1
|
Pei X, Ba M, Yang T, Xuan S, Huang D, Qi D, Lu D, Huang S, Li Z. Leptin Receptor Deficiency-Associated Diabetes Disrupts Lacrimal Gland Circadian Rhythms and Contributes to Dry Eye Syndrome. Invest Ophthalmol Vis Sci 2025; 66:19. [PMID: 39774625 PMCID: PMC11721485 DOI: 10.1167/iovs.66.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function. Methods Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period. Rhythmic expression of core clock genes, immune and neural activity, and metabolic pathways were evaluated. The effects of insulin treatment on these parameters were also assessed. Results Hyperglycemia disrupted the circadian expression of core clock genes in LGs, leading to a 50% reduction in rhythmic gene expression. This was associated with altered immune cell recruitment, impaired neural activity, and metabolic changes. Insulin treatment lowered blood glucose levels but did not restore normal circadian function or tear secretion, exacerbating dry eye syndrome in diabetic mice. Conclusions T2DM significantly disrupts circadian rhythms and function in lacrimal glands, contributing to dry eye syndrome. The limited efficacy of insulin in restoring circadian regulation suggests that hyperglycemia-induced dysfunction in LGs is not solely dependent on blood glucose levels, highlighting the need for therapies targeting circadian rhythms in diabetic ocular complications.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tingting Yang
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shuting Xuan
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
3
|
Carneiro L, Fenech C, Liénard F, Grall S, Abed B, Haydar J, Allard C, Desmoulins L, Paccoud R, Brindisi MC, Mouillot T, Brondel L, Fioramonti X, Pénicaud L, Jacquin-Piques A, Leloup C. Hypothalamic Glucose Hypersensitivity-Induced Insulin Secretion in the Obese Zücker Rat Is Reversed by Central Ghrelin Treatment. Antioxid Redox Signal 2024; 40:837-849. [PMID: 36656675 DOI: 10.1089/ars.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims: Part of hypothalamic (mediobasal hypothalamus [MBH]) neurons detect changes in blood glucose levels that in turn coordinate the vagal control of insulin secretion. This control cascade requires the production of mitochondrial reactive oxygen species (mROS), which is altered in models of obesity and insulin resistance. Obese, insulin-resistant Zücker rats are characterized by hypothalamic hypersensitivity to glucose. This initiates an abnormal vagus-induced insulin secretion, associated with an overproduction of mROS in response to a low glucose dose. Here, we hypothesized that ghrelin, known to buffer reactive oxygen species (ROS) via mitochondrial function, may be a major component of the hypothalamic glucose hypersensitivity in the hypoghrelinemic obese Zücker rat. Results: Hypothalamic glucose hypersensitivity-induced insulin secretion of Zücker obese rats was reversed by ghrelin pretreatment. The overproduction of MBH mROS in response to a low glucose load no longer occurred in obese rats that had previously received the cerebral ghrelin infusion. This decrease in mROS production was accompanied by a normalization of oxidative phosphorylation (OXPHOS). Conversely, blocking the action of ghrelin with a growth hormone secretagogue receptor antagonist in a model of hyperghrelinemia (fasted rats) completely restored hypothalamic glucose sensing-induced insulin secretion that was almost absent in this physiological situation. Accordingly, ROS signaling and mitochondrial activity were increased by the ghrelin receptor antagonist. Innovation: These results demonstrate for the first time that ghrelin addressed only to the brain could have a protective effect on the defective control of insulin secretion in the insulin-resistant, hypoghrelinemic obese subject. Conclusions: Ghrelin, through its action on OXPHOS, modulates mROS signaling in response to cerebral hyperglycemia and the consequent vagal control of insulin secretion. In insulin-resistant obese states, brain hypoghrelinemia could be responsible for the nervous defect in insulin secretion.
Collapse
Affiliation(s)
- Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Besma Abed
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Joulia Haydar
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claude Brindisi
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Laurent Brondel
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Neurocampus, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- STROMALab, CNRS ERL 5311, Toulouse, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Kulkarni SS, Singh O, Zigman JM. The intersection between ghrelin, metabolism and circadian rhythms. Nat Rev Endocrinol 2024; 20:228-238. [PMID: 38123819 PMCID: PMC11760189 DOI: 10.1038/s41574-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.
Collapse
Affiliation(s)
- Soumya S Kulkarni
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Ritzefeld M, Zhang L, Xiao Z, Andrei SA, Boyd O, Masumoto N, Rodgers UR, Artelsmair M, Sefer L, Hayes A, Gavriil ES, Raynaud FI, Burke R, Blagg J, Rzepa HS, Siebold C, Magee AI, Lanyon-Hogg T, Tate EW. Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase. J Med Chem 2024; 67:1061-1078. [PMID: 38198226 PMCID: PMC10823475 DOI: 10.1021/acs.jmedchem.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-μM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Leran Zhang
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Zhangping Xiao
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | | | - Olivia Boyd
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Ursula R. Rodgers
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | - Markus Artelsmair
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Lea Sefer
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Angela Hayes
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Florence I. Raynaud
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Julian Blagg
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Christian Siebold
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Anthony I. Magee
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | | | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
6
|
Howe SL, Holdom CJ, McCombe PA, Henderson RD, Zigman JM, Ngo ST, Steyn FJ. Associations of postprandial ghrelin, liver-expressed antimicrobial peptide 2 and leptin levels with body composition, disease progression and survival in patients with amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16052. [PMID: 37658515 PMCID: PMC10840749 DOI: 10.1111/ene.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND AND PURPOSE Loss of appetite contributes to weight loss and faster disease progression in amyotrophic lateral sclerosis (ALS). Impairment of appetite control in ALS may include altered production or action of orexigenic (i.e., ghrelin) and anorexigenic (i.e., liver-expressed antimicrobial peptide 2 [LEAP2] and leptin) hormones. We aimed to determine if postprandial circulating ghrelin levels, LEAP2 levels, LEAP2:ghrelin molar ratio and leptin levels differ in ALS patients compared to non-neurodegenerative disease controls, and whether they are associated with disease progression and body composition. METHODS In this prospective natural history study, we assessed postprandial plasma levels of ghrelin, LEAP2 and leptin in patients with ALS (cases; n = 46) and controls (controls; n = 43). For cases, measures were compared to changes in body weight, body composition and clinical outcomes. RESULTS Postprandial ghrelin level was decreased by 52% in cases compared to controls (p = 0.013). LEAP2:ghrelin molar ratio was increased by 249% (p = 0.009), suggesting greater ghrelin resistance. Patients with lower LEAP2:ghrelin tended to have better functional capacity at assessment, as inferred by the ALS Functional Rating Scale-Revised (τ = -0.179, p = 0.086). Furthermore, ghrelin and LEAP2:ghrelin molar ratio correlated with diagnostic delay (ghrelin, τ = 0.223, p = 0.029; LEAP2:ghrelin, τ = -0.213, p = 0.037). Baseline ghrelin level, LEAP2 level, LEAP2:ghrelin ratio and leptin level were, however, not predictive of change in functional capacity during follow-up. Also, patients with higher postprandial ghrelin levels (hazard ratio [HR] 1.375, p = 0.048), and lower LEAP2:ghelin ratios (HR 0.828, p = 0.051) had an increased risk of earlier death. CONCLUSIONS Reduced postprandial ghrelin levels, coupled with increased LEAP2:ghrelin molar ratios, suggests a loss of ghrelin action in patients with ALS. Given ghrelin's actions on appetite, metabolism and neuroprotection, reduced ghrelin and greater ghrelin resistance could contribute to impaired capacity to tolerate the physiological impact of disease. Comprehensive studies are needed to explain how ghrelin and LEAP2 contribute to body weight regulation and disease progression in ALS.
