1
|
Lv CL, Li B. Interface morphodynamics in living tissues. SOFT MATTER 2025; 21:3670-3687. [PMID: 40226989 DOI: 10.1039/d5sm00145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Interfaces between distinct tissues or between tissues and environments are common in multicellular organisms. The evolution and stability of these interfaces are essential for tissue development, and their dysfunction can lead to diseases such as cancer. Mounting efforts, either theoretical or experimental, have been devoted to uncovering the morphodynamics of tissue interfaces. Here, we review the recent progress of studies on interface morphodynamics. The regulatory mechanisms governing interface evolution are dissected, with a focus on adhesion, cortical tension, cell activity, extracellular matrix, and microenvironment. We examine the methodologies used to study morphodynamics, emphasizing the characteristics of experimental techniques and theoretical models. Finally, we explore the broader implications of interface morphodynamics in tissue morphogenesis and diseases, offering a comprehensive perspective on this rapidly developing field.
Collapse
Affiliation(s)
- Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
- Mechano-X Institute, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Fu Y, Fan Q, Wu Y, Bao M. Unlocking the potential of stem-cell-derived 'synthetic' embryo models. Trends Biotechnol 2025:S0167-7799(25)00078-2. [PMID: 40090786 DOI: 10.1016/j.tibtech.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/18/2025]
Abstract
Stem-cell-derived 'synthetic' embryo models represent a revolutionary avenue in developmental biology, offering unprecedented insights into embryogenesis and tissue formation. However, the majority of current research on embryo models resides predominantly in the engineering construction phase, with limited substantive applications. This review explores the utilization of these embryo models and their applications in deciphering fundamental developmental processes. We delve into the methodologies employed in generating these models, emphasizing their potential to advance our understanding of embryonic development and disease. By evaluating current advancements and challenges, this review provides a comprehensive overview of the opportunities and implications of employing stem-cell-derived embryo models.
Collapse
Affiliation(s)
- Yanqiong Fu
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin Fan
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanru Wu
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Min Bao
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Geriatric Medicine, First Affiliated Hospital of Wenzhou Medical Univesity, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Moazzeni S, Kyker-Snowman K, Cohen RI, Wang H, Li R, Shreiber DI, Zahn JD, Shi Z, Lin H. N-Cadherin based adhesion and Rac1 activity regulate tension polarization in the actin cortex. Sci Rep 2025; 15:4296. [PMID: 39905109 PMCID: PMC11794589 DOI: 10.1038/s41598-025-88537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Tension-adhesion interplay is a crucial mechanism in multicellular organisms that determines the tension differential among internal and external interfaces, which in turn, mediates tissue surface tension and cell sorting, morphogenesis and remodeling, and cancer progression. Cadherins are widely believed to be involved, yet key aspects of the process are neither well characterized nor quantified. This study demonstrates the critical role of N-cadherin in driving tension polarization throughout the actin cortical network. N-cadherin regulates both tension increase at the cell-medium (external) interface and decrease at the cell-cell (internal) interface, and their quantitative magnitudes, both absolute and relative, strongly depend on the surface density of N-cadherin. Furthermore, the strength of tension polarization also increases with respect to the number of cell-cell interfaces for cells within a multicellular cluster. The cadherin-actin contractility linkage is mediated by Rac1, which serves as a molecular switch to trigger cortex remodeling and contraction via myosin II. Inhibition of Rac1 activity decreases tension polarization and leads to reduced coherence in both small clusters and spheroids. These results provide a pathway to reconcile opposing theories for tissue surface tension generation and perspectives in cancer treatment.
Collapse
Affiliation(s)
- Seyedsajad Moazzeni
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Kelly Kyker-Snowman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Ran Li
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA.
| | - Hao Lin
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Aslemarz A, Fagotto-Kaufmann M, Ruppel A, Fagotto-Kaufmann C, Balland M, Lasko P, Fagotto F. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells. EMBO J 2025; 44:75-106. [PMID: 39572744 PMCID: PMC11696905 DOI: 10.1038/s44318-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025] Open
Abstract
EpCAM and its close relative Trop2 are well-known cell surface markers of carcinoma, but their potential role in cancer metastasis remains unclear. They are known, however, to downregulate myosin-dependent contractility, a key parameter involved in adhesion and migration. We investigate here the morphogenetic impact of the high EpCAM and Trop2 levels typically found in epithelial breast cancer cells, using spheroids of MCF7 cells as an in vitro model. Intriguingly, EpCAM depletion stimulated spheroid cohesive spreading, while Trop2 depletion had the opposite effect. Combining cell biological and biophysical approaches, we demonstrate that while EpCAM and Trop2 both contribute to moderate cell contractility, their depletions differentially impact on the process of "wetting" a substrate, here both matrix and neighboring cells, by affecting the balance of cortical tension at cell and tissue interfaces. These distinct phenotypes can be explained by partial enrichment at specific interfaces. Our data are consistent with the EpCAM-Trop2 pair acting as a mechanostat that tunes adhesive and migratory behaviours.
Collapse
Affiliation(s)
- Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
- SGS, Mississauga, ON, L5T 1W8, Canada
| | - Marie Fagotto-Kaufmann
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Department of Neurobiology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Artur Ruppel
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
| | | | - Martial Balland
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
| | - Paul Lasko
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
| | - François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France.
| |
Collapse
|
5
|
Yue H, Packard CR, Sussman DM. Scale-dependent sharpening of interfacial fluctuations in shape-based models of dense cellular sheets. SOFT MATTER 2024. [PMID: 39564787 DOI: 10.1039/d4sm00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The properties of tissue interfaces - between separate populations of cells, or between a group of cells and its environment - has attracted intense theoretical, computational, and experimental study. Recent work on shape-based models inspired by dense epithelia have suggested a possible "topological sharpening" effect, by which four-fold vertices spatially coordinated along a cellular interface lead to a cusp-like restoring force acting on cells at the interface, which in turn greatly suppresses interfacial fluctuations. We revisit these interfacial fluctuations, focusing on the distinction between short length scale reduction of interfacial fluctuations and long length scale renormalized surface tension. To do this, we implement a spectrally resolved analysis of fluctuations over extremely long simulation times. This leads to more quantitative information on the topological sharpening effect, in which the degree of sharpening depends on the length scale over which it is measured. We compare our findings with a Brownian bridge model of the interface, and close by analyzing existing experimental data in support of the role of short-length-scale topological sharpening effects in real biological systems.
