1
|
Schaible GA, Cliff JB, Crandall JA, Bougoure JJ, Mathuri MN, Sessions AL, Atwood J, Hatzenpichler R. Comparing Raman and NanoSIMS for heavy water labeling of single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.05.602271. [PMID: 40166262 PMCID: PMC11956904 DOI: 10.1101/2024.07.05.602271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stable isotope probing (SIP) experiments in conjunction with Raman microspectroscopy (Raman) or nano-scale secondary ion mass spectrometry (NanoSIMS) are frequently used to explore single cell metabolic activity in pure cultures as well as complex microbiomes. Despite the increasing popularity of these techniques, the comparability of isotope incorporation measurements using both Raman and NanoSIMS directly on the same cell remains largely unexplored. This knowledge gap creates uncertainty about the consistency of single-cell SIP data obtained independently from each method. Here, we conducted a comparative analysis of 543 Escherichia coli cells grown in M9 minimal medium in the absence or presence of heavy water (2H2O) using correlative Raman and NanoSIMS measurements to quantify the results between the two approaches. We demonstrate that Raman and NanoSIMS yield highly comparable measurements of 2H incorporation, with varying degrees of similarity based on the mass ratios analyzed using NanoSIMS. TheC 2 12 H / C 1 12 H andC 2 12 H / C 1 12 H mass ratios provide targeted measurements of C-H bonds but may suffer from biases and background interference, while the 2H/1H ratio captures all hydrogen with lower detection limits, making it suitable for applications requiring comprehensive 2H quantification. Importantly, despite its higher mass resolution requirements, the use of C2 2H/C2 1H may be a viable alternative to using C2H/C1H due to lower background and higher overall count rates. Furthermore, using an empirical approach to determining Raman wavenumber ranges via the 2nd derivative improved the data equivalency of 2H quantification between Raman and NanoSIMS, highlighting its potential for enhancing cross-technique comparability. These findings provide a robust framework for leveraging both techniques, enabling informed experimental design and data interpretation. By enhancing cross-technique comparability, this work advances SIP methodologies for investigating microbial metabolism and interactions in diverse systems.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - John B. Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jennifer A. Crandall
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| | - Jeremy J. Bougoure
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Michael N. Mathuri
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Alex L. Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Joseph Atwood
- Department of Agricultural Economics and Economics, Montana State University, Bozeman, MT 59717
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| |
Collapse
|
2
|
Yao J, Dhas JA, Strange LE, Bara JE, Ravula S, Walter ED, Chen Y, Heldebrant DJ, Zhu Z. Investigating intermolecular interactions among CO 2, water and PEEK-ionene membrane using cryo ToF-SIMS and isotopic labeling. Front Chem 2025; 13:1564084. [PMID: 40161005 PMCID: PMC11949930 DOI: 10.3389/fchem.2025.1564084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Cryogenic time-of-flight secondary ion mass spectrometry (cryo ToF-SIMS) has emerged as a powerful tool for investigating molecular interactions, speciation, and dynamics in materials for CO2 capture. In this study, we apply cryo ToF-SIMS to probe interactions between CO2, water, and PEEK-ionene membranes-a promising material for direct CO2 capture due to its selectivity, durability, and efficiency. Despite this potential, the mechanisms governing CO2 diffusion and the influence of water vapor on CO2 behavior remain unclear. To address this, we loaded PEEK-ionene membranes with 13CO2 and D2O and employed cryo ToF-SIMS to visualize the 3D distribution of CO2 and water within the membrane. While prior studies suggest that 13CO2 is absorbed under ambient conditions, our cryo ToF-SIMS analysis revealed no enhancement of the 13C/12C ratio, suggesting weak CO2-membrane interactions. As a result, CO2 vaporizes even at low temperatures (-140°C) under vacuum conditions. In contrast, D2O displayed a relatively homogeneous distribution in the membrane, suggesting stronger water-membrane interactions via hydrogen bonding (18-20 kJ/mol). Interestingly, CO2 was not detected in D2O-loaded membranes, indicating minimal interference from water vapor on CO2 diffusion. As a comparison, the cryo ToF-SIMS data show that 13CO2 can readily react with a basic Na2CO3 aqueous solution to form NaH13CO3. These findings demonstrate cryo ToF-SIMS as a critical technique for understanding gas-water-membrane interactions, offering insights for membrane functionalization to improve CO2 capture efficiency.
Collapse
Affiliation(s)
- Jennifer Yao
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jeffrey A. Dhas
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Lyndi E. Strange
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jason E. Bara
- University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL, United States
| | - Sudhir Ravula
- University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL, United States
| | - Eric D. Walter
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ying Chen
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - David J. Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, United States
- Washington State University, Department of Chemical Engineering and Bioengineering, Pullman, WA, United States
| | - Zihua Zhu
- Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
3
|
Semler AC, Paris ER, Salvador M, Dekas AE. Abundance, Identity, and Potential Diazotrophic Activity of nifH-Containing Organisms at Marine Cold Seeps. Environ Microbiol 2025; 27:e70058. [PMID: 40065596 DOI: 10.1111/1462-2920.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 05/13/2025]
Abstract
Diazotrophic microorganisms alleviate nitrogen limitation at marine cold seeps using nitrogenase, encoded in part by the gene nifH. Here, we investigated nifH-containing organisms (NCOs) inside and outside six biogeochemically heterogeneous seeps using amplicon sequencing and quantitative real-time PCR (qPCR) of nifH genes and transcripts. We detected nifH genes affiliated with phylogenetically and metabolically diverse organisms spanning 18 bacterial and archaeal phyla (17 within seeps). Detected NCOs included methane-oxidising ANME-2 archaea and sulfate-reducing Desulfobacteraceae, which have been shown to fix nitrogen at seeps previously, as well as Desulfuromonadales and putatively hydrocarbon-oxidising Desulfoglaeba and Candidatus Methanoliparia. We detected nifH transcripts at five of the six seeps, suggesting widespread diazotrophic activity. We corrected our qPCR data based on our amplicon results, which found that 71% of recovered sequences were not bona fide nifH, and we recommend a similar correction in future qPCR studies that use broad nifH primers. NifH abundance was up to three orders of magnitude higher within seeps, was correlated with mcrA abundance, and, when corrected, was negatively correlated with porewater ammonium < 25 μM, consistent with the inhibition of diazotrophy by ammonium. Our findings expand the known diversity of NCOs at seeps and emphasise seeps as hotspots for deep-sea diazotrophy.