Collapse
Affiliation(s)
- Stephanie L. Howe
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Cory J. Holdom
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
| | - Pamela A. McCombe
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Robert D. Henderson
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Shyuan T. Ngo
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Frederik J. Steyn
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
7
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
8
|
Wolf M, Heni M, Hennige AM, Sippel K, Cegan A, Higuita LMS, Martus P, Häring HU, Fritsche A, Peter A. Acylated- and unacylated ghrelin during an oral glucose tolerance test in humans at risk for type 2 diabetes mellitus. Int J Obes (Lond) 2023; 47:825-832. [PMID: 37420007 PMCID: PMC10439001 DOI: 10.1038/s41366-023-01327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/24/2022] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND/OBJECTIVES The orexigenic peptide hormone ghrelin has been implicated in the pathophysiology of obesity and type 2 diabetes mellitus through its effects on nutrient homeostasis. Ghrelin is subject to a unique post-translational acyl modification regulating its biochemical activity. SUBJECTS/METHODS In this study we aimed to investigate the relation of acylated (AcG) as well as unacylated ghrelin (UnG) with body weight and insulin resistance in the fasting (n = 545) and post-oral glucose tolerance test (oGTT) state (n = 245) in a metabolically well characterized cohort covering a broad range of BMI (17.95 kg/m²-76.25 kg/m²). RESULTS Fasting AcG (median 94.2 pg/ml) and UnG (median 175.3 pg/ml) were negatively and the AcG/UnG ratio was positively correlated with BMI (all p < 0.0001). Insulin sensitivity (ISI) correlated positively with AcG (p = 0.0014) and UnG (p = 0.0004) but not with the AcG/UnG ratio. In a multivariate analysis, including ISI and BMI, only BMI, but not ISI was independently associated with AcG and UnG concentrations. Significant changes of AcG and UnG concentrations were detectable after oGTT stimulation, with slight decreases after 30 min and increases after 90-120 min. Subject stratification into BMI-divergent groups revealed more pronounced AcG increases in the two groups with BMI < 40 kg/m². CONCLUSION Our data demonstrate lower concentrations for both AcG and UnG with increasing BMI as well as an increased proportion of the biologically active, acylated form of ghrelin giving point to pharmacologic intervention in ghrelin acylation and/or increase in UnG for treatment of obesity despite decreased absolute AcG levels.
Collapse
Affiliation(s)
- Magnus Wolf
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | | | - Katrin Sippel
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Lina María Serna Higuita
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
9
|
Campaña M, Davis TR, Novak SX, Cleverdon ER, Bates M, Krishnan N, Curtis ER, Childs MD, Pierce MR, Morales-Rodriguez Y, Sieburg MA, Hehnly H, Luyt LG, Hougland JL. Cellular Uptake of a Fluorescent Ligand Reveals Ghrelin O-Acyltransferase Interacts with Extracellular Peptides and Exhibits Unexpected Localization for a Secretory Pathway Enzyme. ACS Chem Biol 2023; 18:1880-1890. [PMID: 37494676 PMCID: PMC10442857 DOI: 10.1021/acschembio.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.
Collapse
Affiliation(s)
- Maria
B. Campaña
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tasha R. Davis
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michael Bates
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Nikhila Krishnan
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Erin R. Curtis
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Marina D. Childs
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
| | - Mariah R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
- Department
of Oncology and Department of Medical Imaging, London Regional Cancer
Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022; 14:nu14194191. [PMID: 36235843 PMCID: PMC9572668 DOI: 10.3390/nu14194191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ghrelin, an endogenous brain-gut peptide, is secreted in large quantities, mainly from the stomach, in humans and rodents. It can perform the biological function of activating the growth hormone secretagogue receptor (GHSR). Since its discovery in 1999, ample research has focused on promoting its effects on the human appetite and pleasure-reward eating. Extensive, in-depth studies have shown that ghrelin is widely secreted and distributed in tissues. Its role in neurohumoral regulation, such as metabolic homeostasis, inflammation, cardiovascular regulation, anxiety and depression, and advanced cancer cachexia, has attracted increasing attention. However, the effects and regulatory mechanisms of ghrelin on obesity, gastrointestinal (GI) inflammation, cardiovascular disease, stress regulation, cachexia treatment, and the prognosis of advanced cancer have not been fully summarized. This review summarizes ghrelin's numerous effects in participating in a variety of biochemical pathways and the clinical significance of ghrelin in the regulation of the homeostasis of organisms. In addition, potential mechanisms are also introduced.
Collapse
|
11
|
Alharbi S. Exogenous administration of unacylated ghrelin attenuates hepatic steatosis in high-fat diet-fed rats by modulating glucose homeostasis, lipogenesis, oxidative stress, and endoplasmic reticulum stress. Biomed Pharmacother 2022; 151:113095. [PMID: 35594708 DOI: 10.1016/j.biopha.2022.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Low levels of unacylated ghrelin (UAG) and a higher ratio of acylated ghrelin (AG)/UAG in obesity are associated with non-alcoholic fatty liver disease (NAFLD). This study tested the potential protective effect of increased circulatory levels of UAG by exogenous UAG administration on hepatic steatosis in high-fat diet (HFD)-fed rats and investigated some possible mechanisms. Rats were divided (n = 6/group) as low fat diet (LFD), LFD + UAG (200 mg/kg), HFD, HFD + UAG (50, 100, or 200 mg/kg). Treatments were given for 8 weeks. Increasing the dose of UAG increased circulatory levels of UAG and normalized the ratio of AG/UAG at the dose of 200 mg/kg. With no change in insulin levels, and in a dose-dependent manner, treatment with UAG to HFD rats attenuated the gain in food intake, body weights, and liver weights, lowered fasting glucose levels, prevented hepatic cytoplasmic vacuolization, and reduced serum and hepatic levels of cholesterol, triglycerides, and free fatty acids. They also progressively reduced levels of reactive oxygen species, lipid peroxides, tumor necrosis factor-α, and interleukin-6, as well as mRNA levels of Bax and caspase-3 but increased levels of glutathione and superoxide dismutase and mRNA levels of Bcl2. In concomitant, UAG, in a dose-response manner, significantly reduced hepatic mRNA levels of SREBP1, SREBP2, ATF-6, IRE-1, and eIF-2α but increased those of PPARα. In conclusion, reducing the circulatory ratio of AG/UAG ratio by exogenous administration of UAG attenuates HFD-induced hepatic steatosis by suppressing lipogenesis, stimulating FAs oxidation, preventing oxidative stress, inflammation, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Samah Alharbi
- Physiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
12
|
Thomas AS, Sassi M, Angelini R, Morgan AH, Davies JS. Acylation, a Conductor of Ghrelin Function in Brain Health and Disease. Front Physiol 2022; 13:831641. [PMID: 35845996 PMCID: PMC9280358 DOI: 10.3389/fphys.2022.831641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Acyl-ghrelin (AG) is an orexigenic hormone that has a unique octanoyl modification on its third serine residue. It is often referred to as the “hunger hormone” due to its involvement in stimulating food intake and regulating energy homeostasis. The discovery of the enzyme ghrelin-O-acyltransferase (GOAT), which catalyses ghrelin acylation, provided further insights into the relevance of this lipidation process for the activation of the growth hormone secretagogue receptor (GHS-R) by acyl-ghrelin. Although acyl-ghrelin is predominantly linked with octanoic acid, a range of saturated fatty acids can also bind to ghrelin possibly leading to specific functions. Sources of ghrelin acylation include beta-oxidation of longer chain fatty acids, with contributions from fatty acid synthesis, the diet, and the microbiome. In addition, both acyl-ghrelin and unacyl-ghrelin (UAG) have feedback effects on lipid metabolism which in turn modulate their levels. Recently we showed that whilst acyl-ghrelin promotes adult hippocampal neurogenesis and enhances memory function, UAG inhibits these processes. As a result, we postulated that the circulating acyl-ghrelin:unacyl-ghrelin (AG:UAG) ratio might be an important regulator of neurogenesis and cognition. In this review, we discuss emerging evidence behind the relevance of ghrelin acylation in the context of brain physiology and pathology, as well as the current challenges of identifying the provenance of the acyl moiety.
