1
|
Crofts KF, Holbrook BC, Page CL, Gillespie RA, D'Agostino RB, Sangesland M, Ornelles DA, Kanekiyo M, Alexander-Miller MA. Antibody function predicts viral control in newborn monkeys immunised with an influenza virus HA stem nanoparticle. Nat Commun 2025; 16:3785. [PMID: 40263387 PMCID: PMC12015251 DOI: 10.1038/s41467-025-59149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
The lack of an approved influenza vaccine for infants <6 months, coupled with the requirement for annual updates of current vaccines, warrants the development of a universal vaccine that can confer protection in young infants. Here we test the ability of a ferritin nanoparticle universal influenza vaccine (H1ssF) containing the stem region of hemagglutinin (HA) adjuvanted with AddaVax to elicit responses in newborn African green monkeys (AGM). Vaccinated newborns show robust HA stem-specific IgG responses but, despite the high antibody levels, viral load in the lung following H1N1 Ca09 challenge is variable among animals. Further analysis indicates that viral clearance is correlated with the presence of antibodies with neutralizing and antibody-dependent cellular phagocytosis activity. Our findings show that newborn AGM can generate functional HA stem-specific antibodies for viral clearance following vaccination with H1ssF+AddaVax and support further investigation of H1ssF as a universal vaccine for this vulnerable human population.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Courtney L Page
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ralph B D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maya Sangesland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Zhao Y, Liu J, Peng C, Guo S, Wang B, Chen L, Wang Y, Tang H, Liu L, Pan Q, Li S, Wang J, Yang D, Du E. Cross-protection against homo and heterologous influenza viruses via intranasal administration of an HA chimeric multiepitope nanoparticle vaccine. J Nanobiotechnology 2025; 23:77. [PMID: 39905416 PMCID: PMC11792681 DOI: 10.1186/s12951-025-03122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) cause seasonal influenza epidemics and pose significant threats to public health. However, seasonal influenza vaccines often elicit strain-specific immune responses and confer little protection against mismatched strains. There is an urgent need to develop universal influenza vaccines against emerging and potentially re-emerging influenza virus infections. Multiepitope vaccines combining multiple conserved epitopes can induce more robust and broader immune responses and provide a potential solution. RESULTS Here, we demonstrated that an HA chimeric multiepitope nanoparticle vaccine, delivered intranasally conferred broad protection against challenges with various influenza viruses in mice. The nanoparticle vaccine co-expresses the ectodomain of haemagglutinin (H), three repeated highly conserved ectodomains of matrix protein 2 (M), and the M-cell-targeting ligand Co4B (C) in a baculovirus-insect cell system. These elements (C, H and M) were presented on the surface of self-assembling ferritin (f) in tandem to generate a nanoparticle denoted as CHM-f. Intranasal vaccination with CHM-f nanoparticles elicited robust humoral and cellular immune responses, conferring complete protection against a variety of IAVs, including the A/PR8/34 H1N1 strain, the swine flu H3N2 strain, the avian flu H5N8 strain, and H9N2. When CHM-f nanoparticles adjuvanted with CpG IAMA-002, the weight loss protective effect, cellular immune responses and mucosal IgA responses were significantly augmented. Compared with controls, mice immunized with CHM-f nanoparticles with or without CpG IAMA-002 showed significant reductions in weight loss, lung viral titres and pathological changes. CONCLUSIONS These results suggest that CHM-f nanoparticle with or without CpG IAMA-002 is a promising candidate as a universal influenza vaccine.
Collapse
Affiliation(s)
- Yongqiang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chun Peng
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Shuangshuang Guo
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Bo Wang
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Longping Chen
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haiwen Tang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Liming Liu
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Qi Pan
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Shiren Li
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongni Yang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhao Y, Guo S, Liu J, Wang Y, Wang B, Peng C, Du E. Adjuvant-free, self-assembling ferritin nanoparticle vaccine coupled with influenza virus hemagglutinin protein carrying M1 and PADRE epitopes elicits cross-protective immune responses. Front Immunol 2025; 16:1519866. [PMID: 39958330 PMCID: PMC11827429 DOI: 10.3389/fimmu.2025.1519866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Influenza viruses pose a significant threat to global public health. Several influenza pandemic outbreaks have had serious economic and public health implications. Current influenza virus vaccines generally provide strain-specific protection and must be rapidly produced annually to match the circulating viruses. Developing influenza vaccines that confer protection against a broad range of viruses will have a positive impact on public health. In this study, we aimed to develop a ferritin-based influenza nanoparticle vaccine with a broad protective spectrum to enhance the immune response against diverse influenza viruses. Results We generated an adjuvant-free, self-assembling nanoparticle vaccine against diverse influenza A viruses. This nanoparticle vaccine displayed multi-antigen targets on the surface of Helicobacter pylori ferritin, which consists of the ectodomain of hemagglutinin of the H3N2 virus and three tandem highly conserved influenza M1 epitopes fused with the universal helper T-cell epitope PADRE, named HMP-NP. HMP-NPs were expressed in a soluble form in the baculovirus-insect cell system and self-assembled into homogeneous nanoparticles. Animal immunization studies showed that the HMP-NP nanovaccine elicited 4-fold higher haemagglutination inhibition (HAI) titers than inactivated influenza vaccine. And neutralization titers induced by HMP-NPs against the H3N2 virus and heterologous strains of the H1N1 and H9N2 viruses were ~8, 12.4 and 16 times higher than inactivated influenza vaccine, respectively. Meanwhile, we also observed that the number of IFN-γ- and IL-4-secreting cells induced by HMP-NPs were ~2.5 times higher than inactivated influenza vaccine. Importantly, intranasal immunization with HMP-NPs, without any adjuvant, induced efficient mucosal IgA responses and conferred complete protection against the H3N2 virus, as well as partial protection against the H1N1 and H9N2 viruses and significantly reduced lung viral loads. Discussion Overall, our results indicated that the self-assembled nanovaccines increased the potency and breadth of the immune response against various influenza viruses and are a promising delivery platform for developing vaccines with broader protection against emerging influenza viruses and other pathogens.
Collapse
Affiliation(s)
- Yongqiang Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Shuangshuang Guo
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Yating Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Bo Wang
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
| | - Chun Peng
- Department of Research and Development, Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
- Department of Research and Development, Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, China
| |
Collapse
|
4
|
Ataca S, Sangesland M, de Paiva Fróes Rocha R, Torrents de la Peña A, Ronsard L, Boyoglu-Barnum S, Gillespie RA, Tsybovsky Y, Stephens T, Moin SM, Lederhofer J, Creanga A, Andrews SF, Barnes RM, Rohrer D, Lonberg N, Graham BS, Ward AB, Lingwood D, Kanekiyo M. Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem. Cell Rep 2024; 43:114990. [PMID: 39580804 PMCID: PMC11672684 DOI: 10.1016/j.celrep.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses.