Collapse
Affiliation(s)
- Haicen Yue
- Department of Physics, University of Vermont, Burlington, Vermont 05405, USA.
| | - Charles R Packard
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| | - Daniel M Sussman
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
6
|
Balasubramaniam L, Jain S, Dang T, Lagoutte E, Marc Mège R, Chavrier P, Ladoux B, Rossé C. Different Biomechanical Cell Behaviors in an Epithelium Drive Collective Epithelial Cell Extrusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401573. [PMID: 39291385 PMCID: PMC11558136 DOI: 10.1002/advs.202401573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/30/2024] [Indexed: 09/19/2024]
Abstract
In vertebrates, many organs, such as the kidney and the mammary gland form ductal structures based on the folding of epithelial sheets. The development of these organs relies on coordinated sorting of different cell lineages in both time and space, through mechanisms that remain largely unclear. Tissues are composed of several cell types with distinct biomechanical properties, particularly at cell-cell and cell-substrate boundaries. One hypothesis is that adjacent epithelial layers work in a coordinated manner to shape the tissue. Using in vitro experiments on model epithelial cells, differential expression of atypical Protein Kinase C iota (aPKCi), a key junctional polarity protein, is shown to reinforce cell epithelialization and trigger sorting by tuning cell mechanical properties at the tissue level. In a broader perspective, it is shown that in a heterogeneous epithelial monolayer, in which cell sorting occurs, forces arising from epithelial cell growth under confinement by surrounding cells with different biomechanical properties are sufficient to promote collective cell extrusion and generate emerging 3D organization related to spheroids and buds. Overall, this research sheds light on the role of aPKCi and the biomechanical interplay between distinct epithelial cell lineages in shaping tissue organization, providing insights into the understanding of tissue and organ development.
Collapse
Affiliation(s)
- Lakshmi Balasubramaniam
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Wellcome/Cancer Research UK Gurdon InstituteCambridgeUK
| | - Shreyansh Jain
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Present address:
Transgene S.A.Illkirch–GraffenstadenFrance
| | - Tien Dang
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | - Emilie Lagoutte
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| | - René Marc Mège
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | | | - Benoit Ladoux
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Department of PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91058ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Carine Rossé
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| |
Collapse
|
7
|
Wang X, Cupo CM, Ostvar S, Countryman AD, Kasza KE. E-cadherin tunes tissue mechanical behavior before and during morphogenetic tissue flows. Curr Biol 2024; 34:3367-3379.e5. [PMID: 39013464 DOI: 10.1016/j.cub.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Christian M Cupo
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sassan Ostvar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrew D Countryman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
10
|
Martinson WD, Volkening A, Schmidtchen M, Venkataraman C, Carrillo JA. Linking discrete and continuous models of cell birth and migration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232002. [PMID: 39021774 PMCID: PMC11252671 DOI: 10.1098/rsos.232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 07/20/2024]
Abstract
Self-organization of individuals within large collectives occurs throughout biology. Mathematical models can help elucidate the individual-level mechanisms behind these dynamics, but analytical tractability often comes at the cost of biological intuition. Discrete models provide straightforward interpretations by tracking each individual yet can be computationally expensive. Alternatively, continuous models supply a large-scale perspective by representing the 'effective' dynamics of infinite agents, but their results are often difficult to translate into experimentally relevant insights. We address this challenge by quantitatively linking spatio-temporal dynamics of continuous models and individual-based data in settings with biologically realistic, time-varying cell numbers. Specifically, we introduce and fit scaling parameters in continuous models to account for discrepancies that can arise from low cell numbers and localized interactions. We illustrate our approach on an example motivated by zebrafish-skin pattern formation, in which we create a continuous framework describing the movement and proliferation of a single cell population by upscaling rules from a discrete model. Our resulting continuous models accurately depict ensemble average agent-based solutions when migration or proliferation act alone. Interestingly, the same parameters are not optimal when both processes act simultaneously, highlighting a rich difference in how combining migration and proliferation affects discrete and continuous dynamics.
Collapse
Affiliation(s)
| | | | - Markus Schmidtchen
- Institute of Scientific Computing, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
11
|
Prasanna CVS, Jolly MK, Bhat R. Spatial heterogeneity in tumor adhesion qualifies collective cell invasion. Biophys J 2024; 123:1635-1647. [PMID: 38725244 PMCID: PMC11214055 DOI: 10.1016/j.bpj.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Collective cell invasion (CCI), a canon of most invasive solid tumors, is an emergent property of the interactions between cancer cells and their surrounding extracellular matrix (ECM). However, tumor populations invariably consist of cells expressing variable levels of adhesive proteins that mediate such interactions, disallowing an intuitive understanding of how tumor invasiveness at a multicellular scale is influenced by spatial heterogeneity of cell-cell and cell-ECM adhesion. Here, we have used a Cellular Potts model-based multiscale computational framework that is constructed on the histopathological principles of glandular cancers. In earlier efforts on homogenous cancer cell populations, this framework revealed the relative ranges of interactions, including cell-cell and cell-ECM adhesion that drove collective, dispersed, and mixed multimodal invasion. Here, we constitute a tumor core of two separate cell subsets showing distinct intra- and inter-subset cell-cell or cell-ECM adhesion strengths. These two subsets of cells are arranged to varying extents of spatial intermingling, which we call the heterogeneity index (HI). We observe that low and high inter-subset cell adhesion favors invasion of high-HI and low-HI intermingled populations with distinct intra-subset cell-cell adhesion strengths, respectively. In addition, for explored values of cell-ECM adhesion strengths, populations with high HI values collectively invade better than those with lower HI values. We then asked how spatial invasion is regulated by progressively intermingled cellular subsets that are epithelial, i.e., showed high cell-cell but poor cell-ECM adhesion, and mesenchymal, i.e., with reversed adhesion strengths to the former. Here too, inter-subset adhesion plays an important role in contextualizing the proportionate relationship between HI and invasion. An exception to this relationship is seen for cases of heterogeneous cell-ECM adhesion where sub-maximal HI patterns with higher outer localization of cells with stronger ECM adhesion collectively invade better than their relatively higher-HI counterparts. Our simulations also reveal how adhesion heterogeneity qualifies collective invasion, when either cell-cell or cell-ECM adhesion type is varied but results in an invasive dispersion when both adhesion types are simultaneously altered.