Collapse
Affiliation(s)
- Amanda C Semler
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Mikaela Salvador
- Department of Earth Systems, Stanford University, Stanford, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Wu XN, Feng JC, Chen X, Lin YL, Huang Y, Zhong S, Li CR, Zhu MZ, Zhang S. Effects of Different Types of Microplastics on Cold Seep Microbial Diversity and Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1322-1333. [PMID: 39763234 DOI: 10.1021/acs.est.4c08102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem. To fill this knowledge gap, we collected sediment and seawater samples from the Haima cold seep and conducted laboratory cultivation experiments, simulating in situ environmental conditions. Environmental factors and microbial genetics were analyzed at different stages over a 2-month cultivation period. Our main conclusions are as follows: (1) When microplastics (MPs) were added to sediment and seawater environments, the microbial communities most closely resembled those of the original habitat. The changes in the plastisphere communities were mainly associated with the culture time. (2) The co-occurrence network of the plastisphere was more fragile than that of environments. (3) Multiple environmental factors determined the community composition, whereas a small number of environmental variables drove the community function. MPs affected nitrogen cycling and methane metabolism and might aggregate pathogenic species. This work provides a better perspective of the effect of MPs on the community structure and function in cold seeps.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Jing-Chun Feng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi-Lei Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongji Huang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Song Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Can-Rong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Meng-Zhuo Zhu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Si Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Guo X, Li Y, Song G, Zhao L, Wang J. Adaptation of Archaeal Communities to Summer Hypoxia in the Sediment of Bohai Sea. Ecol Evol 2025; 15:e70768. [PMID: 39781248 PMCID: PMC11707553 DOI: 10.1002/ece3.70768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene. Results indicated that the archaeal communities were dominated by Thermoproteota (80.61%), Asgardarchaeota (8.70%), and Thermoplasmatota (5.27%). Dissolved oxygen (DO) and NO3 - were the two key factors shaping the distribution of archaeal communities, accounting for 49.5% and 38.3% of the total variabilities (p < 0.05), respectively. With the intensity of oxygen depletion, the diversity of archaeal communities increased significantly. Microbial networks revealed that Bathyarchaeia played a key role in interacting with both bacteria and other archaeal groups. Furthermore, adaptions to hypoxia of archaea were also displayed by variation in relative abundance of the predicted ecological functions and the metabolic pathways. The enrichment of specific nitrogen transformation enzymes showed the potential for nitrogen fixation and removal, which might contribute to the balance of N budget and thus facilitate the ecological restoration under eutrophication in Bohai Sea. Our results provided a new picture on ecological and metabolic adaptions to hypoxia by archaea, which will be beneficial to further investigations in extreme environments both theoretically and practically.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Yanying Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Guisheng Song
- School of Marine Science and TechnologyTianjin UniversityTianjinChina
| | - Liang Zhao
- College of Marine and Environmental SciencesTianjin University of Science and TechnologyTianjinChina
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| |
Collapse
|
6
|
Zhang X, Bai S, Min H, Cui Y, Sun Y, Feng Y. Evolutionary dynamics of nitrate uptake, assimilation, and signalling in plants: adapting to a changing environment. PHYSIOLOGIA PLANTARUM 2025; 177:e70069. [PMID: 39835489 DOI: 10.1111/ppl.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Nitrogen (N) is a crucial macronutrient for plant growth, with nitrate as a primary inorganic N source for most plants. Beyond its role as a nutrient, nitrate also functions as a signalling molecule, influencing plant morphogenetic development. While nitrate utilization and signalling mechanisms have been extensively studied in model plants, the origin, evolution, and diversification of core components in nitrate uptake, assimilation, and signalling remain largely unexplored. In our investigation, we discovered that deep sea algae living in low nitrate conditions developed a high-affinity transport system (HATS) for nitrate uptake and a pathway of nitrate primary assimilation (NR-NiR-GS-GOGAT). In contrast, low-affinity transport systems (LATS) and the plastid GS originated from the ancestors of land and seed plants, respectively. These adaptations facilitated amino acid acquisition as plants conquered terrestrial environments. Furthermore, the intricate nitrate signalling, relying on NRT1.1 and NLP7, evolved stepwise, potentially establishing systematic regulation in bryophytes for self-regulation under complex terrestrial nitrate environments. As plants underwent terrestrialization, they underwent adaptive changes to thrive in dynamic nitrate environments, continually enhancing their nitrate uptake, assimilation, and signal transduction abilities.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shufeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hui Min
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yuxuan Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Lu W, Zheng Y, Wang Y, Song J, Weng Y, Ma W, Arslan M, Gamal El-Din M, Wang D, Wang Q, Chen C. Survival strategies and assembly mechanisms of microbial communities in petroleum-contaminated soils. ENVIRONMENTAL RESEARCH 2024; 262:119857. [PMID: 39197484 DOI: 10.1016/j.envres.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
This study analyzed petroleum-contaminated soils from south and north locations in China to explore the structure, diversity, functional genes and assembly processes of microbial communities' . Compared with soils from south locations, soils from northern regions exhibited elevated pH, total nitrogen (TN), and total petroleum hydrocarbon (TPH) levels. Among these, TN and TPH were the most influential on the microbial community. The dominant phyla for bacteria, archaea, and fungi were Proteobacteria, Thaumarchaeota, and Ascomycota, respectively. Among them, Proteobacteria was strongly correlated with various functional genes including alkB and many aromatics degradation and denitrification genes (r > 0.9, p < 0.01), suggesting that Proteobacteria play an important role in petroleum-contaminated soils. Metabolism in northern regions was more active than that in southern regions. The northern regions showed a pronounced tendency for denitrification, while the southern regions were characterized by acetoclastic methanogenesis. The assembly of microbial communities exhibited regional patterns, the deterministic assembly was more prominent in the northern soils, while the stochastic assembly was evident in the southern soils. Overall, these findings provide a new conceptual framework to understand the biosphere in petroleum-contaminated soil, potentially guiding improved management practices in the environmental remediation.
Collapse
Affiliation(s)
- Wenyi Lu
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Zheng
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiayu Song
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102200, China
| | - Yibin Weng
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102200, China
| | - Wenfeng Ma
- Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Dingyuan Wang
- School of Petroleum Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
8
|
Payá-Tormo L, Echavarri-Erasun C, Makarovsky-Saavedra N, Pérez-González A, Yang ZY, Guo Y, Seefeldt LC, Rubio LM. Iron-molybdenum cofactor synthesis by a thermophilic nitrogenase devoid of the scaffold NifEN. Proc Natl Acad Sci U S A 2024; 121:e2406198121. [PMID: 39503886 PMCID: PMC11573651 DOI: 10.1073/pnas.2406198121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/07/2024] [Indexed: 11/10/2024] Open
Abstract
The maturation and installation of the active site metal cluster (FeMo-co, Fe7S9CMo-R-homocitrate) in Mo-dependent nitrogenase requires the protein product of the nifB gene for production of the FeS cluster precursor (NifB-co, [Fe8S9C]) and the action of the maturase complex composed of the protein products from the nifE and nifN genes. However, some putative diazotrophic bacteria, like Roseiflexus sp. RS-1, lack the nifEN genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN. In this study, the Roseiflexus NifH, NifB, and apo-NifDK proteins produced in Escherichia coli are shown to be sufficient for FeMo-co maturation and insertion into the NifDK protein to achieve active nitrogenase. The E. coli expressed NifDKRS contained P-clusters but was devoid of FeMo-co (referred to as apo-NifDKRS). Apo-NifDKRS could be activated for N2 reduction by addition of preformed FeMo-co. Further, it was found that apo-NifDKRS plus E. coli produced NifBRS and NifHRS were sufficient to yield active NifDKRS when incubated with the necessary substrates (homocitrate, molybdate, and S-adenosylmethionine [SAM]), demonstrating that these proteins can replace the need for NifEN in maturation of Mo-nitrogenase. The E. coli produced NifHRS and NifBRS proteins were independently shown to be functional. The reconstituted NifDKRS demonstrated reduction of N2, protons, and acetylene in ratios observed for Azotobacter vinelandii NifDK. These findings reveal a distinct NifEN-independent pathway for nitrogenase activation involving NifHRS, NifBRS, and apo-NifDKRS.
