1
|
Butler OM, Sanchez V, Simpson KJ, Windsor D. Arthropod abundances track soil fertility across a lowland tropical forest landscape. J Anim Ecol 2025. [PMID: 40410954 DOI: 10.1111/1365-2656.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025]
Abstract
Soil phosphorus (P) drives productivity and floristic composition across tropical forest landscapes, but equivalent links between soil P and tropical forest fauna remain poorly understood. We evaluated soil P as a driver of understorey Coleoptera and epigeal arthropod assemblages across a natural landscape-level soil fertility gradient and at an adjacent site-level P fertilisation experiment in central Panama. A fifth of Coleoptera families in flight-intercept traps (corresponding to 10%-55% [range of values across 10 sites] of all specimens), a third of litter-extracted Coleoptera families (7%-86% of specimens), and almost half of litter-extracted fauna orders (20%-69% of specimens) displayed significant abundance trends across the natural fertility gradient. These responses were not paralleled in the site-level fertilisation experiment, which could be an indication that floristic composition is a proximal driver of arthropod-soil P associations across the lowland tropical forest landscape of central Panama. By revealing the significant, indirect role of soil P in shaping tropical arthropod assemblages, our results highlight the ongoing connection between geological-scale processes and the contemporary ecology of the most diverse group of animals on Earth.
Collapse
Affiliation(s)
| | - Vanessa Sanchez
- Smithsonian Tropical Research Institute, Panama, Panama
- The University of Panama, Panama, Panama
| | | | | |
Collapse
|
2
|
Iwaszkiewicz-Eggebrecht E, Goodsell RM, Bengsson BÅ, Mutanen M, Klinth M, van Dijk LJA, Łukasik P, Miraldo A, Andersson A, Tack AJM, Roslin T, Ronquist F. High-throughput biodiversity surveying sheds new light on the brightest of insect taxa. Proc Biol Sci 2025; 292:20242974. [PMID: 40359979 PMCID: PMC12074807 DOI: 10.1098/rspb.2024.2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
DNA metabarcoding of species-rich taxa is becoming a popular high-throughput method for biodiversity inventories. Unfortunately, its accuracy and efficiency remain unclear, as results mostly pertain to poorly known taxa in underexplored regions. This study evaluates what an extensive sampling effort combined with metabarcoding can tell us about the lepidopteran fauna of Sweden-one of the best-understood insect taxa in one of the most-surveyed countries of the world. We deployed 197 Malaise traps across Sweden for a year, generating 4749 bulk samples for metabarcoding, and compared the results to existing data sources. We detected more than half (1535) of the 2990 known Swedish lepidopteran species and 323 species not reported during the sampling period by other data providers. Full-length barcoding confirmed three new species for the country, substantial range extensions for two species and eight genetically distinct barcode variants potentially representing new species, one of which has since been described. Most new records represented small, inconspicuous species from poorly surveyed regions, highlighting components of the fauna overlooked by traditional surveying. These findings demonstrate that DNA metabarcoding is a highly efficient and accurate biodiversity sampling method, capable of yielding significant new discoveries even for the most well known of insect faunas.
Collapse
Affiliation(s)
| | - Robert M. Goodsell
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Marko Mutanen
- Department of Biology, University of Oulu, Oulu, Northern Ostrobothnia, Finland
| | | | - Laura J. A. van Dijk
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Piotr Łukasik
- Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ayco Jerome Michel Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
3
|
Zhong Y, Wang Q, Sun F, Yu X, Liu Y, Shentu X. Effects of tebuconazole on insecticidal activity and symbionts in brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106283. [PMID: 40015875 DOI: 10.1016/j.pestbp.2024.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
Harnessing symbionts as targets for pest management is an emerging and promising strategy that can contribute to sustainable agriculture and environmental protection. Brown planthopper (BPH), a major rice pest, significantly threatens crop yields and quality. In this study, we discovered that BPHs exhibited a significant increase in mortality after consuming the fungicide tebuconazole, indicating its direct toxic effect. Tebuconazole negatively impacts the body weight, digestive enzyme activity, and reproductive capacity in BPHs, and it also leads to a significant downregulation of the expression levels of the ecdysteroid biosynthetic genes. The number of symbionts and the expression level of Noda in the BPH treated with tebuconazole was significantly reduced. Sequencing results showed that tebuconazole had a significant effect on the richness of symbiotic fungi and bacteria in BPH. As a fungicide, tebuconazole can offer new approaches and insights for managing resistance and integrated pest control.
Collapse
Affiliation(s)
- Yuqing Zhong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Qian Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Fan Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yipeng Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Haider K, Abbas D, Galian J, Ghafar MA, Kabir K, Ijaz M, Hussain M, Khan KA, Ghramh HA, Raza A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: implications for pest management strategies. World J Microbiol Biotechnol 2025; 41:75. [PMID: 40011281 DOI: 10.1007/s11274-025-04288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Similar to many other organisms, insects like Drosophila melanogaster, Hypothenemus hampei, and Cockroaches harbor diverse bacterial communities in their gastrointestinal systems. These bacteria, along with other microorganisms like fungi and archaea, are essential to the physiology of their insect hosts, forming intricate symbiotic relationships. These gut-associated microorganisms contribute to various vital functions, including digestion, nutrient absorption, immune regulation, and behavioral modulation. Notably, gut microbiota facilitates the breakdown of complex plant materials, synthesizes essential vitamins and amino acids, and detoxifies harmful substances, including pesticides. Furthermore, these microorganisms are integral to modulating host immune responses and enhancing disease resistance. This review examines the multifaceted roles of gut microbiota in insect physiology, with particular emphasis on their contributions to digestion, detoxification, reproduction, and environmental adaptability. The potential applications of gut microbiota in integrated pest management (IPM) are also explored. Understanding the microbial dynamics within insect pest species opens new avenues for pest control, including developing microbial biocontrol agents, microbial modifications to reduce pesticide resistance, and implementing microbiome-based genetic strategies. In particular, manipulating gut microbiota presents a promising approach to pest management, offering a sustainable and eco-friendly alternative to conventional chemical pesticides.
Collapse
Affiliation(s)
- Kamran Haider
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Dilawar Abbas
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jose Galian
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain.
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kamil Kabir
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Ijaz
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Khalid Ali Khan
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abbas Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
5
|
Walther C, Vallet M, Reichelt M, Giri P, Rothe B, Negwer EJ, van Berkum PM, Gershenzon J, Unsicker SB. A Fungal Endophyte Alters Poplar Leaf Chemistry, Deters Insect Feeding and Shapes Insect Community Assembly. Ecol Lett 2025; 28:e70007. [PMID: 40007485 PMCID: PMC11862874 DOI: 10.1111/ele.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 02/27/2025]
Abstract
Fungal endophytes of grasses and other herbaceous plants have been known to provide plants with anti-herbivore defence compounds, but there is little information about whether the endophytes of trees also engage in such mutualisms. We investigated the influence of the endophytic fungus Cladosporium sp. on the chemical defences of black poplar (Populus nigra) trees and the consequences for feeding preference and fitness of herbivorous insects and insect community assembly. Endophyte colonisation increased both constitutive- and induced poplar defences. Generalist Lymantria dispar larvae preferred and performed better on uninfected over endophyte-infected poplar leaves, most likely due to higher concentrations of salicinoids in endophyte-inoculated leaves and the endophyte-produced alkaloid stachydrine. Under field conditions, the endophytic fungus shapes insect community assembly i. a. attracting aphids, which can excrete stachydrine. Our results show that endophytic fungi play a crucial role in the defence against insects from different feeding guilds and thereby structuring insect communities.
Collapse
Affiliation(s)
- Christin Walther
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
- Plant‐Environment‐Interactions GroupBotanical Institute and Botanical Garden, Kiel UniversityKielGermany
| | - Marine Vallet
- Max Planck Fellow Group Plankton Community InteractionMax Planck Institute for Chemical EcologyJenaGermany
- Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaJenaGermany
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Prajakta Giri
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Beate Rothe
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Elina J. Negwer
- Plant‐Environment‐Interactions GroupBotanical Institute and Botanical Garden, Kiel UniversityKielGermany
| | | | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
- Plant‐Environment‐Interactions GroupBotanical Institute and Botanical Garden, Kiel UniversityKielGermany
| |
Collapse
|
6
|
Böttger D, Singh RP, Friedrich E, Brehm G. The moth fauna is more diverse in the understorey than in the canopy in a European forest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:1-11. [PMID: 39773774 DOI: 10.1017/s0007485324000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The canopy of forests as the 'last biotic frontier' has often been neglected in insect biodiversity studies because it is harder to access compared to the understorey, even in relatively well-known temperate ecosystems. We investigated the diversity, abundance, and body size patterns of macromoths (Lepidoptera) in the canopy and understorey in a central European deciduous forest. We collected moths at two sites during 19 trapping nights and three lunar phases between July and September 2021 using a weak ultraviolet light emitting diode (LED) lamp (LepiLED mini). Overall, we captured 4368 individuals (165 species) from 11 families. Based on a number of metrics, richness and diversity was significantly lower in the canopy than in the understorey. Non-metric multidimensional scaling ordinations show that communities largely overlap, but the proportion of species that only occur in the understorey was higher. While Noctuidae and Erebidae species were abundant in both strata, Geometridae species were most frequently observed in the understorey. We identified 16 indicator species for the understorey but only three for the canopy. Forewing length of moths in the canopy was on average 1.7 mm longer than of those in the understorey. Overall, the understorey is far more important for moths than the canopy in a temperate forest. The canopy is dominated by fewer and larger species and probably has a higher proportion of dispersers.