Collapse
Affiliation(s)
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India.
| | - Ramray Bhat
- Department of Bioengineering, Indian Institute of Science, Bangalore, India; Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
12
|
Nelson DR, Mystikou A, Jaiswal A, Rad-Menendez C, Preston MJ, De Boever F, El Assal DC, Daakour S, Lomas MW, Twizere JC, Green DH, Ratcliff WC, Salehi-Ashtiani K. Macroalgal deep genomics illuminate multiple paths to aquatic, photosynthetic multicellularity. MOLECULAR PLANT 2024; 17:747-771. [PMID: 38614077 DOI: 10.1016/j.molp.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/15/2024]
Abstract
Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.
Collapse
Affiliation(s)
- David R Nelson
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE; Biotechnology Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE.
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Cecilia Rad-Menendez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Michael J Preston
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frederik De Boever
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Diana C El Assal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - David H Green
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
13
|
Xie X, Sauer F, Grosser S, Lippoldt J, Warmt E, Das A, Bi D, Fuhs T, Käs JA. Effect of non-linear strain stiffening in eDAH and unjamming. SOFT MATTER 2024; 20:1996-2007. [PMID: 38323652 PMCID: PMC10900305 DOI: 10.1039/d3sm00630a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells. This elongation is so substantial that it surpasses the limits of linear elasticity, thereby giving rise to additional effects. To investigate these effects, we employ atomic force microscopy (AFM) to analyze how the mechanical properties of individual cells change under such considerable elongation. Our selection of cell lines includes MCF-10A, chosen for its pronounced demonstration of the extended differential adhesion hypothesis (eDAH), and MDA-MB-436, selected due to its manifestation of cell unjamming behavior. In the AFM analyses, we observe a common trend in both cases: as elongation increases, both cell lines exhibit strain stiffening. Notably, this effect is more prominent in MCF-10A compared to MDA-MB-436. Subsequently, we employ AFM on a dynamic range of 1-200 Hz to probe the mechanical characteristics of cell spheroids, focusing on both surface and bulk mechanics. Our findings align with the results from single cell investigations. Specifically, MCF-10A cells, characterized by strong contractile tissue tension, exhibit the greatest stiffness on their surface. Conversely, MDA-MB-436 cells, which experience significant elongation, showcase their highest stiffness within the bulk region. Consequently, the concept of single cell strain stiffening emerges as a crucial element in understanding the mechanics of multicellular spheroids (MCSs), even in the case of MDA-MB-436 cells, which are comparatively softer in nature.
Collapse
Affiliation(s)
- Xiaofan Xie
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Frank Sauer
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Steffen Grosser
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Jürgen Lippoldt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Enrico Warmt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Thomas Fuhs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Josef A Käs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| |
Collapse
|
14
|
Guan LY, Lin SZ, Chen PC, Lv JQ, Li B, Feng XQ. Interfacial Organization and Forces Arising from Epithelial-Cancerous Monolayer Interactions. ACS NANO 2023; 17:24668-24684. [PMID: 38091551 DOI: 10.1021/acsnano.3c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The interfacial interactions between epithelia and cancer cells have profound relevance for tumor development and metastasis. Through monolayer confrontation of MCF10A (nontumorigenic human breast epithelial cells) and MDA-MB-231 (human epithelial breast cancer cells) cells, we investigate the epithelial-cancerous interfacial interactions at the tissue level. We show that the monolayer interaction leads to competitive interfacial morphodynamics and drives an intricate spatial organization of MCF10A cells into multicellular finger-like structures, which further branch into multiple subfinger-like structures. These hierarchical interfacial structures penetrate the cancer monolayer and can spontaneously segregate or even envelop cancer cell clusters, consistent with our theoretical prediction. By tracking the substrate displacements via embedded fluorescent nanobeads and implementing nanomechanical modeling that combines atomic force microscopy and finite element simulations, we computed mechanical force patterns, including traction forces and monolayer stresses, caused by the monolayer interaction. It is found that the heterogeneous mechanical forces accumulated in the monolayers are able to squeeze cancer cells, leading to three-dimensional interfacial bulges or cell extrusion, initiating the p53 apoptosis signaling pathways of cancer cells. We reveal that intercellular E-cadherin and P-cadherin of epithelial cells differentially regulate the interfacial organization including migration speed, directionality, spatial correlation, F-actin alignment, and subcellular protrusions of MCF10A cells; whereas E-cadherin governs interfacial geometry that is relevant to force localization and cancer cell extrusion, P-cadherin maintains interfacial integrity that enables long-range force transmission. Our findings suggest that the collaborative molecular and mechanical behaviors are crucial for preventing epithelial tissues from undergoing tumor invasion.
Collapse
Affiliation(s)
- Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jian-Qing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
16
|
Lin F, Li X, Sun S, Li Z, Lv C, Bai J, Song L, Han Y, Li B, Fu J, Shao Y. Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics. Nat Commun 2023; 14:6016. [PMID: 37758697 PMCID: PMC10533890 DOI: 10.1038/s41467-023-41760-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Region-specific gut spheroids are precursors for gastrointestinal and pulmonary organoids that hold great promise for fundamental studies and translations. However, efficient production of gut spheroids remains challenging due to a lack of control and mechanistic understanding of gut spheroid morphogenesis. Here, we report an efficient biomaterial system, termed micropatterned gut spheroid generator (μGSG), to generate gut spheroids from human pluripotent stem cells through mechanically enhanced tissue morphogenesis. We show that μGSG enhances the biogenesis of gut spheroids independent of micropattern shape and size; instead, mechanically enforced cell multilayering and crowding is demonstrated as a general, geometry-insensitive mechanism that is necessary and sufficient for promoting spheroid formation. Combining experimental findings and an active-phase-field morphomechanics theory, our study further reveals an instability-driven mechanism and a mechanosensitive phase diagram governing spheroid pearling and fission in μGSG. This work unveils mechanobiological paradigms based on tissue architecture and surface tension for controlling tissue morphogenesis and advancing organoid technology.