Collapse
Affiliation(s)
- Lucía Payá-Tormo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Natalia Makarovsky-Saavedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Ana Pérez-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
| |
Collapse
|
9
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Chen J, Deng L, Wang X, Zhong C, Xia X, Liu H. Chemosynthetic alphaproteobacterial diazotrophs reside in deep-sea cold-seep bottom waters. mSystems 2024; 9:e0017624. [PMID: 39105582 PMCID: PMC11406894 DOI: 10.1128/msystems.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Nitrogen (N)-fixing organisms, also known as diazotrophs, play a crucial role in N-limited ecosystems by controlling the production of bioavailable N. The carbon-dominated cold-seep ecosystems are inherently N-limited, making them hotspots of N fixation. However, the knowledge of diazotrophs in cold-seep ecosystems is limited compared to other marine ecosystems. In this study, we used multi-omics to investigate the diversity and catabolism of diazotrophs in deep-sea cold-seep bottom waters. Our findings showed that the relative abundance of diazotrophs in the bacterial community reached its highest level in the cold-seep bottom waters compared to the cold-seep upper waters and non-seep bottom waters. Remarkably, more than 98% of metatranscriptomic reads aligned on diazotrophs in cold-seep bottom waters belonged to the genus Sagittula, an alphaproteobacterium. Its metagenome-assembled genome, named Seep-BW-D1, contained catalytic genes (nifHDK) for nitrogen fixation, and the nifH gene was actively transcribed in situ. Seep-BW-D1 also exhibited chemosynthetic capability to oxidize C1 compounds (methanol, formaldehyde, and formate) and thiosulfate (S2O32-). In addition, we observed abundant transcripts mapped to genes involved in the transport systems for acetate, spermidine/putrescine, and pectin oligomers, suggesting that Seep-BW-D1 can utilize organics from the intermediates synthesized by methane-oxidizing microorganisms, decaying tissues from cold-seep benthic animals, and refractory pectin derived from upper photosynthetic ecosystems. Overall, our study corroborates that carbon-dominated cold-seep bottom waters select for diazotrophs and reveals the catabolism of a novel chemosynthetic alphaproteobacterial diazotroph in cold-seep bottom waters. IMPORTANCE Bioavailable nitrogen (N) is a crucial element for cellular growth and division, and its production is controlled by diazotrophs. Marine diazotrophs contribute to nearly half of the global fixed N and perform N fixation in various marine ecosystems. While previous studies mainly focused on diazotrophs in the sunlit ocean and oxygen minimum zones, recent research has recognized cold-seep ecosystems as overlooked N-fixing hotspots because the seeping fluids in cold-seep ecosystems introduce abundant bioavailable carbon but little bioavailable N, making most cold seeps inherently N-limited. With thousands of cold-seep ecosystems detected at continental margins worldwide in the past decades, the significant role of cold seeps in marine N biogeochemical cycling is emphasized. However, the diazotrophs in cold-seep bottom waters remain poorly understood. Through multi-omics, this study identified a novel alphaproteobacterial chemoheterotroph belonging to Sagittula as one of the most active diazotrophs residing in cold-seep bottom waters and revealed its catabolism.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lixia Deng
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiao Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| |
Collapse
|
11
|
Wissink M, Glodowska M, van der Kolk MR, Jetten MSM, Welte CU. Probing Denitrifying Anaerobic Methane Oxidation via Antimicrobial Intervention: Implications for Innovative Wastewater Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6250-6257. [PMID: 38551595 PMCID: PMC11008094 DOI: 10.1021/acs.est.3c07197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Methane emissions present a significant environmental challenge in both natural and engineered aquatic environments. Denitrifying anaerobic methane oxidation (N-DAMO) has the potential for application in wastewater treatment plants. However, our understanding of the N-DAMO process is primarily based on studies conducted on environmental samples or enrichment cultures using metagenomic approaches. To gain deeper insights into N-DAMO, we used antimicrobial compounds to study the function and physiology of 'Candidatus Methanoperedens nitroreducens' and 'Candidatus Methylomirabilis oxyfera' in N-DAMO enrichment cultures. We explored the effects of inhibitors and antibiotics and investigated the potential application of N-DAMO in wastewater contaminated with ammonium and heavy metals. Our results showed that 'Ca. M. nitroreducens' was susceptible to puromycin and 2-bromoethanesulfonate, while the novel methanogen inhibitor 3-nitrooxypropanol had no effect on N-DAMO. Furthermore, 'Ca. M. oxyfera' was shown to be susceptible to the particulate methane monooxygenase inhibitor 1,7-octadiyne and a bacteria-suppressing antibiotic cocktail. The N-DAMO activity was not affected by ammonium concentrations below 10 mM. Finally, the N-DAMO community appeared to be remarkably resistant to lead (Pb) but susceptible to nickel (Ni) and cadmium (Cd). This study provides insights into microbial functions in N-DAMO communities, facilitating further investigation of their application in methanogenic, nitrogen-polluted water systems.
Collapse
Affiliation(s)
- Martijn Wissink
- Department
of Microbiology, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Martyna Glodowska
- Department
of Microbiology, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Marnix R. van der Kolk
- Synthetic
Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Mike S. M. Jetten
- Department
of Microbiology, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Cornelia U. Welte
- Department
of Microbiology, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
12
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
13
|
Raut Y, Barr CR, Paris ER, Kapili BJ, Dekas AE, Capone DG. Autochthonous carbon loading of macroalgae stimulates benthic biological nitrogen fixation rates in shallow coastal marine sediments. Front Microbiol 2024; 14:1312843. [PMID: 38249476 PMCID: PMC10796445 DOI: 10.3389/fmicb.2023.1312843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Macroalgae, commonly known as seaweed, are foundational species in coastal ecosystems and contribute significantly to coastal primary production globally. However, the impact of macroalgal decomposition on benthic biological nitrogen fixation (BNF) after deposition to the seafloor remains largely unexplored. In this study, we measure BNF rates at three different sites at the Big Fisherman's Cove on Santa Catalina Island, CA, USA, which is representative of globally distributed rocky bottom macroalgal habitats. Unamended BNF rates varied among sites (0.001-0.05 nmol N g-1 h -1) and were generally within the lower end of previously reported ranges. We hypothesized that the differences in BNF between sites were linked to the availability of organic matter. Indeed, additions of glucose, a labile carbon source, resulted in 2-3 orders of magnitude stimulation of BNF rates in bottle incubations of sediment from all sites. To assess the impact of complex, autochthonous organic matter, we simulated macroalgal deposition and remineralization with additions of brown (i.e., Macrocystis pyrifera and Dictyopteris), green (i.e., Codium fragile), and red (i.e., Asparagopsis taxiformis) macroalgae. While brown and green macroalgal amendments resulted in 53- to 520-fold stimulation of BNF rates-comparable to the labile carbon addition-red alga was found to significantly inhibit BNF rates. Finally, we employed nifH sequencing to characterize the diazotrophic community associated with macroalgal decomposition. We observed a distinct community shift in potential diazotrophs from primarily Gammaproteobacteria in the early stages of remineralization to a community dominated by Deltaproteobacteria (e.g., sulfate reducers), Bacteroidia, and Spirochaeta toward the latter phase of decomposition of brown, green, and red macroalgae. Notably, the nifH-containing community associated with red macroalgal detritus was distinct from that of brown and green macroalgae. Our study suggests coastal benthic diazotrophs are limited by organic carbon and demonstrates a significant and phylum-specific effect of macroalgal loading on benthic microbial communities.