Collapse
Affiliation(s)
- Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
6
|
Ge P, Ross TM. COBRA HA and NA vaccination elicits long-live protective immune responses against pre-pandemic H2, H5, and H7 influenza virus subtypes. Virology 2024; 597:110119. [PMID: 38850895 DOI: 10.1016/j.virol.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Vilaboa N, Bloom DC, Canty W, Voellmy R. A Broad Influenza Vaccine Based on a Heat-Activated, Tissue-Restricted Replication-Competent Herpesvirus. Vaccines (Basel) 2024; 12:703. [PMID: 39066341 PMCID: PMC11281492 DOI: 10.3390/vaccines12070703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccination with transiently activated replication-competent controlled herpesviruses (RCCVs) expressing influenza A virus hemagglutinins broadly protects mice against lethal influenza virus challenges. The non-replicating RCCVs can be activated to transiently replicate with high efficiency. Activation involves a brief heat treatment to the epidermal administration site in the presence of a drug. The drug co-control is intended as a block to inadvertent reactivation in the nervous system and, secondarily, viremia under adverse conditions. While the broad protective effects observed raise an expectation that RCCVs may be developed as universal flu vaccines, the need for administering a co-activating drug may dampen enthusiasm for such a development. To replace the drug co-control, we isolated keratin gene promoters that were active in skin cells but inactive in nerve cells and other cells in vitro. In a mouse model of lethal central nervous system (CNS) infection, the administration of a recombinant that had the promoter of the infected cell protein 8 (ICP8) gene of a wild-type herpes simplex virus 1 (HSV-1) strain replaced by a keratin promoter did not result in any clinical signs, even at doses of 500 times wild-type virus LD50. Replication of the recombinant was undetectable in brain homogenates. Second-generation RCCVs expressing a subtype H1 hemagglutinin (HA) were generated in which the infected cell protein 4 (ICP4) genes were controlled by a heat switch and the ICP8 gene by the keratin promoter. In mice, these RCCVs replicated efficiently and in a heat-controlled fashion in the epidermal administration site. Immunization with the activated RCCVs induced robust neutralizing antibody responses against influenza viruses and protected against heterologous and cross-group influenza virus challenges.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | | |
Collapse
|
8
|
Bloom DC, Lilly C, Canty W, Vilaboa N, Voellmy R. Very Broadly Effective Hemagglutinin-Directed Influenza Vaccines with Anti-Herpetic Activity. Vaccines (Basel) 2024; 12:537. [PMID: 38793788 PMCID: PMC11125745 DOI: 10.3390/vaccines12050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes. Additional safety against inadvertent replication is provided by an appropriate secondary mechanism. Our first-generation RCCVs can be activated at the administration site by a mild local heat treatment in the presence of an antiprogestin. Here, we report that epidermal vaccination with such RCCVs expressing a hemagglutinin or neuraminidase of an H1N1 influenza virus strain protected mice against lethal challenges by H1N1 virus strains representing 75 years of evolution. Moreover, immunization with an RCCV expressing a subtype H1 hemagglutinin afforded full protection against a lethal challenge by an H3N2 influenza strain, and an RCCV expressing a subtype H3 hemagglutinin protected against a lethal challenge by an H1N1 strain. Vaccinated animals continued to gain weight normally after the challenge. Protective effects were even observed in a lethal influenza B virus challenge. The RCCV-based vaccines induced robust titers of in-group, cross-group and even cross-type neutralizing antibodies. Passive immunization suggested that observed vaccine effects were at least partially antibody-mediated. In summary, RCCVs expressing a hemagglutinin induce robust and very broad cross-protective immunity against influenza.
Collapse
Affiliation(s)
- David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Cameron Lilly
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER de Bioingenieria, Biomateriales y Nanomedicina, 28046 Madrid, Spain
| | | |
Collapse
|
9
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Edgar JE, Trezise S, Anthony RM, Krammer F, Palese P, Ravetch JV, Bournazos S. Antibodies elicited in humans upon chimeric hemagglutinin-based influenza virus vaccination confer FcγR-dependent protection in vivo. Proc Natl Acad Sci U S A 2023; 120:e2314905120. [PMID: 37871218 PMCID: PMC10622865 DOI: 10.1073/pnas.2314905120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.
Collapse
Affiliation(s)
- Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| | - Stephanie Trezise
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| |
Collapse
|
11
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
12
|
Sircy LM, Ramstead AG, Joshi H, Baessler A, Mena I, García-Sastre A, Williams MA, Scott Hale J. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555253. [PMID: 37693425 PMCID: PMC10491174 DOI: 10.1101/2023.08.29.555253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection/immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
13
|
Mooij P, Mortier D, Aartse A, Murad AB, Correia R, Roldão A, Alves PM, Fagrouch Z, Eggink D, Stockhofe N, Engelhardt OG, Verschoor EJ, van Gils MJ, Bogers WM, Carrondo MJT, Remarque EJ, Koopman G. Vaccine-induced neutralizing antibody responses to seasonal influenza virus H1N1 strains are not enhanced during subsequent pandemic H1N1 infection. Front Immunol 2023; 14:1256094. [PMID: 37691927 PMCID: PMC10484506 DOI: 10.3389/fimmu.2023.1256094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Alexandre B. Murad
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Norbert Stockhofe
- Wageningen Bioveterinary Research/Wageningen University & Research, Lelystad, Netherlands
| | - Othmar G. Engelhardt
- Vaccines, Science, Research and Innovation Group, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, United Kingdom
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Edmond J. Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
14
|
Wu CY, Kao SE, Tseng YC, Lin YP, Hou JT, Wu LY, Chiu S, Ma CA, Hsiao PW, Hsiao J, Chen JR. Pilot-scale production of inactivated monoglycosylated split H 1N 1 influenza virus vaccine provides cross-strain protection against influenza viruses. Antiviral Res 2023; 216:105640. [PMID: 37263355 DOI: 10.1016/j.antiviral.2023.105640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Influenza epidemics and pandemics caused by newly emerging virus strains highlight an urgent need to develop a universal vaccine against viruses. Previously, a monoglycosylated X-181mg vaccine demonstrated that the HA possessing a single N-acetylglucosamine at each N-glycosylation site is superior to confer broader protection in mice than conventional vaccines. However, the greatest challenge in conducting clinical trials is the need to develop robust manufacturing processes capable of producing vaccines at the pilot scale with the desired stability, potency, and efficacy. Whether the monoglycosylated virus vaccine platform can be applied to the new vaccine strain in a timely manner and whether the mass-produced vaccine has the proper immunogenicity to induce cross-protective immunity remains unclear. Here, we show that a pilot-scale manufacturing process produced a monoglycosylated A/Brisbane/02/2018(H1N1) virus vaccine (IVR-190mg) with a single glycan at each glycosylation site of HA and NA. Compared with the fully glycosylated virus vaccine (IVR-190fg), the IVR-190mg provided broader cross-protection in mice against a wide range of H1N1 variants. The enhanced antibody responses induced by IVR-190mg immunization include higher hemagglutination-inhibition titers, higher neutralization activity, more anti-HA head domain, more anti-HA stem antibodies, higher neuraminidase activity inhibition titers, and notably, higher antibody-dependent cellular cytotoxicity. Additionally, the IVR-190mg also induced a more balanced Th1/Th2 response and elicited broader splenic CD4+ and CD8+ T-cell responses than IVR-190fg. This study demonstrated that IVR-190mg produced using a pilot-scale manufacturing process elicits comprehensive cross-strain immune responses that have great potential to substantially mitigate the need for yearly reformulation of strain-specific inactivated vaccines.
