individuals clustered into three distinct shape sub-groups (one dished and two straight profile clusters). Our quantitative phenotyping method can be the basis of future genetic studies of facial profile within Arabian lineages as a favored traits and potentially manage its extreme forms as a likely genetic disease.
Collapse
Affiliation(s)
- H Alhaddad
- Department of Biological Sciences, Kuwait University, Shadadiya, Kuwait.
| | - B B Powell
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - L Del Pinto
- Biology Department, La Sierra University, Riverside, California, USA
| | - N Sutter
- Biology Department, La Sierra University, Riverside, California, USA
| | - S A Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - B H Alhajeri
- Department of Biological Sciences, Kuwait University, Shadadiya, Kuwait
| |
Collapse
|
21
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Taylor WTT, Belardi JB, Barberena R, Coltrain JB, Marina FC, Borrero LA, Conver JL, Hodgins G, Admiraal M, Craig OE, Lucquin A, Talbot HM, Lundy J, Liu X, Chauvey L, Schiavinato S, Seguin-Orlando A, Le Roux P, Lucas M, Orlando L, Roberts P, Jones EL. Interdisciplinary evidence for early domestic horse exploitation in southern Patagonia. SCIENCE ADVANCES 2023; 9:eadk5201. [PMID: 38064558 PMCID: PMC10708174 DOI: 10.1126/sciadv.adk5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
The introduction of domestic horses transformed Indigenous societies across the grasslands of Argentina, leading to the emergence of specialized horse cultures across the Southern Cone. However, the dynamics of this introduction are poorly chronicled by historic records. Here, we apply archaeozoological and biomolecular techniques to horse remains from the site of Chorrillo Grande 1 in southern Argentina. Osteological and taphonomic analyses suggest that horses were pastorally managed and used for food by Aónikenk/Tehuelche hunter-gatherers before the onset of permanent European settlement, as early as the mid-17th century. DNA-based sex identifications suggest consumption of both male and female horses, while ceramic residue also shows use of guanaco products. Sequential isotope analyses on horse dentition reveal an origin in southern Patagonia and movement of these animals between the Río Coig and Río Gallegos basins. These results reinforce emerging evidence for rapid Indigenous-mediated dispersal of horses in the Americas and demonstrate that horses catalyzed rapid economic and social transformations.
Collapse
Affiliation(s)
| | - Juan Bautista Belardi
- Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos (ICASUR), Laboratorio de Arqueología Dr. Luis A. Borrero, CONICET, Campus Universitario, Piloto Lero Rivera s/n (9400), Río Gallegos, Santa Cruz, Argentina
| | - Ramiro Barberena
- Centro de Investigación, Innovación y Creación, Facultad de Ciencias Sociales y Humanidades, Universidad Católica de Temuco, Temuco, Chile
- CONICET, Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300 (5500), Mendoza, Argentina
| | | | - Flavia Carballo Marina
- Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos (ICASUR), Laboratorio de Arqueología Dr. Luis A. Borrero, CONICET, Campus Universitario, Piloto Lero Rivera s/n (9400), Río Gallegos, Santa Cruz, Argentina
| | - Luis Alberto Borrero
- CONICET, Universidad de Buenos Aires, Saavedra 15, Piso 5, Buenos Aires, Argentina
| | - Joshua L. Conver
- Center for Digital Scholarship and Curation, Washington State University, Pullman, WA, USA
| | - Gregory Hodgins
- AMS Laboratory/Department of Physics, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | - Jasmine Lundy
- Department of Archaeology, BioArCh, University of York, York, UK
| | - Xuexue Liu
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), University Paul Sabatier, Toulouse, France
| | - Lorelei Chauvey
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), University Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), University Paul Sabatier, Toulouse, France
| | - Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), University Paul Sabatier, Toulouse, France
| | - Petrus Le Roux
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Mary Lucas
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Arctic University Museum of Norway, UiT—The Arctic University of Norway, Lars Thørings veg 10, Tromsø, Norway
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), University Paul Sabatier, Toulouse, France
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Emily Lena Jones
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
23
|
SAITO I, NAKAMURA K, TOZAKI T, HANO K, TAKASU M. Genetic characterization of Japanese native horse breeds by genotyping variants that are associated with phenotypic traits. J Equine Sci 2023; 34:115-120. [PMID: 38274555 PMCID: PMC10806362 DOI: 10.1294/jes.34.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 01/27/2024] Open
Abstract
Concerns have been raised about the loss of genetic diversity in Japanese native horses because of their declining populations. In this study, we investigated the genetic variation of four genes, myostatin (MSTN), ligand-dependent nuclear receptor corepressor like (LCORL), doublesex and mab-3 related transcription factor 3 (DMRT3), and 5-hydroxytryptamine receptor 1A (HTR1A), which are associated with horse phenotypic traits, in six Japanese horse breeds (Hokkaido, Kiso, Noma, Misaki, Tokara, and Yonaguni). MSTN, LCORL, DMRT3, and HTR1A showed polymorphisms in the Kiso; Hokkaido and Noma; Hokkaido; and Kiso, Tokara, and Yonaguni breeds, respectively. The Misaki did not show polymorphisms in any of the genes. This study may serve as a basis for developing future breeding strategies focusing on traits in Japanese native horses.