Collapse
Affiliation(s)
- Yubin Raut
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Casey R. Barr
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Emily R. Paris
- Earth System Science, Stanford University, Stanford, CA, United States
| | - Bennett J. Kapili
- Earth System Science, Stanford University, Stanford, CA, United States
| | - Anne E. Dekas
- Earth System Science, Stanford University, Stanford, CA, United States
| | - Douglas G. Capone
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Osorio-Rodriguez D, Metcalfe KS, McGlynn SE, Yu H, Dekas AE, Ellisman M, Deerinck T, Aristilde L, Grotzinger JP, Orphan VJ. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Proc Natl Acad Sci U S A 2023; 120:e2302156120. [PMID: 38079551 PMCID: PMC10743459 DOI: 10.1073/pnas.2302156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
Collapse
Affiliation(s)
- Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Kyle S. Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Shawn E. McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo152-8550, Japan
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Anne E. Dekas
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Tom Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL60208
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
15
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
16
|
Xu S, Zhang X, Zhu Y. Evidence for the anaerobic oxidation of methane coupled to nitrous oxide reduction in landfill cover soils: Promotor and inhibitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166752. [PMID: 37659572 DOI: 10.1016/j.scitotenv.2023.166752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Anaerobic oxidation of methane coupled to nitrous oxide reduction (N2O-AOM) is an important microbial pathway for mitigating greenhouse gases. However, it remains largely unknown whether this process could occur in landfills, which are important anthropogenic sources of greenhouse gases emissions. Here, 13CH4 was supplied in microcosm incubations to track potential rates for the N2O-AOM process in landfill cover soils (LCS). The highest rates for the N2O-AOM process were observed in the bottom layers of LCS and it could be remarkably promoted by the addition of electron shuttles. In addition, 2-bromoethanesulfonic sodium inhibited the N2O-AOM process and reduced the expression of the mcrA gene, showing that ANME archaea/methanogens might be the methane oxidizers for the N2O-AOM process. Our results implied that the N2O-AOM process was an overlooked process for synchronous control of methane and nitrous oxide and may contribute to the future management of greenhouse gases emissions from landfills.
Collapse
Affiliation(s)
- Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Turk-Kubo KA, Gradoville MR, Cheung S, Cornejo-Castillo FM, Harding KJ, Morando M, Mills M, Zehr JP. Non-cyanobacterial diazotrophs: global diversity, distribution, ecophysiology, and activity in marine waters. FEMS Microbiol Rev 2023; 47:fuac046. [PMID: 36416813 PMCID: PMC10719068 DOI: 10.1093/femsre/fuac046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 12/17/2023] Open
Abstract
Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Mary R Gradoville
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Columbia River Inter-Tribal Fish Commission, Portland, OR, United States
| | - Shunyan Cheung
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Francisco M Cornejo-Castillo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim Barceloneta, 37-49 08003 Barcelona, Spain
| | - Katie J Harding
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Marine Biology Research Division, Scripps Institute of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Michael Morando
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Matthew Mills
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| |
Collapse
|
18
|
Murali R, Yu H, Speth DR, Wu F, Metcalfe KS, Crémière A, Laso-Pèrez R, Malmstrom RR, Goudeau D, Woyke T, Hatzenpichler R, Chadwick GL, Connon SA, Orphan VJ. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biol 2023; 21:e3002292. [PMID: 37747940 PMCID: PMC10553843 DOI: 10.1371/journal.pbio.3002292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 10/05/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Daan R. Speth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Fabai Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Kyle S. Metcalfe
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Rafael Laso-Pèrez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Danielle Goudeau
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Tanja Woyke
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Stephanie A. Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Victoria J. Orphan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| |
Collapse
|
19
|
Dondjou DT, Diedhiou AG, Mbodj D, Mofini MT, Pignoly S, Ndiaye C, Diedhiou I, Assigbetse K, Manneh B, Laplaze L, Kane A. Rice developmental stages modulate rhizosphere bacteria and archaea co-occurrence and sensitivity to long-term inorganic fertilization in a West African Sahelian agro-ecosystem. ENVIRONMENTAL MICROBIOME 2023; 18:42. [PMID: 37198640 PMCID: PMC10193678 DOI: 10.1186/s40793-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rhizosphere microbial communities are important components of the soil-plant continuum in paddy field ecosystems. These rhizosphere communities contribute to nutrient cycling and rice productivity. The use of fertilizers is a common agricultural practice in rice paddy fields. However, the long-term impact of the fertilizers usage on the rhizosphere microbial communities at different rice developmental stages remains poorly investigated. Here, we examined the effects of long-term (27 years) N and NPK-fertilization on bacterial and archaeal community inhabiting the rice rhizosphere at three developmental stages (tillering, panicle initiation and booting) in the Senegal River Delta. RESULTS We found that the effect of long-term inorganic fertilization on rhizosphere microbial communities varied with the rice developmental stage, and between microbial communities in their response to N and NPK-fertilization. The microbial communities inhabiting the rice rhizosphere at panicle initiation appear to be more sensitive to long-term inorganic fertilization than those at tillering and booting stages. However, the effect of developmental stage on microbial sensitivity to long-term inorganic fertilization was more pronounced for bacterial than archaeal community. Furthermore, our data reveal dynamics of bacteria and archaea co-occurrence patterns in the rice rhizosphere, with differentiated bacterial and archaeal pivotal roles in the microbial inter-kingdom networks across developmental stages. CONCLUSIONS Our study brings new insights on rhizosphere bacteria and archaea co-occurrence and the long-term inorganic fertilization impact on these communities across developmental stages in field-grown rice. It would help in developing strategies for the successful manipulation of microbial communities to improve rice yields.
Collapse
Affiliation(s)
- Donald Tchouomo Dondjou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Abdala Gamby Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Daouda Mbodj
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Marie-Thérèse Mofini
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Sarah Pignoly
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Cheikh Ndiaye
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Issa Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Komi Assigbetse
- Laboratoire Mixte International Intensification Écologique Des Sols Cultivés en Afrique de L’Ouest (IESOL), Dakar, Sénégal
- Eco&Sols, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baboucarr Manneh
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain « Environnement, Sociétés » (CEA-AGIR), UCAD, Santé, Dakar, Sénégal
| |
Collapse
|
20
|
Comparative Transcriptomics Sheds Light on Remodeling of Gene Expression during Diazotrophy in the Thermophilic Methanogen Methanothermococcus thermolithotrophicus. mBio 2022; 13:e0244322. [PMID: 36409126 PMCID: PMC9765008 DOI: 10.1128/mbio.02443-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.
