1
|
Rios-Doria E, Parker EU, Kohrn BF, Pike M, Coombes C, Latorre-Esteves E, Reiter DJ, Fredrickson J, Katz R, Swisher EM, Doll KM, Risques RA. TP53 somatic evolution in the normal endometrium of Black and White individuals. Gynecol Oncol 2025; 197:1-10. [PMID: 40250028 DOI: 10.1016/j.ygyno.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND TP53 mutations are the main drivers of aggressive, high-risk endometrial carcinomas commonly diagnosed in Black individuals. However, TP53 mutations have also been identified in benign, non-cancerous tissues. We sought to understand the TP53 mutational landscape in benign endometrium throughout the lifespan of Black and White individuals, accounting for structural socioeconomic context. METHODS Ultra-sensitive TP53 mutation detection was performed with high-depth duplex sequencing (∼13,000×) in DNA extracted from histologically normal endometrium collected at autopsy (69 % of cases) or surgery (31 % of cases) from 83 individuals ages 0 to 81 (31 Black and 52 White, median age 35 years) without endometrial cancer. Histologically normal endometrium was also collected from 10 White individuals with endometrial cancer. RESULTS We identified 266 coding TP53 mutations in the normal endometrium of individuals without endometrial cancer, 57 % of which were pathogenic. The number, pathogenicity, and size of TP53 mutant clones in normal endometrium increased with age. Multivariable models showed no significant association between race or socioeconomic metrics and TP53 mutation frequency in normal endometrium. An exploratory analysis on the histologically normal endometrium of White individuals with endometrial cancer identified the tumor mutations at low levels in the normal biopsy of 5 out of 6 cases. CONCLUSIONS Our study revealed prevalent TP53 somatic evolution in benign endometrium across human lifespan and no racial differences in this cohort of predominantly younger individuals. Future studies should consider the analysis of larger cohorts with older individuals to detect potential effects of racial disparities on TP53 somatic evolution later in life.
Collapse
Affiliation(s)
- Eric Rios-Doria
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Elizabeth U Parker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Mindy Pike
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Coohleen Coombes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Elena Latorre-Esteves
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Daniel J Reiter
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Kemi M Doll
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Rosa Ana Risques
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
2
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
3
|
Büyücek S, Viehweger F, Reiswich V, Gorbokon N, Chirico V, Bernreuther C, Lutz F, Kind S, Schlichter R, Weidemann S, Clauditz TS, Hinsch A, Bawahab AA, Jacobsen F, Luebke AM, Dum D, Hube-Magg C, Kluth M, Möller K, Menz A, Marx AH, Krech T, Lebok P, Fraune C, Sauter G, Simon R, Burandt E, Minner S, Steurer S, Lennartz M, Freytag M. Reduced occludin expression is related to unfavorable tumor phenotype and poor prognosis in many different tumor types: A tissue microarray study on 16,870 tumors. PLoS One 2025; 20:e0321105. [PMID: 40173205 PMCID: PMC11964279 DOI: 10.1371/journal.pone.0321105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 04/04/2025] Open
Abstract
Occludin is a key component of tight junctions. Reduced occludin expression has been linked to cancer progression in individual tumor types, but a comprehensive and standardized analysis across human tumor types is lacking. To study the prevalence and clinical relevance of occludin expression in cancer, a tissue microarray containing 16,870 samples from 148 different tumor types and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Occludin immunostaining was observed in 10,746 (76.6%) of 14,017 analyzable tumors, including 18.9% with weak, 16.2% with moderate, and 41.6% with strong staining intensity. Occludin positivity was found in 134 of 148 tumor categories and was most frequent in adenocarcinomas (37.5-100%) and neuroendocrine neoplasms (67.9-100%), less common in squamous cell carcinomas (23.8-93%) and in malignant mesotheliomas (up to 48.1%), and rare in Non-Hodgkin's lymphomas (1-2%) and most mesenchymal tumors. Reduced occludin staining was linked to adverse tumor features in several tumor types, including colorectal adenocarcinoma (advanced pT stage, p < 0.0001; L1 status, p = 0.0384; absence of microsatellite instability, p < 0.0001), pancreatic adenocarcinoma (advanced pT stage, p = 0.005), clear cell renal cell carcinoma (high ISUP grade, p < 0.0001; advanced pT stage, p < 0.0001; high UICC stage, p < 0.0001; distant metastasis, p = 0.0422; shortened overall or recurrence-free survival, p ≤ 0.0116), papillary renal cell carcinoma (high pT stage, p < 0.0001; high UICC stage, p = 0.0228; distant metastasis, p = 0.0338; shortened recurrence-free survival, p = 0.006), and serous high-grade ovarian cancer (advanced pT stage, p = 0.0133). Occludin staining was unrelated to parameters of tumor aggressiveness in breast, gastric, endometrial, and thyroidal cancer. Our data demonstrate significant levels of occludin expression in many different tumor entities and identify reduced occludin expression as a potentially useful prognostic feature in several tumor entities.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pathology-Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Yu H, Li J, Peng S, Liu Q, Chen D, He Z, Xiang J, Wang B. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett 2024; 611:217385. [PMID: 39645024 DOI: 10.1016/j.canlet.2024.217385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tumor microenvironment (TME) is an intricate ecosystem where cancer cells thrive, encompassing a wide array of cellular and non-cellular components. The TME co-evolves with tumor progression in a spatially and temporally dynamic manner, which endows cancer cells with the adaptive capability of evading immune surveillance. To this end, diverse cancer-intrinsic mechanisms were exploited to dampen host immune system, such as upregulating immune checkpoints, impairing antigens presentation and competing for nutrients. In this review, we discuss how cancer immunoevasion is tightly regulated by hypoxia, one of the hallmark biochemical features of the TME. Moreover, we comprehensively summarize how immune evasiveness of cancer cells is facilitated by the extracellular matrix, as well as soluble components of TME, including inflammatory factors, lactate, nutrients and extracellular vesicles. Given their important roles in dictating cancer immunoevasion, various strategies to target TME components are proposed, which holds promising translational potential in developing novel therapeutics to sensitize anti-cancer immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Hongyang Yu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shiyin Peng
- School of Medicine, Chongqing University, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Institute of Pathology and Southwest Cancer Center, And Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
5
|
Zhou Z, Wang YQ, Zheng XN, Zhang XH, Ji LY, Han JY, Zuo ZC, Mo WL, Zhang L. Optimizing ABA-based chemically induced proximity for enhanced intracellular transcriptional activation and modification response to ABA. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2650-2663. [PMID: 39172347 DOI: 10.1007/s11427-024-2707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.
Collapse
Affiliation(s)
- Zeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue-Qi Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xu-Nan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiao-Hong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun-You Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Wei-Liang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Mao Z, Gao F, Sun T, Xiao Y, Wu J, Xiao Y, Chu H, Wu D, Du M, Zheng R, Zhang Z. RB1 Mutations Induce Smoking-Related Bladder Cancer by Modulating the Cytochrome P450 Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:5357-5370. [PMID: 39239764 DOI: 10.1002/tox.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024]
Abstract
Cigarette smoking causes multiple cancers by directly influencing mutation burden of driver mutations. However, the mechanism between somatic mutation caused by cigarette smoking and bladder tumorigenesis remains elusive. Smoking-related mutation profile of bladder cancer was characterized by The Cancer Genome Atlas cohort. Integraticve OncoGenomics database was utilized to detect the smoking-related driver genes, and its biological mechanism predictions were interpreted based on bulk transcriptome and single-cell transcriptome, as well as cell experiments. Cigarette smoking was associated with an increased tumor mutational burden under 65 years old (p = 0.031), and generated specific mutational signatures in smokers. RB1 was identified as a differentially mutated driver gene between smokers and nonsmokers, and the mutation rate of RB1 increased twofold after smoking (p = 0.008). RB1 mutations and the 4-aminobiphenyl interference could significantly decrease the RB1 expression level and thus promote the proliferation, invasion, and migration ability of bladder cancer cells. Enrichment analysis and real-time quantitative PCR (RT-qPCR) data showed that RB1 mutations inhibited cytochrome P450 pathway by reducing expression levels of UGT1A6 and AKR1C2. In addition, we also observed that the component of immunological cells was regulated by RB1 mutations through the stronger cell-to-cell interactions between epithelial scissor+ cells and immune cells in smokers. This study highlighted that RB1 mutations could drive smoking-related bladder tumorigenesis through inhibiting cytochrome P450 pathway and regulating tumor immune microenvironment.