Collapse
|
13
|
Ferrulli A, Terruzzi I, Senesi P, Succi M, Cannavaro D, Luzi L. Turning the clock forward: New pharmacological and non pharmacological targets for the treatment of obesity. Nutr Metab Cardiovasc Dis 2022; 32:1320-1334. [PMID: 35354547 DOI: 10.1016/j.numecd.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS Obesity and its main metabolic complication, type 2 diabetes, have attained the status of a global pandemic; there is need for novel strategies aimed at treating obesity and preventing the development of diabetes. A healthy diet and exercise are basic for treatment of obesity but often not enough. Pharmacotherapy can be helpful in maintaining compliance, ameliorating obesity-related health risks, and improving quality of life. In the last two decades, the knowledge of central and peripheral mechanisms underlying homeostatic and hedonic aspects of food intake has significantly increased. Dysregulation of one or more of these components could lead to obesity. DATA SYNTHESIS In order to better understand how potential innovative treatment options can affect obesity, homeostatic and reward mechanisms that regulate energy balance has been firstly illustrated. Then, an overview of potential therapeutic targets for obesity, distinguished according to the level of regulation of feeding behavior, has been provided. Moreover, several non-drug therapies have been recently tested in obesity, such as non-invasive neurostimulation: Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation. All of them are promising for obesity treatment and are almost devoid of side effects, constituting a potential resource for the prevention of metabolic diseases. CONCLUSIONS The plethora of current anti-obesity therapies creates the unique challenge for physicians to customize the intervention, according to the specific obesity characteristics and the intervention side effect profiles; moreover, it allows multimodal approaches addressed to treat obesity and metabolic adaptation with complementary mechanisms.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Massimiliano Succi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
15
|
Evans RM, Wei Z. Interorgan crosstalk in pancreatic islet function and pathology. FEBS Lett 2022; 596:607-619. [PMID: 35014695 DOI: 10.1002/1873-3468.14282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Pancreatic β cells secrete insulin in response to glucose, a process that is regulated at multiple levels, including a network of input signals from other organ systems. Impaired islet function contributes to the pathogenesis of type 2 diabetes mellitus (T2DM), and targeting inter-organ communications, such as GLP-1 signalling, to enhance β-cell function has been proven to be a successful therapeutic strategy in the last decade. In this review, we will discuss recent advances in inter-organ communication from the metabolic, immune and neural system to pancreatic islets, their biological implication in normal pancreas endocrine function and their role in the (mal)adaptive responses of islet to nutrition-induced stress.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
16
|
In Search of Small Molecules That Selectively Inhibit MBOAT4. Molecules 2021; 26:molecules26247599. [PMID: 34946685 PMCID: PMC8709388 DOI: 10.3390/molecules26247599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/31/2023] Open
Abstract
Ghrelin is a 28-residue peptide hormone produced by stomach P/D1 cells located in oxyntic glands of the fundus mucosa. Post-translational octanoylation of its Ser-3 residue, catalyzed by MBOAT4 (aka ghrelin O-acyl transferase (GOAT)), is essential for the binding of the hormone to its receptor in target tissues. Physiological roles of acyl ghrelin include the regulation of food intake, growth hormone secretion from the pituitary, and inhibition of insulin secretion from the pancreas. Here, we describe a medicinal chemistry campaign that led to the identification of small lipopeptidomimetics that inhibit GOAT in vitro. These molecules compete directly for substrate binding. We further describe the synthesis of heterocyclic inhibitors that compete at the acyl coenzyme A binding site.
Collapse
|
17
|
Shankar K, Takemi S, Gupta D, Varshney S, Mani BK, Osborne-Lawrence S, Metzger NP, Richard CP, Berglund ED, Zigman JM. Ghrelin cell-expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin. JCI Insight 2021; 6:e146983. [PMID: 34473648 PMCID: PMC8492315 DOI: 10.1172/jci.insight.146983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mechanisms underlying postprandial and obesity-associated plasma ghrelin reductions are incompletely understood. Here, using ghrelin cell-selective insulin receptor-KO (GhIRKO) mice, we tested the impact of insulin, acting via ghrelin cell-expressed insulin receptors (IRs), to suppress ghrelin secretion. Insulin reduced ghrelin secretion from cultured gastric mucosal cells of control mice but not from those of GhIRKO mice. Acute insulin challenge and insulin infusion during both hyperinsulinemic-hypoglycemic clamps and hyperinsulinemic-euglycemic clamps lowered plasma ghrelin in control mice but not GhIRKO mice. Thus, ghrelin cell-expressed IRs are required for insulin-mediated reductions in plasma ghrelin. Furthermore, interventions that naturally raise insulin (glucose gavage, refeeding following fasting, and chronic high-fat diet) also lowered plasma ghrelin only in control mice - not GhIRKO mice. Thus, meal- and obesity-associated increases in insulin, acting via ghrelin cell-expressed IRs, represent a major, direct negative modulator of ghrelin secretion in vivo, as opposed to ingested or metabolized macronutrients. Refed GhIRKO mice exhibited reduced plasma insulin, highlighting ghrelin's actions to inhibit insulin release via a feedback loop. Moreover, GhIRKO mice required reduced glucose infusion rates during hyperinsulinemic-hypoglycemic clamps, suggesting that suppressed ghrelin release resulting from direct insulin action on ghrelin cells usually limits ghrelin's full potential to protect against insulin-induced hypoglycemia.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bharath K. Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan P. Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corine P. Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric D. Berglund
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Internal Medicine, and
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
19
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
20
|
Özcan B, Delhanty PJD, Huisman M, Visser JA, Neggers SJ, van der Lely AJ. Overweight and obesity in type 1 diabetes is not associated with higher ghrelin concentrations. Diabetol Metab Syndr 2021; 13:79. [PMID: 34294136 PMCID: PMC8296697 DOI: 10.1186/s13098-021-00699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Several studies have demonstrated suppressed levels of acylated (AG) and unacylated ghrelin (UAG) in patients with type 2 diabetes. However, the role of these hormones in type 1 diabetes has not been extensively studied. This study assessed the relationship between AG and UAG levels and body composition in patients with type 1 diabetes. METHODS We selected eighteen patients with type 1 diabetes and divided them into two groups: non-obese (BMI < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2). Demographics, parameters of body composition and serum parameters including AG and UAG, were assessed. RESULTS The patients with a BMI ≥ 25 kg/m2 were older and had a longer duration of diabetes. AG and UAG levels were not significantly different between non-obese and overweight groups (mean AG non-obese ± SD: 44.5 ± 29.4 pg/ml and mean UAG non-obese 42.4 ± 20.7 pg/ml vs mean AG overweight ± SD: 46.1 ± 29.6 pg/ml and mean UAG overweight 47.2 ± 18.2 pg/ml). AG/UAG ratios did not discriminate between these groups. There was a positive association of insuline dose/kg bodyweight with BMI (r2 = 0.45, p = 0.002). CONCLUSIONS Surprisingly, unlike non-diabetics and in T2D, we did not observe a difference in plasma levels of AG and UAG between normal weight and overweight adult type 1 diabetics. However, we did observe a positive correlation between BMI and insuline dose/kg bodyweight, suggesting that exogenous insulin is more important than the ghrelin system in the development of obesity in type 1 diabetes.