Collapse
|
21
|
Harding KJ, Turk-Kubo KA, Mak EWK, Weber PK, Mayali X, Zehr JP. Cell-specific measurements show nitrogen fixation by particle-attached putative non-cyanobacterial diazotrophs in the North Pacific Subtropical Gyre. Nat Commun 2022; 13:6979. [PMID: 36379938 PMCID: PMC9666432 DOI: 10.1038/s41467-022-34585-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Biological nitrogen fixation is a major important source of nitrogen for low-nutrient surface oceanic waters. Nitrogen-fixing (diazotrophic) cyanobacteria are believed to be the primary contributors to this process, but the contribution of non-cyanobacterial diazotrophic organisms in oxygenated surface water, while hypothesized to be important, has yet to be demonstrated. In this study, we used simultaneous 15N-dinitrogen and 13C-bicarbonate incubations combined with nanoscale secondary ion mass spectrometry analysis to screen tens of thousands of mostly particle-associated, cell-like regions of interest collected from the North Pacific Subtropical Gyre. These dual isotope incubations allow us to distinguish between non-cyanobacterial and cyanobacterial nitrogen-fixing microorganisms and to measure putative cell-specific nitrogen fixation rates. With this approach, we detect nitrogen fixation by putative non-cyanobacterial diazotrophs in the oxygenated surface ocean, which are associated with organic-rich particles (<210 µm size fraction) at two out of seven locations sampled. When present, up to 4.1% of the analyzed particles contain at least one active putative non-cyanobacterial diazotroph. The putative non-cyanobacterial diazotroph nitrogen fixation rates (0.76 ± 1.60 fmol N cell-1 d-1) suggest that these organisms are capable of fixing dinitrogen in oxygenated surface water, at least when attached to particles, and may contribute to oceanic nitrogen fixation.
Collapse
Affiliation(s)
- Katie J Harding
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kendra A Turk-Kubo
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | | | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
22
|
Benito Merino D, Zehnle H, Teske A, Wegener G. Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane. Front Microbiol 2022; 13:988871. [PMID: 36212815 PMCID: PMC9539880 DOI: 10.3389/fmicb.2022.988871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023] Open
Abstract
In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
23
|
Meyer NR, Parada AE, Kapili BJ, Fortney JL, Dekas AE. Rates and physicochemical drivers of microbial anabolic activity in deep‐sea sediments and implications for deep time. Environ Microbiol 2022; 24:5188-5201. [DOI: 10.1111/1462-2920.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
| | - Alma E. Parada
- Department of Earth System Science Stanford University Stanford CA
| | | | | | - Anne E. Dekas
- Department of Earth System Science Stanford University Stanford CA
| |
Collapse
|
24
|
Gao C, Liang Y, Jiang Y, Paez-Espino D, Han M, Gu C, Wang M, Yang Y, Liu F, Yang Q, Gong Z, Zhang X, Luo Z, He H, Guo C, Shao H, Zhou C, Shi Y, Xin Y, Xing J, Tang X, Qin Q, Zhang YZ, He J, Jiao N, McMinn A, Tian J, Suttle CA, Wang M. Virioplankton assemblages from challenger deep, the deepest place in the oceans. iScience 2022; 25:104680. [PMID: 35942087 PMCID: PMC9356048 DOI: 10.1016/j.isci.2022.104680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Hadal ocean biosphere, that is, the deepest part of the world's oceans, harbors a unique microbial community, suggesting a potential uncovered co-occurring virioplankton assemblage. Herein, we reveal the unique virioplankton assemblages of the Challenger Deep, comprising 95,813 non-redundant viral contigs from the surface to the hadal zone. Almost all of the dominant viral contigs in the hadal zone were unclassified, potentially related to Alteromonadales and Oceanospirillales. 2,586 viral auxiliary metabolic genes from 132 different KEGG orthologous groups were mainly related to the carbon, nitrogen, sulfur, and arsenic metabolism. Lysogenic viral production and integrase genes were augmented in the hadal zone, suggesting the prevalence of viral lysogenic life strategy. Abundant rve genes in the hadal zone, which function as transposase in the caudoviruses, further suggest the prevalence of viral-mediated horizontal gene transfer. This study provides fundamental insights into the virioplankton assemblages of the hadal zone, reinforcing the necessity of incorporating virioplankton into the hadal biogeochemical cycles.
Collapse
Affiliation(s)
- Chen Gao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Mammoth Biosciences, Inc., South San Francisco, CA, USA
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yumei Yang
- Inquire Life Diagnostics, Inc, Xi’an 710100, China
| | - Fengjiao Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qingwei Yang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zheng Gong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zhixiang Luo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chun Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Jinyan Xing
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Qilong Qin
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jiwei Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology and Botany and Institute for the Oceans and Fisheries, the University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
25
|
Dong X, Zhang C, Peng Y, Zhang HX, Shi LD, Wei G, Hubert CRJ, Wang Y, Greening C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat Commun 2022; 13:4885. [PMID: 35985998 PMCID: PMC9391474 DOI: 10.1038/s41467-022-32503-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Microbially mediated nitrogen cycling in carbon-dominated cold seep environments remains poorly understood. So far anaerobic methanotrophic archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1 clade) have been identified as diazotrophs in deep sea cold seep sediments. However, it is unclear whether other microbial groups can perform nitrogen fixation in such ecosystems. To fill this gap, we analyzed 61 metagenomes, 1428 metagenome-assembled genomes, and six metatranscriptomes derived from 11 globally distributed cold seeps. These sediments contain phylogenetically diverse nitrogenase genes corresponding to an expanded diversity of diazotrophic lineages. Diverse catabolic pathways were predicted to provide ATP for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen fixation genes among various diazotrophic groups in cold seeps were inferred to be genetically mobile and subject to purifying selection. Our findings extend the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold seep diazotrophs might contribute substantially to the global nitrogen balance.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Hong-Xi Zhang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China.
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
26
|
Wegener G, Laso-Pérez R, Orphan VJ, Boetius A. Anaerobic Degradation of Alkanes by Marine Archaea. Annu Rev Microbiol 2022; 76:553-577. [PMID: 35917471 DOI: 10.1146/annurev-micro-111021-045911] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alkanes are saturated apolar hydrocarbons that range from its simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Current affiliation: Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Victoria J Orphan
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Division of Geological and Planetary Sciences and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
27
|
Pereira OS, Gonzalez J, Mendoza G, Le J, McNeill M, Ontiveros J, Lee RW, Rouse GW, Cortés J, Levin LA. Does substrate matter in the deep sea? A comparison of bone, wood, and carbonate rock colonizers. PLoS One 2022; 17:e0271635. [PMID: 35857748 PMCID: PMC9299329 DOI: 10.1371/journal.pone.0271635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Continental margins host methane seeps, animal falls and wood falls, with chemosynthetic communities that may share or exchange species. The goal of this study was to examine the existence and nature of linkages among chemosynthesis-based ecosystems by deploying organic fall mimics (bone and wood) alongside defaunated carbonate rocks within high and lesser levels of seepage activity for 7.4 years. We compared community composition, density, and trophic structure of invertebrates on these hard substrates at active methane seepage and transition (less seepage) sites at Mound 12 at ~1,000 m depth, a methane seep off the Pacific coast of Costa Rica. At transition sites, the community composition on wood and bone was characteristic of natural wood- and whale-fall community composition, which rely on decay of the organic substrates. However, at active sites, seepage activity modified the relationship between fauna and substrate, seepage activity had a stronger effect in defining and homogenizing these communities and they depend less on organic decay. In contrast to community structure, macrofaunal trophic niche overlap between substrates, based on standard ellipse areas, was greater at transition sites than at active sites, except between rock and wood. Our observations suggest that whale- and wood-fall substrates can function as stepping stones for seep fauna even at later successional stages, providing hard substrate for attachment and chemosynthetic food.