Collapse
Affiliation(s)
- Feng Lin
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Xia Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Shiyu Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenglin Lv
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianbo Bai
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Song
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yizhao Han
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
17
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
18
|
Jeong DP, Montes D, Chang HC, Hanjaya-Putra D. Fractal dimension to characterize interactions between blood and lymphatic endothelial cells. Phys Biol 2023; 20:045004. [PMID: 37224822 PMCID: PMC10258918 DOI: 10.1088/1478-3975/acd898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell-cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC-LEC and BEC-BEC pairs and a sharp boundary between LEC-BEC pair, and fingering-like patterns with pseudo-LEC-BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell-cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell-cell adhesion forces between different cell types.
Collapse
Affiliation(s)
- Donghyun Paul Jeong
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Daniel Montes
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Hsueh-Chia Chang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
19
|
El-Beyrouthy J, Makhoul-Mansour M, Gulle J, Freeman E. Morphogenesis-inspired two-dimensional electrowetting in droplet networks. BIOINSPIRATION & BIOMIMETICS 2023; 18. [PMID: 37074106 DOI: 10.1088/1748-3190/acc779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Living tissues dynamically reshape their internal cellular structures through carefully regulated cell-to-cell interactions during morphogenesis. These cellular rearrangement events, such as cell sorting and mutual tissue spreading, have been explained using the differential adhesion hypothesis, which describes the sorting of cells through their adhesive interactions with their neighbors. In this manuscript we explore a simplified form of differential adhesion within a bioinspired lipid-stabilized emulsion approximating cellular tissues. The artificial cellular tissues are created as a collection of aqueous droplets adhered together in a network of lipid membranes. Since this abstraction of the tissue does not retain the ability to locally vary the adhesion of the interfaces through biological mechanisms, instead we employ electrowetting with offsets generated by spatial variations in lipid compositions to capture a simple form of bioelectric control over the tissue characteristics. This is accomplished by first conducting experiments on electrowetting in droplet networks, next creating a model for describing electrowetting in collections of adhered droplets, then validating the model against the experimental measurements. This work demonstrates how the distribution of voltage within a droplet network may be tuned through lipid composition then used to shape directional contraction of the adhered structure using two-dimensional electrowetting events. Predictions from this model were used to explore the governing mechanics for complex electrowetting events in networks, including directional contraction and the formation of new interfaces.
Collapse
Affiliation(s)
- Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| | - Michelle Makhoul-Mansour
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
- College of Engineering, University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Jesse Gulle
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
20
|
Skamrahl M, Schünemann J, Mukenhirn M, Pang H, Gottwald J, Jipp M, Ferle M, Rübeling A, Oswald T, Honigmann A, Janshoff A. Cellular segregation in cocultures is driven by differential adhesion and contractility on distinct timescales. Proc Natl Acad Sci U S A 2023; 120:e2213186120. [PMID: 37011207 PMCID: PMC10104523 DOI: 10.1073/pnas.2213186120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Cellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process governed mainly by differential contractility on short (<5 h) and differential adhesion on long (>5 h) timescales. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. Concomitantly, the tight junction-depleted, contractile cells exhibit weaker cell-cell adhesion and lower traction force. Drug-induced contractility reduction and partial calcium depletion delay the initial segregation but cease to change the final demixed state, rendering differential adhesion the dominant segregation force at longer timescales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.
Collapse
Affiliation(s)
- Mark Skamrahl
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Justus Schünemann
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Markus Mukenhirn
- Max Planck Institute of Molecular Cell Biology and Genetics,01307Dresden, Germany
| | - Hongtao Pang
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Jannis Gottwald
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Maximilian Ferle
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen37077, Germany
| | - Tabea A. Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen37077, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics,01307Dresden, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| |
Collapse
|
21
|
Karkali K, Saunders TE, Panayotou G, Martín-Blanco E. JNK signaling in pioneer neurons organizes ventral nerve cord architecture in Drosophila embryos. Nat Commun 2023; 14:675. [PMID: 36750572 PMCID: PMC9905486 DOI: 10.1038/s41467-023-36388-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Morphogenesis of the Central Nervous System (CNS) is a complex process that obeys precise architectural rules. Yet, the mechanisms dictating these rules remain unknown. Analyzing morphogenesis of the Drosophila embryo Ventral Nerve Cord (VNC), we observe that a tight control of JNK signaling is essential for attaining the final VNC architecture. JNK signaling in a specific subset of pioneer neurons autonomously regulates the expression of Fasciclin 2 (Fas 2) and Neurexin IV (Nrx IV) adhesion molecules, probably via the transcription factor zfh1. Interfering at any step in this cascade affects fasciculation along pioneer axons, leading to secondary cumulative scaffolding defects during the structural organization of the axonal network. The global disorder of architectural landmarks ultimately influences nervous system condensation. In summary, our data point to JNK signaling in a subset of pioneer neurons as a key element underpinning VNC architecture, revealing critical milestones on the mechanism of control of its structural organization.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- BSRC Alexander Fleming, 34 Fleming Street, 16672, Vari, Greece
| | - Timothy E Saunders
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
22
|
Liu N, Zhu Y, Yu K, Gu Z, Lv S, Chen Y, He C, Fu J, He Y. Functional Blood-Brain Barrier Model with Tight Connected Minitissue by Liquid Substrates Culture. Adv Healthc Mater 2023; 12:e2201984. [PMID: 36394091 DOI: 10.1002/adhm.202201984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/02/2022] [Indexed: 11/19/2022]
Abstract
The functional blood-brain barrier (BBB) model can provide a reliable tool for better understanding BBB transport mechanisms and in vitro preclinical experimentation. However, recapitulating microenvironmental complexities and physiological functions in an accessible approach remains a major challenge. Here, a new BBB model with a high-cell spatial density and tightly connected biomimetic minitissue is presented. The minitissue, pivotal functional structure of the BBB model, is fabricated by a novel and easy-to-use liquid substrate culture (LSC) method, which allows cells to self-assemble and self-heal into macrosized, tightly connected membranous minitissue. The minitissue with uniform thickness can be easily harvested in their entirety with extracellular matrix. Attributed to the tightly connected minitissue formed by LSC, the fabricated BBB biomimetic model has 1 to 2 orders of magnitude higher transendothelial electric resistance than the commonly reported BBB model. It also better prevents the transmission of large molecular substances, recapitulating the functional features of BBB. Furthermore, the BBB biomimetic model provides feedback regarding BBB-destructive drugs, exhibits selective transmission, and shows efflux pump activity. Overall, this model can serve as an accessible tool for life science or clinical medical researchers to enhance the understanding of human BBB and expedite the development of new brain-permeable drugs.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbo Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zeming Gu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, Ramirez JT, McKeithan WL, Fattahi F, Klein OD, Fletcher DA, Lim WA. Programming multicellular assembly with synthetic cell adhesion molecules. Nature 2023; 614:144-152. [PMID: 36509107 PMCID: PMC9892004 DOI: 10.1038/s41586-022-05622-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.