Collapse
Affiliation(s)
- Dennis Böttger
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| | - Rachit Pratap Singh
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Egbert Friedrich
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| | - Gunnar Brehm
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Pillay R, Watson JE, Hansen AJ, Burns P, Virnig ALS, Supples C, Armenteras D, González-del-Pliego P, Aragon-Osejo J, A. Jantz P, Ervin J, Goetz SJ, Venter O. Global rarity of high-integrity tropical rainforests for threatened and declining terrestrial vertebrates. Proc Natl Acad Sci U S A 2024; 121:e2413325121. [PMID: 39652754 PMCID: PMC11665883 DOI: 10.1073/pnas.2413325121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 06/11/2025] Open
Abstract
Structurally intact native forests free from major human pressures are vitally important habitats for the persistence of forest biodiversity. However, the extent of such high-integrity forest habitats remaining for biodiversity is unknown. Here, we quantify the amount of high-integrity tropical rainforests, as a fraction of total forest cover, within the geographic ranges of 16,396 species of terrestrial vertebrates worldwide. We found up to 90% of the humid tropical ranges of forest-dependent vertebrates was encompassed by forest cover. Concerningly, however, merely 25% of these remaining rainforests are of high integrity. Forest-dependent species that are threatened and declining and species with small geographic ranges have disproportionately low proportions of high-integrity forest habitat left. Our work brings much needed attention to the poor quality of much of the forest estate remaining for biodiversity across the humid tropics. The targeted preservation of the world's remaining high-integrity tropical rainforests that are currently unprotected is a critical conservation priority that may help alleviate the biodiversity crisis in these hyperdiverse and irreplaceable ecosystems. Enhanced efforts worldwide to preserve tropical rainforest integrity are essential to meet the targets of the Convention on Biological Diversity's 2022 Kunming-Montreal Global Biodiversity Framework which aims to achieve near zero loss of high biodiversity importance areas (including ecosystems of high integrity) by 2030.
Collapse
Affiliation(s)
- Rajeev Pillay
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British ColumbiaV2N 4Z9, Canada
| | - James E.M. Watson
- School of The Environment, The University of Queensland, Brisbane, QLD4072, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Andrew J. Hansen
- Department of Ecology, Montana State University, Bozeman, MT59717-3460
| | - Patrick Burns
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | | | | | - Dolors Armenteras
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá111321, Colombia
| | - Pamela González-del-Pliego
- Rui Nabeiro Biodiversity Chair, Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora7006-554, Portugal
| | - Jose Aragon-Osejo
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British ColumbiaV2N 4Z9, Canada
| | - Patrick A. Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | - Jamison Ervin
- United Nations Development Programme, New York, NY10017
| | - Scott J. Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British ColumbiaV2N 4Z9, Canada
| |
Collapse
|
8
|
Szczygieł HA, Butler OM, Nottingham AT. Decline in diversity of tropical soil fauna under experimental warming. Proc Biol Sci 2024; 291:20242193. [PMID: 39657814 PMCID: PMC11639662 DOI: 10.1098/rspb.2024.2193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Climate change is exacerbating a global decline in biodiversity. Numerous observational studies link rising temperatures to declining biological abundance, richness and diversity in terrestrial ecosystems, yet few studies have considered the highly diverse and functionally significant communities of tropical forest soil and leaf litter fauna. Here, we report major declines in the order-level richness and diversity of soil and leaf litter fauna following three years of experimental whole-profile soil warming in a tropical forest. These declines were greatest during the dry season, suggesting that warming effects could be exacerbated by drought. Contrary to findings from higher latitudes, total faunal abundance increased under warming, and these effects were paralleled by major shifts in community composition. These responses were driven by increased dominance of a relatively small number of thermophilic taxa, and of oribatid mites in particular. Our study provides direct experimental evidence that warming causes diversity declines and compositional shifts for tropical forest soil and leaf litter fauna, a result with potential consequences for soil functions and biogeochemical cycles, and that highlights the vulnerability of tropical biodiversity to climate change.
Collapse
Affiliation(s)
- Hubert A. Szczygieł
- Smithsonian Tropical Research Institute, PanamáApartado Postal 0843-03092, República de Panamá
| | - Orpheus M. Butler
- Smithsonian Tropical Research Institute, PanamáApartado Postal 0843-03092, República de Panamá
- Australian Rivers Institute, Griffith University, Nathan, Queensland4111, Australia
| | - Andrew T. Nottingham
- Smithsonian Tropical Research Institute, PanamáApartado Postal 0843-03092, República de Panamá
- School of Geography, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Xie TT, Wang MQ, Li Y, Su CY, Zhang D, Zhou QS, Niu ZQ, Yuan F, Liu XW, Ma KP, Zhu CD, Hao JS, Chesters D. Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests. INSECTS 2024; 15:909. [PMID: 39590509 PMCID: PMC11594821 DOI: 10.3390/insects15110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The choice of trap in entomological surveys affects the composition of captured insects, though previous comparative studies have been limited in the types of composition measured, and the effects of environmental context. We assessed the sampling bias of several traps commonly used in pollinator monitoring: blue, yellow, and white pan traps, and blue vane traps, towards different taxonomic and functional groups and their efficiency in measuring taxonomic, phylogenetic, and functional diversity. Analyses were performed in monoculture and mixed forests to understand the environmental context of trap efficiency. We found that blue pan traps generally outperformed other types in bee capture and exhibited a preference for Halictidae bees. Blue pan traps yielded the highest species richness and phylogenetic diversity, while blue vane traps captured the highest functional richness. Bias differences were frequently detected in mixed forests compared with monoculture forests. We also found the combination of blue vane and pan traps consistently correlated highest with a complete survey among two-method combinations. Based on our findings, we recommend a combination of blue vane and pan traps to obtain a more comprehensive bee collection in an efficient manner. Additionally, it is crucial to consider habitat type when designing bee trapping protocols to ensure an accurate representation of bee communities.
Collapse
Affiliation(s)
- Ting-Ting Xie
- College of Life Sciences, Anhui Normal University, 1 Beijing East Road, Jinghu District, Wuhu 241000, China; (T.-T.X.); (C.-Y.S.)
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
| | - Ming-Qiang Wang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu 610041, China;
- Key Laboratory of Ecological Restoration Biodiversity Conservation of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (K.-P.M.)
| | - Cheng-Yong Su
- College of Life Sciences, Anhui Normal University, 1 Beijing East Road, Jinghu District, Wuhu 241000, China; (T.-T.X.); (C.-Y.S.)
| | - Dan Zhang
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China;
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
| | - Ze-Qing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
| | - Feng Yuan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
| | - Xiu-Wei Liu
- Institute of Agro-Products Processing, Xueyun Road, Kunming 650221, China;
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (K.-P.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
- International College, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jia-Sheng Hao
- College of Life Sciences, Anhui Normal University, 1 Beijing East Road, Jinghu District, Wuhu 241000, China; (T.-T.X.); (C.-Y.S.)
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (Q.-S.Z.); (Z.-Q.N.); (F.Y.); (C.-D.Z.)