Collapse
Affiliation(s)
| | - Shao-En Kao
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | | | - Yu-Po Lin
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Jen-Tzu Hou
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Li-Yang Wu
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Sharon Chiu
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Che Alex Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jane Hsiao
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan; OPKO Health Inc. Miami, Florida, USA
| | | |
Collapse
|
15
|
Andrews SF, Cominsky LY, Shimberg GD, Gillespie RA, Gorman J, Raab JE, Brand J, Creanga A, Gajjala SR, Narpala S, Cheung CSF, Harris DR, Zhou T, Gordon I, Holman L, Mendoza F, Houser KV, Chen GL, Mascola JR, Graham BS, Kwong PD, Widge A, Dropulic LK, Ledgerwood JE, Kanekiyo M, McDermott AB. An influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell response in humans. Sci Transl Med 2023; 15:eade4976. [PMID: 37075126 DOI: 10.1126/scitranslmed.ade4976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Current yearly seasonal influenza vaccines primarily induce an antibody response directed against the immunodominant but continually diversifying hemagglutinin (HA) head region. These antibody responses provide protection against the vaccinating strain but little cross-protection against other influenza strains or subtypes. To focus the immune response on subdominant but more conserved epitopes on the HA stem that might protect against a broad range of influenza strains, we developed a stabilized H1 stem immunogen lacking the immunodominant head displayed on a ferritin nanoparticle (H1ssF). Here, we evaluated the B cell response to H1ssF in healthy adults ages 18 to 70 in a phase 1 clinical trial (NCT03814720). We observed both a strong plasmablast response and sustained elicitation of cross-reactive HA stem-specific memory B cells after vaccination with H1ssF in individuals of all ages. The B cell response was focused on two conserved epitopes on the H1 stem, with a highly restricted immunoglobulin repertoire unique to each epitope. On average, two-thirds of the B cell and serological antibody response recognized a central epitope on the H1 stem and exhibited broad neutralization across group 1 influenza virus subtypes. The remaining third recognized an epitope near the viral membrane anchor and was largely limited to H1 strains. Together, we demonstrate that an H1 HA immunogen lacking the immunodominant HA head produces a robust and broadly neutralizing HA stem-directed B cell response.
Collapse
Affiliation(s)
- Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Suprabhath R Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - LaSonji Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lesia K Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| |
Collapse
|
16
|
Widge AT, Hofstetter AR, Houser KV, Awan SF, Chen GL, Florez MCB, Berkowitz NM, Mendoza F, Hendel CS, Holman LA, Gordon IJ, Apte P, Liang CJ, Gaudinski MR, Coates EE, Strom L, Wycuff D, Vazquez S, Stein JA, Gall JG, Adams WC, Carlton K, Gillespie RA, Creanga A, Crank MC, Andrews SF, Castro M, Serebryannyy LA, Narpala SR, Hatcher C, Lin BC, O’Connell S, Freyn AW, Rosado VC, Nachbagauer R, Palese P, Kanekiyo M, McDermott AB, Koup RA, Dropulic LK, Graham BS, Mascola JR, Ledgerwood JE. An influenza hemagglutinin stem nanoparticle vaccine induces cross-group 1 neutralizing antibodies in healthy adults. Sci Transl Med 2023; 15:eade4790. [PMID: 37075129 PMCID: PMC10619166 DOI: 10.1126/scitranslmed.ade4790] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 μg of H1ssF once (n = 5) or 60 μg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-μg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Alicia T. Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amelia R. Hofstetter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine V. Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seemal F. Awan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria C. Burgos Florez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina M. Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Preeti Apte
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - C. Jason Liang
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin R. Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diane Wycuff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Vazquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judy A. Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason G. Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C. Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid A. Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Hatcher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alec W. Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victoria C. Rosado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lesia K. Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Longevity and Mechanism of Heterosubtypic Protection Induced by M2SR (M2-Deficient Single-Replication) Live Influenza Virus Vaccine in Mice. Vaccines (Basel) 2022; 10:vaccines10122131. [PMID: 36560540 PMCID: PMC9781428 DOI: 10.3390/vaccines10122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Seasonal influenza and the threat of global pandemics present a continuing threat to public health. However, conventional inactivated influenza vaccines (IAVs) provide little cross-protective immunity and suboptimal efficacy, even against well-matched strains. Furthermore, the protection against matched strains has been shown to be of a short duration in both mouse models and humans. M2SR (M2-deficient single-replication influenza virus) is a single-replication vaccine that has been shown to provide effective cross-protection against heterosubtypic influenza viruses in both mouse and ferret models. In the present study, we investigated the duration and mechanism of heterosubtypic protection induced by M2SR in a mouse model. We previously showed that M2SR generated from influenza A/Puerto Rico/8/34 (H1N1) significantly protected C57BL/6 mice against lethal challenge with both influenza A/Puerto Rico/8/34 (H1N1, homosubtypic) and influenza A/Aichi/2/1968 (H3N2, heterosubtypic), whereas the inactivated influenza vaccine provided no heterosubtypic protection. The homosubtypic protection induced by M2SR was robust and lasted for greater than 1 year, whereas that provided by the inactivated vaccine lasted for less than 6 months. The heterosubtypic protection induced by M2SR was of a somewhat shorter duration than the homosubtypic protection, with protection being evident 9 months after vaccination. However, heterosubtypic protection was not observed at 14 months post vaccination. M2SR has been shown to induce strong systemic and mucosal antibody and T cell responses. We investigated the relative importance of these immune mechanisms in heterosubtypic protection, using mice that were deficient in B cells or mice that were depleted of T cells immediately before challenge. Somewhat surprisingly, the heterosubtypic protection was completely dependent on B cells in this model, whereas the depletion of T cells had no significant effect on survival after a lethal heterosubtypic challenge. While antibody-dependent cellular cytotoxicity (ADCC) has been demonstrated to be important in the response to some influenza vaccines, a lack of Fc receptors did not affect the survival of M2SR-vaccinated mice following a lethal challenge. We examined the influenza proteins targeted by the heterosubtypic antibody response. Shortly after the H1N1 M2SR vaccination, high titers of cross-reactive antibodies to heterosubtypic H3N2 nucleoprotein (NP) and lower titers to the stalk region of the hemagglutinin (HA2) and neuraminidase (NA) proteins were observed. The high antibody titers to heterosubtypic NP persisted one year after vaccination, whereas the antibody titers to the heterosubtypic HA2 and NA proteins were very low, or below the limit of detection, at this time. These results show that the intranasal M2SR vaccine elicits durable protective immune responses against homotypic and heterosubtypic influenza infection not seen with intramuscular inactivated vaccines. Both the homo- and heterosubtypic protection induced by the single-replication vaccine are dependent on B cells in this model. While the homosubtypic protection is mediated by antibodies to the head region of HA, our data suggest that the heterosubtypic protection for M2SR is due to cross-reactive antibodies elicited against the NP, HA2, and NA antigens that are not targeted by current seasonal influenza vaccines.