Collapse
Affiliation(s)
- Behiye Özcan
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Patric J D Delhanty
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Martin Huisman
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jenny A Visser
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sebastian J Neggers
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Aart Jan van der Lely
- Departments of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Gupta D, Patterson AM, Osborne-Lawrence S, Bookout AL, Varshney S, Shankar K, Singh O, Metzger NP, Richard CP, Wyler SC, Elmquist JK, Zigman JM. Disrupting the ghrelin-growth hormone axis limits ghrelin's orexigenic but not glucoregulatory actions. Mol Metab 2021; 53:101258. [PMID: 34023483 PMCID: PMC8203846 DOI: 10.1016/j.molmet.2021.101258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Acyl-ghrelin regulates eating, body weight, blood glucose, and GH secretion upon binding to its receptor GHSR (growth hormone secretagogue receptor; ghrelin receptor). GHSR is distributed in several brain regions and some peripheral cell-types including pituitary somatotrophs. The objective of the current study was to determine the functional significance of acyl-ghrelin's action on GHSR-expressing somatotrophs in mediating GH secretion and several of acyl-ghrelin's metabolic actions. Methods GH-IRES-Cre mice and loxP-flanked (floxed) GHSR mice were newly developed and then crossed to one another to generate mice that lacked GHSR selectively from somatotrophs. Following validation of mice with somatotroph-selective GHSR deletion, metabolic responses of these mice and control littermates were assessed following both acute and chronic acyl-ghrelin administration, a 24-h fast, and a prolonged 60% chronic caloric restriction protocol modeling starvation. Results In mice with somatotroph-selective GHSR deletion, a single peripheral injection of acyl-ghrelin failed to induce GH secretion or increase food intake, unlike wild-type and other littermate control groups. However, the usual acute blood glucose increase in response to the acyl-ghrelin bolus was preserved. Similarly, chronic s.c. acyl-ghrelin administration to mice with somatotroph-selective GHSR deletion failed to increase plasma GH, food intake, or body weight. Physiologically elevating plasma acyl-ghrelin via a 24-h fast also failed to raise plasma GH and resulted in a limited hyperphagic response upon food reintroduction in mice with somatotroph-selective GHSR deletion, although those mice nonetheless did not exhibit an exaggerated reduction in blood glucose. Physiologically elevating plasma acyl-ghrelin via a 15-day caloric restriction protocol which provided only 40% of usual daily calories failed to raise plasma GH in mice with somatotroph-selective GHSR deletion, although those mice did not exhibit life-threatening hypoglycemia. Conclusions These results reveal that direct engagement of GHSR-expressing somatotrophs is required for a peripheral ghrelin bolus to acutely stimulate GH secretion and the actions of chronic acyl-ghrelin delivery and physiological plasma acyl-ghrelin elevations to increase plasma GH. These results also suggest that actions of acyl-ghrelin to increase food intake and body weight are reliant on direct activation of GHSRs expressed on somatotrophs. Furthermore, these results suggest that the glucoregulatory actions of acyl-ghrelin – in particular, its actions to raise blood glucose when acutely administered, prevent small blood glucose drops following a 24-h fast, and avert life-threatening hypoglycemia during an acute-on-chronic caloric restriction protocol – do not depend on GHSR expression by somatotrophs. Mice with pituitary somatotroph-selective GHSR deletion were generated. Somatotroph-expressed GHSRs mediate GH secretion and food intake after acute ghrelin. Body weight effects of chronic ghrelin infusion require somatotroph-expressed GHSRs. Somatotroph-expressed GHSRs enable GH to increase upon chronic caloric restriction. Mice lacking somatotroph GHSRs maintain euglycemia upon chronic caloric restriction.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Patterson
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angie L Bookout
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
23
|
Zhang Y, Zhu MZ, Qin XH, Zeng YN, Zhu XH. The Ghrelin/Growth Hormone Secretagogue Receptor System Is Involved in the Rapid and Sustained Antidepressant-Like Effect of Paeoniflorin. Front Neurosci 2021; 15:631424. [PMID: 33664648 PMCID: PMC7920966 DOI: 10.3389/fnins.2021.631424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness affecting people worldwide. Although significant progress has been made in the development of therapeutic agents to treat this condition, fewer than half of all patients respond to currently available antidepressants, highlighting the urgent need for the development of new classes of antidepressant drugs. Here, we found that paeoniflorin (PF) produced rapid and sustained antidepressant-like effects in multiple mouse models of depression, including the forced swimming test and exposure to chronic mild stress (CMS). Moreover, PF decreased the bodyweight of mice without affecting food intake and glucose homeostasis, and also reduced the plasma levels of total ghrelin and the expression of ghrelin O-acyltransferase in the stomach; however, the plasma levels of ghrelin and the ghrelin/total ghrelin ratio were unaffected. Furthermore, PF significantly increased the expression of growth hormone secretagogue receptor 1 alpha (GHSR1α, encoded by the Ghsr gene) in the intestine, whereas the levels of GHSR1α in the brain were only marginally downregulated following subchronic PF treatment. Finally, the genetic deletion of Ghsr attenuated the antidepressant-like effects of PF in mice exposed to CMS. These results suggested that increased GHSR1α expression in the intestine mediates the antidepressant-like effects of PF. Understanding peripheral ghrelin/GHSR signaling may provide new insights for the screening of antidepressant drugs that produce fast-acting and sustained effects.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xi-He Qin
- Eusyn Medical Technology Company, Guangzhou, China
| | - Yuan-Ning Zeng
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Liang Y, Yin W, Yin Y, Zhang W. Ghrelin Based Therapy of Metabolic Diseases. Curr Med Chem 2021; 28:2565-2576. [PMID: 32538716 PMCID: PMC11213490 DOI: 10.2174/0929867327666200615152804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ghrelin, a unique 28 amino acid peptide hormone secreted by the gastric X/A like cells, is an endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin-GHSR signaling has been found to exert various physiological functions, including stimulation of appetite, regulation of body weight, lipid and glucose metabolism, and increase of gut motility and secretion. This system is thus critical for energy homeostasis. OBJECTIVE The objective of this review is to highlight the strategies of ghrelin-GHSR based intervention for therapy of obesity and its related metabolic diseases. RESULTS Therapeutic strategies of metabolic disorders targeting the ghrelin-GHSR pathway involve neutralization of circulating ghrelin by antibodies and RNA spiegelmers, antagonism of ghrelin receptor by its antagonists and inverse agonists, inhibition of ghrelin O-acyltransferase (GOAT), as well as potential pharmacological approach to decrease ghrelin synthesis and secretion. CONCLUSION Various compounds targeting the ghrelin-GHSR system have shown promising efficacy for the intervention of obesity and relevant metabolic disorders in animals and in vitro. Further clinical trials to validate their efficacy in human beings are urgently needed.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhen Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| |
Collapse
|
25
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
26
|
"A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes". Mol Metab 2020; 46:101128. [PMID: 33246141 PMCID: PMC8085568 DOI: 10.1016/j.molmet.2020.101128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hormone ghrelin stimulates food intake, promotes adiposity, increases body weight, and elevates blood glucose. Consequently, alterations in plasma ghrelin levels and the functioning of other components of the broader ghrelin system have been proposed as potential contributors to obesity and diabetes. Furthermore, targeting the ghrelin system has been proposed as a novel therapeutic strategy for obesity and diabetes. SCOPE OF REVIEW The current review focuses on the potential for targeting ghrelin and other proteins comprising the ghrelin system as a treatment for obesity and diabetes. The main components of the ghrelin system are introduced. Data supporting a role for the endogenous ghrelin system in the development of obesity and diabetes along with data that seemingly refute such a role are outlined. An argument for further research into the development of ghrelin system-targeted therapeutic agents is delineated. Also, an evidence-based discussion of potential factors and contexts that might influence the efficacy of this class of therapeutics is provided. MAJOR CONCLUSIONS It would not be a "leap to" conclusions to suggest that agents which target the ghrelin system - including those that lower acyl-ghrelin levels, raise LEAP2 levels, block GHSR activity, and/or raise desacyl-ghrelin signaling - could represent efficacious novel treatments for obesity and diabetes.