Collapse
Affiliation(s)
- Zhenguang Mao
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Fang Gao
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Tuo Sun
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yi Xiao
- Department of Urology, Sir Run Run Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiajin Wu
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yanping Xiao
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Haiyan Chu
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
7
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
8
|
Jayakrishnan R, Kwiatkowski DJ, Rose MG, Nassar AH. Topography of mutational signatures in non-small cell lung cancer: emerging concepts, clinical applications, and limitations. Oncologist 2024; 29:833-841. [PMID: 38907669 PMCID: PMC11449018 DOI: 10.1093/oncolo/oyae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024] Open
Abstract
The genome of a cell is continuously battered by a plethora of exogenous and endogenous processes that can lead to damaged DNA. Repair mechanisms correct this damage most of the time, but failure to do so leaves mutations. Mutations do not occur in random manner, but rather typically follow a more or less specific pattern due to known or imputed mutational processes. Mutational signature analysis is the process by which the predominant mutational process can be inferred for a cancer and can be used in several contexts to study both the genesis of cancer and its response to therapy. Recent pan-cancer genomic efforts such as "The Cancer Genome Atlas" have identified numerous mutational signatures that can be categorized into single base substitutions, doublet base substitutions, or small insertions/deletions. Understanding these mutational signatures as they occur in non-small lung cancer could improve efforts at prevention, predict treatment response to personalized treatments, and guide the development of therapies targeting tumor evolution. For non-small cell lung cancer, several mutational signatures have been identified that correlate with exposures such as tobacco smoking and radon and can also reflect endogenous processes such as aging, APOBEC activity, and loss of mismatch repair. Herein, we provide an overview of the current knowledge of mutational signatures in non-small lung cancer.
Collapse
Affiliation(s)
- Ritujith Jayakrishnan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David J Kwiatkowski
- Department of Pulmonary Medicine, Brigham and Women's Hospital, Boston, MA, 02115, United States
| | - Michal G Rose
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Medicine, Medical Oncology Division, Yale Cancer Center, New Haven, CT, United States
| | - Amin H Nassar
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
| |
Collapse
|
9
|
Zhang T, Zhang SW, Xie MY, Li Y. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk. J Biomed Inform 2024; 157:104710. [PMID: 39159864 DOI: 10.1016/j.jbi.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies. METHODS Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients. RESULTS The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments. CONCLUSION We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ming-Yu Xie
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan Li
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Ou D, Wu Y, Zhang J, Liu J, Liu Z, Shao M, Guo X, Cui S. MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochem Genet 2024; 62:1657-1674. [PMID: 37667096 DOI: 10.1007/s10528-023-10484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.
Collapse
Affiliation(s)
- Deming Ou
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China.
| | - Ying Wu
- Department of Stomatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jibin Zhang
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Jun Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Zeyu Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Minfeng Shao
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Xiaoying Guo
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Shiman Cui
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
11
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Xu J, Liu M, Xue J, Lu P. Deciphering fatty acid biosynthesis-driven molecular subtypes in pancreatic ductal adenocarcinoma with prognostic insights. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00953-7. [PMID: 38753153 DOI: 10.1007/s13402-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge due to its high heterogeneity and aggressiveness. Recognizing the urgency to delineate molecular subtypes, our study focused on the emerging field of lipid metabolism remodeling in PDAC, particularly exploring the prognostic potential and molecular classification associated with fatty acid biosynthesis. METHODS Gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) were performed to evaluate the dysregulation of lipid metabolism in PDAC. Univariate cox analysis and the LASSO module were used to build a prognostic risk score signature. The distinction of gene expression in different risk groups was explored by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The biological function of Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5), a pivotal gene within 7-hub gene signature panel, was validated through in vitro assays. RESULTS Our study identified a 7-hub gene signature associated with fatty acid biosynthesis-related genes (FRGs), providing a robust tool for prognosis prediction. The high-FRGs score group displayed a poorer prognosis, decreased immune cell infiltration, and a higher tumor mutation burden. Interestingly, this group exhibited enhanced responsiveness to various compounds according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. Notably, ACSL5 was upregulated in PDAC and essential for tumor progression. CONCLUSION In conclusion, our research defined two novel fatty acid biosynthesis-based subtypes in PDAC, characterized by distinct transcriptional profiles. These subtypes not only served as prognostic indicator, but also offered valuable insights into their metastatic propensity and therapeutic potential.
Collapse
Affiliation(s)
- Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China.
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
13
|
Xu Y, Liu K, Li C, Li M, Zhou X, Sun M, Zhang L, Wang S, Liu F, Xu Y. Microsatellite instability in mismatch repair proficient colorectal cancer: clinical features and underlying molecular mechanisms. EBioMedicine 2024; 103:105142. [PMID: 38691939 PMCID: PMC11070601 DOI: 10.1016/j.ebiom.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kai Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
15
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
16
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
17
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Cong B, Stamou E, Pennel K, Mckenzie M, Matly A, Gopinath S, Edwards J, Cagan R. WNT Signalling Promotes NF-κB Activation and Drug Resistance in KRAS-Mutant Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572810. [PMID: 38187607 PMCID: PMC10769410 DOI: 10.1101/2023.12.21.572810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Approximately 40% of colorectal cancer (CRC) cases are characterized by KRAS mutations, rendering them insensitive to most CRC therapies. While the reasons for this resistance remain incompletely understood, one key aspect is genetic complexity: in CRC, oncogenic KRAS is most commonly paired with mutations that alter WNT and P53 activities ("RAP"). Here, we demonstrate that elevated WNT activity upregulates canonical (NF-κB) signalling in both Drosophila and human RAS mutant tumours. This upregulation required Toll-1 and Toll-9 and resulted in reduced efficacy of RAS pathway targeted drugs such as the MEK inhibitor trametinib. Inhibiting WNT activity pharmacologically significantly suppressed trametinib resistance in RAP tumours and more genetically complex RAP-containing 'patient avatar' models. WNT/MEK drug inhibitor combinations were further improved by targeting brm, shg, ago, rhoGAPp190 and upf1, highlighting these genes as candidate biomarkers for patients sensitive to this duel approach. These findings shed light on how genetic complexity impacts drug resistance and proposes a therapeutic strategy to reverse this resistance.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Evangelia Stamou
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Molly Mckenzie
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Amna Matly
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Sindhura Gopinath
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 25-82 Annenberg Building; Box 1020, One Gustave L. Levy Place, New York, NY 10029
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Ross Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| |
Collapse
|
19
|
Huang M, Ma J, An G, Ye X. Unravelling cancer subtype-specific driver genes in single-cell transcriptomics data with CSDGI. PLoS Comput Biol 2023; 19:e1011450. [PMID: 38096269 PMCID: PMC10754467 DOI: 10.1371/journal.pcbi.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Cancer is known as a heterogeneous disease. Cancer driver genes (CDGs) need to be inferred for understanding tumor heterogeneity in cancer. However, the existing computational methods have identified many common CDGs. A key challenge exploring cancer progression is to infer cancer subtype-specific driver genes (CSDGs), which provides guidane for the diagnosis, treatment and prognosis of cancer. The significant advancements in single-cell RNA-sequencing (scRNA-seq) technologies have opened up new possibilities for studying human cancers at the individual cell level. In this study, we develop a novel unsupervised method, CSDGI (Cancer Subtype-specific Driver Gene Inference), which applies Encoder-Decoder-Framework consisting of low-rank residual neural networks to inferring driver genes corresponding to potential cancer subtypes at the single-cell level. To infer CSDGs, we apply CSDGI to the tumor single-cell transcriptomics data. To filter the redundant genes before driver gene inference, we perform the differential expression genes (DEGs). The experimental results demonstrate CSDGI is effective to infer driver genes that are cancer subtype-specific. Functional and disease enrichment analysis shows these inferred CSDGs indicate the key biological processes and disease pathways. CSDGI is the first method to explore cancer driver genes at the cancer subtype level. We believe that it can be a useful method to understand the mechanisms of cell transformation driving tumours.