- International College, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
10
|
Bernenko D, Li M, Månefjord H, Jansson S, Runemark A, Kirkeby C, Brydegaard M. Insect diversity estimation in polarimetric lidar. PLoS One 2024; 19:e0312770. [PMID: 39485810 PMCID: PMC11530007 DOI: 10.1371/journal.pone.0312770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024] Open
Abstract
Identifying flying insects is a significant challenge for biologists. Entomological lidar offers a unique solution, enabling rapid identification and classification in field settings. No other method can match its speed and efficiency in identifying insects in flight. This non-intrusive tool is invaluable for assessing insect biodiversity, informing conservation planning, and evaluating efforts to address declining insect populations. Although the species richness of co-existing insects can reach tens of thousands, current photonic sensors and lidars can differentiate roughly one hundred signal types. While the retrieved number of clusters correlate with Malaise trap diversity estimates, this taxonomic specificity, the number of discernible signal types is currently limited by instrumentation and algorithm sophistication. In this study, we report 32,533 observations of wild flying insects along a 500-meter transect. We report the benefits of lidar polarization bands for differentiating species and compare the performance of two unsupervised clustering algorithms, namely Hierarchical Cluster Analysis and Gaussian Mixture Model. Our analysis shows that polarimetric properties could be partially predicted even with unpolarized light, thus polarimetric lidar bands provide only a minor improvement in specificity. Finally, we use the physical properties of the clustered observations, such as wing beat frequency, daily activity patterns, and spatial distribution, to establish a lower bound for the number of species represented by the differentiated signal types.
Collapse
Affiliation(s)
| | - Meng Li
- Dept. Physics, Lund University, Lund, Sweden
| | | | | | | | - Carsten Kirkeby
- Dept. of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- FaunaPhotonics, Copenhagen, Denmark
| | - Mikkel Brydegaard
- Dept. Physics, Lund University, Lund, Sweden
- Dept. Biology, Lund University, Lund, Sweden
- FaunaPhotonics, Copenhagen, Denmark
- Norsk Elektro Optikk, Oslo, Norway
| |
Collapse
|
11
|
Šigutová H, Pyszko P, Bárta D, Nsor CA, Dolný A. Global changes in the odonate family ratios in response to the tropical forest degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174416. [PMID: 38960167 DOI: 10.1016/j.scitotenv.2024.174416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Odonates (dragonflies and damselflies) can indicate the ecological health of aquatic biota within the rich but vulnerable biodiversity of tropical forests. The reaction of odonates to deforestation can be measured by changes in coarse taxonomic ratios. Suborder Zygoptera are thermal conformers susceptible to overheating, having the affinity with shaded, intact sites. Anisoptera have exothermic regulation and better dispersal capacities, suggesting their association with more altered, open environments. Similarly, with an increasing degradation, the proportion of Anisoptera species in assemblages should increase. However, based on the data from different continents, the Zygoptera/Anisoptera ratio may be too simple, strongly biased, and not applicable at the global scale. The main reason is that the most diverse, abundant, and cosmopolitan families, Coenagrionidae (Zygoptera) and Libellulidae (Anisoptera), comprise a great proportion of habitat generalists with high migratory capacity and affinity with open habitats. In this study, we sampled odonates from three bioregions (Indomalaya, Afrotropics, and Neotropics) over the gradient of tropical forest degradation with a comparable sampling effort to assess the suitability of species richness and suborder-based (Zygoptera/Anisoptera) and family-based (Libellulidae/other Anisoptera and Coenagrionidae/other Zygoptera) ratios and their abundance-weighted versions for monitoring tropical forest degradation. Our results show that simple Odonata as well as Zygoptera and Anisoptera richness are poor indicators of the forest biota alteration. Family-level indices weighted by relative abundance, especially those involving Coenagrionidae, were more sensitive to changes in forest conditions compared to suborder-level indices. Collectively, our results suggest that for biomonitoring, where financial resources and time are commonly critical, family-level ratio metrics may be effective tools to indicate even slight alterations of aquatic biota resulting from forest degradation. Although these indices have the potential for broader application, their effectiveness across tropical bioregions warrants further validation.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Zoology, Faculty of Science, Palacký University Olomouc, 17. listopadu 710, 779 00 Olomouc, Czechia
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Czechia
| | - Dan Bárta
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Czechia
| | - Collins Ayine Nsor
- Department of Forest Resources Technology, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, 29 Maham-Bla St, Kumasi, Ghana
| | - Aleš Dolný
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Czechia.
| |
Collapse
|
12
|
Boyle MJW, Sharp AC, Barclay MV, Chung AYC, Ewers RM, de Rougemont G, Bonebrake TC, Kitching RL, Stork NE, Ashton LA. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr Biol 2024; 34:R770-R771. [PMID: 39163835 DOI: 10.1016/j.cub.2024.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/22/2024]
Abstract
Insects are posited to be declining globally. This is particularly pertinent in tropical forests, which exhibit both the highest levels of biodiversity and the highest rates of biodiversity loss. However, for the hyper-diverse tropical insects there are scant data available to evidence declines. Understanding tropical insect diversity and its response to environmental change has therefore become a challenge, but it is estimated that 80% of tropical insect species remain undescribed1. Insect biodiversity predictions are based mostly on well-studied taxa and extrapolated to other groups, but no one knows whether resilience to environmental change varies between undescribed and described species. Here, we collected staphylinid beetles from unlogged and logged tropical forests in Borneo and investigated their responses to environmental change. Out of 252 morphospecies collected, 76% were undescribed. Undescribed species showed higher community turnover, reduced abundance and decreased probability of occurrence in logged forests. Thus the unknown components of tropical insect biodiversity are likely more impacted by human-induced environmental change. If these patterns are widespread, how accurate will assessments of insect declines in the tropics be?
Collapse
Affiliation(s)
- Michael J W Boyle
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Adam C Sharp
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Maxwell V Barclay
- Insects Division, Life Sciences Department, The Natural History Museum, London SW7 5HD, UK
| | - Arthur Y C Chung
- Forest Research Centre, Sepilok, Sabah Forestry Department, Sabah 90715, Malaysia
| | - Robert M Ewers
- The Georgina Mace Centre, Silwood Park, Imperial College London, Ascot, Berkshire SL5 7PY, UK
| | | | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Roger L Kitching
- School of Environmental and Natural Sciences, Griffith University, Nathan, QLD 4111, Australia
| | - Nigel E Stork
- School of Environmental and Natural Sciences, Griffith University, Nathan, QLD 4111, Australia
| | - Louise A Ashton
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Ibalim S, Toko PS, Segar ST, Sagata K, Koane B, Miller SE, Novotny V, Janda M. Phylogenetic structure of moth communities (Geometridae, Lepidoptera) along a complete rainforest elevational gradient in Papua New Guinea. PLoS One 2024; 19:e0308698. [PMID: 39133743 PMCID: PMC11318904 DOI: 10.1371/journal.pone.0308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
We use community phylogenetics to elucidate the community assembly mechanisms for Geometridae moths (Lepidoptera) collected along a complete rainforest elevational gradient (200-3700 m a.s.l) on Mount Wilhelm in Papua New Guinea. A constrained phylogeny based on COI barcodes for 604 species was used to analyse 1390 species x elevation occurrences at eight elevational sites separated by 500 m elevation increments. We obtained Nearest Relatedness Index (NRI), Nearest Taxon Index (NTI) and Standardised Effect Size of Faith's Phylogenetic Diversity (SES.PD) and regressed these on temperature, plant species richness and predator abundance as key abiotic and biotic predictors. We also quantified beta diversity in the moth communities between elevations using the Phylogenetic Sorensen index. Overall, geometrid communities exhibited phylogenetic clustering, suggesting environmental filters, particularly at higher elevations at and above 2200 m a.s.l and no evidence of overdispersion. NRI, NTI and SES.PD showed no consistent trends with elevation or the studied biotic and abiotic variables. Change in community structure was driven by turnover of phylogenetic beta-diversity, except for the highest 2700-3200 m elevations, which were characterised by nested subsets of lower elevation communities. Overall, the elevational signal of geometrid phylogeny was weak-moderate. Additional insect community phylogeny studies are needed to understand this pattern.