Collapse
|
27
|
Iyer MR, Wood CM, Kunos G. Recent progress in the discovery of ghrelin O-acyltransferase (GOAT) inhibitors. RSC Med Chem 2020; 11:1136-1144. [PMID: 33479618 PMCID: PMC7651998 DOI: 10.1039/d0md00210k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone which stimulates appetite. For ghrelin to exert its orexigenic effect, octanoylation on the serine-3 residue of this gut-brain peptide is essential. The octanoylation of ghrelin is mediated by a unique acyltransferase enzyme known as ghrelin O-acyltransferase (GOAT). Thus modulating this enzyme offers viable approaches to alter feeding behaviors. Over the past decade, several small-molecule based approaches have appeared dealing with the discovery of compounds able to modulate this enzyme for the treatment of obesity and type 2 diabetes. Drug discovery efforts from academic groups and several pharmaceutical companies have fielded compounds having efficacy in altering acylated ghrelin levels in animal models but to date, compounds modulating the activity of the GOAT enzyme do not yet represent clinical options. This mini-review covers the drug discovery approaches of the last decade since the discovery of the GOAT enzyme.
Collapse
Affiliation(s)
- Malliga R Iyer
- Medicinal Chemistry Core and Laboratory of Physiologic Studies , National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIAAA/NIH) , 5625 Fishers Lane , Rockville , MD 20852 , USA . ; Tel: +301 443 2807
| | - Casey M Wood
- Medicinal Chemistry Core and Laboratory of Physiologic Studies , National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIAAA/NIH) , 5625 Fishers Lane , Rockville , MD 20852 , USA . ; Tel: +301 443 2807
| | - George Kunos
- Medicinal Chemistry Core and Laboratory of Physiologic Studies , National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIAAA/NIH) , 5625 Fishers Lane , Rockville , MD 20852 , USA . ; Tel: +301 443 2807
| |
Collapse
|
28
|
Kim S, Nam Y, Shin SJ, Park YH, Jeon SG, Kim JI, Kim MJ, Moon M. The Potential Roles of Ghrelin in Metabolic Syndrome and Secondary Symptoms of Alzheimer's Disease. Front Neurosci 2020; 14:583097. [PMID: 33071750 PMCID: PMC7543232 DOI: 10.3389/fnins.2020.583097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Although the major causative factors of Alzheimer's disease (AD) are the accumulation of amyloid β and hyperphosphorylated tau, AD can also be caused by metabolic dysfunction. The major clinical symptom of AD is cognitive dysfunction. However, AD is also accompanied by various secondary symptoms such as depression, sleep-wake disturbances, and abnormal eating behaviors. Interestingly, the orexigenic hormone ghrelin has been suggested to have beneficial effects on AD-related metabolic syndrome and secondary symptoms. Ghrelin improves lipid distribution and alters insulin sensitivity, effects that are hypothesized to delay the progression of AD. Furthermore, ghrelin can relieve depression by enhancing the secretion of hormones such as serotonin, noradrenaline, and orexin. Moreover, ghrelin can upregulate the expression of neurotrophic factors such as brain-derived neurotrophic factor and modulate the release of proinflammatory cytokines such as tumor necrosis factor α and interleukin 1β. Ghrelin alleviates sleep-wake disturbances by increasing the levels of melatonin, melanin-concentrating hormone. Ghrelin reduces the risk of abnormal eating behaviors by increasing neuropeptide Y and γ-aminobutyric acid. In addition, ghrelin increases food intake by inhibiting fatty acid biosynthesis. However, despite the numerous studies on the role of ghrelin in the AD-related pathology and metabolic disorders, there are only a few studies that investigate the effects of ghrelin on secondary symptoms associated with AD. In this mini review, our purpose is to provide the insights of future study by organizing the previous studies for the role of ghrelin in AD-related pathology and metabolic disorders.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea.,Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si, South Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
29
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
30
|
Tuero C, Valenti V, Rotellar F, Landecho MF, Cienfuegos JA, Frühbeck G. Revisiting the Ghrelin Changes Following Bariatric and Metabolic Surgery. Obes Surg 2020; 30:2763-2780. [PMID: 32323063 DOI: 10.1007/s11695-020-04601-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the description of ghrelin in 1999, several studies have dug into the effects of this hormone and its relationship with bariatric surgery. While some aspects are still unresolved, a clear connection between ghrelin and the changes after metabolic surgery have been established. Besides weight loss, a significant amelioration in obesity-related comorbidities following surgery has also been reported. These changes in patients occur in the early postoperative period, before the weight loss appears, so that amelioration may be mainly due to hormonal changes. The purpose of this review is to go through the current body of knowledge of ghrelin's physiology, as well as to update and clarify the changes that take place in ghrelin concentrations following bariatric/metabolic surgery together with their potential consolidation to outcomes.
Collapse
Affiliation(s)
- Carlota Tuero
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain.
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Victor Valenti
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Fernando Rotellar
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Manuel F Landecho
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Internal Medicine, General Health Check-up unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier A Cienfuegos
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain.
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain.
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
31
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
32
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
33
|
Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, Chen L. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat Commun 2020; 11:2478. [PMID: 32424158 PMCID: PMC7234994 DOI: 10.1038/s41467-020-16288-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
Sterol O-acyltransferase 1 (SOAT1) is an endoplasmic reticulum (ER) resident, multi-transmembrane enzyme that belongs to the membrane-bound O-acyltransferase (MBOAT) family. It catalyzes the esterification of cholesterol to generate cholesteryl esters for cholesterol storage. SOAT1 is a target to treat several human diseases. However, its structure and mechanism remain elusive since its discovery. Here, we report the structure of human SOAT1 (hSOAT1) determined by cryo-EM. hSOAT1 is a tetramer consisted of a dimer of dimer. The structure of hSOAT1 dimer at 3.5 Å resolution reveals that a small molecule inhibitor CI-976 binds inside the catalytic chamber and blocks the accessibility of the active site residues H460, N421 and W420. Our results pave the way for future mechanistic study and rational drug design targeting hSOAT1 and other mammalian MBOAT family members.