Collapse
|
18
|
Moin SM, Boyington JC, Boyoglu-Barnum S, Gillespie RA, Cerutti G, Cheung CSF, Cagigi A, Gallagher JR, Brand J, Prabhakaran M, Tsybovsky Y, Stephens T, Fisher BE, Creanga A, Ataca S, Rawi R, Corbett KS, Crank MC, Karlsson Hedestam GB, Gorman J, McDermott AB, Harris AK, Zhou T, Kwong PD, Shapiro L, Mascola JR, Graham BS, Kanekiyo M. Co-immunization with hemagglutinin stem immunogens elicits cross-group neutralizing antibodies and broad protection against influenza A viruses. Immunity 2022; 55:2405-2418.e7. [PMID: 36356572 PMCID: PMC9772109 DOI: 10.1016/j.immuni.2022.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Li H, Zhao M, Zhang H, Quan C, Zhang D, Liu Y, Liu M, Xue C, Tan S, Guo Y, Zhao Y, Wu G, Gao GF, Cao B, Liu WJ. Pneumonia Severity and Phase Linked to Virus-Specific T Cell Responses with Distinct Immune Checkpoints during pH1N1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2154-2162. [PMID: 35418471 DOI: 10.4049/jimmunol.2101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The detailed features and the longitudinal variation of influenza-specific T cell responses within naturally infected patients and the relationship with disease severity remain uncertain. In this study, we characterized the longitudinal influenza-specific CD4+ and CD8+ T cell responses, T cell activation, and migration-related cytokine/chemokine secretion in pH1N1-infected patients with or without viral pneumonia with human PBMCs. Both the influenza-specific CD4+ and CD8+ T cells presented higher responses in patients with severe infection than in mild ones, but with distinct longitudinal variations, phenotypes of memory markers, and immune checkpoints. At 7 ± 3 d after onset of illness, effector CD8+ T cells (CD45RA+CCR7-) with high expression of inhibitory immune receptor CD200R dominated the specific T cell responses. However, at 21 ± 3 d after onset of illness, effector memory CD4+ T cells (CD45RA-CCR7-) with high expression of PD1, CTLA4, and LAG3 were higher among the patients with severe disease. The specific T cell magnitude, T cell activation, and migration-related cytokines/chemokines possessed a strong connection with disease severity. Our findings illuminate the distinct characteristics of immune system activation during dynamic disease phases and its correlation with lung injury of pH1N1 patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangjie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuansong Quan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dannie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Meng Liu
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Chunxue Xue
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China;
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China; and
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China;
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Emerging of H5N6 Subtype Influenza Virus with 129-Glycosylation Site on Hemagglutinin in Poultry in China Acquires Immune Pressure Adaption. Microbiol Spectr 2022; 10:e0253721. [PMID: 35446114 PMCID: PMC9241720 DOI: 10.1128/spectrum.02537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For an investigation into the effects of glycosylation site modification on hemagglutinin (HA) on the biological characteristics of the H5N6 subtype avian influenza virus (AIV), the HA sequences of H5N6 AIVs from Global Initiative on Sharing All Influenza Data (GISAID) and the isolates in China were analyzed for genetic evolution and glycosylation site patterns. Eight recombinant H5N6 AIVs with different glycosylation site patterns were constructed, and their biological characteristics were determined. The results showed that H5N6 AIVs containing a 129-glycosylation site on HA are becoming prevalent strains in China. Acquisition of the 129-glycosylation site on the HA of H5N6 AIVs increased thermostability, decreased pH stability, and attenuated pathogenicity and contact transmission in chickens. Most importantly, H5N6 AIVs escaped the neutralization activity of the Re-8-like serum antibody. Our findings reveal that H5N6 AIVs containing the 129-glycosylation site affect antigenicity and have become prevalent strains in China. IMPORTANCE H5N6 avian influenza viruses (AIVs) were first reported in 2013 and have spread throughout many countries. In China, compulsory vaccine inoculation has been adopted to control H5 subtype avian influenza. However, the effect of vaccination on the antigenic drift of H5N6 AIVs remains unknown. Here, we found that H5N6 AIVs with the 129-glycosylation site on hemagglutinin were the dominant strains in poultry in China. The neutralization assay of the serum antibody against the H5 subtype vaccine Re-8 showed a significantly lower neutralization activity against H5N6 AIVs with the 129-glycosylation site compared to that against H5N6 AIVs without the 129-glycosylation site, indicating that the 129-glycosylation site may be a crucial molecular marker for immune evasion.
Collapse
|
21
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Self-assembled BPIV3 nanoparticles can induce comprehensive immune responses and protection against BPIV3 challenge by inducing dendritic cell maturation in mice. Vet Microbiol 2022; 268:109415. [DOI: 10.1016/j.vetmic.2022.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023]
|
23
|
Andrews SF, Raab JE, Gorman J, Gillespie RA, Cheung CSF, Rawi R, Cominsky LY, Boyington JC, Creanga A, Shen CH, Harris DR, Olia AS, Nazzari AF, Zhou T, Houser KV, Chen GL, Mascola JR, Graham BS, Kanekiyo M, Ledgerwood JE, Kwong PD, McDermott AB. A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nat Med 2022; 28:373-382. [PMID: 35115707 DOI: 10.1038/s41591-021-01636-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Conserved epitopes on the influenza hemagglutinin (HA) stem are an attractive target for universal vaccine strategies as they elicit broadly neutralizing antibodies. Such antibody responses to stem-specific epitopes have been extensively characterized for HA subtypes H1 and H5 in humans. H2N2 influenza virus circulated 50 years ago and represents a pandemic threat due to the lack of widespread immunity, but, unlike H1 and H5, the H2 HA stem contains Phe45HA2 predicted to sterically clash with HA stem-binding antibodies characterized to date. To understand the effect of Phe45HA2, we compared the HA stem-specific B cell response in post hoc analyses of two phase 1 clinical trials, one testing vaccination with an H2 ferritin nanoparticle immunogen ( NCT03186781 ) and one with an inactivated H5N1 vaccine ( NCT01086657 ). In H2-naive individuals, the magnitude of the B cell response was equivalent, but H2-elicited HA stem-binding B cells displayed greater cross-reactivity than those elicited by H5. However, in individuals with childhood H2 exposure, H5-elicited HA stem-binding B cells also displayed high cross-reactivity, suggesting recall of memory B cells formed 50 years ago. Overall, we propose that a one-residue difference on an HA immunogen can alter establishment and expansion of broadly neutralizing memory B cells. These data have implications for stem-based universal influenza vaccination strategies.