Collapse
Affiliation(s)
- Meng Huang
- Department of Automation, Xiamen University, Xiamen, China
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Jiangtao Ma
- Department of Automation, Xiamen University, Xiamen, China
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Guangqi An
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Drummond RD, Defelicibus A, Meyenberg M, Valieris R, Dias-Neto E, Rosales RA, da Silva IT. Relating mutational signature exposures to clinical data in cancers via signeR 2.0. BMC Bioinformatics 2023; 24:439. [PMID: 37990302 PMCID: PMC10664385 DOI: 10.1186/s12859-023-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Cancer is a collection of diseases caused by the deregulation of cell processes, which is triggered by somatic mutations. The search for patterns in somatic mutations, known as mutational signatures, is a growing field of study that has already become a useful tool in oncology. Several algorithms have been proposed to perform one or both the following two tasks: (1) de novo estimation of signatures and their exposures, (2) estimation of the exposures of each one of a set of pre-defined signatures. RESULTS Our group developed signeR, a Bayesian approach to both of these tasks. Here we present a new version of the software, signeR 2.0, which extends the possibilities of previous analyses to explore the relation of signature exposures to other data of clinical relevance. signeR 2.0 includes a user-friendly interface developed using the R-Shiny framework and improvements in performance. This version allows the analysis of submitted data or public TCGA data, which is embedded in the package for easy access. CONCLUSION signeR 2.0 is a valuable tool to generate and explore exposure data, both from de novo or fitting analyses and is an open-source R package available through the Bioconductor project at ( https://doi.org/10.18129/B9.bioc.signeR ).
Collapse
Affiliation(s)
- Rodrigo D Drummond
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C.Camargo Cancer Center, São Paulo, São Paulo, 01508-010, Brazil
| | - Alexandre Defelicibus
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C.Camargo Cancer Center, São Paulo, São Paulo, 01508-010, Brazil
| | - Mathilde Meyenberg
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Renan Valieris
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C.Camargo Cancer Center, São Paulo, São Paulo, 01508-010, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C.Camargo Cancer Center, São Paulo, São Paulo, 01508-010, Brazil
| | - Rafael A Rosales
- Departamento de Computação e Matemática, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil.
| | - Israel Tojal da Silva
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C.Camargo Cancer Center, São Paulo, São Paulo, 01508-010, Brazil.
| |
Collapse
|
21
|
Morales-Pison S, Tapia JC, Morales-González S, Maldonado E, Acuña M, Calaf GM, Jara L. Association of Germline Variation in Driver Genes with Breast Cancer Risk in Chilean Population. Int J Mol Sci 2023; 24:16076. [PMID: 38003265 PMCID: PMC10671568 DOI: 10.3390/ijms242216076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a genomic disease, with driver mutations contributing to tumorigenesis. These potentially heritable variants influence risk and underlie familial breast cancer (BC). This study evaluated associations between BC risk and 13 SNPs in driver genes MAP3K1, SF3B1, SMAD4, ARID2, ATR, KMT2C, MAP3K13, NCOR1, and TBX3, in BRCA1/2-negative Chilean families. SNPs were genotyped using TaqMan Assay in 492 cases and 1285 controls. There were no associations between rs75704921:C>T (ARID2); rs2229032:A>C (ATR); rs3735156:C>G (KMT2C); rs2276738:G>C, rs2293906:C>T, rs4075943T:>A, rs13091808:C>T (MAP3K13); rs178831:G>A (NCOR1); or rs3759173:C>A (TBX3) and risk. The MAP3K1 rs832583 A allele (C/A+A/A) showed a protective effect in families with moderate BC history (OR = 0.7 [95% CI 0.5-0.9] p = 0.01). SF3B1 rs16865677-T (G/T+T/T) increased risk in sporadic early-onset BC (OR = 1.4 [95% CI 1.0-2.0] p = 0.01). SMAD4 rs3819122-C (A/C+C/C) increased risk in cases with moderate family history (OR = 2.0 [95% CI 1.3-2.9] p ≤ 0.0001) and sporadic cases diagnosed ≤50 years (OR = 1.6 [95% CI 1.1-2.2] p = 0.006). SMAD4 rs12456284:A>G increased BC risk in G-allele carriers (A/G + G/G) in cases with ≥2 BC/OC cases and early-onset cases (OR = 1.2 [95% CI 1.0-1.6] p = 0.04 and OR = 1.4 [95% CI 1.0-1.9] p = 0.03, respectively). Our study suggests that specific germline variants in driver genes MAP3K1, SF3B1, and SMAD4 contribute to BC risk in Chilean population.
Collapse
Affiliation(s)
- Sebastián Morales-Pison
- Centro de Oncología de Precisión (COP), Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Las Condes, Santiago 7560908, Chile;
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile;
| | - Sarai Morales-González
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile;
| | - Mónica Acuña
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1010069, Chile;
| | - Lilian Jara
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| |
Collapse
|
22
|
Song Z, Zhang J, Sun Y, Jiang Z, Liu X. Establishment and validation of an immune infiltration predictive model for ovarian cancer. BMC Med Genomics 2023; 16:227. [PMID: 37759229 PMCID: PMC10538244 DOI: 10.1186/s12920-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The most prevalent mutation in ovarian cancer is the TP53 mutation, which impacts the development and prognosis of the disease. We looked at how the TP53 mutation associates the immunophenotype of ovarian cancer and the prognosis of the disease. METHODS We investigated the state of TP53 mutations and expression profiles in culturally diverse groups and datasets and developed an immune infiltration predictive model relying on immune-associated genes differently expressed between TP53 WT and TP53 MUT ovarian cancer cases. We aimed to construct an immune infiltration predictive model (IPM) to enhance the prognosis of ovarian cancer and investigate the impact of the IPM on the immunological microenvironment. RESULTS TP53 mutagenesis affected the expression of seventy-seven immune response-associated genes. An IPM was implemented and evaluated on ovarian cancer patients to distinguish individuals with low- and high-IPM subgroups of poor survival. For diagnostic and therapeutic use, a nomogram is thus created. According to pathway enrichment analysis, the pathways of the human immune response and immune function abnormalities were the most associated functions and pathways with the IPM genes. Furthermore, patients in the high-risk group showed low proportions of macrophages M1, activated NK cells, CD8+ T cells, and higher CTLA-4, PD-1, PD-L1, and TIM-3 than patients in the low-risk group. CONCLUSIONS The IPM model may identify high-risk patients and integrate other clinical parameters to predict their overall survival, suggesting it is a potential methodology for optimizing ovarian cancer prognosis.
Collapse
Affiliation(s)
- Zhenxia Song
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Jingwen Zhang
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Yue Sun
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Zhongmin Jiang
- Department of Pathology, Tian Jin Fifth's Central Hospital, #41 Zhejiang Road, Binhai District, Tianjin, 300450, P. R. China
| | - Xiaoning Liu
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China.
| |
Collapse
|
23
|
Zhang GX, Ding XS, Wang YL. Prognostic model of hepatocellular carcinoma based on cancer grade. World J Clin Cases 2023; 11:6383-6397. [PMID: 37900243 PMCID: PMC10600993 DOI: 10.12998/wjcc.v11.i27.6383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. With highly invasive biological characteristics and a lack of obvious clinical manifestations, HCC usually has a poor prognosis and ranks fourth in cancer mortality. The aetiology and exact molecular mechanism of primary HCC are still unclear. AIM To select the characteristic genes that are significantly associated with the prognosis of HCC patients and construct a prognosis model of this malignancy. METHODS By comparing the gene expression levels of patients with different cancer grades of HCC, we screened out differentially expressed genes associated with tumour grade. By protein-protein interaction (PPI) network analysis, we obtained the top 2 PPI networks and hub genes from these differentially expressed genes. By using least absolute shrinkage and selection operator Cox regression, 13 prognostic genes were selected for feature extraction, and a prognostic risk model of HCC was established. RESULTS The model had significant prognostic ability in HCC. We also analysed the biological functions of these prognostic genes. CONCLUSION By comparing the gene profiles of patients with different stages of HCC, We have constructed a prognosis model consisting of 13 genes that have important prognostic value. This model has good application value and can be explained clinically.