Collapse
Affiliation(s)
- Ibuki SAITO
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kotono NAKAMURA
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teruaki TOZAKI
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Kazuki HANO
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
| | - Masaki TAKASU
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
- Center for One Medicine Innovative Translational
Research (COMIT), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
24
|
Jevit MJ, Castaneda C, Paria N, Das PJ, Miller D, Antczak DF, Kalbfleisch TS, Davis BW, Raudsepp T. Trio-binning of a hinny refines the comparative organization of the horse and donkey X chromosomes and reveals novel species-specific features. Sci Rep 2023; 13:20180. [PMID: 37978222 PMCID: PMC10656420 DOI: 10.1038/s41598-023-47583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
We generated single haplotype assemblies from a hinny hybrid which significantly improved the gapless contiguity for horse and donkey autosomal genomes and the X chromosomes. We added over 15 Mb of missing sequence to both X chromosomes, 60 Mb to donkey autosomes and corrected numerous errors in donkey and some in horse reference genomes. We resolved functionally important X-linked repeats: the DXZ4 macrosatellite and ampliconic Equine Testis Specific Transcript Y7 (ETSTY7). We pinpointed the location of the pseudoautosomal boundaries (PAB) and determined the size of the horse (1.8 Mb) and donkey (1.88 Mb) pseudoautosomal regions (PARs). We discovered distinct differences in horse and donkey PABs: a testis-expressed gene, XKR3Y, spans horse PAB with exons1-2 located in Y and exon3 in the X-Y PAR, whereas the donkey XKR3Y is Y-specific. DXZ4 had a similar ~ 8 kb monomer in both species with 10 copies in horse and 20 in donkey. We assigned hundreds of copies of ETSTY7, a sequence horizontally transferred from Parascaris and massively amplified in equids, to horse and donkey X chromosomes and three autosomes. The findings and products contribute to molecular studies of equid biology and advance research on X-linked conditions, sex chromosome regulation and evolution in equids.
Collapse
Affiliation(s)
- Matthew J Jevit
- School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Caitlin Castaneda
- School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Nandina Paria
- Texas Scottish Rite Hospital for Children, Dallas, TX, 75219, USA
| | - Pranab J Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Donald Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Theodore S Kalbfleisch
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Brian W Davis
- School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| | - Terje Raudsepp
- School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Gambogi CW, Pandey N, Dawicki-McKenna JM, Arora UP, Liskovykh MA, Ma J, Lamelza P, Larionov V, Lampson MA, Logsdon GA, Dumont BL, Black BE. Centromere innovations within a mouse species. SCIENCE ADVANCES 2023; 9:eadi5764. [PMID: 37967185 PMCID: PMC10651114 DOI: 10.1126/sciadv.adi5764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Mammalian centromeres direct faithful genetic inheritance and are typically characterized by regions of highly repetitive and rapidly evolving DNA. We focused on a mouse species, Mus pahari, that we found has evolved to house centromere-specifying centromere protein-A (CENP-A) nucleosomes at the nexus of a satellite repeat that we identified and termed π-satellite (π-sat), a small number of recruitment sites for CENP-B, and short stretches of perfect telomere repeats. One M. pahari chromosome, however, houses a radically divergent centromere harboring ~6 mega-base pairs of a homogenized π-sat-related repeat, π-satB, that contains >20,000 functional CENP-B boxes. There, CENP-B abundance promotes accumulation of microtubule-binding components of the kinetochore and a microtubule-destabilizing kinesin of the inner centromere. We propose that the balance of pro- and anti-microtubule binding by the new centromere is what permits it to segregate during cell division with high fidelity alongside the older ones whose sequence creates a markedly different molecular composition.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nootan Pandey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennine M. Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uma P. Arora
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Mikhail A. Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Arnold C. From Canaries to Cats: Domestic Animals as Sentinels for Human Exposure Effects. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:112001. [PMID: 37966804 PMCID: PMC10650500 DOI: 10.1289/ehp12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 11/16/2023]
|
27
|
Chen J, Zhang S, Liu S, Dong J, Cao Y, Sun Y. Single nucleotide polymorphisms (SNPs) and indels identified from whole-genome re-sequencing of four Chinese donkey breeds. Anim Biotechnol 2023; 34:1828-1839. [PMID: 35382683 DOI: 10.1080/10495398.2022.2053145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This paper represents the fundamental report of the survey of genome-wide changes of four Chinese indigenous donkey breeds, Dezhou (DZ), Guangling (GL), North China (NC), and Shandong Little donkey (SDL), and the findings will prove usefully for identification of biomarkers that perhaps predict or characterize the growth and coat color patterns. Three genomic regions in CYP3A12, TUBGCP5, and GSTA1 genes, were identified as putative selective sweeps in all researched donkey populations. The loci of candidate genes that may have contributed to the phenotypes in body size (ACSL4, MSI2, ADRA1B, and CDKL5) and coat color patterns (KITLG and TBX3) in donkey populations would be found in underlying strong selection signatures when compared between large and small donkey types, and between different coat colors. The results of the phylogenetic analysis, FST, and principal component analysis (PCA) supported that each population cannot clearly deviate from each other, showing no obvious population structure. We can conclude from the population history that the formation processes between DZS and NC, GL, and SDL are completely different. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Chinese donkey breeding programs.