Collapse
Affiliation(s)
- Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays. J Pharm Sci 2022; 111:1070-1080. [PMID: 35122832 DOI: 10.1016/j.xphs.2022.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Most influenza vaccines are administered via intramuscular injection which has several disadvantages that might jeopardize the compliance of vaccinees. Intradermal administration of dissolving-microneedle-arrays (dMNAs) could serve as minimal invasive alternative to needle injections. However, during the production process of dMNAs antigens are subjected to several stresses, which may reduce their potency. Moreover, the needles need to have sufficient mechanical strength to penetrate the skin and subsequently dissolve effectively to release the incorporated antigen. Here, we investigated whether blends of trehalose and pullulan are suitable for the production of stable dMNA fulfilling these criteria. Our results demonstrate that production of trehalose/pullulan-based dMNAs rendered microneedles that were sharp and stiff enough to pierce into ex vivo human skin and subsequently dissolve within 15 min. The mechanical properties of the dMNAs were maintained well even after four weeks of storage at temperatures up to 37°C. In addition, immunization of mice with influenza antigens via both freshly prepared dMNAs and dMNAs after storage (four weeks at 4°C or 37°C) resulted in antibody titers of similar magnitude as found in intramuscularly injected mice and partially protected mice from influenza virus infection. Altogether, our results demonstrate the potential of trehalose/pullulan-based dMNAs as alternative dosage form for influenza vaccination.
Collapse
|
25
|
Strack A, Deinzer A, Thirion C, Schrödel S, Dörrie J, Sauerer T, Steinkasserer A, Knippertz I. Breaking Entry-and Species Barriers: LentiBOOST ® Plus Polybrene Enhances Transduction Efficacy of Dendritic Cells and Monocytes by Adenovirus 5. Viruses 2022; 14:v14010092. [PMID: 35062296 PMCID: PMC8781300 DOI: 10.3390/v14010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV-5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV-5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive cells. In the present study, we used the transduction enhancer LentiBOOST® comprising the polycationic Polybrene to overcome these limitations. Using LentiBOOST®/Polybrene, we yielded transduction rates higher than 50% in murine bone marrow-derived dendritic cells (BMDCs), while maintaining their cytokine expression profile and their capability to induce T-cell proliferation. In human dendritic cells (DCs), we increased the transduction rate from 22% in immature (i)DCs or 43% in mature (m)DCs to more than 80%, without inducing cytotoxicity. While expression of specific maturation markers was slightly upregulated using LentiBOOST®/Polybrene on iDCs, no effect on mDC phenotype or function was observed. Moreover, we achieved efficient HAdV5 transduction also in human monocytes and were able to subsequently differentiate them into proper iDCs and functional mDCs. In summary, we introduce LentiBOOST® comprising Polybrene as a highly potent adenoviral transduction agent for new in-vitro applications in a set of different immune cells in both mice and humans.
Collapse
Affiliation(s)
- Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Correspondence: (A.S.); (I.K.)
| | - Andrea Deinzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany; (C.T.); (S.S.)
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany; (C.T.); (S.S.)
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (J.D.); (T.S.)
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (J.D.); (T.S.)
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Correspondence: (A.S.); (I.K.)
| |
Collapse
|
26
|
Ren Y, Lu X, Yang Z, Lei H. Protective immunity induced by oral vaccination with a recombinant Lactococcus lactis vaccine against H5Nx in chickens. BMC Vet Res 2022; 18:3. [PMID: 34980121 PMCID: PMC8720943 DOI: 10.1186/s12917-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. RESULTS Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. CONCLUSIONS L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.
Collapse
Affiliation(s)
- Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Zhonghe Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
27
|
Linderman SL, Ellebedy AH, Davis C, Eberhardt CS, Antia R, Ahmed R, Zarnitsyna VI. Influenza Immunization in the Context of Preexisting Immunity. Cold Spring Harb Perspect Med 2021; 11:a040964. [PMID: 32988981 PMCID: PMC8559541 DOI: 10.1101/cshperspect.a040964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although we develop influenza immunity from an early age, it is insufficient to prevent future infection with antigenically novel strains. One proposed way to generate long-term protective immunity against a broad range of influenza virus strains is to boost responses to the conserved epitopes on the hemagglutinin, the major surface glycoprotein on the influenza virus. Influenza-specific humoral immunity comprises a large fraction of the overall immune memory in humans, and it has been long recognized that preexisting immunity to influenza shapes the response to subsequent influenza infections and vaccinations. However, the mechanisms by which preexisting immunity modulates the response to influenza vaccination are still not completely understood. Using a set of mathematical models, we explore several hypotheses that may contribute to diminished boosting of antibodies to conserved epitopes after repeated vaccinations.
Collapse
Affiliation(s)
- Susanne L Linderman
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Carl Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Centre for Vaccinology and Department of Pediatrics, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Veronika I Zarnitsyna
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
28
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
29
|
Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8:651658. [PMID: 34646834 PMCID: PMC8502894 DOI: 10.3389/fmed.2021.651658] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses that cause notable diseases, namely, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19), exhibit remarkable similarities in genomic components and pathogenetic mechanisms. Although coronaviruses have widely been studied as respiratory tract pathogens, their effects on the hepatobiliary system have seldom been reported. Overall, the manifestations of liver injury caused by coronaviruses typically involve decreased albumin and elevated aminotransferase and bilirubin levels. Several pathophysiological hypotheses have been proposed, including direct damage, immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity. The interaction between pre-existing liver disease and coronavirus infection has been illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and treatment of liver diseases. Drugs and vaccines used for treating and preventing coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized therapy for coronavirus infection and liver disease comorbidity is of significance, warranting further safety tests, animal trials and clinical trials.
Collapse
Affiliation(s)
- Xinyi Wang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lunan Yan
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Chen TH, Yang YL, Jan JT, Chen CC, Wu SC. Site-Specific Glycan-Masking/Unmasking Hemagglutinin Antigen Design to Elicit Broadly Neutralizing and Stem-Binding Antibodies Against Highly Pathogenic Avian Influenza H5N1 Virus Infections. Front Immunol 2021; 12:692700. [PMID: 34335603 PMCID: PMC8317614 DOI: 10.3389/fimmu.2021.692700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses with the capability of transmission from birds to humans have a serious impact on public health. To date, HPAI H5N1 viruses have evolved into ten antigenically distinct clades that could cause a mismatch of vaccine strains and reduce vaccine efficacy. In this study, the glycan masking and unmasking strategies on hemagglutinin antigen were used for designing two antigens: H5-dm/st2 and H5-tm/st2, and investigated for their elicited immunity using two-dose recombinant H5 (rH5) immunization and a first-dose adenovirus vector prime, followed by a second-dose rH5 protein booster immunization. The H5-dm/st2 antigen was found to elicit broadly neutralizing antibodies against different H5N1 clade/subclade viruses, as well as more stem-binding antibodies to inhibit HA-facilitated membrane fusion activity. Mice immunized with the H5-dm/st2 antigen had a higher survival rate when challenged with homologous and heterologous clades of H5N1 viruses. Mutant influenza virus replaced with the H5-dm/st2 gene generated by reverse genetics (RG) technology amplified well in MDCK cells and embryonated chicken eggs. Again, the inactivated H5N1-dm/st2 RG virus elicited more potent cross-clade neutralizing and anti-fusion antibodies in sera. Therefore, the H5N1-dm/st2 RG virus with the site-specific glycan-masking on the globular head and the glycan-unmasking on the stem region of H5 antigen can be used for further development of cross-protective H5N1 vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/administration & dosage
- Antigens, Viral/immunology
- Broadly Neutralizing Antibodies/blood
- Chick Embryo
- Disease Models, Animal
- Dogs
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Immunodominant Epitopes
- Immunogenicity, Vaccine
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/blood
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Polysaccharides/administration & dosage
- Polysaccharides/immunology
- Mice
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Lin Yang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu, Taiwan
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
31
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
32
|
Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park YJ, Moin SM, Acton OJ, Ravichandran R, Murphy M, Pettie D, Matheson N, Carter L, Creanga A, Watson MJ, Kephart S, Ataca S, Vaile JR, Ueda G, Crank MC, Stewart L, Lee KK, Guttman M, Baker D, Mascola JR, Veesler D, Graham BS, King NP, Kanekiyo M. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021; 592:623-628. [PMID: 33762730 PMCID: PMC8269962 DOI: 10.1038/s41586-021-03365-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023]
Abstract
Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.