Collapse
Affiliation(s)
- Adam J Stevens
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Andrew R Harris
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Josiah Gerdts
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Ki H Kim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jonathan T Ramirez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Wesley L McKeithan
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel A Fletcher
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Center for Cellular Construction, University of California, San Francisco, CA, USA.
| |
Collapse
|
24
|
Lucia SE, Jeong H, Shin JH. Cell segregation via differential collision modes between heterotypic cell populations. Mol Biol Cell 2022; 33:ar129. [PMID: 36129759 PMCID: PMC9634969 DOI: 10.1091/mbc.e22-03-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In tissue development and regeneration, the establishment of sharp boundaries between heterotypic cells is essential for the differentiation of tissue functions. During the dynamic rearrangements of constituent cells that result from cell division and collective migration, the segregation boundary encounters various challenges. Several studies have suggested that cortical actomyosin structures play a crucial role in the maintenance of the boundary interface of segregated cell populations, implicating actin-mediated stresses. Examining physical cellular properties such as motility, traction, and intercellular stress, we investigated the formation and maintenance of the stable segregation between epithelial and mesenchymal cell populations devoid of heterotypic adhesions. At the contact boundary, the homotypic adhesion-mediated epithelial aggregates exerted collision-mediated compression against the surrounding mesenchymal cells. Our results demonstrated that heterotypic cell populations established a robust interfacial boundary by accumulating stress from active collisions and repulsions between two dissimilar cell types. Furthermore, the moment of the heterotypic collisions was identified by the existence of a sharp rise in maximum shear stress within the cell cluster.
Collapse
Affiliation(s)
- Stephani Edwina Lucia
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Seoul 34141, Republic of Korea
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Seoul 34141, Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Seoul 34141, Republic of Korea,*Address correspondence to: Jennifer H. Shin ()
| |
Collapse
|
25
|
Sharrock TE, Evans J, Blanchard GB, Sanson B. Different temporal requirements for tartan and wingless in the formation of contractile interfaces at compartmental boundaries. Development 2022; 149:dev200292. [PMID: 36178136 PMCID: PMC9687003 DOI: 10.1242/dev.200292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/12/2022] [Indexed: 10/21/2023]
Abstract
Compartmental boundaries physically separate developing tissues into distinct regions, which is fundamental for the organisation of the body plan in both insects and vertebrates. In many examples, this physical segregation is caused by a regulated increase in contractility of the actomyosin cortex at boundary cell-cell interfaces, a property important in developmental morphogenesis beyond compartmental boundary formation. We performed an unbiased screening approach to identify cell surface receptors required for actomyosin enrichment and polarisation at parasegmental boundaries (PSBs) in early Drosophila embryos, from the start of germband extension at gastrulation and throughout the germband extended stages (stages 6 to 11). First, we find that Tartan is required during germband extension for actomyosin enrichment at PSBs, confirming an earlier report. Next, by following in real time the dynamics of loss of boundary straightness in tartan mutant embryos compared with wild-type and ftz mutant embryos, we show that Tartan is required during germband extension but not beyond. We identify candidate genes that could take over from Tartan at PSBs and confirm that at germband extended stages, actomyosin enrichment at PSBs requires Wingless signalling.
Collapse
Affiliation(s)
- Thomas E. Sharrock
- Departmentof Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Cambridge CB2 3DY, UK
| | - Jenny Evans
- Departmentof Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Cambridge CB2 3DY, UK
| | - Guy B. Blanchard
- Departmentof Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Departmentof Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Cambridge CB2 3DY, UK
| |
Collapse
|
26
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
27
|
Malmi-Kakkada AN, Sinha S, Li X, Thirumalai D. Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism. Biophys J 2022; 121:3719-3729. [PMID: 35505608 PMCID: PMC9617137 DOI: 10.1016/j.bpj.2022.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
We determine how intercellular interactions and mechanical pressure experienced by single cells regulate cell proliferation using a minimal computational model for three-dimensional multicellular spheroid (MCS) growth. We discover that emergent spatial variations in the cell division rate, depending on the location of the cells either at the core or periphery within the MCS, is regulated by intercellular adhesion strength (fad). Varying fad results in nonmonotonic proliferation of cells in the MCS. A biomechanical feedback mechanism coupling the fad and microenvironment-dependent pressure fluctuations relative to a threshold value (pc) determines the onset of a dormant phase, and explains the nonmonotonic proliferation response. Increasing fad from low values enhances cell proliferation because pressure on individual cells is smaller compared with pc. However, at high fad, cells readily become dormant and cannot rearrange effectively in spacetime, leading to arrested cell proliferation. Utilizing our theoretical predictions, we explain experimental data on the impact of adhesion strength on cell proliferation and find good agreement. Our work, which shows that proliferation is regulated by pressure-adhesion feedback mechanism, may be a general feature of multicellular growth.
Collapse
Affiliation(s)
| | - Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas
| | - Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
28
|
Bao M, Cornwall-Scoones J, Sanchez-Vasquez E, Cox AL, Chen DY, De Jonghe J, Shadkhoo S, Hollfelder F, Thomson M, Glover DM, Zernicka-Goetz M. Stem cell-derived synthetic embryos self-assemble by exploiting cadherin codes and cortical tension. Nat Cell Biol 2022; 24:1341-1349. [PMID: 36100738 PMCID: PMC9481465 DOI: 10.1038/s41556-022-00984-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.