Collapse
Affiliation(s)
- Chengcheng Guan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Yange Niu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Koji Nishi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Catherine C Y Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
34
|
Tian P, Lu X, Jin N, Shi J. Knockdown of ghrelin-O-acyltransferase attenuates colitis through the modulation of inflammatory factors and tight junction proteins in the intestinal epithelium. Cell Biol Int 2020; 44:1681-1690. [PMID: 32281710 DOI: 10.1002/cbin.11362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin-O-acyltransferase (GOAT) is a membrane-bound enzyme that attaches eight-carbon octanoate to a serine residue in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin. In this study, we investigated the function of GOAT in the intestinal mucosal barrier. The intestinal mucosal barrier prevents harmful substances such as bacteria and endotoxin from entering the other tissues, organs, and blood circulation through the intestinal mucosa. Here, we established 5% dextran sodium sulfate (DSS)-induced colitis in mice and found that the body weight and colon weight were significantly decreased in these mice. Furthermore, increased inflammation and apoptosis were observed in the tissues of DSS-induced colitis mice, with increased expression of tumor necrosis factor-α, interleukin-6, phosphorylation of nuclear factor kappa B-p65 (p-NF-κB-p65), and cleaved caspase-3, and decreased expression of tight junction (TJ) proteins such as zonula occluden-1 and occludin. The knockdown of GOAT significantly attenuated colitis-induced inflammation responses and apoptosis, while GOAT overexpression significantly enhanced the induction of colitis. These results suggest that knockdown of GOAT may attenuate colitis-induced inflammation, ulcers, and fecal occult blood by decreasing the intestinal mucosal permeability via the modulation of inflammatory factors and TJ proteins.
Collapse
Affiliation(s)
- Peiying Tian
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Xiaolan Lu
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Nuyun Jin
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Jianping Shi
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
35
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are two of the most common liver diseases associated with obesity, type 2 diabetes and metabolic syndrome. The prevalence of these conditions are increasingly rising and presently there is not a pharmacological option available in the market. Elucidation of the mechanism of action and the molecular underpinnings behind liver disease could help to better understand the pathophysiology of these illnesses. In this sense, in the last years modulation of the ghrelin system in preclinical animal models emerge as a promising therapeutic tool. In this review, we compile the latest knowledge of the modulation of ghrelin system and its intracellular pathways that regulates lipid metabolism, hepatic inflammation and liver fibrosis. We also describe novel processes implicated in the regulation of liver disease by ghrelin, such as autophagy or dysregulated circadian rhythms. In conclusion, the information displayed in this review support that the ghrelin system could be an appealing strategy for the treatment of liver disease.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Omar Al-Massadi
- Inserm UMR-S1270, 75005, Paris, France.
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, 75005, Paris, France.
- Institut du Fer a Moulin, Inserm, 17 rue du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
36
|
Abizaid A, Hougland JL. Ghrelin Signaling: GOAT and GHS-R1a Take a LEAP in Complexity. Trends Endocrinol Metab 2020; 31:107-117. [PMID: 31636018 PMCID: PMC7299083 DOI: 10.1016/j.tem.2019.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Ghrelin and the growth hormone secretagogue receptor 1a (GHS-R1a) are important targets for disorders related to energy balance and metabolic regulation. Pharmacological control of ghrelin signaling is a promising avenue to address health issues involving appetite, weight gain, obesity, and related metabolic disorders, and may be an option for patients suffering from wasting conditions like cachexia. In this review, we summarize recent developments in the biochemistry of ghrelin and GHS-R1a signaling. These include unravelling the enzymatic transformations that generate active ghrelin and the discovery of multiple proteins that interact with ghrelin and GHS-R1a to regulate signaling. Furthermore, we propose that harnessing these processes will lead to highly selective treatments to address obesity, diabetes, and other metabolism-linked disorders.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
37
|
Parada D D, Peña G KB, Vives M, Molina A, Mayayo E, Riu F, Sabench F, Del Castillo D. Quantitative and Topographic Analysis by Immunohistochemical Expression of Ghrelin Gastric Cells in Patients with Morbid Obesity. Diabetes Metab Syndr Obes 2020; 13:2855-2864. [PMID: 32884313 PMCID: PMC7443401 DOI: 10.2147/dmso.s260483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The cellular distribution of ghrelin positive cells is not well defined. The aim of the study is to quantify and determine the distribution of ghrelin cells in gastric mucosa in patients with morbid obesity and relate this finding to gender, comorbidities, gastritis, and plasmatic levels of acyl and desacylghrelin before and after laparoscopic sleeve gastrectomy. PATIENT AND METHODS We performed a study on 61 patients with BMI≥50 kg/m2 operated by laparoscopic sleeve gastrectomy. Three gastric regions were analyzed by histopathology and immunohistology. Blood sample was taken before surgery, and at 6 and 12 months post-surgery, to study the plasma levels of ghrelin isoforms. RESULTS Ghrelin cells are present in all regions of the gastric mucosa, with a greater number in the body and the fundus. Difference was found in the antrum between male and female patients (p=0.018). Patients with arterial hypertension also showed a lower level of cells in antrum (p<0.05). Acylghrelin levels after surgery were significantly lower (32.83+5.6 pg/mL to 10.09+11.8 pg/mL, p<0.05). Values of desacylghrelin tended to decrease but no significant variation was observed (207.4+39.3 pg/mL to 188.84+52.3 pg/mL). CONCLUSION Our patients show ghrelin cells in all areas of the stomach. Gender, comorbidities, and gastritis are determinant on gastric ghrelin-producing cells distribution.
Collapse
Affiliation(s)
- David Parada D
- Pathology Service, University Hospital of Sant Joan. Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Karla B Peña G
- Pathology Service, University Hospital of Sant Joan. Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Margarida Vives
- Surgery Service, University Hospital of Sant Joan, Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Alicia Molina
- Surgery Service, University Hospital of Sant Joan, Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Emilio Mayayo
- Pathology Service, University Hospital of Joan XXIII, Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Frances Riu
- Pathology Service, University Hospital of Sant Joan. Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Fàtima Sabench
- Surgery Service, University Hospital of Sant Joan, Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
| | - Daniel Del Castillo
- Surgery Service, University Hospital of Sant Joan, Faculty of Medicine, IISPV, “Rovira i Virgili” University, Reus, Tarragona, Spain
- Correspondence: Daniel Del Castillo Head Surgery Department, Hospital Universitari Sant Joan, Facultat de Medicina, U.R.V., Reus, Spain Email
| |
Collapse
|
38
|
Clinical Utility of Ghrelin-O-Acyltransferase (GOAT) Enzyme as a Diagnostic Tool and Potential Therapeutic Target in Prostate Cancer. J Clin Med 2019; 8:jcm8122056. [PMID: 31766715 PMCID: PMC6947219 DOI: 10.3390/jcm8122056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Recent data suggested that plasma Ghrelin O-Acyl Transferase enzyme (GOAT) levels could represent a new diagnostic biomarker for prostate cancer (PCa). In this study, we aimed to explore the diagnostic and prognostic/aggressiveness capacity of GOAT in urine, as well as to interrogate its putative pathophysiological role in PCa. We analysed urine/plasma levels of GOAT in a cohort of 993 patients. In vitro (i.e., cell-proliferation) and in vivo (tumor-growth in a xenograft-model) approaches were performed in response to the modulation of GOAT expression/activity in PCa cells. Our results demonstrate that plasma and urine GOAT levels were significantly elevated in PCa patients compared to controls. Remarkably, GOAT significantly outperformed PSA in the diagnosis of PCa and significant PCa in patients with PSA levels ranging from 3 to 10 ng/mL (the so-called PSA grey-zone). Additionally, urine GOAT levels were associated to clinical (e.g., Gleason-score, PSA levels) and molecular (e.g., CDK2/CDK6/CDKN2A expression) aggressiveness parameters. Indeed, GOAT overexpression increased, while its silencing/blockade decreased cell-proliferation in PCa cells. Moreover, xenograft tumors derived from GOAT-overexpressing PCa (DU145) cells were significantly higher than those derived from the mock-overexpressing cells. Altogether, our results demonstrate that GOAT could be used as a diagnostic and aggressiveness marker in urine and a therapeutic target in PCa.