Collapse
Affiliation(s)
- Guo-Xin Zhang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| | - Xiao-Sheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - You-Li Wang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| |
Collapse
|
24
|
Li Y, Zhang SW, Xie MY, Zhang T. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer. Brief Bioinform 2023; 24:bbad291. [PMID: 37738403 DOI: 10.1093/bib/bbad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 09/24/2023] Open
Abstract
Identifying personalized cancer driver genes and further revealing their oncogenic mechanisms is critical for understanding the mechanisms of cell transformation and aiding clinical diagnosis. Almost all existing methods primarily focus on identifying driver genes at the cohort or individual level but fail to further uncover their underlying oncogenic mechanisms. To fill this gap, we present an interpretable framework, PhenoDriver, to identify personalized cancer driver genes, elucidate their roles in cancer development and uncover the association between driver genes and clinical phenotypic alterations. By analyzing 988 breast cancer patients, we demonstrate the outstanding performance of PhenoDriver in identifying breast cancer driver genes at the cohort level compared to other state-of-the-art methods. Otherwise, our PhenoDriver can also effectively identify driver genes with both recurrent and rare mutations in individual patients. We further explore and reveal the oncogenic mechanisms of some known and unknown breast cancer driver genes (e.g. TP53, MAP3K1, HTT, etc.) identified by PhenoDriver, and construct their subnetworks for regulating clinical abnormal phenotypes. Notably, most of our findings are consistent with existing biological knowledge. Based on the personalized driver profiles, we discover two existing and one unreported breast cancer subtypes and uncover their molecular mechanisms. These results intensify our understanding for breast cancer mechanisms, guide therapeutic decisions and assist in the development of targeted anticancer therapies.
Collapse
Affiliation(s)
- Yan Li
- School of Automation from Northwestern Polytechnical University, China
| | - Shao-Wu Zhang
- School of Automation from Northwestern Polytechnical University, China
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China
| | - Ming-Yu Xie
- School of Automation from Northwestern Polytechnical University, China
| | - Tong Zhang
- School of Automation from Northwestern Polytechnical University, China
| |
Collapse
|
25
|
Dixit G, Pappas BA, Bhardwaj G, Schanz W, Maretzky T. Functional Distinctions of Endometrial Cancer-Associated Mutations in the Fibroblast Growth Factor Receptor 2 Gene. Cells 2023; 12:2227. [PMID: 37759450 PMCID: PMC10526318 DOI: 10.3390/cells12182227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Functional analysis of somatic mutations in tumorigenesis facilitates the development and optimization of personalized therapy for cancer patients. The fibroblast growth factor receptor 2 (FGFR2) gene is frequently mutated in endometrial cancer (EC), but the functional implications of FGFR2 mutations in cancer development remain largely unexplored. In this study, we introduced a reliable and readily deployable screening method to investigate the effects of FGFR2 mutations. We demonstrated that distinct mutations in FGFR2 can lead to differential downstream consequences, specifically affecting a disintegrin- and metalloprotease 17 (ADAM17)-dependent shedding of the epidermal growth factor receptor (EGFR) ligand heparin-binding EGF-like growth factor (HB-EGF) and phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, we showed that the distribution of mutations within the FGFR2 gene can influence their oncogenic effects. Together, these findings provide important insights into the complex nature of FGFR2 mutations and their potential implications for EC. By unraveling the distinct effects of different mutations, our study contributes to the identification of personalized treatment strategies for patients with FGFR2-mutated cancers. This knowledge has the potential to guide the development of targeted therapies that specifically address the underlying molecular alterations associated with FGFR2 mutations, ultimately improving patient outcomes in EC and potentially other cancer types characterized by FGFR2 mutations.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Benjamin A. Pappas
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Willow Schanz
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Thorsten Maretzky
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
- Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Front Immunol 2023; 14:1246682. [PMID: 37744371 PMCID: PMC10511650 DOI: 10.3389/fimmu.2023.1246682] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
27
|
Izdebska WM, Daniluk J, Niklinski J. Microbiome and MicroRNA or Long Non-Coding RNA-Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:5643. [PMID: 37685710 PMCID: PMC10488817 DOI: 10.3390/jcm12175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of humans' most common and fatal neoplasms. Nowadays, a number of PDAC studies are being conducted in two different fields: non-coding RNA (especially microRNA and long non-coding RNA) and microbiota. It has been recently discovered that not only does miRNA affect particular bacteria in the gut microbiome that can promote carcinogenesis in the pancreas, but the microbiome also has a visible impact on the miRNA. This suggests that it is possible to use the combined impact of the microbiome and noncoding RNA to suppress the development of PDAC. Nevertheless, insufficient research has focused on bounding both approaches to the diagnosis, treatment, and prevention of pancreatic ductal adenocarcinoma. In this article, we summarize the recent literature on the molecular basis of carcinogenesis in the pancreas, the two-sided impact of particular types of non-coding RNA and the pancreatic cancer microbiome, and possible medical implications of the discovered phenomenon.
Collapse
Affiliation(s)
- Wiktoria Maria Izdebska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
28
|
Ye B, Wang Q, Zhu X, Zeng L, Luo H, Xiong Y, Li Q, Zhu Q, Zhao S, Chen T, Xie J. Single-cell RNA sequencing identifies a novel proliferation cell type affecting clinical outcome of pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1236435. [PMID: 37601684 PMCID: PMC10433893 DOI: 10.3389/fonc.2023.1236435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly neoplasm, with only a 5-year survival rate of around 9%. The tumor and its microenvironment are highly heterogeneous, and it is still unknown which cell types influence patient outcomes. Methods We used single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) to identify differences in cell types. We then applied the scRNA-seq data to decompose the cell types in bulk RNA sequencing (bulk RNA-seq) data from the Cancer Genome Atlas (TCGA) cohort. We employed unbiased machine learning integration algorithms to develop a prognosis signature based on cell type makers. Lastly, we verified the differential expression of the key gene LY6D using immunohistochemistry and qRT-PCR. Results In this study, we identified a novel cell type with high proliferative capacity, Prol, enriched with cell cycle and mitosis genes. We observed that the proportion of Prol cells was significantly increased in PDAC, and Prol cells were associated with reduced overall survival (OS) and progression-free survival (PFS). Additionally, the marker genes of Prol cell type, identified from scRNA-seq data, were upregulated and associated with poor prognosis in the bulk RNA-seq data. We further confirmed that mutant KRAS and TP53 were associated with an increased abundance of Prol cells and that these cells were associated with an immunosuppressive and cold tumor microenvironment in PDAC. ST determined the spatial location of Prol cells. Additionally, patients with a lower proportion of Prol cells in PDAC may benefit more from immunotherapy and gemcitabine treatment. Furthermore, we employed unbiased machine learning integration algorithms to develop a Prol signature that can precisely quantify the abundance of Prol cells and accurately predict prognosis. Finally, we confirmed that the LY6D protein and mRNA expression were markedly higher in pancreatic cancer than in normal pancreatic tissue. Conclusions In summary, by integrating bulk RNA-seq and scRNA-seq, we identified a novel proliferative cell type, Prol, which influences the OS and PFS of PDAC patients.