Collapse
Affiliation(s)
- Min Bao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- The Francis Crick Institute, London, UK
| | - Estefania Sanchez-Vasquez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andy L Cox
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Yuan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joachim De Jonghe
- The Francis Crick Institute, London, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shahriar Shadkhoo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Nagle I, Richert A, Quinteros M, Janel S, Buysschaert E, Luciani N, Debost H, Thevenet V, Wilhelm C, Prunier C, Lafont F, Padilla-Benavides T, Boissan M, Reffay M. Surface tension of model tissues during malignant transformation and epithelial–mesenchymal transition. Front Cell Dev Biol 2022; 10:926322. [PMID: 36111347 PMCID: PMC9468677 DOI: 10.3389/fcell.2022.926322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial–mesenchymal transition is associated with migration, invasion, and metastasis. The translation at the tissue scale of these changes has not yet been enlightened while being essential in the understanding of tumor progression. Thus, biophysical tools dedicated to measurements on model tumor systems are needed to reveal the impact of epithelial–mesenchymal transition at the collective cell scale. Herein, using an original biophysical approach based on magnetic nanoparticle insertion inside cells, we formed and flattened multicellular aggregates to explore the consequences of the loss of the metastasis suppressor NME1 on the mechanical properties at the tissue scale. Multicellular spheroids behave as viscoelastic fluids, and their equilibrium shape is driven by surface tension as measured by their deformation upon magnetic field application. In a model of breast tumor cells genetically modified for NME1, we correlated tumor invasion, migration, and adhesion modifications with shape maintenance properties by measuring surface tension and exploring both invasive and migratory potential as well as adhesion characteristics.
Collapse
Affiliation(s)
- Irène Nagle
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Alain Richert
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Michael Quinteros
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT, United States
| | - Sébastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Edgar Buysschaert
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Henry Debost
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
| | - Véronique Thevenet
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Claire Wilhelm
- Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Paris, France
| | - Céline Prunier
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | | | - Mathieu Boissan
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
- *Correspondence: Mathieu Boissan, ; Myriam Reffay,
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
- *Correspondence: Mathieu Boissan, ; Myriam Reffay,
| |
Collapse
|
30
|
Arjoca S, Robu A, Neagu M, Neagu A. Mathematical and computational models in spheroid-based biofabrication. Acta Biomater 2022:S1742-7061(22)00418-4. [PMID: 35853599 DOI: 10.1016/j.actbio.2022.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/01/2022]
Abstract
Ubiquitous in embryonic development, tissue fusion is of interest to tissue engineers who use tissue spheroids or organoids as building blocks of three-dimensional (3D) multicellular constructs. This review presents mathematical models and computer simulations of the fusion of tissue spheroids. The motivation of this study stems from the need to predict the post-printing evolution of 3D bioprinted constructs. First, we provide a brief overview of differential adhesion, the main morphogenetic mechanism involved in post-printing structure formation. It will be shown that clusters of cohesive cells behave as an incompressible viscous fluid on the time scale of hours. The discussion turns then to mathematical models based on the continuum hydrodynamics of highly viscous liquids and on statistical mechanics. Next, we analyze the validity and practical use of computational models of multicellular self-assembly in live constructs created by tissue spheroid bioprinting. Finally, we discuss the perspectives of the field as machine learning starts to reshape experimental design, and modular robotic workstations tend to alleviate the burden of repetitive tasks in biofabrication. STATEMENT OF SIGNIFICANCE: Bioprinted constructs are living systems, which evolve via morphogenetic mechanisms known from developmental biology. This review presents mathematical and computational tools devised for modeling post-printing structure formation. They help achieving a desirable outcome without expensive optimization experiments. While previous reviews mainly focused on assumptions, technical details, strengths, and limitations of computational models of multicellular self-assembly, this article discusses their validity and practical use in biofabrication. It also presents an overview of mathematical models that proved to be useful in the evaluation of experimental data on tissue spheroid fusion, and in the calibration of computational models. Finally, the perspectives of the field are discussed in the advent of robotic biofabrication platforms and bioprinting process optimization by machine learning.
Collapse
Affiliation(s)
- Stelian Arjoca
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Andreea Robu
- Department of Automation and Applied Informatics, Politehnica University of Timisoara, Timisoara 300006, Romania
| | - Monica Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Adrian Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania; Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
31
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Tension hones body segmentation around the clock. Nature 2022; 605:432-433. [PMID: 35478017 DOI: 10.1038/d41586-022-00840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Shook DR, Wen JWH, Rolo A, O'Hanlon M, Francica B, Dobbins D, Skoglund P, DeSimone DW, Winklbauer R, Keller RE. Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. eLife 2022; 11:e57642. [PMID: 35404236 PMCID: PMC9064293 DOI: 10.7554/elife.57642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik, 1988). Here, we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al., 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Jason WH Wen
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ana Rolo
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| | - Michael O'Hanlon
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | | | - Paul Skoglund
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Douglas W DeSimone
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ray E Keller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| |
Collapse
|
34
|
Gsell S, Merkel M. Phase separation dynamics in deformable droplets. SOFT MATTER 2022; 18:2672-2683. [PMID: 35311835 DOI: 10.1039/d1sm01647d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase separation can drive spatial organization of multicomponent mixtures. For instance in developing animal embryos, effective phase separation descriptions have been used to account for the spatial organization of different tissue types. Similarly, separation of different tissue types is also observed in stem cell aggregates, where the emergence of a polar organization can mimic early embryonic axis formation. Here, we describe such aggregates as deformable two-phase fluid droplets, which are suspended in a fluid environment (third phase). Using hybrid finite-volume Lattice-Boltzmann simulations, we numerically explore the out-of-equilibrium routes that can lead to the polar equilibrium state of such a droplet. We focus on the interplay between spinodal decomposition and advection with hydrodynamic flows driven by interface tensions, which we characterize by a Peclet number Pe. Consistent with previous work, for large Pe the coarsening process is generally accelerated. However, for intermediate Pe we observe long-lived, strongly elongated droplets, where both phases form an alternating stripe pattern. We show that these "croissant" states are close to mechanical equilibrium and coarsen only slowly through diffusive fluxes in an Ostwald-ripening-like process. Finally, we show that a surface tension asymmetry between both droplet phases leads to transient, rotationally symmetric states whose resolution leads to flows reminiscent of Marangoni flows. Our work highlights the importance of advection for the phase separation process in finite, deformable systems.