Collapse
Affiliation(s)
- Jianxing Chen
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Yanhang Cao
- Modern Animal Husbandry Development Service Center of Dongying, Dongying, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Vocational College of Dongying, Dongying, China
| |
Collapse
|
28
|
Saravanan KA, Panigrahi M, Kumar H, Nayak SS, Rajawat D, Bhushan B, Dutt T. Progress and future perspectives of livestock genomics in India: a mini review. Anim Biotechnol 2023; 34:1979-1987. [PMID: 35369840 DOI: 10.1080/10495398.2022.2056046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The field of genetics has evolved a lot after the emergence of molecular and advanced genomic technologies. The advent of Next Generation Sequencing, SNP genotyping platforms and simultaneous reduction in the cost of sequencing had opened the door to genomic research in farm animals. There are various applications of genomics in livestock, such as the use of genomic data: (i) to investigate genetic diversity and breed composition/population structure (ii) to identify genetic variants and QTLs related to economically important and ecological traits, genome-wide association studies (GWAS) and genomic signatures of selection; (iii) to enhance breeding programs by genomic selection. Compared to traditional methods, genomic selection is expected to improve selection response by increasing selection accuracy and reducing the generation interval due to early selection. Genomic selection (GS) in developed countries has led to rapid genetic gains, especially in dairy cattle, due to a well-established genetic evaluation system. Indian livestock system is still lagging behind developed nations in adopting these technologies. This review discusses the current status, challenges, and future perspectives of livestock genomics in India.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
29
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
30
|
Gu J, Li S, Zhu B, Liang Q, Chen B, Tang X, Chen C, Wu DD, Li Y. Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing. Mol Ecol Resour 2023; 23:1656-1672. [PMID: 37259205 DOI: 10.1111/1755-0998.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Understanding the genetic variations of the horse (Equus caballus) genome will improve breeding conservation and welfare. However, genetic variations in long segments, such as structural variants (SVs), remain understudied. We de novo assembled 10 chromosome-level three-dimensional horse genomes, each representing a distinct breed, and analysed horse SVs using a multi-assembly approach. Our findings suggest that SVs with the accumulation of mammalian-wide interspersed repeats related to long interspersed nuclear elements might be a horse-specific mechanism to modulate genome-wide gene regulatory networks. We found that olfactory receptors were commonly loss and accumulated deleterious mutations, but no purge of deleterious mutations occurred during horse domestication. We examined the potential effects of SVs on the spatial structure of chromatin via topologically associating domains (TADs). Breed-specific TADs were significantly enriched by breed-specific SVs. We identified 4199 unique breakpoint-resolved novel insertions across all chromosomes that account for 2.84 Mb sequences missing from the reference genome. Several novel insertions might have potential functional consequences, as 519 appeared to reside within 449 gene bodies. These genes are primarily involved in pathogen recognition, innate immune responses and drug metabolism. Moreover, 37 diverse horses were resequenced. Combining this with public data, we analysed 97 horses through a comparative population genomics approach to identify the genetic basis underlying breed characteristics using Thoroughbreds as a case study. We provide new scientific evidence for horse domestication, an understanding of the genetic mechanism underlying the phenotypic evolution of horses, and a comprehensive genetic variation resource for further genetic studies of horses.
Collapse
Affiliation(s)
- Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing, China
| | - Qiqi Liang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| |
Collapse
|
31
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Petersen JL, Bellone RR, Finno CJ, Peng S, Kalbfleisch TS, Bailey E, Nergadze SG, Giulotto E. The localization of centromere protein A is conserved among tissues. Commun Biol 2023; 6:963. [PMID: 37735603 PMCID: PMC10514049 DOI: 10.1038/s42003-023-05335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A. Although mammalian centromeres are typically associated with satellite DNA, we previously demonstrated that the centromere of horse chromosome 11 (ECA11) is completely devoid of satellite DNA. We also showed that the localization of its CENP-A binding domain is not fixed but slides within an about 500 kb region in different individuals, giving rise to positional alleles. These epialleles are inherited as Mendelian traits but their position can move in one generation. It is still unknown whether centromere sliding occurs during meiosis or during development. Here, we first improve the sequence of the ECA11 centromeric region in the EquCab3.0 assembly. Then, to test whether centromere sliding may occur during development, we map the CENP-A binding domains of ECA11 using ChIP-seq in five tissues of different embryonic origin from the four horses of the equine FAANG (Functional Annotation of ANimal Genomes) consortium. Our results demonstrate that the centromere is localized in the same region in all tissues, suggesting that the position of the centromeric domain is maintained during development.
Collapse
Affiliation(s)
| | - Francesca M Piras
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Ted S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Ernest Bailey
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Solomon G Nergadze
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
32
|
de la Fuente A, Scoggin C, Bradecamp E, Martin-Pelaez S, van Heule M, Troedsson M, Daels P, Meyers S, Dini P. Transcriptome Signature of Immature and In Vitro-Matured Equine Cumulus-Oocytes Complex. Int J Mol Sci 2023; 24:13718. [PMID: 37762020 PMCID: PMC10531358 DOI: 10.3390/ijms241813718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Maturation is a critical step in the development of an oocyte, and it is during this time that the oocyte advances to metaphase II (MII) of the meiotic cycle and acquires developmental competence to be fertilized and become an embryo. However, in vitro maturation (IVM) remains one of the limiting steps in the in vitro production of embryos (IVP), with a variable percentage of oocytes reaching the MII stage and unpredictable levels of developmental competence. Understanding the dynamics of oocyte maturation is essential for the optimization of IVM culture conditions and subsequent IVP outcomes. Thus, the aim of this study was to elucidate the transcriptome dynamics of oocyte maturation by comparing transcriptomic changes during in vitro maturation in both oocytes and their surrounding cumulus cells. Cumulus-oocyte complexes were obtained from antral follicles and divided into two groups: immature and in vitro-matured (MII). RNA was extracted separately from oocytes (OC) and cumulus cells (CC), followed by library preparation and RNA sequencing. A total of 13,918 gene transcripts were identified in OC, with 538 differentially expressed genes (DEG) between immature OC and in vitro-matured OC. In CC, 13,104 genes were expressed with 871 DEG. Gene ontology (GO) analysis showed an association between the DEGs and pathways relating to nuclear maturation in OC and GTPase activity, extracellular matrix organization, and collagen trimers in CC. Additionally, the follicle-stimulating hormone receptor gene (FSHR) and luteinizing hormone/choriogonadotropin receptor gene (LHCGR) showed differential expressions between CC-MII and immature CC samples. Overall, these results serve as a foundation to further investigate the biological pathways relevant to oocyte maturation in horses and pave the road to improve the IVP outcomes and the overall clinical management of equine assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Alejandro de la Fuente