Collapse
Affiliation(s)
- Bicheng Ye
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofeng Zhu
- Department of Neurology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Lingling Zeng
- Department of Gastroenterology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, China
| | - Huiyuan Luo
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Yan Xiong
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qin Li
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qinmei Zhu
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ting Chen
- Department of Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, China
| | - Jingen Xie
- Department of General Medicine, Huai’an Cancer Hospital, Huai’an, China
| |
Collapse
|
29
|
Caprini E, Verkhovskaia S, Casini B, Testi A, Dagrada GP, Palese E, Rahimi S. A spindle cell neoplasm with MYH9::EGFR fusion and co-expression of S100 and CD34, further expanding the family of kinase fusion positive spindle cell neoplasms. Genes Chromosomes Cancer 2023; 62:483-488. [PMID: 36849873 DOI: 10.1002/gcc.23134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
Soft tissue neoplasms displaying CD34 and S100 positivity with immunohistochemistry are rare with a wide morphological range and frequent neurotrophic tyrosine receptor kinase (NTRK) alterations. Recent reports describe fusions in other kinases besides NTRK in these tumors. In the present article, we report a case of a young male suffering from a soft tissue neoplasm in the lumbar region. At microscopic examination, it was a CD34 and S100-positive soft tissue tumor showing a multilobulated growth pattern composed of cells with pale cytoplasm and abundant normal smooth muscle stroma. The genetic profile showed two alterations affecting EGFR gene represented by a novel MYH9::EGFR fusion transcript and a p.K714N mutation.
Collapse
Affiliation(s)
| | | | - Beatrice Casini
- Anatomic Pathology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Adele Testi
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | |
Collapse
|
30
|
Martínez-Abarca Millán A, Soler Beatty J, Valencia Expósito A, Martín-Bermudo MD. Drosophila as Model System to Study Ras-Mediated Oncogenesis: The Case of the Tensin Family of Proteins. Genes (Basel) 2023; 14:1502. [PMID: 37510408 PMCID: PMC10379045 DOI: 10.3390/genes14071502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, tissue growth induced by oncogenic Ras is restrained by the induction of cellular senescence, and additional mutations are required to induce tumor progression. Therefore, identifying cooperating cancer genes is of paramount importance. Recently, the tensin family of focal adhesion proteins, TNS1-4, have emerged as regulators of carcinogenesis, yet their role in cancer appears somewhat controversial. Around 90% of human cancers are of epithelial origin. We have used the Drosophila wing imaginal disc epithelium as a model system to gain insight into the roles of two orthologs of human TNS2 and 4, blistery (by) and PVRAP, in epithelial cancer progression. We have generated null mutations in PVRAP and found that, as is the case for by and mammalian tensins, PVRAP mutants are viable. We have also found that elimination of either PVRAP or by potentiates RasV12-mediated wing disc hyperplasia. Furthermore, our results have unraveled a mechanism by which tensins may limit Ras oncogenic capacity, the regulation of cell shape and growth. These results demonstrate that Drosophila tensins behave as suppressors of Ras-driven tissue hyperplasia, suggesting that the roles of tensins as modulators of cancer progression might be evolutionarily conserved.
Collapse
Affiliation(s)
- Ana Martínez-Abarca Millán
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Jennifer Soler Beatty
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Andrea Valencia Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| |
Collapse
|
31
|
Liu L, Wang Q, Wu L, Zhang L, Huang Y, Yang H, Guo L, Fang Z, Wang X. Overexpression of POLA2 in hepatocellular carcinoma is involved in immune infiltration and predicts a poor prognosis. Cancer Cell Int 2023; 23:138. [PMID: 37452331 PMCID: PMC10349470 DOI: 10.1186/s12935-023-02949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second malignancy worldwide. POLA2 initiates DNA replication, regulates cell cycle and gene repair that promote tumorigenesis and disease progression. However, the prognostic and biological function roles of POLA2 in HCC had not been conclusively determined. METHODS The expression levels and prognosis role of POLA1 and POLA2 in HCC were analyzed based on TCGA-LIHC database and recruited 24 HCC patients. Gene mutations were analyzed using "maftools" package. POLA2 and immune cells correlations were analyzed by TIMER. POLA2 co-expressed genes functional enrichment were evaluated using Metascape. The mRNA and protein level of POLA2 was detected in HCC cells and tissues. Cell migration, invasion, proliferation, cell cycle and HCC cell lines derived xenograft model were performed to investigate POLA2 biological function. RESULTS POLA2 was significantly high expressed in HCC than in normal liver tissue in both TCGA-LIHC and our collected HCC samples. In validation cohort, POLA2 significantly related to tumor differentiation, tumor size and Ki-67 (p < 0.05). In TCGA-LIHC cohort, overexpression of POLA2 predicted a low OS and associated with different clinical stages. Multivariate Cox regression showed overexpression of POLA2 effectively distinguished the prognosis at different T, N, M, stages and grades of HCC. POLA2 expression correlated with mutation burden, immune cells infiltration and immune-associated genes expression of HCC. Functional enrichment revealed that POLA2 co-expressed genes were linked to cellular activity, plasma membrane protein complex and leukocyte activity, immune response-regulated cell surface receptor signaling pathway, and immune response-regulated signaling pathway. Moreover, POLA2 was also positively co-expressed with some immune checkpoints (CD274, CTL-4, HAVCR2, PDCD1, PDCD1LG2, TIGIT, and LAG3) (p < 0.001). Gene knockdown revealed that POLA2 promoted proliferation, migration, invasion, and cell cycle of SMMC-7721 and HepG2. The HCC xenograft tumor model also demonstrated remarkably tumor size inhibition, tumor proliferation inhibtion and tumor necrosis promotion when POLA2 knockdown. CONCLUSIONS POLA2 influenced immune microenvironment and tumor progression of HCC indicated that it might be a potential molecular marker for prognostic evaluation or a therapeutic target for HCC.
Collapse
Affiliation(s)
- Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
| | - Qi Wang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Linjun Wu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
- Taizhou Hospital Library, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Lele Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuxi Huang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zheping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China.
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China.
| |
Collapse
|
32
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
33
|
Malaina I, Gonzalez-Melero L, Martínez L, Salvador A, Sanchez-Diez A, Asumendi A, Margareto J, Carrasco-Pujante J, Legarreta L, García MA, Pérez-Pinilla MB, Izu R, Martínez de la Fuente I, Igartua M, Alonso S, Hernandez RM, Boyano MD. Computational and Experimental Evaluation of the Immune Response of Neoantigens for Personalized Vaccine Design. Int J Mol Sci 2023; 24:9024. [PMID: 37240369 PMCID: PMC10219310 DOI: 10.3390/ijms24109024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Aiala Salvador
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Margareto
- Technological Services Division, Health and Quality of Life, TECNALIA, 01510 Miñano, Spain
| | - Jose Carrasco-Pujante
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Leire Legarreta
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - María Asunción García
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Martín Blas Pérez-Pinilla
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Rosa Izu
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Ildefonso Martínez de la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
- CEBAS-CSIC Institute, Department of Nutrition, 30100 Murcia, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
34
|
Lennartz M, Ullmann VS, Gorbokon N, Uhlig R, Rico SD, Kind S, Reiswich V, Viehweger F, Kluth M, Hube-Magg C, Bernreuther C, Büscheck F, Putri D, Clauditz TS, Fraune C, Hinsch A, Jacobsen F, Krech T, Lebock P, Steurer S, Burandt E, Minner S, Marx AH, Simon R, Sauter G, Menz A. Cytokeratin 13 (CK13) expression in cancer: a tissue microarray study on 10,439 tumors. APMIS 2023; 131:77-91. [PMID: 36269681 DOI: 10.1111/apm.13280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
Cytokeratin 13 (CK13) is a type I acidic low molecular weight cytokeratin, which is mainly expressed in urothelium and in the squamous epithelium of various sites of origin. Loss of CK13 has been implicated in the development and progression of squamous epithelial neoplasms. To comprehensively determine CK13 expression in normal and neoplastic tissues, a tissue microarray containing 10,439 samples from 131 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. CK13 immunostaining was detectable in 42 (32.1%) of the 131 tumor categories including 24 (18.3%) tumor types with at least one strongly positive case. The highest rate of positive staining was found in various urothelial neoplasms (52.1-92.3%) including Brenner tumor of the ovary (86.8%) and in squamous cell carcinomas from various sites of origin (39.1-77.6%), Warthin tumors of parotid glands (66.7%), adenosquamous carcinomas of the cervix (33.3%), thymomas (16.0%), and endometroid carcinomas of the ovary (15.3%). Twenty other epithelial or germ cell neoplasms showed - a usually weak - CK13 positivity in less than 15% of the cases. In bladder cancer, reduced CK13 expression was linked to high grade and advanced stage (p < 0.0001 each). In squamous cell carcinoma of the cervix, reduced CK13 immunostaining was related to high grade (p = 0.0295) and shortened recurrence-free (p = 0.0094) and overall survival (p = 0.0274). In a combined analysis of 1,151 squamous cell carcinomas from 11 different sites of origin, reduced CK13 staining was linked to high grade (p = 0.0050). Our data provide a comprehensive overview on CK13 expression in normal and neoplastic human tissues. CK13 expression predominates in urothelial neoplasms and in squamous cell carcinomas of different organs, and a loss of CK13 expression is associated with aggressive disease in these tumors.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Sofia Ullmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devita Putri
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebock
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Updates in neuroendocrine neoplasms: From mechanisms to the clinic. ANNALES D'ENDOCRINOLOGIE 2023; 84:291-297. [PMID: 36690074 DOI: 10.1016/j.ando.2022.12.424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 01/22/2023]
Abstract
Scientific advances constantly improve our understanding of the mechanisms underlying tumorigenesis, allowing us now to analyze cancer in a more precise manner and to identify at an earlier stage the tumors that have greater risk of aggressive behavior. Understanding neuroendocrine neoplasms at molecular level has enabled increasingly targeted treatments, with safety and efficacy validated in large randomized trials. Moreover, the first studies of targeted therapies after molecular profiling of neuroendocrine neoplasms have shown encouraging results, allowing us to foresee ever more personalized medical treatments in the future. This literature review aims to summarize recent advances in the study of neuroendocrine neoplasms and to show how identification of new mechanisms underlying tumorigenesis can be of benefit in clinical practice.