Collapse
Affiliation(s)
- Simon Gsell
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
35
|
Yanagida A, Corujo-Simon E, Revell CK, Sahu P, Stirparo GG, Aspalter IM, Winkel AK, Peters R, De Belly H, Cassani DAD, Achouri S, Blumenfeld R, Franze K, Hannezo E, Paluch EK, Nichols J, Chalut KJ. Cell surface fluctuations regulate early embryonic lineage sorting. Cell 2022; 185:777-793.e20. [PMID: 35196500 PMCID: PMC8896887 DOI: 10.1016/j.cell.2022.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 01/24/2023]
Abstract
In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Corujo-Simon
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher K Revell
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Preeti Sahu
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Henry De Belly
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Davide A D Cassani
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarra Achouri
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
36
|
Miller CT, Gray WG, Schrefler BA. A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems. ARCHIVE OF APPLIED MECHANICS = INGENIEUR-ARCHIV 2022; 92:461-489. [PMID: 35811645 PMCID: PMC9269988 DOI: 10.1007/s00419-021-01891-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The growth and treatment of tumors is an important problem to society that involves the manifestation of cellular phenomena at length scales on the order of centimeters. Continuum mechanical approaches are being increasingly used to model tumors at the largest length scales of concern. The issue of how to best connect such descriptions to smaller-scale descriptions remains open. We formulate a framework to derive macroscale models of tumor behavior using the thermodynamically constrained averaging theory (TCAT), which provides a firm connection with the microscale and constraints on permissible forms of closure relations. We build on developments in the porous medium mechanics literature to formulate fundamental entropy inequality expressions for a general class of three-phase, compositional models at the macroscale. We use the general framework derived to formulate two classes of models, a two-phase model and a three-phase model. The general TCAT framework derived forms the basis for a wide range of potential models of varying sophistication, which can be derived, approximated, and applied to understand not only tumor growth but also the effectiveness of various treatment modalities.
Collapse
Affiliation(s)
- Cass T Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - William G Gray
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| |
Collapse
|
37
|
Enhancing membrane-based soft materials with magnetic reconfiguration events. Sci Rep 2022; 12:1703. [PMID: 35105905 PMCID: PMC8807651 DOI: 10.1038/s41598-022-05501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.
Collapse
|
38
|
Savoj S, Esfahani MHN, Karimi A, Karamali F. Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sci 2022; 291:120273. [PMID: 35016877 DOI: 10.1016/j.lfs.2021.120273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
AIM Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.
Collapse
Affiliation(s)
- Soraya Savoj
- Department of Biology, University of Payam Noor, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Akbar Karimi
- Department of Biology, University of Payam Noor, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
39
|
Atia L, Fredberg JJ, Gov NS, Pegoraro AF. Are cell jamming and unjamming essential in tissue development? Cells Dev 2021; 168:203727. [PMID: 34363993 PMCID: PMC8935248 DOI: 10.1016/j.cdev.2021.203727] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022]
Abstract
The last decade has seen a surge of evidence supporting the existence of the transition of the multicellular tissue from a collective material phase that is regarded as being jammed to a collective material phase that is regarded as being unjammed. The jammed phase is solid-like and effectively 'frozen', and therefore is associated with tissue homeostasis, rigidity, and mechanical stability. The unjammed phase, by contrast, is fluid-like and effectively 'melted', and therefore is associated with mechanical fluidity, plasticity and malleability that are required in dynamic multicellular processes that sculpt organ microstructure. Such multicellular sculpturing, for example, occurs during embryogenesis, growth and remodeling. Although unjamming and jamming events in the multicellular collective are reminiscent of those that occur in the inert granular collective, such as grain in a hopper that can flow or clog, the analogy is instructive but limited, and the implications for cell biology remain unclear. Here we ask, are the cellular jamming transition and its inverse --the unjamming transition-- mere epiphenomena? That is, are they dispensable downstream events that accompany but neither cause nor quench these core multicellular processes? Drawing from selected examples in developmental biology, here we suggest the hypothesis that, to the contrary, the graded departure from a jammed phase enables controlled degrees of malleability as might be required in developmental dynamics. We further suggest that the coordinated approach to a jammed phase progressively slows those dynamics and ultimately enables long-term mechanical stability as might be required in the mature homeostatic multicellular tissue.
Collapse
Affiliation(s)
- Lior Atia
- Department of Mechanical Engineering, Ben Gurion University, Beer-Sheva, Israel
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute, Israel
| | | |
Collapse
|
40
|
Devanny AJ, Vancura MB, Kaufman LJ. Exploiting differential effects of actomyosin contractility to control cell sorting among breast cancer cells. Mol Biol Cell 2021; 32:ar24. [PMID: 34432511 PMCID: PMC8693969 DOI: 10.1091/mbc.e21-07-0357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to gain a greater understanding of the factors that drive spatial organization in multicellular aggregates of cancer cells, we investigate the segregation patterns of 6 breast cell lines of varying degree of mesenchymal character during formation of mixed aggregates. Cell sorting is considered in the context of available adhesion proteins and cellular contractility. It is found that the primary compaction mediator (cadherins or integrins) for a given cell type in isolation plays an important role in compaction speed, which in turn is the major factor dictating preference for interior or exterior position within mixed aggregates. In particular, cadherin-deficient, invasion-competent cells tend to position towards the outside of aggregates, facilitating access to extracellular matrix. Reducing actomyosin contractility is found to have a differential effect on spheroid formation depending on compaction mechanism. Inhibition of contractility has a significant stabilizing effect on cell-cell adhesions in integrin-driven aggregation and a mildly destabilizing effect in cadherin-based aggregation. This differential response is exploited to statically control aggregate organization and dynamically rearrange cells in pre-formed aggregates. Sequestration of invasive cells in the interior of spheroids provides a physical barrier that reduces invasion in three-dimensional culture, revealing a potential strategy for containment of invasive cell types.
Collapse
Affiliation(s)
| | | | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
41
|
Barua D, Nagel M, Winklbauer R. Cell-cell contact landscapes in Xenopus gastrula tissues. Proc Natl Acad Sci U S A 2021; 118:e2107953118. [PMID: 34544871 PMCID: PMC8488617 DOI: 10.1073/pnas.2107953118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 01/26/2023] Open
Abstract
Molecular and structural facets of cell-cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell-cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10 to 1,000 nm. The contact width frequencies define tissue-specific contact spectra, and knockdown of adhesion factors modifies these spectra. This allows us to reconstruct the emergence of contact types from complex interactions of the factors. We find that the membrane proteoglycan Syndecan-4 plays a dominant role in all contacts, including narrow C-cadherin-mediated junctions. Glypican-4, hyaluronic acid, paraxial protocadherin, and fibronectin also control contact widths, and unexpectedly, C-cadherin functions in wide contacts. Using lanthanum staining, we identified three morphologically distinct forms of glycocalyx in contacts of the Xenopus gastrula, which are linked to the adhesion factors examined and mediate cell-cell attachment. Our study delineates a systematic approach to examine the varied contributions of adhesion factors individually or in combinations to nondiscrete and seemingly amorphous intercellular contacts.