Collapse
MESH Headings
- Animals
- Broadly Neutralizing Antibodies/immunology
- Disease Models, Animal
- Female
- Ferrets/immunology
- Ferrets/virology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/classification
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Male
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Nanomedicine
- Nanoparticles
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Oliver J Acton
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mike Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Sally Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Vaile
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Darricarrère N, Qiu Y, Kanekiyo M, Creanga A, Gillespie RA, Moin SM, Saleh J, Sancho J, Chou TH, Zhou Y, Zhang R, Dai S, Moody A, Saunders KO, Crank MC, Mascola JR, Graham BS, Wei CJ, Nabel GJ. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci Transl Med 2021; 13:13/583/eabe5449. [PMID: 33658355 DOI: 10.1126/scitranslmed.abe5449] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.
Collapse
Affiliation(s)
| | - Yu Qiu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jose Sancho
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Te-Hui Chou
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Yanfeng Zhou
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Ruijun Zhang
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Shujia Dai
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| | - Gary J Nabel
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Sangesland M, Lingwood D. Antibody Focusing to Conserved Sites of Vulnerability: The Immunological Pathways for 'Universal' Influenza Vaccines. Vaccines (Basel) 2021; 9:vaccines9020125. [PMID: 33562627 PMCID: PMC7914524 DOI: 10.3390/vaccines9020125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Influenza virus remains a serious public health burden due to ongoing viral evolution. Vaccination remains the best measure of prophylaxis, yet current seasonal vaccines elicit strain-specific neutralizing responses that favor the hypervariable epitopes on the virus. This necessitates yearly reformulations of seasonal vaccines, which can be limited in efficacy and also shortchange pandemic preparedness. Universal vaccine development aims to overcome these deficits by redirecting antibody responses to functionally conserved sites of viral vulnerability to enable broad coverage. However, this is challenging as such antibodies are largely immunologically silent, both following vaccination and infection. Defining and then overcoming the immunological basis for such subdominant or ‘immuno-recessive’ antibody targeting has thus become an important aspect of universal vaccine development. This, coupled with structure-guided immunogen design, has led to proof-of-concept that it is possible to rationally refocus humoral immunity upon normally ‘unseen’ broadly neutralizing antibody targets on influenza virus.
Collapse
|
35
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
36
|
Démoulins T, Ruggli N, Gerber M, Thomann-Harwood LJ, Ebensen T, Schulze K, Guzmán CA, McCullough KC. Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs. Front Immunol 2021; 11:622385. [PMID: 33584723 PMCID: PMC7877248 DOI: 10.3389/fimmu.2020.622385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.
Collapse
Affiliation(s)
- Thomas Démoulins
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa J Thomann-Harwood
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kenneth C McCullough
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
38
|
Liu CH, Huang HY, Tu YF, Lai WY, Wang CL, Sun JR, Chien Y, Lin TW, Lin YY, Chien CS, Huang CH, Chen YM, Huang PI, Wang FD, Yang YP. Highlight of severe acute respiratory syndrome coronavirus-2 vaccine development against COVID-19 pandemic. J Chin Med Assoc 2021; 84:9-13. [PMID: 33186212 DOI: 10.1097/jcma.0000000000000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has brought an unprecedented impact upon the global economy and public health. Although the SARS-CoV-2 virology has been gradually investigated, measures to combat this new threat in public health are still absent. To date, no certificated drug or vaccine has been developed for the treatment or prevention of coronavirus disease Extensive researches and international coordination has been conducted to rapidly develop novel vaccines against SARS-CoV-2 pandemic. Several major breakthroughs have been made through the identification of the genetic sequence and structural/non-structural proteins of SARS-CoV-2, which enabled the development of RNA-, DNA-based vaccines, subunit vaccines, and attenuated viral vaccines. In this review article, we present an overview of the recent advances of SARS-CoV-2 vaccines and the challenges that may be encountered in the development process, highlighting the advantages and disadvantages of these approaches that may help in effectively countering COVID-19.