Collapse
Affiliation(s)
- Sentiko Ibalim
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pagi S. Toko
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Simon T. Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, United Kingdom
| | - Katayo Sagata
- PNG Institute of Biological Research, Madang, Papua New Guinea
| | - Bonny Koane
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Scott E. Miller
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States of America
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Milan Janda
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Faculty of Science, Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
14
|
Sánchez Herrera M, Forero D, Calor AR, Romero GQ, Riyaz M, Callisto M, de Oliveira Roque F, Elme-Tumpay A, Khan MK, Justino de Faria AP, Pires MM, Silva de Azevêdo CA, Juen L, Zakka U, Samaila AE, Hussaini S, Kemabonta K, Guillermo-Ferreira R, Ríos-Touma B, Maharaj G. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230102. [PMID: 38705182 PMCID: PMC11070269 DOI: 10.1098/rstb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Melissa Sánchez Herrera
- Department of Museum Research and Collections, University of Alabama Museums, Tuscaloosa, AL 35487, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Laboratorio de Zoología y Ecología Acuática (LAZOEA), Biological Sciences Department, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 11132, Colombia
| | - Adolfo Ricardo Calor
- Instituto de Biologia, Laboratório de Entomologia Aquática, Universidade Federal da Bahia, Salvador, 40000-000, Brazil
| | - Gustavo Q. Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas-SP, CEP 13083-970, Brazil
| | - Muzafar Riyaz
- St Xavier's College, Palayamkottai, Tirunelveli, Tamil Nadu, CEP: 40170-115 7 – 627002, India
| | - Marcos Callisto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Genética, Ecologia e Evolução, Pampulha, Belo Horizonte - MG, 31270-901, Brazil
| | - Fabio de Oliveira Roque
- Departamento de Biología, Universidade Federal de Mato Grosso do Sul, Ciudade Universitaria, Pioneiros, Campo Grande, MS, 79070-900, Brazil
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Douglas, Cairns, 4811, Queensland, Australia
| | - Araseli Elme-Tumpay
- Laboratorio de Biodiversidad y Genética Ambiental (BioGeA), Universidad Nacional de Avellaneda, Mario Bravo 1460, CP1870 Piñeyro, Avellaneda, Buenos Aires, Argentina
- Colección Entomológica, Universidad Nacional de San Antonio Abad del Cusco, Gabinete C-338, Pabellón C, Ciudad Universitaria de Perayoc, Cusco, 08003, Peru
| | - M. Kawsar Khan
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ana Paula Justino de Faria
- Instituto de Ciências Biológicas, Universidade Estadual do Piauí, Rua João Cabral - Matinha, Teresina - PI, 64018-030, Brazil
| | - Mateus Marques Pires
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, 95914-014 Brazil
| | - Carlos Augusto Silva de Azevêdo
- Departamento de Biología, Universidade Estadual do Maranhão, Programa em Biodiversidade, Ambiente e Saúde, 65.055-310, Brazil
| | - Leandro Juen
- Instituto de Ciências Biológicas, Universidade Federal do Pará, UFPA, Belém - PA, 66077-830, Brazil
| | - Usman Zakka
- Department of Crop & Soil Science, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Akeweta Emmanuel Samaila
- Department of Agronomy, Federal University of Kashere: Kashere, P.M.B. 0182, Gombe State, Nigeria
| | - Suwaiba Hussaini
- Department of Biological Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Kehinde Kemabonta
- Department of Zoology, University of Lagos: Akoka, Lagos, 100213, Nigeria
| | - Rhainer Guillermo-Ferreira
- Centro de Pesquisas em Entomologia e Biologia Experimental, Universidade Federal do Triangulo Mineiro (UFTM), Uberaba - MG, 38061-500, Brazil
| | - Blanca Ríos-Touma
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Campus UDLAPARK, Quito, Ecuador 170513
| | - Gyanpriya Maharaj
- University of Guyana, Centre for the Study of Biological Diversity, Georgetown, Guyana
| |
Collapse
|
15
|
van Klink R, Sheard JK, Høye TT, Roslin T, Do Nascimento LA, Bauer S. Towards a toolkit for global insect biodiversity monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230101. [PMID: 38705179 PMCID: PMC11070268 DOI: 10.1098/rstb.2023.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1 06120 Halle, Germany
| | - Julie Koch Sheard
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Straße 159, Jena 07743, Germany
- Department of Biology, Animal Ecology, University of Marburg, Karl-von-Frisch-Straße 8, Marburg 35043, Germany
| | - Toke T. Høye
- Department of Ecoscience, Aarhus University, C. F. Møllers Allé 8, Aarhus C 8000, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, Aarhus C 8000, Denmark
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Ulls väg 18B, Uppsala 75651, Sweden
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Leandro A. Do Nascimento
- Science Department, biometrio.earth, Dr.-Schoenemann-Str. 38, Saarbrücken 66123 Deutschland, Germany
| | - Silke Bauer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, Sciencepark 904, Amsterdam 1098 XH, The Netherlands
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 Zürich 8092, Switzerland
| |
Collapse
|
16
|
Quintana I, Rivers M, Davies K. Conservation Action Tracker: A tool to identify and monitor conservation actions for tree species. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11579. [PMID: 38912127 PMCID: PMC11192161 DOI: 10.1002/aps3.11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 06/25/2024]
Abstract
Premise The GlobalTree Portal, hosted by Botanic Gardens Conservation International, provides access to information on the approximately 58,000 tree species worldwide. Included in the GlobalTree Portal is the Conservation Action Tracker, a dynamic and collaborative database to identify and monitor conservation actions for tree species globally. Methods The Conservation Action Tracker collates conservation action information at the species level, including species recovery/action plans, ex situ collections, propagation protocols, in situ management, species protection policy, and education/awareness campaigns. Results To date, the Conservation Action Tracker contains conservation action information for 4126 tree species, including 2161 threatened species, of which 659 are classified as Vulnerable, 783 as Endangered, and 719 as Critically Endangered. It covers conservation action information for at least one tree species in every country; however, more information is needed for 89% of Vulnerable, 87% of Endangered, and 77% of Critically Endangered tree species. Discussion Monitoring species conservation actions can support the prioritization and scaling up of conservation practices by sharing knowledge, increasing collaboration, enabling the identification of conservation gaps, and making the information available to be used by decision-makers. Tracking conservation actions at the species level is, therefore, essential to guide future conservation efforts. Increasing the amount of data in the Conservation Action Tracker will improve the tool's ability to guide future conservation efforts and avoid the extinction of tree species.
Collapse
Affiliation(s)
- Itxaso Quintana
- Botanic Gardens Conservation International (BGCI)Descanso House, 199 Kew RoadRichmondTW9 3BWUnited Kingdom
| | - Malin Rivers
- Botanic Gardens Conservation International (BGCI)Descanso House, 199 Kew RoadRichmondTW9 3BWUnited Kingdom
| | - Katharine Davies
- Botanic Gardens Conservation International (BGCI)Descanso House, 199 Kew RoadRichmondTW9 3BWUnited Kingdom
| |
Collapse
|
17
|
Wong MKL, Didham RK. Global meta-analysis reveals overall higher nocturnal than diurnal activity in insect communities. Nat Commun 2024; 15:3236. [PMID: 38622174 PMCID: PMC11018786 DOI: 10.1038/s41467-024-47645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Insects sustain key ecosystem functions, but how their activity varies across the day-night cycle and the underlying drivers are poorly understood. Although entomologists generally expect that more insects are active at night, this notion has not been tested with empirical data at the global scale. Here, we assemble 331 quantitative comparisons of the abundances of insects between day and night periods from 78 studies worldwide and use multi-level meta-analytical models to show that insect activity is on average 31.4% (CI: -6.3%-84.3%) higher at night than in the day. We reveal diel preferences of major insect taxa, and observe higher nocturnal activity in aquatic taxa than in terrestrial ones, as well as in warmer environments. In a separate analysis of the small subset of studies quantifying diel patterns in taxonomic richness (31 comparisons from 13 studies), we detect preliminary evidence of higher nocturnal richness in tropical than temperate communities. The higher overall (but variable) nocturnal activity in insect communities underscores the need to address threats such as light pollution and climate warming that may disproportionately impact nocturnal insects.
Collapse
Affiliation(s)
- Mark K L Wong
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia.
| | - Raphael K Didham
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia
| |
Collapse
|
18
|
Belitz MW, Sawyer A, Hendrick LK, Kawahara AY, Guralnick RP. Substantial urbanization-driven declines of larval and adult moths in a subtropical environment. GLOBAL CHANGE BIOLOGY 2024; 30:e17241. [PMID: 38525809 DOI: 10.1111/gcb.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.
Collapse
Affiliation(s)
- Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Asia Sawyer
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Lillian K Hendrick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Wang S, Girardello M, Zhang W. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics. J Genet Genomics 2024; 51:292-301. [PMID: 37302475 DOI: 10.1016/j.jgg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Mountains are rich in biodiversity, and butterflies are species-rich and have a good ecological and evolutionary research foundation. This review addresses the potential and progress of studying mountain biodiversity using butterflies as a model. We discuss the uniqueness of mountain ecosystems, factors influencing the distribution of mountain butterflies, representative genetic and evolutionary models in butterfly research, and evolutionary studies of mountain biodiversity involving butterfly genetics and genomics. Finally, we demonstrate the necessity of studying mountain butterflies and propose future perspectives. This review provides insights for studying the biodiversity of mountain butterflies as well as a summary of research methods for reference.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Marco Girardello
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências Agrárias e do Ambiente, Universidade dos Açores, 9700-042 Angra do Heroísmo, Terceira, Portugal
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Xie BH, Chao L, Wan SJ, Si HR, Yu WD, Huang Z, Wang SG, Desneux N, Tang B, Sun SS. Analysis of gut microbiota of ladybug beetle (Harmonia axyridis) after feeding on different artificial diets. BMC Microbiol 2024; 24:5. [PMID: 38172684 PMCID: PMC10763339 DOI: 10.1186/s12866-023-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.