Collapse
|
36
|
Cui Y, Li H, Liu P, Wang H, Zhang Z, Qu H, Tian C, Fang X. DeteX: A highly accurate software for detecting SNV and InDel in single and paired NGS data in cancer research. Front Genet 2023; 13:1118183. [PMID: 36685970 PMCID: PMC9859626 DOI: 10.3389/fgene.2022.1118183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Genetic testing is becoming more and more accepted in the auxiliary diagnosis and treatment of tumors. Due to the different performance of the existing bioinformatics software and the different analysis results, the needs of clinical diagnosis and treatment cannot be met. To this end, we combined Bayesian classification model (BC) and fisher exact test (FET), and develop an efficient software DeteX to detect SNV and InDel mutations. It can detect the somatic mutations in tumor-normal paired samples as well as mutations in a single sample. Methods: Combination of Bayesian classification model (BC) and fisher exact test (FET). Results: We detected SNVs and InDels in 11 TCGA glioma samples, 28 clinically targeted capture samples and 2 NCCL-EQA standard samples with DeteX, VarDict, Mutect, VarScan and GatkSNV. The results show that, among the three groups of samples, DeteX has higher sensitivity and precision whether it detects SNVs or InDels than other callers and the F1 value of DeteX is the highest. Especially in the detection of substitution and complex mutations, only DeteX can accurately detect these two kinds of mutations. In terms of single-sample mutation detection, DeteX is much more sensitive than the HaplotypeCaller program in Gatk. In addition, although DeteX has higher mutation detection capabilities, its running time is only .609 of VarDict, which is .704 and .343 longer than VarScan and MuTect, respectively. Conclusion: In this study, we developed DeteX to detect SNV and InDel mutations in single and paired samples. DeteX has high sensitivity and precision especially in the detection of substitution and complex mutations. In summary, DeteX from NGS data is a good SNV and InDel caller.
Collapse
Affiliation(s)
- Yunlong Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongfeng Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhenzhen Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, China
| | - Hongzhu Qu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, China,*Correspondence: Caijuan Tian, ; Xiangdong Fang,
| | - Xiangdong Fang
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China,*Correspondence: Caijuan Tian, ; Xiangdong Fang,
| |
Collapse
|
37
|
Single-Cell and Transcriptome-Based Immune Cell-Related Prognostic Model in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5355269. [PMID: 36925653 PMCID: PMC10014191 DOI: 10.1155/2023/5355269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 03/09/2023]
Abstract
Traditional studies mostly focus on the role of single gene in regulating clear cell renal cell carcinoma (ccRCC), while it ignores the impact of tumour heterogeneity on disease progression. The purpose of this study is to construct a prognostic risk model for ccRCC by analysing the differential marker genes related to immune cells in the single-cell database to provide help in clinical diagnosis and targeted therapy. Single-cell data and ligand-receptor relationship pair data were downloaded from related publications, and ccRCC phenotype and expression profile data were downloaded from TCGA and CPTAC. Based on the DEGs of each cluster acquired from single-cell data, immune cell marker genes, and ligand-receptor gene data, we constructed a multilayer network. Then, the genes in the network and the genes in TCGA were used to construct the WGCNA network, which screened out prognosis-associated genes for subsequent analysis. Finally, a prognostic risk scoring model was obtained, and CPTAC data showed that the effectiveness of this model was good. A nomogram based on the predictive model for predicting the overall survival was established, and internal validation was performed well. Our findings suggest that the predictive model built and based on the immune cell scRNA-seq will enable us to judge the prognosis of patients with ccRCC and provide more accurate directions for basic relevant research and clinical practice.
Collapse
|
38
|
Tutika RK, Bennett JA, Abraham J, Snape K, Tatton-Brown K, Kemp Z, Copson E, Openshaw MR. Mainstreaming of genomics in oncology: a nationwide survey of the genomics training needs of UK oncologists. Clin Med (Lond) 2023; 23:9-15. [PMID: 36697012 PMCID: PMC11046524 DOI: 10.7861/clinmed.2022-0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Genomics is rapidly changing treatment paradigms for cancers, obligating oncologists to have good genomics knowledge. Through this survey, we aimed to assess the current understanding of cancer genomics among UK oncologists. METHODS We conducted a web-based nation-wide self-assessment survey of the cancer genomics knowledge of UK clinical and medical oncology trainees and consultants. RESULTS In total, 150 oncologists (81 consultants and 69 trainees) responded, representing 10% of UK oncologists.Formal training in genomics had not been received by 38.7% of oncologists and 92.7% identified a need for additional genomics training.In total, 71.3% self-reported to have good knowledge of defining somatic and germline mutations, falling to 35.3% for understanding principles of gene expression and regulation. Knowledge of cancer-predisposing syndromes was highest for Lynch syndrome (40.7% good knowledge) and lowest for multiple endocrine neoplasia (14.0% good knowledge).Overall, 49.0% of respondents had consented patients for germline testing, but 80.7% reported a lack of training in genetic counselling. CONCLUSION Large knowledge gaps have been identified through this survey, highlighting the need for incorporation of improved formal training in cancer genomics for consultants and trainees, with an aim to equip oncologists for advances in clinical practice and to take up genetic mainstreaming confidently.