Collapse
Affiliation(s)
- Olívia S. Pereira
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Jennifer Gonzalez
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Guillermo Mendoza
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Jennifer Le
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Madison McNeill
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
- College of Health and Sciences, East Central University, Ada, Oklahoma, United States of America
| | - Jorge Ontiveros
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
- Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Raymond W. Lee
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Jorge Cortés
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| |
Collapse
|
28
|
Cui J, Zhang M, Chen L, Zhang S, Luo Y, Cao W, Zhao J, Wang L, Jia Z, Bao Z. Methanotrophs Contribute to Nitrogen Fixation in Emergent Macrophytes. Front Microbiol 2022; 13:851424. [PMID: 35479617 PMCID: PMC9036440 DOI: 10.3389/fmicb.2022.851424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Root-associated aerobic methanotroph plays an important role in reducing methane emissions from wetlands. In this study, we examined the activity of methane-dependent nitrogen fixation and active nitrogen-fixing bacterial communities on the roots of Typha angustifolia and Scirpus triqueter using a 15N-N2 feeding experiment and a cDNA-based clone library sequence of the nifH gene, respectively. A 15N-N2 feeding experiment showed that the N2 fixation rate of S. triqueter (1.74 μmol h-1 g-1 dry weight) was significantly higther than that of T. angustifolia (0.48 μmol h-1 g-1 dry weight). The presence of CH4 significantly increased the incorporation of 15N-labeled N2 into the roots of both plants, and the rate of CH4-dependent N2 fixation of S. triqueter (5.6 μmol h-1 g-1 dry weight) was fivefold higher than that of T. angustifolia (0.94 μmol h-1 g-1 dry weight). The active root-associated diazotrophic communities differed between the plant species. Diazotrophic Methylosinus of the Methylocystaceae was dominant in S. triqueter, while Rhizobium of the Rhizobiaceae was dominant in T. angustifolia. However, there were no significant differences in the copy numbers of nifH between plant species. These results suggest that N2 fixation was enhanced by the oxidation of CH4 in the roots of macrophytes grown in natural wetlands and that root-associated Methylocystacea, including Methylosinus, contribute to CH4 oxidation-dependent N2 fixation.
Collapse
Affiliation(s)
- Jing Cui
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- The High School Affiliated to Minzu University of China, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Linxia Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|
29
|
Guo S, Zhang T, Chen Y, Yang S, Fei Q. Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1. Appl Microbiol Biotechnol 2022; 106:3191-3199. [PMID: 35384448 DOI: 10.1007/s00253-022-11910-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Methanotrophs capable of converting C1-based substrates play an important role in the global carbon cycle. As one of the essential macronutrient components in the medium, the uptake of nitrogen sources severely regulates the cell's metabolism. Although the feasibility of utilizing nitrogen gas (N2) by methanotrophs has been predicted, the mechanism remains unclear. Herein, the regulation of nitrogen fixation by an essential nitrogen-fixing regulator (NifA) was explored based on transcriptomic analyses of Methylomicrobium buryatense 5GB1. A deletion mutant of the nitrogen global regulator NifA was constructed, and the growth of M. buryatense 5GB1ΔnifA exhibited significant growth inhibition compared with wild-type strain after the depletion of nitrate source in the medium. Our transcriptome analyses elucidated that 22.0% of the genome was affected in expression by NifA in M. buryatense 5GB1. Besides genes associated with nitrogen assimilation such as nitrogenase structural genes, genes related to cofactor biosynthesis, electron transport, and post-transcriptional modification were significantly upregulated in the presence of NifA to enhance N2 fixation; other genes related to carbon metabolism, energy metabolism, membrane transport, and cell motility were strongly modulated by NifA to facilitate cell metabolisms. This study not only lays a comprehensive understanding of the physiological characteristics and nitrogen metabolism of methanotrophs, but also provides a potentially efficient strategy to achieve carbon and nitrogen co-utilization.Key points• N2 fixation ability of M. buryatense 5GB1 was demonstrated for the first time in experiments by regulating the supply of N2.• NifA positively regulates nif-related genes to facilitate the uptake of N2 in M. buryatense 5GB1.• NifA regulates a broad range of cellular functions beyond nif genes in M. buryatense 5GB1.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China. .,Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
31
|
Garcia AK, Kolaczkowski B, Kaçar B. Reconstruction of nitrogenase predecessors suggests origin from maturase-like proteins. Genome Biol Evol 2022; 14:6531971. [PMID: 35179578 PMCID: PMC8890362 DOI: 10.1093/gbe/evac031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
The evolution of biological nitrogen fixation, uniquely catalyzed by nitrogenase enzymes, has been one of the most consequential biogeochemical innovations over life’s history. Though understanding the early evolution of nitrogen fixation has been a longstanding goal from molecular, biogeochemical, and planetary perspectives, its origins remain enigmatic. In this study, we reconstructed the evolutionary histories of nitrogenases, as well as homologous maturase proteins that participate in the assembly of the nitrogenase active-site cofactor but are not able to fix nitrogen. We combined phylogenetic and ancestral sequence inference with an analysis of predicted functionally divergent sites between nitrogenases and maturases to infer the nitrogen-fixing capabilities of their shared ancestors. Our results provide phylogenetic constraints to the emergence of nitrogen fixation and are consistent with a model wherein nitrogenases emerged from maturase-like predecessors. Though the precise functional role of such a predecessor protein remains speculative, our results highlight evolutionary contingency as a significant factor shaping the evolution of a biogeochemically essential enzyme.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Bacteriology, University of Wisconsin - Madison, USA
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin - Madison, USA
| |
Collapse
|
32
|
Niu L, Xie X, Li Y, Hu Q, Wang C, Zhang W, Zhang H, Wang L. Effects of nitrogen on the longitudinal and vertical patterns of the composition and potential function of bacterial and archaeal communities in the tidal mudflats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151210. [PMID: 34715211 DOI: 10.1016/j.scitotenv.2021.151210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Increasing attention has been focused on the diminishing health of coastal ecosystems. Understanding the effects of eutrophication on tidal flat ecosystems is beneficial for the restoration and management of coastal ecosystems. However, previous studies did not consider the effects of nitrogen on the structure and function of bacterial and archaeal communities in longitudinal and vertical profiles. Here, the diversity, composition, assembly mechanism, and potential metabolic function of the bacterial and archaeal communities were studied in two longitudinal tidal sections at different eutrophic levels. Nitrogen and salinity were the critical factors that influenced the bacterial and archaeal community composition using canonical correspondence and multivariate regression tree analyses. For the bacterial community, the higher nitrogen loading in tidal mudflats resulted in the convergence of diversity and structure in the longitudinal profile of bacteria, but divergence was detected in the vertical profile. For archaea, the diversity tended to be convergent in longitudinal and vertical profiles in the higher nitrogen area, but the change of structure was similar to that of bacteria. Besides the homogeneous processes influenced by salinity, the assembly process of the bacterial community was mainly influenced by heterogeneous selection (34.8%) and that of archaea by dispersal limitation (19.5%). However, the bacterial and archaeal communities in the higher nitrogen section presented more of an influence of heterogeneous selection (respectively, 39 and 5.6%) than that of the lower nitrogen section (respectively, 10 and 0.2%). Structural equation modeling indicated that nitrogen may have inhibited the effects of the bacterial community on nitrogen turnover in nitrogen-rich anoxic sediment environments, but may have strengthened the effect of the archaeal community on carbon metabolism compared to bacteria. This work deepens our understanding of the responses of bacterial and archaeal community structure and potential function to nitrogen pollution in tidal mudflats.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xudong Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