Collapse
Affiliation(s)
- Bing-Hua Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Si-Jing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hui-Ru Si
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei-Dong Yu
- Zhejiang Dingyi Biotechnology Corporation, Quzhou, 324100, Zhejiang, China
| | - Zhen Huang
- Zhejiang Dingyi Biotechnology Corporation, Quzhou, 324100, Zhejiang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | | | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Si-Si Sun
- Guizhou Institute of Mountainous Meteorological Sciences, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
21
|
Holmquist AJ, Cody Markelz RJ, Martinez CC, Gillespie RG. The importance of habitat type and historical fire regimes in arthropod community response following large-scale wildfires. GLOBAL CHANGE BIOLOGY 2024; 30:e17135. [PMID: 38273502 DOI: 10.1111/gcb.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 01/27/2024]
Abstract
Novel wildfire regimes are rapidly changing global ecosystems and pose significant challenges for biodiversity conservation and ecosystem management. In this study, we used DNA metabarcoding to assess the response of arthropod pollinator communities to large-scale wildfires across diverse habitat types in California. We sampled six reserves within the University of California Natural Reserve System, each of which was partially burned in the 2020 Lightning Complex wildfires in California. Using yellow pan traps to target pollinators, we collected arthropods from burned and unburned sites across multiple habitat types including oak woodland, redwood, scrub, chamise, grassland, forest, and serpentine habitats. We found no significant difference in alpha diversity values between burned and unburned sites; instead, seasonal variations played a significant role in arthropod community dynamics, with the emergence of plant species in Spring promoting increased pollinator richness at all sites. When comparing all sites, we found that burn status was not a significant grouping factor. Instead, compositional differences were largely explained by geographic differences, with distinct communities within each reserve. Within a geographic area, the response of arthropods to fire was dependent on habitat type. While communities in grasslands and oak woodlands exhibited recovery following burn, scrublands experienced substantial changes in community composition. Our study highlights the importance of examining community responses to wildfires across broad spatial scales and diverse habitat types. By understanding the nuanced dynamics of arthropod communities in response to fire disturbances, we can develop effective conservation strategies that promote resilience and maintain biodiversity in the face of increasing wildfire frequency and severity driven by climate change.
Collapse
Affiliation(s)
- Anna J Holmquist
- Department of Environmental Science, Policy and Management, University of California: Berkeley, Berkeley, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - R J Cody Markelz
- Berkeley Institute for Data Science, University of California: Berkeley, Berkeley, California, USA
| | - Ciera C Martinez
- Department of Environmental Science, Policy and Management, University of California: Berkeley, Berkeley, California, USA
- Berkeley Institute for Data Science, University of California: Berkeley, Berkeley, California, USA
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California: Berkeley, Berkeley, California, USA
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California: Berkeley, Berkeley, California, USA
| |
Collapse
|
22
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
23
|
Weerathunga WAM, Athapaththu AMG, Amarasinghe LD. A Preliminary Study on the Relationship between Arthropod Diversity and Vegetation Diversity in Four Contrasting Ecosystems in Hanthana Mountain Range of Sri Lanka, during the Post-Monsoon Dry Season. SCIENTIFICA 2023; 2023:7608236. [PMID: 38028319 PMCID: PMC10667053 DOI: 10.1155/2023/7608236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/02/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
This study assesses the relationship between arthropod and vegetation diversity in four ecosystems with different types of vegetation, during a post-monsoonal season. We determined the arthropod diversity in vegetation surrounding an aquatic environment (AQ), a broad-leaved wet, evergreen forest ecosystem (BL), a Pinus caribaea monoculture plantation (PN), and a Pinus plantation artificially enriched with indigenous broad-leaved tree species (PNEN) located in the Hanthana mountain range, Sri Lanka. Arthropods randomly sampled from three randomly selected sites (5 m × 5 m) of each ecosystem were identified up to the highest possible taxa using standard identification keys. Woody and herbal vegetation was identified via a plant census. Arthropod and vegetation diversities were computed separately for each site using the Shannon-Wiener Index (H). Arthropods of 68 species and 43 families were found. AQ had the greatest arthropod diversity (H = 2.642), dominated by Olios spp., followed by BL (H = 2.444), dominated by a tettigonid species, Oxytate spp. and Psechrus spp. PN was third (H = 1.411), dominated by Dicaldispa spp. PNEN had the lowest (H = 1.3500), dominated by an ant species. Contrastingly, PNEN had the highest plant diversity (H = 2.614) and PN, the lowest (H = 0.879). In AQ, BL, and PN, the arthropod diversity was linearly dependent on plant diversity (R2 = 0.423, p ≤ 0.001), whereas it was not so when PNEN was also included (R2 = 0.008, p ≤ 0.001). This shows that higher plant diversity contributes to greater arthropod diversity in ecosystems where human intervention is minimal. But this pattern was not visible in PNEN, which is an artificially created ecosystem.
Collapse
Affiliation(s)
- W. A. Manasee Weerathunga
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama 11600, Kelaniya, Sri Lanka
| | - A. M. Gihan Athapaththu
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama 11600, Kelaniya, Sri Lanka
| | - L. D. Amarasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama 11600, Kelaniya, Sri Lanka
| |
Collapse
|
24
|
Becoche-Mosquera JM, Gomez-Bernal LG, Zambrano-Gonzalez G, Angulo-Ortiz D. Unraveling plant-pollinator interactions from a south-west Andean forest in Colombia. PeerJ 2023; 11:e16133. [PMID: 38025706 PMCID: PMC10640843 DOI: 10.7717/peerj.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Loss of biological connectivity increases the vulnerability of ecological dynamics, thereby affecting processes such as pollination. Therefore, it is important to understand the roles of the actors that participate in these interaction networks. Nonetheless, there is a significant oversight regarding the main actors in the pollination networks within the highly biodiverse forests of Colombia. Hence, the present study aims to evaluate the interaction patterns of a network of potential pollinators that inhabit an Andean Forest in Totoró, Cauca, Colombia. Methods The interactions between plants and potential pollinators were recorded through direct observation in 10 transects during six field trips conducted over the course of one year. Subsequently, an interaction matrix was developed, and network metrics such as connectance, specialization, nestedness, and asymmetry of interaction strength were evaluated by applying null models. An interpolation/extrapolation curve was calculated in order to assess the representativeness of the sample. Finally, the key species of the network were identified by considering degree (k), centrality, and betweenness centrality. Results A total of 53 plant species and 52 potential pollinator species (including insects and birds) were recorded, with a sample coverage of 88.5%. Connectance (C = 0.19) and specialization (H2' = 0.19) were low, indicating a generalist network. Freziera canescens, Gaiadendron punctatum, Persea mutisii, Bombus rubicundus, Heliangelus exortis, Chironomus sp., and Metallura tyrianthina were identified as the key species that contribute to a more cohesive network structure. Discussion The present study characterized the structure of the plant-pollinator network in a highly diverse Andean forest in Colombia. It is evident that insects are the largest group of pollinators; however, it is interesting to note that birds form a different module that specializes in pollinating a specific group of plants. On the other hand, the diversity and generality of the species found suggest that the network may be robust against chains of extinction. Nevertheless, the presence of certain introduced species, such as Apis mellifera, and the rapid changes in vegetation cover may affect the dynamics of this mutualistic network. So, it is imperative to apply restoration and conservation strategies to these ecosystems in order to enhance plant-animal interactions and prevent the loss of taxonomical and functional diversity.