Collapse
|
39
|
Kokkinos A, Tsilingiris D, le Roux CW, Rubino F, Mantzoros CS. Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery? Metabolism 2019; 100:153960. [PMID: 31412266 DOI: 10.1016/j.metabol.2019.153960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is currently the most effective therapeutic modality through which sustained beneficial effects on weight loss and metabolic improvement are achieved. During recent years, indications for bariatric surgery have been expanded to include cases of poorly controlled type 2 (T2DM) diabetes mellitus in lesser extremes of body weight. A spectrum of the beneficial effects of surgery is attributed to robust changes of postprandial gut peptide responses that are observed post operatively. Consolidated knowledge regarding gut peptide physiology as well as emerging new evidence shedding light on the mode of action of previously overlooked gut hormones provide appealing potential obesity and T2DM therapeutic perspectives. The accumulation of evidence from the effect of exogenous administration of native gut peptides alone or in combinations to humans as well as the development of mimetic agents exerting agonistic effects on combinations of gut hormone receptors pave the way for future integrated gut peptide-based treatments, which may mimic the effects of bariatric surgery.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Francesco Rubino
- Department of Metabolic and Bariatric Surgery, Diabetes and Nutritional Science Division, King's College Hospital, London, United Kingdom
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Obesity is affecting over 600 million adults worldwide and has numerous negative effects on health. Since ghrelin positively regulates food intake and body weight, targeting its signaling to induce weight loss under conditions of obesity seems promising. Thus, the present work reviews and discusses different possibilities to alter ghrelin signaling. RECENT FINDINGS Ghrelin signaling can be altered by RNA Spiegelmers, GHSR/Fc, ghrelin-O-acyltransferase inhibitors as well as antagonists, and inverse agonists of the ghrelin receptor. PF-05190457 is the first inverse agonist of the ghrelin receptor tested in humans shown to inhibit growth hormone secretion, gastric emptying, and reduce postprandial glucose levels. Effects on body weight were not examined. Although various highly promising agents targeting ghrelin signaling exist, so far, they were mostly only tested in vitro or in animal models. Further research in humans is thus needed to further assess the effects of ghrelin antagonism on body weight especially under conditions of obesity.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Tauber M, Coupaye M, Diene G, Molinas C, Valette M, Beauloye V. Prader-Willi syndrome: A model for understanding the ghrelin system. J Neuroendocrinol 2019; 31:e12728. [PMID: 31046160 DOI: 10.1111/jne.12728] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Subsequent to the discovery of ghrelin as the endogenous ligand of growth hormone secretagogue receptor 1a, this unique gut peptide has been found to exert numerous physiological effects, such as appetite stimulation and lipid accumulation via the central regulating mechanisms in the hypothalamus, stimulation of gastric motility, regulation of glucose metabolism and brown fat thermogenesis, and modulation of stress, anxiety, taste sensation, reward-seeking behaviour and the sleep/wake cycle. Prader-Willi syndrome (PWS) has been described as a unique pathological state characterised by severe obesity and high circulating levels of ghrelin. It was hypothesised that hyperghrelinaemia would explain at least a part of the feeding behaviour and body composition of PWS patients, who are characterised by hyperphagia, an obsession with food and food-seeking, and increased adiposity. Initially, the link between hyperghrelinaemia and growth hormone deficiency, which is observed in 90% of the children with PWS, was not fully understood. Over the years, however, the increasing knowledge on ghrelin, PWS features and the natural history of the disease has led to a more comprehensive description of the abnormal ghrelin system and its role in the pathophysiology of this rare and complex neurodevelopmental genetic disease. In the present study, we (a) present the current view of PWS; (b) explain its natural history, including recent data on the ghrelin system in PWS patients; and (c) discuss the therapeutic approach of modulating the ghrelin system in these patients and the first promising results.
Collapse
Affiliation(s)
- Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Toulouse, France
| | - Muriel Coupaye
- Service de Nutrition, Centre de Référence du Syndrome de Prader-Willi Assistance-Publique Hôpitaux de Paris (AP-HP), CHU Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Gwenaelle Diene
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- INSERM, UMR 1027- Université Toulouse III Hôpital Paule de Viguier, Toulouse, France
| | - Catherine Molinas
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Toulouse, France
| | - Marion Valette
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
| | - Veronique Beauloye
- Unité d'Endocrinologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
42
|
Serrenho D, Santos SD, Carvalho AL. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front Cell Neurosci 2019; 13:205. [PMID: 31191250 PMCID: PMC6546032 DOI: 10.3389/fncel.2019.00205] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a small peptide released from the stomach, is an orexigenic hormone produced in peripheral organs, and its action regulates food intake, body weight and glucose homeostasis. Behavioral studies show that ghrelin is implicated in the regulation of both hedonic and homeostatic feeding and of cognition. Ghrelin-induced synaptic plasticity has been described in neuronal circuits associated with these behaviors. In this review, we discuss the neuromodulatory mechanisms induced by ghrelin in regulating synaptic plasticity in three main neuronal circuits previously associated with feeding behaviors, namely hypothalamic (homeostatic feeding), ventral tegmental (hedonic and motivational feeding) and hippocampal (cognitive) circuits. Given the central role of ghrelin in regulating feeding behaviors, and the altered ghrelin levels associated with metabolic disorders such as obesity and anorexia, it is of paramount relevance to understand the effects of ghrelin on synaptic plasticity of neuronal circuits associated with feeding behaviors.
Collapse
Affiliation(s)
- Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Sandra D Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology 2019; 160:1247-1261. [PMID: 30874792 PMCID: PMC6482034 DOI: 10.1210/en.2019-00074] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
Much effort has been directed at studying the orexigenic actions of administered ghrelin and the potential effects of the endogenous ghrelin system on food intake, food reward, body weight, adiposity, and energy expenditure. Although endogenous ghrelin's actions on some of these processes remain ambiguous, its glucoregulatory actions have emerged as well-recognized features during extreme metabolic conditions. The blood glucose-raising actions of ghrelin are beneficial during starvation-like conditions, defending against life-threatening falls in blood glucose, but they are seemingly detrimental in obese states and in certain monogenic forms of diabetes, contributing to hyperglycemia. Also of interest, blood glucose negatively regulates ghrelin secretion. This article reviews the literature suggesting the existence of a blood glucose-ghrelin axis and highlights the factors that mediate the glucoregulatory actions of ghrelin, especially during metabolic extremes such as starvation and diabetes.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Jeffrey M. Zigman, MD, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
44
|
Ghrelin octanoylation by ghrelin O-acyltransferase: Unique protein biochemistry underlying metabolic signaling. Biochem Soc Trans 2019; 47:169-178. [PMID: 30626708 DOI: 10.1042/bst20180436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Ghrelin signaling is implicated in a variety of neurological and physiological processes, but is most well known for its roles in controlling hunger and metabolic regulation. Ghrelin octanoylation is catalyzed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. From the status of ghrelin as the only substrate for GOAT in the human genome to the source and requirement for the octanoyl acyl donor, the ghrelin-GOAT system is defined by multiple unique aspects within both protein biochemistry and endocrinology. In this review, we examine recent advances in our understanding of the interactions and mechanisms leading to ghrelin modification by GOAT, discuss the potential sources for the octanoyl acyl donor required for ghrelin's activation, and summarize the current landscape of molecules targeting ghrelin octanoylation through GOAT inhibition.