33
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
34
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
35
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
36
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
37
|
Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, Musat F, Musat N. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol 2021; 23:6764-6776. [PMID: 34472201 DOI: 10.1111/1462-2920.15756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Collapse
Affiliation(s)
- Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schlömann
- Department of Environmental Microbiology, Institute of Biosciences, TU-Bergakademie Freiberg, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
38
|
Dekas AE. Quantifying Microbial Activity In Situ: the Link between Cells and Cycles. mSystems 2021; 6:e0075821. [PMID: 34463583 DOI: 10.1128/msystems.00758-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metagenomic sequencing of environmental samples has dramatically expanded our knowledge of microbial taxonomic and metabolic diversity and suggests metabolic interdependence is widespread. However, translating these insights into knowledge of ecosystem function and, therefore, implications for local and global chemistry, remains a challenge. In this commentary, I argue that making direct measurements of microbial activity in situ is an essential step to confirm gene-based hypotheses of microbial physiology and bridge advances in microbial ecology with a predicative understanding of global chemistry and climate. Making these measurements across a range of spatial scales and experimentally manipulated conditions contributes to a process-based understanding and, therefore, more robust predictions of how activity will respond to changing environmental conditions. I discuss recent advancements in quantifying microbial activity in situ and highlight several lines of research in marine microbiology that leverage complementary genomic and isotopic methods to connect microbes and global chemistry.
Collapse
Affiliation(s)
- Anne E Dekas
- Earth System Science Department, Stanford University, Stanford, California, USA
| |
Collapse
|
39
|
Abstract
Microbial communities are constantly challenged with environmental stressors, such as antimicrobials, pollutants, and global warming. How do they respond to these changes? Answering this question is crucial given that microbial communities perform essential functions for life on Earth. Our research aims to understand and predict communities' responses to change by addressing the following questions. (i) How do eco-evolutionary feedbacks influence microbial community dynamics? (ii) How do multiple interacting species in a microbial community alter evolutionary processes? (iii) To what extent do microbial communities respond to change by ecological versus evolutionary processes? To answer these questions, we use microbial communities of reduced complexity coupled with experimental evolution, genome sequencing, and mathematical modeling. The overall expectation from this integrative research approach is to generate general concepts that extend beyond specific bacterial species and provide fundamental insights into the consequences of evolution on the functioning of whole microbial communities.
Collapse
|
40
|
Causes and consequences of pattern diversification in a spatially self-organizing microbial community. THE ISME JOURNAL 2021; 15:2415-2426. [PMID: 33664433 PMCID: PMC8319339 DOI: 10.1038/s41396-021-00942-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major biogeochemical cycles, provide essential services to our society and environment, and have important effects on human health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning, ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here, we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-feeding microbial community consisting of two isogenic strains. We found that two different patterns of spatial self-organization emerged at the same length and time scales, thus demonstrating pattern diversification. This pattern diversification was not caused by initial environmental heterogeneity or by genetic heterogeneity within populations. Instead, it was caused by nongenetic heterogeneity within populations, and we provide evidence that the source of this nongenetic heterogeneity is local differences in the initial spatial positionings of individuals. We further demonstrate that the different patterns exhibit different community-level properties; namely, they have different expansion speeds. Together, our results demonstrate that pattern diversification can emerge in the absence of initial environmental heterogeneity or genetic heterogeneity within populations and can affect community-level properties, thus providing novel insights into the causes and consequences of microbial spatial self-organization.
Collapse
|
41
|
Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, Peng Y, Zhang L, Wang Y, Hubert CRJ, Dong X. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. THE ISME JOURNAL 2021; 15:2366-2378. [PMID: 33649554 PMCID: PMC8319345 DOI: 10.1038/s41396-021-00932-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus-host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Zexin Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Donald Pan
- Department of Ecology and Environmental Studies, The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Weiling Pi
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
42
|
Marlow JJ, Hoer D, Jungbluth SP, Reynard LM, Gartman A, Chavez MS, El-Naggar MY, Tuross N, Orphan VJ, Girguis PR. Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proc Natl Acad Sci U S A 2021; 118:e2006857118. [PMID: 34161255 PMCID: PMC8237665 DOI: 10.1073/pnas.2006857118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| | - Daniel Hoer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Sean P Jungbluth
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94720
| | - Linda M Reynard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Amy Gartman
- US Geological Survey Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
43
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
44
|
Bai Y, Yin J, Cheng JX. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. SCIENCE ADVANCES 2021; 7:eabg1559. [PMID: 33990332 PMCID: PMC8121423 DOI: 10.1126/sciadv.abg1559] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Mid-infrared (IR) spectroscopic imaging using inherent vibrational contrast has been broadly used as a powerful analytical tool for sample identification and characterization. However, the low spatial resolution and large water absorption associated with the long IR wavelengths hinder its applications to study subcellular features in living systems. Recently developed mid-infrared photothermal (MIP) microscopy overcomes these limitations by probing the IR absorption-induced photothermal effect using a visible light. MIP microscopy yields submicrometer spatial resolution with high spectral fidelity and reduced water background. In this review, we categorize different photothermal contrast mechanisms and discuss instrumentations for scanning and widefield MIP microscope configurations. We highlight a broad range of applications from life science to materials. We further provide future perspective and potential venues in MIP microscopy field.