Collapse
Affiliation(s)
- Jorge Mario Becoche-Mosquera
- Universidad del Cauca, Popayán, Cauca, Colombia
- Ecology and Conservation - GECO, Universidad del Cauca, Popayán, Cauca, Colombia
- Universidad del Cauca, Popayán, Cauca, Colombia
| | - Luis German Gomez-Bernal
- Ecology and Conservation - GECO, Universidad del Cauca, Popayán, Cauca, Colombia
- Universidad del Cauca, Popayán, Cauca, Colombia
| | - Giselle Zambrano-Gonzalez
- Ecology and Conservation - GECO, Universidad del Cauca, Popayán, Cauca, Colombia
- Universidad del Cauca, Popayán, Cauca, Colombia
| | - David Angulo-Ortiz
- Corporación Autónoma Regional del Valle del Cauca, Cali, Valle del Cauca, Colombia
| |
Collapse
|
25
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
26
|
Wang MQ, Wen Z, Ke J, Chesters D, Li Y, Chen JT, Luo A, Shi X, Zhou QS, Liu XJ, Ma K, Bruelheide H, Schuldt A, Zhu CD. Tree communities and functional traits determine herbivore compositional turnover. Oecologia 2023; 203:205-218. [PMID: 37831151 DOI: 10.1007/s00442-023-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany
| | - Zhixin Wen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jinzhao Ke
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Douglas Chesters
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jing-Ting Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Arong Luo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiaoyu Shi
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Qing-Song Zhou
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiao-Juan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- School of Resources and Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 101314, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany.
| | - Chao-Dong Zhu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
27
|
Chimeno C, Schmidt S, Cancian de Araujo B, Perez K, von Rintelen T, Schmidt O, Hamid H, Pramesa Narakusumo R, Balke M. Abundant, diverse, unknown: Extreme species richness and turnover despite drastic undersampling in two closely placed tropical Malaise traps. PLoS One 2023; 18:e0290173. [PMID: 37585425 PMCID: PMC10431641 DOI: 10.1371/journal.pone.0290173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Arthropods account for a large proportion of animal biomass and diversity in terrestrial systems, making them crucial organisms in our environments. However, still too little is known about the highly abundant and megadiverse groups that often make up the bulk of collected samples, especially in the tropics. With molecular identification techniques ever more evolving, analysis of arthropod communities has accelerated. In our study, which was conducted within the Global Malaise trap Program (GMP) framework, we operated two closely placed Malaise traps in Padang, Sumatra, for three months. We analyzed the samples by DNA barcoding and sequenced a total of more than 70,000 insect specimens. For sequence clustering, we applied three different delimitation techniques, namely RESL, ASAP, and SpeciesIdentifier, which gave similar results. Despite our (very) limited sampling in time and space, our efforts recovered more than 10,000 BINs, of which the majority are associated with "dark taxa". Further analysis indicates a drastic undersampling of both sampling sites, meaning that the true arthropod diversity at our sampling sites is even higher. Regardless of the close proximity of both Malaise traps (< 360 m), we discovered significantly distinct communities.
Collapse
Affiliation(s)
| | - Stefan Schmidt
- Zoologische Staatssammlung München (SNSB-ZSM), Munich, Germany
| | - Bruno Cancian de Araujo
- Zoologische Staatssammlung München (SNSB-ZSM), Munich, Germany
- Entomological Biodiversity Laboratory, Federal University of Espirito Santo, Vitoria, Brazil
| | - Kate Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Thomas von Rintelen
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde—Leibniz-Institut fur Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Olga Schmidt
- Zoologische Staatssammlung München (SNSB-ZSM), Munich, Germany
| | - Hasmiandy Hamid
- Department of Plant Protection, Faculty of Agriculture, Universitas Andalas, Padang, Indonesia
| | - Raden Pramesa Narakusumo
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Museum Zoologicum Bogoriense, Cibinong, Indonesia
| | - Michael Balke
- Zoologische Staatssammlung München (SNSB-ZSM), Munich, Germany
| |
Collapse
|
28
|
Iwaszkiewicz-Eggebrecht E, Łukasik P, Buczek M, Deng J, Hartop EA, Havnås H, Prus-Frankowska M, Ugarph CR, Viteri P, Andersson AF, Roslin T, Tack AJM, Ronquist F, Miraldo A. FAVIS: Fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS One 2023; 18:e0286272. [PMID: 37467453 DOI: 10.1371/journal.pone.0286272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 07/21/2023] Open
Abstract
Insects are diverse and sustain essential ecosystem functions, yet remain understudied. Recent reports about declines in insect abundance and diversity have highlighted a pressing need for comprehensive large-scale monitoring. Metabarcoding (high-throughput bulk sequencing of marker gene amplicons) offers a cost-effective and relatively fast method for characterizing insect community samples. However, the methodology applied varies greatly among studies, thus complicating the design of large-scale and repeatable monitoring schemes. Here we describe a non-destructive metabarcoding protocol that is optimized for high-throughput processing of Malaise trap samples and other bulk insect samples. The protocol details the process from obtaining bulk samples up to submitting libraries for sequencing. It is divided into four sections: 1) Laboratory workspace preparation; 2) Sample processing-decanting ethanol, measuring the wet-weight biomass and the concentration of the preservative ethanol, performing non-destructive lysis and preserving the insect material for future work; 3) DNA extraction and purification; and 4) Library preparation and sequencing. The protocol relies on readily available reagents and materials. For steps that require expensive infrastructure, such as the DNA purification robots, we suggest alternative low-cost solutions. The use of this protocol yields a comprehensive assessment of the number of species present in a given sample, their relative read abundances and the overall insect biomass. To date, we have successfully applied the protocol to more than 7000 Malaise trap samples obtained from Sweden and Madagascar. We demonstrate the data yield from the protocol using a small subset of these samples.
Collapse
Affiliation(s)
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Junchen Deng
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Emily A Hartop
- Station Linné, Färjestaden, Sweden
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Monika Prus-Frankowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | | | - Paulina Viteri
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
29
|
Liu F, Li B, Liu C, Liu Y, Liu X, Lu M. Oviposition by Plagiodera versicolora on Salix matsudana cv. 'Zhuliu' alters the leaf transcriptome and impairs larval performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1226641. [PMID: 37538058 PMCID: PMC10394651 DOI: 10.3389/fpls.2023.1226641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Insect egg deposition can induce plant defenses against their larvae. Previous studies have primarily focused on herbaceous plant defenses; however, little is known about how the Salicaceae respond to insect egg deposition and defend themselves against herbivores. By combining plant defense gene studies and bioassays, we investigated the effect of the coleoptera Plagiodera versicolora egg deposition on willow (Salix matsudana cv. 'Zhuliu') and examined the interactions at the plant resistance and transcriptome levels. RNA-seq data were utilized to analyze changes in the leaf transcriptome with and without oviposition, and also the changes in the leaf transcriptome of feeding-damaged leaves with and without prior oviposition. P. versicolora oviposition on willow leaves resulted in altered expression levels of transcripts associated with plant stress and metabolic responses. Compared with leaves with no oviposition, leaves with egg deposition showed a slight increase in phenylpropanoid biosynthesis and phytohormone signaling genes after larval feeding. The RNA-seq analysis revealed alterations in willow transcripts in response to leaf beetle infestations. Bioassays indicated that oviposition by P. versicolora on willows reduced subsequent larvae performance, suggesting that prior oviposition by P. versicolora could increase willows' resistance to larvae. This study advances our knowledge of how oviposition by coleoptera insects induces changes in the resistance of leaves to herbivory in the Salicaceae family.
Collapse
|
30
|
Chimeno C, Schmidt S, Hamid H, Narakusumo RP, Peggie D, Balke M, Cancian de Araujo B. DNA barcoding data release for the Phoridae (Insecta, Diptera) of the Halimun-Salak National Park (Java, Indonesia). Biodivers Data J 2023; 11:e104942. [PMID: 37448693 PMCID: PMC10336553 DOI: 10.3897/bdj.11.e104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Launched in 2015, the large-scale initiative Indonesian Biodiversity Discovery and Information System (IndoBioSys) is a multidisciplinary German-Indonesian collaboration with the main goal of establishing a standardised framework for species discovery and all associated steps. One aspect of the project includes the application of DNA barcoding for species identification and biodiversity assessments. In this framework, we conducted a large-scale assessment of the insect fauna of the Mount Halimun-Salak National Park which is one of the largest tropical rain-forest ecosystems left in West Java. In this study, we present the results of processing 5,034 specimens of Phoridae (scuttle flies) via DNA barcoding. Despite limited sequencing success, we obtained more than 500 clusters using different algorithms (RESL, ASAP, SpeciesIdentifier). Moreover, Chao statistics indicated that we drastically undersampled all trap sites, implying that the true diversity of Phoridae is, in fact, much higher. With this data release, we hope to shed some light on the hidden diversity of this megadiverse group of flies.