Collapse
|
45
|
Sieburg MA, Cleverdon ER, Hougland JL. Biochemical Assays for Ghrelin Acylation and Inhibition of Ghrelin O-Acyltransferase. Methods Mol Biol 2019; 2009:227-241. [PMID: 31152408 DOI: 10.1007/978-1-4939-9532-5_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ghrelin O-acyltransferase (GOAT) is an enzyme responsible for octanoylating and activating ghrelin, a peptide hormone that plays a key role in energy regulation and hunger signaling. Due to its nature as an integral membrane protein, GOAT has yet to be purified in active form which has complicated biochemical and structural studies of GOAT-catalyzed ghrelin acylation. In this chapter, we describe protocols for efficient expression and enrichment of GOAT in insect cell-derived microsomal fraction, HPLC-based assays for GOAT acylation activity employing fluorescently labeled peptides, and assessment of inhibitor potency against GOAT.
Collapse
Affiliation(s)
| | | | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
46
|
Wood BM, Santa Maria JP, Matano LM, Vickery CR, Walker S. A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 2018; 293:17985-17996. [PMID: 30237166 PMCID: PMC6240853 DOI: 10.1074/jbc.ra118.004561] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.
Collapse
Affiliation(s)
- B McKay Wood
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - John P Santa Maria
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Leigh M Matano
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher R Vickery
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
47
|
Herrera-Martínez AD, Gahete MD, Sánchez-Sánchez R, Alors-Perez E, Pedraza-Arevalo S, Serrano-Blanch R, Martínez-Fuentes AJ, Gálvez-Moreno MA, Castaño JP, Luque RM. Ghrelin-O-Acyltransferase (GOAT) Enzyme as a Novel Potential Biomarker in Gastroenteropancreatic Neuroendocrine Tumors. Clin Transl Gastroenterol 2018; 9:196. [PMID: 30297816 PMCID: PMC6175927 DOI: 10.1038/s41424-018-0058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The association between the presence and alterations of the components of the ghrelin system and the development and progression of neuroendocrine tumors (NETs) is still controversial and remains unclear. METHODS Here, we systematically evaluated the expression levels (by quantitative-PCR) of key ghrelin system components of in gastroenteropancreatic (GEP)-NETs, as compared to non-tumor adjacent (NTA; n = 42) and normal tissues (NT; n = 14). Then, we analyzed their putative associations with clinical-histological characteristics. RESULTS The results indicate that ghrelin and its receptor GHSR1a are present in a high proportion of normal tissues, while the enzyme ghrelin-O-acyltransferase (GOAT) and the splicing variants In1-ghrelin and GHSR1b were present in a lower proportion of normal tissues. In contrast, all ghrelin system components were present in a high proportion of tumor and NTA tissues. GOAT was significantly overexpressed (by quantitative-PCR (qPCR)) in tumor samples compared to NTA, while a trend was found for ghrelin, In1-ghrelin and GHSR1a. In addition, expression of these components displayed significant correlations with key clinical parameters. The marked overexpression of GOAT in tumor samples compared to NTA regions was confirmed by IHC, revealing that this enzyme is particularly overexpressed in gastrointestinal NETs, where it is directly correlated with tumor diameter. CONCLUSIONS These results provide novel information on the presence and potential pathophysiological implications of the ghrelin system components in GEP-NETs, wherein GOAT might represent a novel diagnostic biomarker.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Emilia Alors-Perez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Maria A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain.
| |
Collapse
|
48
|
Abstract
Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes that are found in all kingdoms of life1. In bacteria, MBOATs modify protective cell-surface polymers. In vertebrates, some MBOAT enzymes-such as acyl-coenzyme A:cholesterol acyltransferase and diacylglycerol acyltransferase 1-are responsible for lipid biosynthesis or phospholipid remodelling2,3. Other MBOATs, including porcupine, hedgehog acyltransferase and ghrelin acyltransferase, catalyse essential lipid modifications of secreted proteins such as Wnt, hedgehog and ghrelin, respectively4-10. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Here we present crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid in Gram-positive bacteria11-16, both alone and in complex with the D-alanyl donor protein DltC. DltB contains a ring of 11 peripheral transmembrane helices, which shield a highly conserved extracellular structural funnel extending into the middle of the lipid bilayer. The conserved catalytic histidine residue is located at the bottom of this funnel and is connected to the intracellular DltC through a narrow tunnel. Mutation of either the catalytic histidine or the DltC-binding site of DltB abolishes the D-alanylation of lipoteichoic acid and sensitizes the Gram-positive bacterium Bacillus subtilis to cell-wall stress, which suggests cross-membrane catalysis involving the tunnel. Structure-guided sequence comparison among DltB and vertebrate MBOATs reveals a conserved structural core and suggests that MBOATs from different organisms have similar catalytic mechanisms. Our structures provide a template for understanding structure-function relationships in MBOATs and for developing therapeutic MBOAT inhibitors.
Collapse
|
49
|
Du GM, Luo BP, Hu ZH, Wu JG, Yan WM, Han ZQ, Zhang YH, Liu MJ. The effect of ghrelin O-acyltransferase inhibitor on gastric H +-K +-ATPase activity and GOAT/ghrelin system in gastric mucosal cells in vitro. Gen Comp Endocrinol 2018; 267:167-171. [PMID: 29966658 DOI: 10.1016/j.ygcen.2018.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022]
Abstract
Ghrelin is implicated in the regulation of gastric functional development. The octanoylation of ghrelin is critical for its physiological functions which dependent upon ghrelin O-acyltransferase (GOAT) catalyzation. To investigate the effect of GOAT on gastric acid secretion and expression of ghrelin in vitro. Primary cultures of gastric mucosal cells were challenged with 1.5 × 10-5, 1.5 × 10-4 and 1.5 × 10-3 mol/mL GO-CoA-Tat (The GOAT inhibitor), respectively, for 24 h in order to further clarify the effect of GOAT on H+-K+-ATPase activity. In vitro, GO-CoA-Tat significantly increased ghrelin and GOAT mRNA expression at 1.5 × 10-5, 1.5 × 10-4 and 1.5 × 10-3 mol/mL, and augmented cell total ghrelin secretion at 1.5 × 10-3 mol/mL. But cell acylated ghrelin secretion was reduced at 1.5 × 10-3 mol/mL GO-CoA-Tat (P < 0.05). And cell acylated ghrelin synthesis was reduced at 1.5 × 10-4 and 1.5 × 10-3 mol/mL GO-CoA-Tat (P < 0.05). In accordance with acylated ghrelin level, H+-K+-ATPase activity were decreased with 1.5 × 10-4 and 1.5 × 10-3 mol/mL GO-CoA-Tat (P < 0.05). These results indicated that GOAT inhibitor decreases the acylated ghrelin level and H+-K+-ATPase activity in vitro.
Collapse
Affiliation(s)
- Gai Mei Du
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Bi Ping Luo
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Zhi Hua Hu
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Jie Ge Wu
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Wen Mei Yan
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Zheng Qiang Han
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Yu Hong Zhang
- Department of Animal Science and Technology, Jinling Technology Institution, Nanjing 210038, PR China
| | - Mao Jun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, PR China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, PR China.
| |
Collapse
|
50
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|