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Charles Scoggin
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Etta Bradecamp
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Soledad Martin-Pelaez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Mats Troedsson
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Stuart Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
33
|
McFadden A, Martin K, Foster G, Vierra M, Lundquist EW, Everts RE, Martin E, Volz E, McLoone K, Brooks SA, Lafayette C. Two Novel Variants in MITF and PAX3 Associated With Splashed White Phenotypes in Horses. J Equine Vet Sci 2023; 128:104875. [PMID: 37406837 DOI: 10.1016/j.jevs.2023.104875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Mutations causing depigmentation are relatively common in Equus caballus (horse). Over 40 alleles in multiple genes are associated with increased white spotting (as of February 2023). The splashed white phenotype, a coat spotting pattern described as appearing like the horse has been splashed with white paint, was previously associated with variants in the PAX3 and MITF genes. Both genes encode transcription factors known to control melanocyte migration and pigmentation. We report two novel mutations, a stop-gain mutation in PAX3 (XM_005610643.3:c.927C>T, ECA6:11,196,181, EquCab3.0) and a missense mutation in a binding domain of MITF (NM_001163874.1:c.993A>T, ECA16:21,559,940, EquCab3.0), each with a strong association with increased depigmentation in Pura Raza Española horses (P = 1.144E-11, N = 30, P = 4.441E-16, N = 39 respectively). Using a quantitative method to score depigmentation, the PAX3 and MITF mutations were found to have average white scores of 25.50 and 24.45, respectively, compared to the average white coat spotting score of 1.89 in the control set. The functional impact for each mutation was predicted to be moderate to extreme (I-TASSER, SMART, Variant Effect Predictor, SIFT). We propose to designate the MITF mutant allele as Splashed White 9 and the PAX3 mutant allele as Splashed White 10 per convention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Samantha A Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | |
Collapse
|
34
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Nagata SI. Construction of an individual identification panel for horses using insertion and deletion markers. J Equine Sci 2023; 34:83-92. [PMID: 37781568 PMCID: PMC10534061 DOI: 10.1294/jes.34.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023] Open
Abstract
Individual identification and paternity testing are important for avoiding inbreeding in the management of small populations of wild and domestic animals. In horse racing industries, they are extremely important for identifying and registering individuals and doping control to ensure fair competition. In this study, we constructed an individual identification panel for horses by using insertion and deletion (INDEL) markers. The panel included 39 INDEL markers selected from a whole-genome INDEL database. Genotyping of 89 Thoroughbreds showed polymorphisms with minor allele frequencies (MAFs) of 0.180-0.489 in all markers. The total probability of exclusion for paternity testing, power of discrimination, and probability of identity were 0.9994271269, >0.9999999999, and 0.9999999987, respectively. The panel was applied to 13 trios (sires, dams, and foals), and no contradictions were observed in genetic inheritance among the trios. When this panel was applied to the trios (52 trios) containing false fathers, an average of 7.3 markers excluded parentage relationships. In addition, genomic DNA extracted from the urine of six horses was partially genotyped for 39 markers, and 6-28 markers were successfully genotyped. The newly constructed panel has two advantages: a low marker mutation rate compared with short tandem repeats and a genotyping procedure that is as simple as short tandem repeat typing compared with single nucleotide variant typing. This panel can be applied for individual identification, paternity determination, and urine-sample identification in Thoroughbred horses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Kei-ichi Hirota
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Shun-ichi Nagata
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| |
Collapse
|
35
|
Skiöldebrand E, Adepu S, Lützelschwab C, Nyström S, Lindahl A, Abrahamsson-Aurell K, Hansson E. A randomized, triple-blinded controlled clinical study with a novel disease-modifying drug combination in equine lameness-associated osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100381. [PMID: 37416846 PMCID: PMC10320210 DOI: 10.1016/j.ocarto.2023.100381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study aimed to test a novel treatment combination (TC) (equivalent to sildenafil, mepivacaine, and glucose) with disease-modifying properties compared to Celestone® bifas® (CB) in a randomized triple-blinded phase III clinical study in horses with mild osteoarthritis (OA). Joint biomarkers (reflecting the articular cartilage and subchondral bone remodelling) and clinical lameness were used as readouts to evaluate the treatment efficacy. Methods Twenty horses with OA-associated lameness in the carpal joint were included in the study and received either TC (n = 10) or CB (n = 10) drug intra-articularly-twice in the middle carpal joint with an interval of 2 weeks (visit 1 & 2). Clinical lameness was assessed both objectively (Lameness locator) and subjectively (visually). Synovial fluid and serum were sampled for quantification of the extracellular matrix (ECM) neo-epitope joint biomarkers represented by biglycan (BGN262) and cartilage oligomeric matrix protein (COMP156). Another two weeks later clinical lameness was recorded, and serum was collected for biomarkers analysis. The overall health status was compared pre and post-intervention by interviewing the trainer. Results Post-intervention, SF BGN262 levels significantly declined in TC (P = 0.002) and COMP156 levels significantly increased in CB (P = 0.002). The flexion test scores improved in the TC compared to CB (P =0.033) and also had an improved trotting gait quality (P =0.044). No adverse events were reported. Conclusion This is the first clinical study presenting companion diagnostics assisting in identifying OA phenotype and evaluating the efficacy and safety of a novel disease-modifying osteoarthritic drug.