Collapse
Affiliation(s)
- Cheng-Hsuan Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Hsuan-Yang Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Fang Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fu-Der Wang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
39
|
Zhang T, Chen X, Liao G, Hu M, Xu J, Xu X. Induction of cross-neutralizing antibodies by sequential immunization with heterologous papillomavirus L1VLPs and its implications for HPV prophylactic vaccines. J Med Virol 2020; 92:3750-3758. [PMID: 31994744 DOI: 10.1002/jmv.25690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/25/2020] [Indexed: 11/07/2022]
Abstract
Sequential immunization with antigens from different strains of HIV-1, influenza viruses or dengue viruses induced cross-neutralizing antibodies and enhanced the antibody responses against previous antigens. The characteristics of neutralizing antibodies induced by sequential immunization with different types of human papillomavirus (HPV) L1 virus-like particles (L1VLPs) are unclear. In this study, mice were primed with one or two types (HPV-16 or HPV16/18) of L1VLPs, then boosted sequentially with HPV6/18/45/11/31/58 or HPV6/45/11/31/58 L1VLPs, and sera were analyzed with HPV pseudovirus-based neutralization assay. The results showed that neutralizing activities against earlier immunized vaccine types were enhanced gradually by subsequent immunizations, and low levels of neutralizing activities against nonvaccine types (HPV33/35/52/59/68) were also observed. After absorbing the immune sera with vaccine-type (HPV16/18/45) L1VLPs, neutralizing activities against tested priming and boosting types (HPV16/18/58) decreased significantly, and that against nonvaccine type (HPV-33) was also partially eliminated. Moreover, neutralizing activities against vaccine types (HPV16/58) were significantly reduced after absorbing with nonvaccine-type VLPs (HPV33/52). These data suggest that cross-neutralizing epitopes exist among different HPV L1VLPs. The cross-neutralizing activities against nonvaccine types and the enhanced neutralizing activities against earlier immunized vaccine types may result from sequential boosting with these cross-neutralizing epitopes. These observations support early vaccination with more types of L1VLPs derived from HPVs that cause a serious threat to the population.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guoyang Liao
- The Fifth Department of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Yunnan, China
| | - Meili Hu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jianqing Xu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Comprehensive Analysis of Antibodies Induced by Vaccination with 4 Kinds of Avian Influenza H5N1 Pre-Pandemic Vaccines. Int J Mol Sci 2020; 21:ijms21197422. [PMID: 33050014 PMCID: PMC7582428 DOI: 10.3390/ijms21197422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Four kinds of avian-derived H5N1 influenza virus, A/Vietnam/1194/2004 (Clade 1), A/Indonesia/5/2005 (Clade 2.1), A/Qinghai/1A/2005 (Clade 2.2), and A/Anhui/1/2005 (Clade 2.3), have been stocked in Japan for use as pre-pandemic vaccines. When a pandemic occurs, these viruses would be used as vaccines in the hope of inducing immunity against the pandemic virus. We analyzed the specificity of antibodies (Abs) produced by B lymphocytes present in the blood after immunization with these vaccines. Eighteen volunteers took part in this project. After libraries of Ab-encoding sequences were constructed using blood from subjects vaccinated with these viruses, a large number of clones that encoded Abs that bound to the virus particles used as vaccines were isolated. These clones were classified into two groups according to the hemagglutination inhibition (HI) activity of the encoded Abs. While two-thirds of the clones were HI positive, the encoded Abs exhibited only restricted strain specificity. On the other hand, half of the HI-negative clones encoded Abs that bound not only to the H5N1 virus but also to the H1N1 virus; with a few exceptions, these Abs appeared to be encoded by memory B cells present before vaccination. The HI-negative clones included those encoding broadly cross-reactive Abs, some of which were encoded by non-VH1-69 germline genes. However, although this work shows that various kinds of anti-H5N1 Abs are encoded by volunteers vaccinated with pre-pandemic vaccines, broad cross-reactivity was seen only in a minority of clones, raising concern regarding the utility of these H5N1 vaccine viruses for the prevention of H5N1 pandemics.
Collapse
|
41
|
Li C, Culhane MR, Cheeran M, Galina Pantoja L, Jansen ML, Amodie D, Mellencamp MA, Torremorell M. Exploring heterologous prime-boost vaccination approaches to enhance influenza control in pigs. Vet Res 2020; 51:89. [PMID: 32646490 PMCID: PMC7344353 DOI: 10.1186/s13567-020-00810-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Influenza A viruses evolve rapidly to escape host immunity. In swine, this viral evolution has resulted in the emergence of multiple H1 and H3 influenza A virus (IAV) lineages in the United States (US) pig populations. The heterologous prime-boost vaccination strategy is a promising way to deal with diverse IAV infection in multiple animal models. However, whether or not this vaccination strategy is applicable to US swine to impart immunity against infection from North American strains of IAV is still unknown. We performed a vaccination-challenge study to evaluate the protective efficacy of using multivalent inactivated vaccine and/or a live attenuated IAV vaccine (LAIV) in pigs following multiple prime-boost vaccination protocols against a simultaneous H1N1 and H3N2 IAV infection. Our data show that pigs in the heterologous prime-boost vaccination group had more favorable outcomes consistent with a better response against virus challenge than non-vaccinated pigs. Additionally, delivering a multivalent heterologous inactivated vaccine boost to pigs following a single LAIV administration was also beneficial. We concluded the heterologous prime boost vaccination strategy may potentiate responses to suboptimal immunogens and holds the potential applicability to control IAV in the North American swine industry. However, more studies are needed to validate the application of this vaccination approach under field conditions.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Maxim Cheeran
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | | | | |
Collapse
|
42
|
Knight M, Changrob S, Li L, Wilson PC. Imprinting, immunodominance, and other impediments to generating broad influenza immunity. Immunol Rev 2020; 296:191-204. [PMID: 32666572 DOI: 10.1111/imr.12900] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Natural influenza virus infections and seasonal vaccinations often do not confer broadly neutralizing immunity across diverse influenza strains. In addition, the virus is capable of rapid antigenic drift in order to evade pre-existing immunity. The surface glycoproteins, hemagglutinin, and neuraminidase can easily mutate their immunodominant epitopes without impacting fitness. Skewing human antibody repertoires to target more conserved epitopes is thus an expanding area of research: Many groups are attempting to produce universal influenza vaccines that can protect across a wide variety of strains. Achieving this goal will require a detailed understanding of how infection history impacts humoral responses. It will also require the ability to manipulate or enhance B cell selection in order to expand clones that can recognize subdominant but protective epitopes. In this review, we will discuss what immune imprinting means to immunologists and describe efforts to overcome or silence imprinting in order to improve vaccination efficiency.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Siriruk Changrob
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
45
|
Immunization with DNA prime-subunit protein boost strategy based on influenza H9N2 virus conserved matrix protein M1 and its epitope screening. Sci Rep 2020; 10:4144. [PMID: 32139720 PMCID: PMC7057951 DOI: 10.1038/s41598-020-60783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
Developing an effective universal influenza vaccine against influenza virus with highly conserved antigenic epitopes could induce a broad-spectrum immune response to prevent infection. The soluble protein M1 that can induce the M1 specific immune response was first confirmed in our previous study. In this study, we characterized the immune response induced by DNA prime-subunit protein boost strategy based on the relatively conserved matrix protein 1 (M1) in the BALB/c mouse model, and evaluated its protection ability against a lethal challenge of homologous H9N2 avian influenza virus (A/Chicken/Jiangsu/11/2002). The results showed that 100 μg DNA prime + 100 μg M1 subunit protein boost-strategy significantly increased antibody levels more than vaccination with M1 DNA or M1 subunit protein alone, and induced a more balanced Th1 / Th2 immune response, which not only can provide protection against the homologous virus but also can provide part of the cross-protection against the heterosubtypic PR8 H1N1 strain. In addition, we used an Elispot assay to preliminary screen the T cell epitope in M1 protein, and identified that p22 (M111-25 VLSIIPSGPLKAEIA) epitope was the only immunodominant M1-specific CD4+ T cell epitopes, which could be helpful in understanding the function of influenza virus T cell epitopes.