Collapse
Affiliation(s)
- Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
42
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
43
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Gu C. Rapid and Reversible Development of Axonal Varicosities: A New Form of Neural Plasticity. Front Mol Neurosci 2021; 14:610857. [PMID: 33613192 PMCID: PMC7886671 DOI: 10.3389/fnmol.2021.610857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axonal varicosities are enlarged, heterogeneous structures along axonal shafts, profoundly affecting axonal conduction and synaptic transmission. They represent a key pathological feature believed to develop via slow accumulation of axonal damage that occurs during irreversible degeneration, for example in mild traumatic brain injury (mTBI), Alzheimer's and Parkinson's diseases, and multiple sclerosis. Here this review first discusses recent in vitro results showing that axonal varicosities can be rapidly and reversibly induced by mechanical stress in cultured primary neurons from the central nervous system (CNS). This notion is further supported by in vivo studies revealing the induction of axonal varicosities across various brain regions in different mTBI mouse models, as a prominent feature of axonal pathology. Limited progress in understanding intrinsic and extrinsic regulatory mechanisms of axonal varicosity induction and development is further highlighted. Rapid and reversible formation of axonal varicosities likely plays a key role in CNS neuron mechanosensation and is a new form of neural plasticity. Future investigation in this emerging research field may reveal how to reverse axonal injury, contributing to the development of new strategies for treating brain injuries and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
45
|
Tse JD, Moore R, Meng Y, Tao W, Smith ER, Xu XX. Dynamic conversion of cell sorting patterns in aggregates of embryonic stem cells with differential adhesive affinity. BMC DEVELOPMENTAL BIOLOGY 2021; 21:2. [PMID: 33407086 PMCID: PMC7788919 DOI: 10.1186/s12861-020-00234-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. RESULTS As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg's sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. CONCLUSIONS Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.
Collapse
Affiliation(s)
- Jeffrey D. Tse
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Robert Moore
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Yue Meng
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
46
|
Boot RC, Koenderink GH, Boukany PE. Spheroid mechanics and implications for cell invasion. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1978316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruben C. Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E. Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
47
|
Gryadunova AA, Koudan EV, Rodionov SA, Pereira FDAS, Meteleva NY, Kasyanov VA, Parfenov VA, Kovalev AV, Khesuani YD, Mironov VA, Bulanova EA. Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres. Acta Biomater 2020; 118:141-152. [PMID: 33045401 DOI: 10.1016/j.actbio.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.
Collapse
Affiliation(s)
- Anna A Gryadunova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation.
| | - Elizaveta V Koudan
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| | - Sergey A Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - F D A S Pereira
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Nina Yu Meteleva
- I.D. Papanin Institute for Biology of Inland Waters RAS, Borok 152742, Russian Federation
| | - Vladimir A Kasyanov
- Riga Stradins University, Riga LV-1007, Latvia; Riga Technical University, Riga LV-1658, Latvia
| | - Vladislav A Parfenov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Alexey V Kovalev
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Vladimir A Mironov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | - Elena A Bulanova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| |
Collapse
|
48
|
Pinto DEP, Erdemci-Tandogan G, Manning ML, Araújo NAM. The Cell Adaptation Time Sets a Minimum Length Scale for Patterned Substrates. Biophys J 2020; 119:2299-2306. [PMID: 33130122 DOI: 10.1016/j.bpj.2020.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The structure and dynamics of tissue cultures depend strongly on the physical and chemical properties of the underlying substrate. Inspired by previous advances in the context of inorganic materials, the use of patterned culture surfaces has been proposed as an effective way to induce space-dependent properties in cell tissues. However, cells move and diffuse, and the transduction of external stimuli to biological signals is not instantaneous. Here, we show that the fidelity of patterns to demix tissue cells depends on the relation between the diffusion (τD) and adaptation (τ) times. Numerical results for the self-propelled Voronoi model reveal that the fidelity decreases with τ/τD, a result that is reproduced by a continuum reaction-diffusion model. Based on recent experimental results for single cells, we derive a minimal length scale for the patterns in the substrate that depends on τ/τD and can be much larger than the cell size.
Collapse
Affiliation(s)
- Diogo E P Pinto
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Centro de Física Teórica e Computacional, Lisboa, Portugal
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, New York; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York
| | - Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Centro de Física Teórica e Computacional, Lisboa, Portugal.
| |
Collapse
|
49
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
50
|
Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochim Biophys Acta Rev Cancer 2020; 1874:188436. [PMID: 32976980 DOI: 10.1016/j.bbcan.2020.188436] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
EpCAM has long been known as a cell surface protein highly expressed in carcinomas. It has since become one of the key cancer biomarkers. Despite its high fame, its actual role in cancer development is still controversial. Beyond a flurry of correlative studies, which point either to a positive or a negative link with tumour progression, there has been surprisingly few studies on the actual cellular mechanisms of EpCAM and on their functional consequences. Clearly, EpCAM plays multiple important roles, in cell proliferation as well as in cell adhesion and migration. The two latter functions, directly relevant for metastasis, are the focus of this review. We attempt here to bring together the available experimental data to build a global coherent view of EpCAM functions. We also include in this overview EpCAM2/Trop2, the close relative of EpCAM. At the core of EpCAM (and EpCAM2/Trop2) function stands the ability to repress contractility of the actomyosin cell cortex. This activity appears to involve direct inhibition by EpCAM of members of the novel PKC family and of a specific downstream PKD-Erk cascade. We will discuss how this activity can result in a variety of adhesive and migratory phenotypes, thus potentially explaining at least part of the apparent inconsistencies between different studies. The picture remains fragmented, and we will highlight some of the conflicting evidence and the many unsolved issues, starting with the controversy around its original description as a cell-cell adhesion molecule.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France.
| | - Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France; Department of Biology, McGill University, Montreal, QC H3A1B1, Canada
| |
Collapse
|