Collapse
Affiliation(s)
| | | | | | - Katie Snape
- St George's Hospital, London UK, and The Institute of Cancer Research, London, UK
| | - Katrina Tatton-Brown
- St George's Hospital, London, UK, and The Institute of Cancer Research, London, UK
| | - Zoe Kemp
- Royal Marsden Hospital, London, UK
| | | | - Mark R Openshaw
- Queen Elizabeth Hospital Birmingham, Birmingham, UK, and Royal Marsden Hospital NHS Trust, London, UK
| |
Collapse
|
39
|
Ulgen E, Ozisik O, Sezerman OU. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology. Bioinformatics 2023; 39:btad022. [PMID: 36689556 PMCID: PMC9869653 DOI: 10.1093/bioinformatics/btad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
MOTIVATION Identifying appropriate pharmacotherapy options from genomics results is a significant challenge in personalized oncology. However, computational methods for prioritizing drugs are underdeveloped. With the hypothesis that network-based approaches can improve the performance by extending the use of potential drug targets beyond direct interactions, we devised two network-based methods for personalized pharmacotherapy prioritization in cancer. RESULTS We developed novel personalized drug prioritization approaches, PANACEA: PersonAlized Network-based Anti-Cancer therapy EvaluAtion. In PANACEA, initially, the protein interaction network is extended with drugs, and a driverness score is assigned to each altered gene. For scoring drugs, either (i) the 'distance-based' method, incorporating the shortest distance between drugs and altered genes, and driverness scores, or (ii) the 'propagation' method involving the propagation of driverness scores via a random walk with restart framework is performed. We evaluated PANACEA using multiple datasets, and demonstrated that (i) the top-ranking drugs are relevant for cancer pharmacotherapy using TCGA data; (ii) drugs that cancer cell lines are sensitive to are identified using GDSC data; and (iii) PANACEA can perform adequately in the clinical setting using cases with known drug responses. We also illustrate that the proposed methods outperform iCAGES and PanDrugs, two previous personalized drug prioritization approaches. AVAILABILITY AND IMPLEMENTATION The corresponding R package is available on GitHub. (https://github.com/egeulgen/PANACEA.git). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ege Ulgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ozan Ozisik
- Aix Marseille University, Inserm, MMG, Marseille 13385, France
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
40
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
41
|
Chen Y, Li H, Sun X. Construction and analysis of sample-specific driver modules for breast cancer. BMC Genomics 2022; 23:717. [PMID: 36266635 PMCID: PMC9583575 DOI: 10.1186/s12864-022-08928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It is important to understand the functional impact of somatic mutation and methylation aberration at an individual level to implement precision medicine. Recent studies have demonstrated that the perturbation of gene interaction networks can provide a fundamental link between genotype (or epigenotype) and phenotype. However, it is unclear how individual mutations affect the function of biological networks, especially for individual methylation aberration. To solve this, we provided a sample-specific driver module construction method using the 2-order network theory and hub-gene theory to identify individual perturbation networks driven by mutations or methylation aberrations. RESULTS Our method integrated multi-omics of breast cancer, including genomics, transcriptomics, epigenomics and interactomics, and provided new insight into the synergistic collaboration between methylation and mutation at an individual level. A common driver pattern of breast cancer was identified from a novel perspective of a driver module, which is correlated to the occurrence and development of breast cancer. The constructed driver module reflects the survival prognosis and degree of malignancy among different subtypes of breast cancer. Additionally, subtype-specific driver modules were identified. CONCLUSIONS This study explores the driver module of individual cancer, and contributes to a better understanding of the mechanism of breast cancer driven by the mutations and methylation variations from the point of view of the driver network. This work will help identify new therapeutic combinations of gene mutations and drugs in humans.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
- College of Science, Nanjing Agricultural University, Nanjing, 210095 P. R. China
| | - Haitao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
| |
Collapse
|
42
|
Li S, Chen J, Chen X, Yu J, Guo Y, Li M, Pu X. Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape. Front Pharmacol 2022; 13:997664. [PMID: 36110544 PMCID: PMC9468875 DOI: 10.3389/fphar.2022.997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PRAD) is a common and fatal malignancy. It is difficult to manage clinically due to drug resistance and poor prognosis, thus creating an urgent need for novel therapeutic targets and prognostic biomarkers. Although G protein-coupled receptors (GPCRs) have been most attractive for drug development, there have been lack of an exhaustive assessment on GPCRs in PRAD like their molecular features, prognostic and therapeutic values. To close this gap, we herein systematically investigate multi-omics profiling for GPCRs in the primary PRAD by analyzing somatic mutations, somatic copy-number alterations (SCNAs), DNA methylation and mRNA expression. GPCRs exhibit low expression levels and mutation frequencies while SCNAs are more prevalent. 46 and 255 disease-related GPCRs are identified by the mRNA expression and DNA methylation analysis, respectively, complementing information lack in the genome analysis. In addition, the genomic alterations do not exhibit an observable correlation with the GPCR expression, reflecting the complex regulatory processes from DNA to RNA. Conversely, a tight association is observed between the DNA methylation and mRNA expression. The virtual screening and molecular dynamics simulation further identify four potential drugs in repositioning to PRAD. The combination of 3 clinical characteristics and 26 GPCR molecular features revealed by the transcriptome and genome exhibit good performance in predicting progression-free survival in patients with the primary PRAD, providing candidates as new biomarkers. These observations from the multi-omics analysis on GPCRs provide new insights into the underlying mechanism of primary PRAD and potential of GPCRs in developing therapeutic strategies on PRAD.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| |
Collapse
|
43
|
Dai YY, Gao YP, Chen LX, Liu JS, Zeng C, Zhou JD, Wu HL. Predicting prognosis and immune responses in hepatocellular carcinoma based on N7-methylguanosine-related long noncoding RNAs. Front Genet 2022; 13:930446. [PMID: 36110218 PMCID: PMC9468367 DOI: 10.3389/fgene.2022.930446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC), which has high rates of recurrence and metastasis and is the main reason and the most common tumor for cancer mortality worldwide, has an unfavorable prognosis. N7-methylguanosine (m7G) modification can affect the formation and development of tumors by affecting gene expression and other biological processes. In addition, many previous studies have confirmed the unique function of long noncoding RNAs (lncRNAs) in tumor progression; however, studies exploring the functions of m7G-related lncRNAs in HCC patients has been limited. Methods: Relevant RNA expression information was acquired from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov), and m7G-related lncRNAs were identified via gene coexpression analysis. Afterward, univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate regression analyses were implemented to construct an ideal risk model whose validity was verified using Kaplan–Meier survival, principal component, receiver operating characteristic (ROC) curve, and nomogram analyses. In addition, the potential functions of lncRNAs in the novel signature were explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses and gene set enrichment analysis (GSEA). At last, in both risk groups and subtypes classified based on the expression of the risk-related lncRNAs, we analyzed the immune characteristics and drug sensitivity of patients. Results: After rigorous screening processes, we built a model based on 11 m7G-related lncRNAs for predicting patient overall survival (OS). The results suggested that the survival status of patients with high-risk scores was lower than that of patients with low-risk scores, and a high-risk score was related to malignant clinical features. Cox regression analysis showed that the m7G risk score was an independent prognostic parameter. Moreover, immune cell infiltration and immunotherapy sensitivity differed between the risk groups. Conclusion: The m7G risk score model constructed based on 11 m7G-related lncRNAs can effectively assess the OS of HCC patients and may offer support for making individualized treatment and immunotherapy decisions for HCC patients.
Collapse
Affiliation(s)
- Yu-yang Dai
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Radiology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yi-ping Gao
- Department of Interventional Radiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, Guangdong, China
| | - Lin-xin Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin-song Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Cheng Zeng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Jian-dong Zhou
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Hong-lin Wu
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Radiology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- *Correspondence: Hong-lin Wu,
| |
Collapse
|
44
|
Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites 2022; 12:metabo12090778. [PMID: 36144183 PMCID: PMC9505390 DOI: 10.3390/metabo12090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Human saliva offers many advantages over other biofluids regarding its use and value as a bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly because its collection is largely non-invasive, is relatively cheap, and does not require any major clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such purposes, including the identification, validation and quantification of surrogate biomarkers, may easily self-collect such samples in their homes following the provision of full collection details to them by researchers. In this report, the authors have focused on the applications of metabolomics technologies to the diagnosis and progressive severity monitoring of human cancer conditions, firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic) cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length of storage and preparation for analysis. Moreover, recommended protocols for the optimisation of NMR pulse sequences for analysis, along with the application of methods and techniques for verifying and resonance assignments and validating the quantification of biomolecules responsible, are critically considered. In view of the authors’ specialisms and research interests, the majority of these investigations were conducted using NMR-based metabolomics techniques. The extension of these studies to determinations of metabolic pathways which have been pathologically disturbed in these diseases is also assessed here and reviewed. Where available, data for the monitoring of patients’ responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic potential of 1H NMR-detectable salivary ‘acute-phase’ glycoprotein carbohydrate side chains, and/or their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.