Collapse
|
46
|
Yamamoto T, Masuta Y, Momota M, Kanekiyo M, Kanuma T, Takahama S, Moriishi E, Yasutomi Y, Saito T, Graham BS, Takahashi Y, Ishii KJ. A unique nanoparticulate TLR9 agonist enables a HA split vaccine to confer FcγR-mediated protection against heterologous lethal influenza virus infection. Int Immunol 2020; 31:81-90. [PMID: 30535055 DOI: 10.1093/intimm/dxy069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The development of a universal influenza vaccine that can provide a robust and long-lasting protection against a broader range of influenza virus strains is a global public health priority. One approach to improve vaccine efficacy is to use an adjuvant to boost immune responses to the target antigens; nevertheless, the role of adjuvants in the context of influenza vaccines is not fully understood. We have previously developed the K3-schizophyllan (SPG) adjuvant, which is composed of nanoparticulated oligodeoxynucleotides K3, a TLR9 agonist, with SPG, a non-agonistic β-glucan ligand of Dectin-1. In this study, K3-SPG given with conventional influenza hemagglutinin (HA) split vaccine (K3-SPG HA) conferred protection against antigenically mismatched heterologous virus challenge. While K3-SPG HA elicited robust cross-reactive HA-specific IgG2c and CD8 T-cell responses, CD8 T-cell depletion had no impact on this cross-protection. In contrast, K3-SPG HA was not able to confer protection against heterologous virus challenge in FcRγ-deficient mice. Our results indicated that FcγR-mediated antibody responses induced by the HA antigen and K3-SPG adjuvant were important for potent protection against antigenically mismatched influenza virus infection. Thus, we demonstrated that the K3-SPG-adjuvanted vaccine strategy broadens protective immunity against influenza and provides a basis for the development of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuji Masuta
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratories of Discovery Research, Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiro Kanuma
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Shoukichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Eiko Moriishi
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
47
|
Galula JU, Yang CY, Davis BS, Chang GJJ, Chao DY. Cross-reactivity reduced dengue virus 2 vaccine has no cross-protection against heterotypic dengue viruses. Future Virol 2020. [DOI: 10.2217/fvl-2019-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study assessed how prime-boost strategies influence the immunogenicity of a cross-reactivity reduced dengue virus 2 vaccine (DENV-2 RD). Materials & methods: Mice were immunized with DENV-2 RD vaccines in a heterologous DNA and virus-like particle (VLP) prime-boost. Elicited antibodies were analyzed for neutralization and protective efficacy against four DENV serotypes. Results: DENV-2 RD DNA-VLP had induced higher and broader levels of total IgG and neutralizing antibodies with statistically significant IgG titers against DENV-2 and -3. Only pups of DENV-2 RD DNA-VLP immunized female mice were fully protected against homotypic DENV challenge and partially protected (60% survival rate) against heterotypic DENV-3 lethal challenge. Conclusion: DENV-2 RD vaccine requires a multivalent format to effectively elicit a balanced and protective immunity across all four DENV serotypes.
Collapse
Affiliation(s)
- Jedhan U Galula
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Yu Yang
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Brent S Davis
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
48
|
Carroll TD, Jegaskanda S, Matzinger SR, Fritts L, McChesney MB, Kent SJ, Fairman J, Miller CJ. A Lipid/DNA Adjuvant-Inactivated Influenza Virus Vaccine Protects Rhesus Macaques From Uncontrolled Virus Replication After Heterosubtypic Influenza A Virus Challenge. J Infect Dis 2019; 218:856-867. [PMID: 29701840 DOI: 10.1093/infdis/jiy238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/20/2018] [Indexed: 11/14/2022] Open
Abstract
Background Influenza A virus (IAV) vaccines offer little protection from mismatched viruses with antigenically distant hemagglutinin (HA) glycoproteins. We sought to determine if a cationic lipid/DNA complex (CLDC) adjuvant could induce heterosubtypic protection if added to a whole inactivated IAV vaccine (WIV). Methods Adult rhesus macaques (RMs) were vaccinated and at 2 weeks boosted with either an H1N1-WIV or an H3N2-WIV, with and without CLDC adjuvant. Four weeks postboost, animals were challenged with an H1N1 IAV matched to the H1N1-WIV vaccine. Results After challenge, viral RNA (vRNA) levels in the trachea of control RMs and RMs vaccinated with the unadjuvanted H1 or H3 WIV vaccines were similar. However, vRNA levels in the trachea of both the H1-WIV/CLDC- and the H3-WIV/CLDC-vaccinated RMs (P < 0.01 and P < 0.05, respectively) were significantly lower than in unvaccinated control RMs. Heterosubtypic protection in H3-WIV/CLDC RMs was associated with significantly higher levels of nucleoprotein (NP) and matrix-1-specific immunoglobulin G antibodies (P < 0.05) and NP-specific nonneutralizing antibody-dependent natural killer cell activation (P < 0.01) compared with unprotected H3-WIV RMs. Conclusions Addition of the CLDC adjuvant to a simple WIV elicited immunity to conserved virus structural proteins in RMs that correlate with protection from uncontrolled virus replication after heterosubtypic influenza virus challenge.
Collapse
Affiliation(s)
- Timothy D Carroll
- Center for Comparative Medicine, University of California, Davis.,California National Primate Research Center, University of California, Davis
| | - Sinthujan Jegaskanda
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University
| | - Shannon R Matzinger
- Center for Comparative Medicine, University of California, Davis.,California National Primate Research Center, University of California, Davis
| | - Linda Fritts
- Center for Comparative Medicine, University of California, Davis.,California National Primate Research Center, University of California, Davis
| | - Michael B McChesney
- California National Primate Research Center, University of California, Davis
| | - Stephen J Kent
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University.,Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Australia
| | | | - Christopher J Miller
- Center for Comparative Medicine, University of California, Davis.,California National Primate Research Center, University of California, Davis.,Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis
| |
Collapse
|
49
|
Rudicell RS, Garinot M, Kanekiyo M, Kamp HD, Swanson K, Chou TH, Dai S, Bedel O, Simard D, Gillespie RA, Yang K, Reardon M, Avila LZ, Besev M, Dhal PK, Dharanipragada R, Zheng L, Duan X, Dinapoli J, Vogel TU, Kleanthous H, Mascola JR, Graham BS, Haensler J, Wei CJ, Nabel GJ. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine 2019; 37:6208-6220. [PMID: 31493950 DOI: 10.1016/j.vaccine.2019.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.
Collapse
Affiliation(s)
| | | | - Masaru Kanekiyo
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Rebecca A Gillespie
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
50
|
Perche F, Clemençon R, Schulze K, Ebensen T, Guzmán CA, Pichon C. Neutral Lipopolyplexes for In Vivo Delivery of Conventional and Replicative RNA Vaccine. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:767-775. [PMID: 31446119 PMCID: PMC6716064 DOI: 10.1016/j.omtn.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acid vaccination relies on injecting DNA or RNA coding antigen(s) to induce a protective immune response. RNA vaccination is being increasingly used in preclinical and clinical studies. However, few delivery systems have been reported for in vivo delivery of RNA of different sizes. Using a tripartite formulation with RNA, cationic polymer, and anionic liposomes, we were able to encapsulate RNA into neutral lipopolyplexes (LPPs). LPPs were stable in vitro and successfully delivered conventional RNA and replicative RNA to dendritic cells in cellulo. Their injection led to reporter gene expression in mice. Finally, administration of LPP-Replicon RNA (RepRNA) led to an adaptive immune response against the antigen coded by the RepRNA. Accordingly, LPPs may represent a universal formulation for RNA delivery.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| | - Rudy Clemençon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| |
Collapse
|