Collapse
Affiliation(s)
- E. Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Adepu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Lützelschwab
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Nyström
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - A. Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - K. Abrahamsson-Aurell
- Hallands Djursjukhus Kungsbacka Hästklinik, Älvsåkers Byväg 20, 434 95 Kungsbacka, Sweden
| | - E. Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Lindsay-McGee V, Sanchez-Molano E, Banos G, Clark EL, Piercy RJ, Psifidi A. Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach. Genet Sel Evol 2023; 55:60. [PMID: 37592264 PMCID: PMC10436415 DOI: 10.1186/s12711-023-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The Connemara pony (CP) is an Irish breed that has experienced varied selection by breeders over the last fifty years, with objectives ranging from the traditional hardy pony to an agile athlete. We compared these ponies with well-studied Warmblood (WB) horses, which are also selectively bred for athletic performance but with a much larger census population. Using genome-wide single nucleotide polymorphism (SNP) and whole-genome sequencing data from 116 WB (94 UK WB and 22 European WB) and 36 CP (33 UK CP and 3 US CP), we studied the genomic diversity, inbreeding and population structure of these breeds. RESULTS The k-means clustering approach divided both the CP and WB populations into four genetic groups, among which the CP genetic group 1 (C1) associated with non-registered CP, C4 with US CP, WB genetic group 1 (W1) with Holsteiners, and W3 with Anglo European and British WB. Maximum and mean linkage disequilibrium (LD) varied significantly between the two breeds (mean from 0.077 to 0.130 for CP and from 0.016 to 0.370 for WB), but the rate of LD decay was generally slower in CP than WB. The LD block size distribution peaked at 225 kb for all genetic groups, with most of the LD blocks not exceeding 1 Mb. The top 0.5% harmonic mean pairwise fixation index (FST) values identified ontology terms related to cancer risk when the four CP genetic groups were compared. The four CP genetic groups were less inbred than the WB genetic groups, but C2, C3 and C4 had a lower proportion of shorter runs of homozygosity (ROH) (74 to 76% < 4 Mb) than the four WB genetic groups (80 to 85% < 4 Mb), indicating more recent inbreeding. The CP and WB genetic groups had a similar ratio of effective number of breeders (Neb) to effective population size (Ne). CONCLUSIONS Distinct genetic groups of individuals were revealed within each breed, and in WB these genetic groups reflected population substructure better than studbook or country of origin. Ontology terms associated with immune and inflammatory responses were identified from the signatures of selection between CP genetic groups, and while CP were less inbred than WB, the evidence pointed to a greater degree of recent inbreeding. The ratio of Neb to Ne was similar in CP and WB, indicating the influence of popular sires is similar in CP and WB.
Collapse
Affiliation(s)
- Victoria Lindsay-McGee
- Royal Veterinary College, London, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
37
|
Bhardwaj A, Tandon G, Pal Y, Sharma NK, Nayan V, Soni S, Iquebal MA, Jaiswal S, Legha RA, Talluri TR, Bhattacharya TK, Kumar D, Rai A, Tripathi BN. Genome-Wide Single-Nucleotide Polymorphism-Based Genomic Diversity and Runs of Homozygosity for Selection Signatures in Equine Breeds. Genes (Basel) 2023; 14:1623. [PMID: 37628674 PMCID: PMC10454598 DOI: 10.3390/genes14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The horse, one of the most domesticated animals, has been used for several purposes, like transportation, hunting, in sport, or for agriculture-related works. Kathiawari, Marwari, Manipuri, Zanskari, Bhutia, Spiti, and Thoroughbred are the main breeds of horses, particularly due to their agroclimatic adaptation and role in any kind of strong physical activity, and these characteristics are majorly governed by genetic factors. The genetic diversity and phylogenetic relationship of these Indian equine breeds using microsatellite markers have been reported, but further studies exploring the SNP diversity and runs of homozygosity revealing the selection signature of breeds are still warranted. In our study, the identification of genes that play a vital role in muscle development is performed through SNP detection via the whole-genome sequencing approach. A total of 96 samples, categorized under seven breeds, and 620,721 SNPs were considered to ascertain the ROH patterns amongst all the seven breeds. Over 5444 ROH islands were mined, and the maximum number of ROHs was found to be present in Zanskari, while Thoroughbred was confined to the lowest number of ROHs. Gene enrichment of these ROH islands produced 6757 functional genes, with AGPAT1, CLEC4, and CFAP20 as important gene families. However, QTL annotation revealed that the maximum QTLs were associated with Wither's height trait ontology that falls under the growth trait in all seven breeds. An Equine SNP marker database (EqSNPDb) was developed to catalogue ROHs for all these equine breeds for the flexible and easy chromosome-wise retrieval of ROH along with the genotype details of all the SNPs. Such a study can reveal breed divergence in different climatic and ecological conditions.
Collapse
Affiliation(s)
- Anuradha Bhardwaj
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Gitanjali Tandon
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Yash Pal
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India;
| | - Sonali Soni
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Ram Avatar Legha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - B. N. Tripathi
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| |
Collapse
|
38
|
Vasoya D, Tzelos T, Benedictus L, Karagianni AE, Pirie S, Marr C, Oddsdóttir C, Fintl C, Connelley T. High-Resolution Genotyping of Expressed Equine MHC Reveals a Highly Complex MHC Structure. Genes (Basel) 2023; 14:1422. [PMID: 37510326 PMCID: PMC10379315 DOI: 10.3390/genes14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) genes play a key role in a number of biological processes, most notably in immunological responses. The MHCI and MHCII genes incorporate a complex set of highly polymorphic and polygenic series of genes, which, due to the technical limitations of previously available technologies, have only been partially characterized in non-model but economically important species such as the horse. The advent of high-throughput sequencing platforms has provided new opportunities to develop methods to generate high-resolution sequencing data on a large scale and apply them to the analysis of complex gene sets such as the MHC. In this study, we developed and applied a MiSeq-based approach for the combined analysis of the expressed MHCI and MHCII repertoires in cohorts of Thoroughbred, Icelandic, and Norwegian Fjord Horses. The approach enabled us to generate comprehensive MHCI/II data for all of the individuals (n = 168) included in the study, identifying 152 and 117 novel MHCI and MHCII sequences, respectively. There was limited overlap in MHCI and MHCII haplotypes between the Thoroughbred and the Icelandic/Norwegian Fjord horses, showcasing the variation in MHC repertoire between genetically divergent breeds, and it can be inferred that there is much more MHC diversity in the global horse population. This study provided novel insights into the structure of the expressed equine MHC repertoire and highlighted unique features of the MHC in horses.