Collapse
|
45
|
Sousa AH, Pereira JPG, Malaquias AC, Sagica FDES, de Oliveira EHC. Intracellular accumulation and DNA damage caused by methylmercury in glial cells. J Biochem Mol Toxicol 2022; 36:e23170. [PMID: 35822649 DOI: 10.1002/jbt.23170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.
Collapse
Affiliation(s)
- Aline H Sousa
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Bacteriologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - João P G Pereira
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Allan C Malaquias
- Faculdade de Medicina, Universidade Federal do Pará, Campus de Altamira, Pará, Brazil
| | | | - Edivaldo H C de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
46
|
Wang C, Shi J, Cai J, Zhang Y, Zheng X, Zhang N. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph. BMC Bioinformatics 2022; 23:277. [PMID: 35831792 PMCID: PMC9281118 DOI: 10.1186/s12859-022-04788-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data. A critical challenge in cancer genomics is identification of a few cancer driver genes whose mutations cause tumor growth. However, the majority of existing computational approaches underuse the co-occurrence mutation information of the individuals, which are deemed to be important in tumorigenesis and tumor progression, resulting in high rate of false positive. Results To make full use of co-mutation information, we present a random walk algorithm referred to as DriverRWH on a weighted gene mutation hypergraph model, using somatic mutation data and molecular interaction network data to prioritize candidate driver genes. Applied to tumor samples of different cancer types from The Cancer Genome Atlas, DriverRWH shows significantly better performance than state-of-art prioritization methods in terms of the area under the curve scores and the cumulative number of known driver genes recovered in top-ranked candidate genes. Besides, DriverRWH discovers several potential drivers, which are enriched in cancer-related pathways. DriverRWH recovers approximately 50% known driver genes in the top 30 ranked candidate genes for more than half of the cancer types. In addition, DriverRWH is also highly robust to perturbations in the mutation data and gene functional network data. Conclusion DriverRWH is effective among various cancer types in prioritizes cancer driver genes and provides considerable improvement over other tools with a better balance of precision and sensitivity. It can be a useful tool for detecting potential driver genes and facilitate targeted cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04788-7.
Collapse
Affiliation(s)
- Chenye Wang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Junhan Shi
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Jiansheng Cai
- Department of Mathematics, Weifang University, Weifang, 261061, Shandong, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.
| |
Collapse
|
47
|
Chen R, Zhao M, An Y, Liu D, Tang Q, Teng G. A Prognostic Gene Signature for Hepatocellular Carcinoma. Front Oncol 2022; 12:841530. [PMID: 35574316 PMCID: PMC9091376 DOI: 10.3389/fonc.2022.841530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is the third most common cause of cancer-related deaths in China and immune-based therapy can improve patient outcomes. In this study, we investigated the relationship between immunity-associated genes and hepatocellular carcinoma from the prognostic perspective. The data downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and the Gene Expression Omnibus (GEO) was screened for gene mutation frequency using the maftools package. Immunity-associated eight-gene signature with strong prognostic ability was constructed and proved as an independent predictor of the patient outcome in LIHC. Seven genes in the immune-related eight-gene signature were strongly associated with the infiltration of M0 macrophages, resting mast cells, and regulatory T cells. Our research may provide clinicians with a quantitative method to predict the prognosis of patients with liver cancer, which can assist in the selection of the optimal treatment plan.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Zhongda Hospital, Nanjing, China
| | - Meng Zhao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanli An
- Medical School of Southeast University, Nanjing, China.,Department of Radiology, Medical School of Southeast University, Nanjing, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, China
| | - Gaojun Teng
- Department of Radiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
48
|
Li Z, Liang H, Zhang S, Luo W. A practical framework RNMF for exploring the association between mutational signatures and genes using gene cumulative contribution abundance. Cancer Med 2022; 11:4053-4069. [PMID: 35575002 PMCID: PMC9636515 DOI: 10.1002/cam4.4717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mutational signatures are somatic mutation patterns enriching operational mutational processes, which can provide abundant information about the mechanism of cancer. However, understanding of the pathogenic biological processes is still limited, such as the association between mutational signatures and genes. Methods We developed a simple and practical R package called RNMF (https://github.com/zhenzhang‐li/RNMF) for mutational signature analysis, including a key model of cumulative contribution abundance (CCA), which was designed to highlight the association between mutational signatures and genes and then applying it to a meta‐analysis of 1073 individuals with esophageal squamous cell carcinoma (ESCC). Results We revealed a number of known and previously undescribed SBS or ID signatures, and we found that APOBEC signatures (SBS2* and SBS13*) were closely associated with PIK3CA mutation, especially the E545k mutation. Furthermore, we found that age signature is closely related to the frequent mutation of TP53, of which R342* is highlighted due to strongly linked to age signature. In addition, the CCA matrix image data of genes in the signatures New, SBS3*, and SBS17b* were helpful for the preliminary evaluation of shortened survival outcome. These results can be extended to estimate the distribution of mutations or features, and study the potential impact of clinical factors. Conclusions In a word, RNMF can successfully achieve the correlation analysis of mutational signatures and genes, proving a strong theoretical basis for the study of mutational processes during tumor development.
Collapse
Affiliation(s)
- Zhenzhang Li
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Cloud and Gene AI Research Institute, Guangzhou, China
| | - Haihua Liang
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Shaoan Zhang
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wen Luo
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China
| |
Collapse
|
49
|
Huang J, Zhong Y, Makohon-Moore AP, White T, Jasin M, Norell MA, Wheeler WC, Iacobuzio-Donahue CA. Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Rep 2022; 39:110771. [PMID: 35508134 PMCID: PMC11740715 DOI: 10.1016/j.celrep.2022.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022] Open
Abstract
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Collapse
Affiliation(s)
- Jinlong Huang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin P Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Travis White
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
50
|
Ye X, Chen W, Tu P, Jia R, Liu Y, Tang Q, Chen C, Yang C, Zheng X, Chu Q. Antihyperglycemic effect of an anthocyanin, cyanidin-3- O-glucoside, is achieved by regulating GLUT-1 via the Wnt/β-catenin-WISP1 signaling pathway. Food Funct 2022; 13:4612-4623. [PMID: 35357376 DOI: 10.1039/d1fo03730g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanidin-3-O-glucoside (C3G), an essential representative of anthocyanins, has been proved to possess a myriad of biological activities. However, the effects of C3G on glucose metabolism and its underlying molecular mechanisms remain elusive. The aim of the present study was to investigate the metabolic impact of C3G on db/db mice and to determine whether its consequent anti-diabetic effects were related to glucose transporter-1 (GLUT-1) by in vivo and in vitro studies. As a result, through diabetic db/db mice, C3G treatment was found to significantly reduce the fasting blood glucose level and increase glycogen synthesis, which were associated with upregulation of GLUT-1 expression in the liver of the mice. In addition, in liver cells of the HepG2 and L02 lines, we further discovered that C3G could effectively promote glucose consumption by regulating the Wnt/β-catenin-WISP1 signaling pathway. Nevertheless, such effects would be restricted when the expression of GLUT-1 was blocked by the inhibitor IWR-1. Meanwhile, molecular docking technology was applied to simulate the possible action sites of C3G at the molecular level, and the results indicated that C3G might bind to β-catenin. In conclusion, our study provided evidence of the antihyperglycemic effect of C3G in vivo and in vitro via regulating GLUT-1 expression and the related signaling pathways.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yangyang Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Chuan Chen
- Hangzhou Botanical Garden, Hangzhou, 310007, P. R. China
| | - Caihong Yang
- Hangzhou Qiandaohu Lingshanghuakai Agricultural Technology Co., Ltd, Hangzhou, 311701, P. R. China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|