Collapse
Affiliation(s)
- Caroline Chimeno
- SNSB-Zoologische Staatssammlung München, München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Hasmiandy Hamid
- Department of Plant Protection, Faculty of Agriculture, Universitas Andalas, Padang, IndonesiaDepartment of Plant Protection, Faculty of Agriculture, Universitas AndalasPadangIndonesia
| | - Raden Pramesa Narakusumo
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, IndonesiaMuseum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Djunijanti Peggie
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, IndonesiaMuseum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Michael Balke
- SNSB-Zoologische Staatssammlung München, München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Bruno Cancian de Araujo
- SNSB-Zoologische Staatssammlung München, München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
- LaBI-UFES, Laboratório de Biodiversidade de Insetos, Universidade Federal do Espírito Santo, Vitória, BrazilLaBI-UFES, Laboratório de Biodiversidade de Insetos, Universidade Federal do Espírito SantoVitóriaBrazil
| |
Collapse
|
31
|
Zhao Y, Song Q, Song Y. The role of insect intestinal microbes in controlling of Empoasca onukii Matsuda (Hemiptera: Cicadellidae) pest infestations in the production of tea garden: a review. Arch Microbiol 2023; 205:267. [PMID: 37351731 DOI: 10.1007/s00203-023-03609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Pests like the phytophagous bug Empoasca onukii Matsuda frequently harm tea plants. The harm this insect does to agricultural and environmentally sensitive places is extremely harmful since physical and chemical prevention and control are still the primary methods of handling it. Therefore, it is important to develop pest management strategies. Recent research has demonstrated that pathogenic fungus and the gut microbiota interact to induce host and death, and that the gut microbiota, which has a dramatic effect on the host, can engage in pest control. The advancement of genome editing technologies is also new to the field of pest management. The diversity, function, and research methodologies of insect gut microbiota are summarized in this work, and discusses E. onukii Matsuda control options as well as the importance of insect gut microbiome in pest management. In comparison to traditional pesticides and physical prevention and control, the interaction between pathogenic fungi represented by Beauveria bassiana and intestinal microorganisms, as well as their participation in pest management, causes physiological stress on the host, which meets the new requirements of modern agricultural green development and has a protective effect on habitat fragmentation areas (Karst region). Exploring additional harmful fungus for pest management and fully using the specific traits of insect gut microbiota to achieve "killing insects with bacteria" would be a promising technique from this standpoint.
Collapse
Affiliation(s)
- Yuanqi Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Qingfa Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
32
|
Zharkov D, Nizamutdinov T, Dubovikoff D, Abakumov E, Pospelova A. Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides. INSECTS 2023; 14:557. [PMID: 37367373 DOI: 10.3390/insects14060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
As the world's population continues to increase, ensuring food security becomes a major problem. This often leads to the expansion of agricultural production, even in harsh conditions and becomes a key problem for many countries, including Russia. However, such expansion may entail certain costs, including the potential loss of insect populations, which are vital for ecological balance and agricultural productivity. The development of fallow lands in these regions is necessary to increase food production and increase food security; it is important to balance this with protection from harmful insects and sustainable farming methods. Research into the effects of insecticides on insects is an ongoing challenge, and new, sustainable farming methods are needed to ensure that protection from harmful insects and sustainable development can coexist. This article discusses the use of pesticides to protect the well-being of mankind, the problems of studying the effects of pesticides on insects and the vulnerability of insects to pesticides in regions with harsh conditions. It also discusses successful methods of sustainable agriculture and the importance of the legal framework governing the use of pesticides. The article emphasises the importance of balanced development with insect protection to ensure the sustainability of agricultural expansion in harsh conditions.
Collapse
Affiliation(s)
- Dmitry Zharkov
- Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Timur Nizamutdinov
- Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Dmitry Dubovikoff
- Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeny Abakumov
- Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Alena Pospelova
- Department of Invertebrate Zoology, Faculty of Biology, Perm State National Research University, Perm 614068, Russia
| |
Collapse
|
33
|
Huang Q, Shan HW, Chen JP, Wu W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. INSECTS 2023; 14:545. [PMID: 37367361 DOI: 10.3390/insects14060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Recilia dorsalis is a notorious rice pest that harbors numerous symbiotic microorganisms. However, the structure and dynamics of bacterial communities in various tissues of R. dorsalis throughout its life cycle remain unclear. In this study, we used high-throughput sequencing technology to analyze the bacterial communities in the digestive, excretory, and reproductive systems of R. dorsalis at different developmental stages. The results showed that the initial microbiota in R. dorsalis mostly originated from vertical transmission via the ovaries. After the second-instar nymphs, the diversity of bacterial communities in the salivary gland and Malpighian tubules gradually decreased, while the midgut remained stable. Principal coordinate analysis revealed that the structure of bacterial communities in R. dorsalis was primarily influenced by the developmental stage, with minimal variation in bacterial species among different tissues but significant variation in bacterial abundance. Tistrella was the most abundant bacterial genus in most developmental stages, followed by Pantoea. The core bacterial community in R. dorsalis continuously enriched throughout development and contributed primarily to food digestion and nutrient supply. Overall, our study enriches our knowledge of the bacterial community associated with R. dorsalis and provides clues for developing potential biological control technologies against this rice pest.
Collapse
Affiliation(s)
- Qiuyan Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
34
|
Amiri N, M. Keady M, Lim HC. Honey bees and bumble bees occupying the same landscape have distinct gut microbiomes and amplicon sequence variant-level responses to infections. PeerJ 2023; 11:e15501. [PMID: 37312881 PMCID: PMC10259447 DOI: 10.7717/peerj.15501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiome of bees is vital for the health of their hosts. Given the ecosystem functions performed by bees, and the declines faced by many species, it is important to improve our understanding of the amount of natural variation in the gut microbiome, the level of sharing of bacteria among co-occurring species (including between native and non-native species), and how gut communities respond to infections. We conducted 16S rRNA metabarcoding to discern the level of microbiome similarity between honey bees (Apis mellifera, N = 49) and bumble bees (Bombus spp., N = 66) in a suburban-rural landscape. We identified a total of 233 amplicon sequence variants (ASVs) and found simple gut microbiomes dominated by bacterial taxa belonging to Gilliamella, Snodgrassella, and Lactobacillus. The average number of ASVs per species ranged from 4.00-15.00 (8.79 ± 3.84, mean ± SD). Amplicon sequence variant of one bacterial species, G. apicola (ASV 1), was widely shared across honey bees and bumble bees. However, we detected another ASV of G. apicola that was either exclusive to honey bees, or represented an intra-genomic 16S rRNA haplotype variant in honey bees. Other than ASV 1, honey bees and bumble bees rarely share gut bacteria, even ones likely derived from outside environments (e.g., Rhizobium spp., Fructobacillus spp.). Honey bee bacterial microbiomes exhibited higher alpha diversity but lower beta and gamma diversities than those of bumble bees, likely a result of the former possessing larger, perennial hives. Finally, we identified pathogenic or symbiotic bacteria (G. apicola, Acinetobacter sp. and Pluralibacter sp.) that associate with Trypanosome and/or Vairimorpha infections in bees. Such insights help to determine bees' susceptibility to infections should gut microbiomes become disrupted by chemical pollutants and contribute to our understanding of what constitutes a state of dysbiosis.
Collapse
Affiliation(s)
- Navolle Amiri
- Department of Biology, George Mason University, Fairfax, VA, United States
| | - Mia M. Keady
- Department of Biology, George Mason University, Fairfax, VA, United States
- Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, WI, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States
| |
Collapse
|
35
|
Santos V, Costa-Vera C, Rivera-Parra P, Burneo S, Molina J, Encalada D, Salvador J, Brydegaard M. Dual-Band Infrared Scheimpflug Lidar Reveals Insect Activity in a Tropical Cloud Forest. APPLIED SPECTROSCOPY 2023:37028231169302. [PMID: 37072925 DOI: 10.1177/00037028231169302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe an entomological dual-band 808 and 980 nm lidar system which has been implemented in a tropical cloud forest (Ecuador). The system was successfully tested at a sample rate of 5 kHz in a cloud forest during challenging foggy conditions (extinction coefficients up to 20 km-1). At times, the backscattered signal could be retrieved from a distance of 2.929 km. We present insect and bat observations up to 200 m during a single night with an emphasis on fog aspects, potentials, and benefits of such dual-band systems. We demonstrate that the modulation contrast between insects and fog is high in the frequency domain compared to intensity in the time domain, thus allowing for better identification and quantification in misty forests. Oscillatory lidar extinction effects are shown in this work for the first time, caused by the combination of dense fog and large moths partially obstructing the beam. We demonstrate here an interesting case of a moth where left- and right-wing movements induced oscillations in both intensity and pixel spread. In addition, we were able to identify the dorsal and ventral sides of the wings by estimating the corresponding melanization with the dual-band lidar. We demonstrate that the wing beat trajectories in the dual-band parameter space are complementary rather than covarying or redundant, thus a dual-band entomological lidar approach to biodiversity studies is feasible in situ and endows species specificity differentiation. Future improvements are discussed. The introduction of these methodologies opens the door to a wealth of possible experiments to monitor, understand, and safeguard the biological resources of one of the most biodiverse countries on Earth.