Collapse
Affiliation(s)
- Yeran Bai
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
45
|
Yang Y, Huang Y, Tang X, Li Y, Liu J, Li H, Cheng X, Pei X, Duan H. Responses of fungal communities along a chronosequence succession in soils of a tailing dam with reclamation by Heteropogon contortus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112270. [PMID: 33932655 DOI: 10.1016/j.ecoenv.2021.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation can obviously change the fungal communities in the soils, which will significantly impact carbon (C) and nitrogen (N) cycling in ecological system. So far, the relationship between soil fungal communities and environmental factors is still poorly understood along a long chronosequence. In this study, fungal communities in the surface and rhizosphere soils of a tailing dam with Heteropogon contortus phytoremediation were investigated to explore the evolution of fungal community in a span of 50 years. The results showed that microbial community diversity increases along with time series of Heteropogon contortus phytoremediation. The dominant Dothideomycetes (20.86%), Agaricomycetes (18.09%), and Arthoniomycetes (1.69%) in rhizosphere soils were relatively higher than those in topsoil (13.9%, 2.65%, and 0.20%) at class level. Spearman correction analysis by phylum level was conducted to detect whether microflora was related to soil Physico-chemical properties, which affecting the composition of fungal communities along with the Heteropogon contortus phytoremediation. The nitrogen cycle indicators represented good linear correlations as chronosequence goes on, the indexes in the rhizosphere soil were much higher than those in the surface soils and the highest level has occurred in the 47-year-old Heteropogon contortus phytoremediation. The relative abundance of plant pathogen, wood saprotroph, dung saprotroph, and Arbuscular Mycorrhizal showed an upward tendency in rhizosphere soils along with the Heteropogon contortus phytoremediation. The highest soil fungal communities abundance and diversity were possibly attributed to the high-quality Heteropogon contortus litter returning to the ground and artificial disturbance treatments. Such changes in soil fungal communities might demonstrate a significant step forward and provided theoretical support for the biological governance of Heteropogon contortus phytoremediation in 50 years. Our study provides an insight on microbial communities connecting with soil C, N, P and S cycles and community functions in a complex plant-fungal-soil system along a long chronosequence in mine micro-ecology.
Collapse
Affiliation(s)
- Ying Yang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Xue Tang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ying Li
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Jianing Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Hanyu Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xin Cheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Haoran Duan
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| |
Collapse
|
46
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
47
|
Lin Y, Wu K, Jia F, Chen L, Wang Z, Zhang Y, Luo Q, Liu S, Qi L, Li N, Dong P, Gao F, Zheng W, Fang X, Zhao Y, Wang F. Single cell imaging reveals cisplatin regulating interactions between transcription (co)factors and DNA. Chem Sci 2021; 12:5419-5429. [PMID: 34163767 PMCID: PMC8179581 DOI: 10.1039/d0sc06760a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Cisplatin is an extremely successful anticancer drug, and is commonly thought to target DNA. However, the way in which cisplatin-induced DNA lesions regulate interactions between transcription factors/cofactors and genomic DNA remains unclear. Herein, we developed a dual-modal microscopy imaging strategy to investigate, in situ, the formation of ternary binding complexes of the transcription cofactor HMGB1 and transcription factor Smad3 with cisplatin crosslinked DNA in single cells. We utilized confocal microscopy imaging to map EYFP-fused HMGB1 and fluorescent dye-stained DNA in single cells, followed by the visualization of cisplatin using high spatial resolution (200-350 nm) time of flight secondary ion mass spectrometry (ToF-SIMS) imaging of the same cells. The superposition of the fluorescence and the mass spectrometry (MS) signals indicate the formation of HMGB1-Pt-DNA ternary complexes in the cells. More significantly, for the first time, similar integrated imaging revealed that the cisplatin lesions at Smad-binding elements, for example GGC(GC)/(CG) and AGAC, disrupted the interactions of Smad3 with DNA, which was evidenced by the remarkable reduction in the expression of Smad-specific luciferase reporters subjected to cisplatin treatment. This finding suggests that Smad3 and its related signalling pathway are most likely involved in the intracellular response to cisplatin induced DNA damage.
Collapse
Affiliation(s)
- Yu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 People's Republic of China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Ling Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Suyan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Nan Li
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Pu Dong
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Fei Gao
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 People's Republic of China
| |
Collapse
|
48
|
Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. THE ISME JOURNAL 2021; 15:377-396. [PMID: 33060828 PMCID: PMC8027057 DOI: 10.1038/s41396-020-00757-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Archaeal anaerobic methanotrophs ("ANME") and sulfate-reducing Deltaproteobacteria ("SRB") form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA amplicon libraries prepared from Costa Rica seep sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g within ANME-2b-SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain reaction (HCR-) FISH targeting nifH transcripts and diazotrophic activity was documented by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b-SEEP-SRB1g consortia incubated with a headspace containing CH4 and 15N2 revealed differences in cellular 15N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in 15N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph.
Collapse
Affiliation(s)
- Kyle S Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| |
Collapse
|
49
|
Luo Y, Xiao Y, Zhao J, Zhang H, Chen W, Zhai Q. The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Int J Biol Macromol 2020; 167:1329-1337. [PMID: 33202267 DOI: 10.1016/j.ijbiomac.2020.11.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Bifidobacteria are one genus of low-abundance gut commensals that are often associated with host health-promoting effects. Bifidobacteria can degrade various dietary fibers (i.e., galactooligosaccharides, fructooligosaccharides, inulin), and are reported as one of the few gut-dwelling microbes that can utilize host-derived carbohydrates (mucin and human milk oligosaccharides). Previous studies have noted that the superior carbohydrate-metabolizing abilities of bifidobacteria facilitate the intestinal colonization of this genus and also benefit other gut symbionts, in particular butyrate-producing bacteria, via cooperative metabolic interactions. Given that such cross-feeding activities of bifidobacteria on mucin and oligosaccharides have not been systematically summarized, here we review the carbohydrate-degrading capabilities of various bifidobacterial strains that were identified in vitro experiments, the core enzymes involved in the degradation mechanisms, and social behavior between bifidobacteria and other intestinal microbes, as well as among species-specific bifidobacterial strains. The purpose of this review is to enhance our understanding of the interactions of prebiotics and probiotics, which sheds new light on the future use of oligosaccharides and bifidobacteria for nutritional intervention or clinical application.
Collapse
Affiliation(s)
- Yanhong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
50
|
Mo Y, Qi XE, Li A, Zhang X, Jia Z. Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai-Tibetan Plateau. Front Microbiol 2020; 11:580866. [PMID: 33281775 PMCID: PMC7689253 DOI: 10.3389/fmicb.2020.580866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022] Open
Abstract
Methanotrophs are the only biofilters for reducing the flux of global methane (CH4) emissions in water-logged wetlands. However, adaptation of aerobic methanotrophs to low concentrations of oxygen and nitrogen in typical swamps, such as that of the Qinghai-Tibetan Plateau, is poorly understood. In this study, we show that Methylobacter-like methanotrophs dominate methane oxidation and nitrogen fixation under suboxic conditions in alpine swamp soils. Following incubation with 13C-CH4 and 15N-N2 for 90 days under suboxic conditions with repeated flushing using an inert gas (i.e., argon), microbial carbon and nitrogen turnover was measured in swamp soils at different depths: 0-20 cm (top), 40-60 cm (intermediate), and 60-80 cm (deep). Results show detectable methane oxidation and nitrogen fixation in all three soil depths. In particular, labeled carbon was found in CO2 enrichment (13C-CO2), and soil organic carbon (13C-SOC), whereas labeled nitrogen (15N) was detected in soil organic nitrogen (SON). The highest values of labeled isotopes were found at intermediate soil depths. High-throughput amplicon sequencing and Sanger sequencing indicated the dominance of Methylobacter-like methanotrophs in swamp soils, which comprised 21.3-24.0% of the total bacterial sequences, as measured by 13C-DNA at day 90. These results demonstrate that aerobic methanotroph Methylobacter is the key player in suboxic methane oxidation and likely catalyzes nitrogen fixation in swamp wetland soils in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yongliang Mo
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xing-e Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Aorui Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|