Collapse
Affiliation(s)
- Deepali Vasoya
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Thomas Tzelos
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lindert Benedictus
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Anna Eleonora Karagianni
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Scott Pirie
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Celia Marr
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket CD8 7NN, UK
| | - Charlotta Oddsdóttir
- The Institute for Experimental Pathology at Keldur, University of Iceland Keldnavegur 3, 112 Reykjavík, Iceland
| | - Constanze Fintl
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| |
Collapse
|
39
|
Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide. Genes (Basel) 2023; 14:1211. [PMID: 37372391 DOI: 10.3390/genes14061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data derived from the whole-genome sequencing of 97 horses, investigated the distribution of genome-wide ROH patterns, and calculated ROH-based inbreeding coefficients for 16 representative horse varieties from around the world. Our findings indicated that both ancient and recent inbreeding occurrences had varying degrees of impact on various horse breeds. However, recent inbreeding events were uncommon, particularly among indigenous horse breeds. Consequently, the ROH-based genomic inbreeding coefficient could aid in monitoring the level of inbreeding. Using the Thoroughbred population as a case study, we discovered 24 ROH islands containing 72 candidate genes associated with artificial selection traits. We found that the candidate genes in Thoroughbreds were involved in neurotransmission (CHRNA6, PRKN, and GRM1), muscle development (ADAMTS15 and QKI), positive regulation of heart rate and heart contraction (HEY2 and TRDN), regulation of insulin secretion (CACNA1S, KCNMB2, and KCNMB3), and spermatogenesis (JAM3, PACRG, and SPATA6L). Our findings provide insight into horse breed characteristics and future breeding strategies.
Collapse
Affiliation(s)
- Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mei Liu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ning Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha 410024, China
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
40
|
Gambogi CW, Pandey N, Dawicki-McKenna JM, Arora UP, Liskovykh MA, Ma J, Lamelza P, Larionov V, Lampson MA, Logsdon GA, Dumont BL, Black BE. Centromere Innovations Within a Mouse Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540353. [PMID: 37333154 PMCID: PMC10274901 DOI: 10.1101/2023.05.11.540353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mammalian centromeres direct faithful genetic inheritance and are typically characterized by regions of highly repetitive and rapidly evolving DNA. We focused on a mouse species, Mus pahari, that we found has evolved to house centromere-specifying CENP-A nucleosomes at the nexus of a satellite repeat that we identified and term π-satellite (π-sat), a small number of recruitment sites for CENP-B, and short stretches of perfect telomere repeats. One M. pahari chromosome, however, houses a radically divergent centromere harboring ~6 Mbp of a homogenized π-sat-related repeat, π-satB, that contains >20,000 functional CENP-B boxes. There, CENP-B abundance drives accumulation of microtubule-binding components of the kinetochore, as well as a microtubule-destabilizing kinesin of the inner centromere. The balance of pro- and anti-microtubule-binding by the new centromere permits it to segregate during cell division with high fidelity alongside the older ones whose sequence creates a markedly different molecular composition.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
| | - Nootan Pandey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennine M. Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Uma P. Arora
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Mikhail A. Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892
| | - Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
41
|
McFadden A, Martin K, Foster G, Vierra M, Lundquist EW, Everts RE, Martin E, Volz E, McLoone K, Brooks SA, Lafayette C. 5'UTR Variant in KIT Associated with White Spotting in Horses. J Equine Vet Sci 2023:104563. [PMID: 37182614 DOI: 10.1016/j.jevs.2023.104563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Mutations in KIT, a gene that influences melanoblast migration and pigmentation, often result in mammalian white spotting. As of February 2023, over 30 KIT variants associated with white spotting were documented in Equus caballus (horse). Here we report an association of increased white spotting on the skin and coat with a variant in the 5'UTR of KIT (rs1149701677: g.79,618,649A>C). Horses possessing at least one alternate allele demonstrate phenotypic characteristics similar to other KIT mutations: clear borders around unpigmented regions on the body, face, and limbs. Using a quantitative measure of depigmentation, we observed an average white score of 10.70 among individuals with rs1149701677, while the average score of the control, homozygous reference sample was 2.23 (p=1.892e-11, n=109, t-test). The rs1149701677 site has a cross-species conservation score of 3.4, one of the highest scores across the KIT 5'UTR, implying regulatory importance for this site. Ensembl also predicted a "moderately impactful" functional effect for the rs1149701677 variant. We propose that this single nucleotide variant likely alters the regulation of KIT, which in turn may disrupt melanoblast migration causing an increase in white spotting on the coat. Alternatively, the rs1149701677 variant may be in linkage with another nearby variant with an as-yet-undiscovered functional impact. We propose to term this new allele "Holiday White" or W35 based on conventional nomenclature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Erin Volz
- Etalon Inc, Menlo Park, CA 94025, USA
| | | | - Samantha A Brooks
- Department of Animal Sciences, UF Genetics Institute University of Florida, Gainesville, FL 32611-0910, USA
| | | |
Collapse
|
42
|
White-Springer SH, Bruemmer J, Coleman RJ. The Past, Present, and Future of Equine Science. J Equine Vet Sci 2023; 124:104297. [PMID: 37236727 DOI: 10.1016/j.jevs.2023.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 05/28/2023]
Abstract
A core group of 27 equine nutritionists and physiologists joined together in the late 1960s to formally address and enhance the direction of equine research, creating the Equine Nutrition and Physiology Society. In 2003, that growing society transformed into the Equine Science Society, which now serves as the preeminent, internationally recognized scientific equine organization. In recent years, it has been appreciated that equine science encompasses a wide range of focus areas, including exercise science, nutrition, genetics, reproductive physiology, teaching and extension, production and management, and mix of other specialties, qualified as biosciences. Additionally, trainees are highly valued in the society, with the clear understanding that young people are the future of equine science. Amongst tightening budgets, equine researchers must focus on timely dissemination of high-quality research studies and development of strong, interdisciplinary, cross-species, and multi-institutional collaborations to ensure sustainability of academic research programs. With a little creativity, equine science will continue to thrive for the betterment of the horse and all involved in the equine industry.
Collapse
Affiliation(s)
- Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX.
| | - Jason Bruemmer
- USDA-APHIS National Wildlife Research Center, Fort Collins, CO
| | - Robert J Coleman
- Department of Food and Animal Science, University of Kentucky, Lexington, KY
| |
Collapse
|
43
|
Liu X, Zhang Y, Pu Y, Ma Y, Jiang L. Whole-genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses. Anim Genet 2023; 54:144-154. [PMID: 36464985 DOI: 10.1111/age.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are diverse, abundant, and complicated in genomes. They not only can drive the genome evolution process but can also act as special resources for adaptation. However, little is known about the evolutionary processes that shaped horses. In this work, 126 horse assemblages involved in most horse breeds in China were used to investigate the patterns of TE variation for the first time. By using RepeatMasker and melt software, we found that the horse-specific short interspersed repetitive elements family, equine repetitive elements (ERE1), exhibited polymorphisms in horse genomes. Phylogenetic analysis based on these ERE1 loci (minor allele frequency ≥0.05) revealed three major horse groups, namely, those in northern China, southern China, and Qinghai-Tibetan, which mirrors the result determined by SNPs to some extent. The present ERE1 family emerged ~0.26 to 1.77 Mya ago, with an activity peak at ~0.49 Mya, which matches the early stage of the horse lineage and decreases after the divergence of Equus caballus and Equus ferus przewalskii. To detect the functional ERE1(s) associated with adaptation, locus-specific branch length, genome-wide association study, and absolute allele frequency difference analyses were conducted and resulted in two common protein-coding genes annotated by candidate ERE1s. They were clustered into the vascular smooth muscle contraction (p = 0.01, EDNRA) and apelin signalling pathways (p = 0.02, NRF1). Notably, ERE1 insertion into the EDNRA gene showed a higher association with adaptation among southern China horses and other horses in 15 populations and 451 individuals (p = 4.55 e-8). Our results provide a comprehensive understanding of TE variations to analyse the phylogenetic relationships and traits relevant to adaptive evolution in horses.
Collapse
Affiliation(s)
- Xuexue Liu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Yanli Zhang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Jiang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
44
|
Holtby AR, Hall TJ, McGivney BA, Han H, Murphy KJ, MacHugh DE, Katz LM, Hill EW. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim Genet 2023. [DOI: 10.1111/age.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
|
45
|
Baloch AR, Feugang JM, Rodríguez-Osorio N. Editorial: Genomic and epigenomic applications in animal and veterinary sciences. Front Vet Sci 2023; 10:1167079. [PMID: 37020977 PMCID: PMC10069669 DOI: 10.3389/fvets.2023.1167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Abdul Rasheed Baloch
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jean Magloire Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Nélida Rodríguez-Osorio
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Universidad de la República, Salto, Uruguay
- *Correspondence: Nélida Rodríguez-Osorio
| |
Collapse
|
46
|
Short Insertion and Deletion Discoveries via Whole-Genome Sequencing of 101 Thoroughbred Racehorses. Genes (Basel) 2023; 14:genes14030638. [PMID: 36980910 PMCID: PMC10048024 DOI: 10.3390/genes14030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Thoroughbreds are some of the most famous racehorses worldwide and are currently animals of high economic value. To understand genomic variability in Thoroughbreds, we identified genome-wide insertions and deletions (INDELs) and obtained their allele frequencies in this study. INDELs were obtained from whole-genome sequencing data of 101 Thoroughbred racehorses by mapping sequence reads to the horse reference genome. By integrating individual data, 1,453,349 and 113,047 INDELs were identified in the autosomal (1–31) and X chromosomes, respectively, while 18 INDELs were identified on the mitochondrial genome, totaling 1,566,414 INDELs. Of those, 779,457 loci (49.8%) were novel INDELs, while 786,957 loci (50.2%) were already registered in Ensembl. The sizes of diallelic INDELs ranged from −286 to +476, and the majority, 717,736 (52.14%) and 220,672 (16.03%), were 1-bp and 2-bp variants, respectively. Numerous INDELs were found to have lower frequencies of alternative (Alt) alleles. Many rare variants with low Alt allele frequencies (<0.5%) were also detected. In addition, 5955 loci were genotyped as having a minor allele frequency of 0.5 and being heterogeneous genotypes in all the horses. While short-read sequencing and its mapping to reference genome is a simple way of detecting variants, fake variants may be detected. Therefore, our data help to identify true variants in Thoroughbred horses. The INDEL database we constructed will provide useful information for genetic studies and industrial applications in Thoroughbred horses, including a gene-editing test for gene-doping control and a parentage test using INDELs for horse registration and identification.
Collapse
|
47
|
Peng S, Dahlgren AR, Donnelly CG, Hales EN, Petersen JL, Bellone RR, Kalbfleisch T, Finno CJ. Functional annotation of the animal genomes: An integrated annotation resource for the horse. PLoS Genet 2023; 19:e1010468. [PMID: 36862752 PMCID: PMC10013926 DOI: 10.1371/journal.pgen.1010468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/14/2023] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
The genomic sequence of the horse has been available since 2009, providing critical resources for discovering important genomic variants regarding both animal health and population structures. However, to fully understand the functional implications of these variants, detailed annotation of the horse genome is required. Due to the limited availability of functional data for the equine genome, as well as the technical limitations of short-read RNA-seq, existing annotation of the equine genome contains limited information about important aspects of gene regulation, such as alternate isoforms and regulatory elements, which are either not transcribed or transcribed at a very low level. To solve above problems, the Functional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive overview of gene expression and regulation in the horse, presenting 39,625 novel transcripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115 open chromatin regions genome wide across a diverse set of tissues. We showed substantial concordance between chromatin accessibility, chromatin states in different genic features and gene expression. This comprehensive and expanded set of genomics resources will provide the equine research community ample opportunities for studies of complex traits in the horse.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Anna R. Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Callum G. Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Erin N. Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, United States of America
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
48
|
Hill EW, McGivney BA, MacHugh DE. Inbreeding depression and durability in the North American Thoroughbred horse. Anim Genet 2023; 54:408-411. [PMID: 36843349 DOI: 10.1111/age.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023]
Abstract
The proportion of the genome containing runs of homozygosity (ROH) affects production traits in livestock populations. In European and Australasian Thoroughbreds inbreeding, quantified using ROH (FROH ), is associated with the probability of ever racing. Here, we measured FROH using 333 K SNP genotypes from 768 Thoroughbred horses born in North America to evaluate the effect of inbreeding on racing traits in that region. Among North American horses, FROH was not associated (p = 0.518) with the probability of ever racing but was significantly associated with the number of race starts (p = 0.002). Among raced horses, those with a 10% higher FROH than the mean inbreeding coefficient were predicted to have 3.5 fewer race starts compared to horses with a mean inbreeding coefficient. Considering the trend of increasing inbreeding and a decline in the average number of race starts per runner in North America, mitigating inbreeding in the population could positively influence racing durability.
Collapse
Affiliation(s)
- Emmeline W Hill
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland.,UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatrice A McGivney
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Piras FM, Cappelletti E, Abdelgadir WA, Salamon G, Vignati S, Santagostino M, Sola L, Nergadze SG, Giulotto E. A Satellite-Free Centromere in Equus przewalskii Chromosome 10. Int J Mol Sci 2023; 24:4134. [PMID: 36835543 PMCID: PMC9961726 DOI: 10.3390/ijms24044134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In mammals, centromeres are epigenetically specified by the histone H3 variant CENP-A and are typically associated with satellite DNA. We previously described the first example of a natural satellite-free centromere on Equus caballus chromosome 11 (ECA11) and, subsequently, on several chromosomes in other species of the genus Equus. We discovered that these satellite-free neocentromeres arose recently during evolution through centromere repositioning and/or chromosomal fusion, after inactivation of the ancestral centromere, where, in many cases, blocks of satellite sequences were maintained. Here, we investigated by FISH the chromosomal distribution of satellite DNA families in Equus przewalskii (EPR), demonstrating a good degree of conservation of the localization of the major horse satellite families 37cen and 2PI with the domestic horse. Moreover, we demonstrated, by ChIP-seq, that 37cen is the satellite bound by CENP-A and that the centromere of EPR10, the ortholog of ECA11, is devoid of satellite sequences. Our results confirm that these two species are closely related and that the event of centromere repositioning which gave rise to EPR10/ECA11 centromeres occurred in the common ancestor, before the separation of the two horse lineages.
Collapse
Affiliation(s)
- Francesca M. Piras
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Wasma A. Abdelgadir
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulio Salamon
- Oasi di Sant’Alessio, Sant’Alessio con Vialone, 27016 Pavia, Italy
| | | | - Marco Santagostino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Solomon G. Nergadze
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
50
|
Kendall A, Ekman S, Skiöldebrand E. Nerve growth factor receptors in equine synovial membranes vary with osteoarthritic disease severity. J Orthop Res 2023; 41:316-324. [PMID: 35578994 PMCID: PMC10084167 DOI: 10.1002/jor.25382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/25/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023]
Abstract
Nerve growth factor (NGF) is a neurotrophin that has been implicated in pain signaling, apoptosis, inflammation and proliferation. The resultant effects depend on interaction with two different receptors; tyrosine kinase A (TrkA) and p75NTR . NGF increases in synovial fluid from osteoarthritic joints, and monoclonal antibody therapy is trialed to treat osteoarthritis (OA)-related pain. Investigation of the complex and somewhat contradictory signaling pathways of NGF is conducted in neural research, but has not followed through to orthopaedic studies. The objectives of this study were to compare the expression of NGF receptors and the downstream regulator BAX in synovial membranes from joints in various stages of OA. The horse was used as a model. Synovial membranes were harvested from five healthy horses postmortem and from clinical cases with spontaneous OA undergoing arthroscopic surgery for lameness. Four horses with synovitis without gross cartilage changes, four horses with synovitis and cartilage damage, and four horses with synovitis and intracarpal fractures were included. Samples were investigated by immunohistochemistry and results showed that nuclear staining of TrkA, p75NTR and BAX increases in OA-associated synovitis. TrkA expression increased in early disease stages whereas increases in p75NTR were most prominent in later disease stages with cartilage damage and fibrosis. Clinical significance: Suppression of NGF may result in varied effects depending on different stages of the osteoarthritic disease process.
Collapse
Affiliation(s)
- Anna Kendall
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stina Ekman
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Skiöldebrand
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|