Collapse
Affiliation(s)
- Victor Santos
- Departmento de Física, Escuela Politécnica Nacional, Quito
| | | | | | | | - Juan Molina
- Departmento de Física, Escuela Politécnica Nacional, Quito
| | - Diana Encalada
- Departmento de Economía, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja, Ecuador
| | | | - Mikkel Brydegaard
- Department of Physics, Lund University, Lund, Sweden
- Norsk Elektro Optikk AS, Oslo, Norway
| |
Collapse
|
36
|
Li M, Lei T, Wang G, Zhang D, Liu H, Zhang Z. Monitoring insect biodiversity and comparison of sampling strategies using metabarcoding: A case study in the Yanshan Mountains, China. Ecol Evol 2023; 13:e10031. [PMID: 37091562 PMCID: PMC10121320 DOI: 10.1002/ece3.10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Insects are the richest and most diverse group of animals and yet there remains a lack, not only of systematic research into their distribution across some key regions of the planet, but of standardized sampling strategies for their study. The Yanshan Mountains, being the boundary range between the Inner Mongolian Plateau and the North China Plain, present an indispensable piece of the insect biodiversity puzzle: both requiring systematic study and offering opportunities for the development of standardized methodologies. This is the first use of DNA metabarcoding to survey the insect biodiversity of the Yanshan Mountains. The study focuses on differences of community composition among samples collected via different methods and from different habitat types. In total, 74 bulk samples were collected from five habitat types (scrubland, woodland, wetland, farmland and grassland) using three collection methods (sweep netting, Malaise traps and light traps). After DNA extraction, PCR amplification, sequencing and diversity analysis were performed, a total of 7427 Operational Taxonomic Units (OTUs) at ≥97% sequence similarity level were delimited, of which 7083 OTUs were identified as belonging to Insecta. Orthoptera, Diptera, Coleoptera and Hemiptera were found to be the dominant orders according to community composition analysis. Nonmetric multidimensional scaling (NMDS) analysis based on Bray-Curtis distances revealed highly divergent estimates of insect community composition among samples differentiated by the collection method (R = .524802, p = .001), but nonsignificant difference among samples differentiated according to habitat (R = .051102, p = .078). The study therefore appears to indicate that the concurrent use of varied collection methods is essential to the accurate monitoring of insect biodiversity.
Collapse
Affiliation(s)
- Min Li
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Ting Lei
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Guobin Wang
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Danli Zhang
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Huaxi Liu
- Department of Life SciencesNatural History MuseumLondonUK
| | - Zhiwei Zhang
- College of Forestry, Shanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
37
|
Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, Jaiswal DK, Borgave S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front Microbiol 2023; 14:1146390. [PMID: 36992933 PMCID: PMC10042327 DOI: 10.3389/fmicb.2023.1146390] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Insects possess beneficial and nuisance values in the context of the agricultural sector and human life around them. An ensemble of gut symbionts assists insects to adapt to diverse and extreme environments and to occupy every available niche on earth. Microbial symbiosis helps host insects by supplementing necessary diet elements, providing protection from predators and parasitoids through camouflage, modulation of signaling pathway to attain homeostasis and to trigger immunity against pathogens, hijacking plant pathways to circumvent plant defence, acquiring the capability to degrade chemical pesticides, and degradation of harmful pesticides. Therefore, a microbial protection strategy can lead to overpopulation of insect pests, which can drastically reduce crop yield. Some studies have demonstrated increased insect mortality via the destruction of insect gut symbionts; through the use of antibiotics. The review summarizes various roles played by the gut microbiota of insect pests and some studies that have been conducted on pest control by targeting the symbionts. Manipulation or exploitation of the gut symbionts alters the growth and population of the host insects and is consequently a potential target for the development of better pest control strategies. Methods such as modulation of gut symbionts via CRISPR/Cas9, RNAi and the combining of IIT and SIT to increase the insect mortality are further discussed. In the ongoing insect pest management scenario, gut symbionts are proving to be the reliable, eco-friendly and novel approach in the integrated pest management.
Collapse
Affiliation(s)
- Pravara S. Rupawate
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | | | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh Kumar Jaiswal
- Department of Botany, Savitribai Phule Pune University, Pune, India
- *Correspondence: Durgesh Kumar Jaiswal,
| | - Seema Borgave
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
- Seema Borgave,
| |
Collapse
|
38
|
Gu J, Zhang P, Yao Z, Li X, Zhang H. BdNub Is Essential for Maintaining gut Immunity and Microbiome Homeostasis in Bactrocera dorsalis. INSECTS 2023; 14:178. [PMID: 36835747 PMCID: PMC9964267 DOI: 10.3390/insects14020178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Insects face immune challenges posed by invading and indigenous bacteria. They rely on the immune system to clear these microorganisms. However, the immune response can be harmful to the host. Therefore, fine-tuning the immune response to maintain tissue homeostasis is of great importance to the survival of insects. The Nub gene of the OCT/POU family regulates the intestinal IMD pathway. However, the role of the Nub gene in regulating host microbiota remains unstudied. Here, a combination of bioinformatic tools, RNA interference, and qPCR methods were adopted to study BdNub gene function in Bactrocera dorsalis gut immune system. It's found that BdNubX1, BdNubX2, and antimicrobial peptides (AMPs), including Diptcin (Dpt), Cecropin (Cec), AttcinA (Att A), AttcinB (Att B) and AttcinC (Att C) are significantly up-regulated in Tephritidae fruit fly Bactrocera dorsalis after gut infection. Silencing BdNubX1 leads to down-regulated AMPs expression, while BdNubX2 RNAi leads to increased expression of AMPs. These results indicate that BdNubX1 is a positive regulatory gene of the IMD pathway, while BdNubX2 negatively regulates IMD pathway activity. Further studies also revealed that BdNubX1 and BdNubX2 are associated with gut microbiota composition, possibly through regulation of IMD pathway activity. Our results prove that the Nub gene is evolutionarily conserved and participates in maintaining gut microbiota homeostasis.
Collapse
|
39
|
Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greco D, Ippolito A, Lahbib N, Logrieco AF, López-Llorca LV, Lopez-Moya F, Luvisi A, Mincuzzi A, Molina-Acevedo JP, Pazzani C, Scortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 2023; 11:440. [PMID: 36838405 PMCID: PMC9967823 DOI: 10.3390/microorganisms11020440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | | | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Mariantonietta Colagiero
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giuseppe Cozzi
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Antonio Francesco Logrieco
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | | | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annamaria Mincuzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Juan Pablo Molina-Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana-AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Colombia
| | - Carlo Pazzani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Maria Scrascia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Valenzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
40
|
Wenda C, Gaitán-Espitia JD, Solano-Iguaran JJ, Nakamura A, Majcher BM, Ashton LA. Heat tolerance variation reveals vulnerability of tropical herbivore-parasitoid interactions to climate change. Ecol Lett 2023; 26:278-290. [PMID: 36468222 DOI: 10.1111/ele.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Assessing the heat tolerance (CTmax) of organisms is central to understand the impact of climate change on biodiversity. While both environment and evolutionary history affect CTmax, it remains unclear how these factors and their interplay influence ecological interactions, communities and ecosystems under climate change. We collected and reared caterpillars and parasitoids from canopy and ground layers in different seasons in a tropical rainforest. We tested the CTmax and Thermal Safety Margins (TSM) of these food webs with implications for how species interactions could shift under climate change. We identified strong influence of phylogeny in herbivore-parasitoid community heat tolerance. The TSM of all insects were narrower in the canopy and parasitoids had lower heat tolerance compared to their hosts. Our CTmax-based simulation showed higher herbivore-parasitoid food web instability under climate change than previously assumed, highlighting the vulnerability of parasitoids and related herbivore control in tropical rainforests, particularly in the forest canopy.
Collapse
Affiliation(s)
- Cheng Wenda
- School of Ecology, Sun Yat-Sen University, Shenzhen, China.,State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Juan Diego Gaitán-Espitia
- SWIRE Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jaiber J Solano-Iguaran
- Departamento de Salud Hidrobiológica, División de Investigación en Acuicultura, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Bartosz M Majcher
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Louise A Ashton
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Chamankar B, Maleki-Ravasan N, Karami M, Forouzan E, Karimian F, Naeimi S, Choobdar N. The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome. MICROBIOME 2023; 11:11. [PMID: 36670494 PMCID: PMC9862579 DOI: 10.1186/s40168-022-01456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea. RESULTS The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines. CONCLUSIONS The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.
Collapse
Affiliation(s)
- Bahar Chamankar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Departments of Zoology Biosystematics, Payame Noor University, East Tehran Centre, Tehran, Iran
| | | | - Mohsen Karami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Sabah Naeimi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nayyereh Choobdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
da Silva AA, de Amorim ÉM, Pereira MG, de Santana SL, da Silva MA, de Araujo Lira AF, Rohde C. Genotoxic Effects of Anthropogenic Environments in the Leaf Litter-dwelling Scorpion Tityus pusillus Pocock, 1893 (Scorpiones; Buthidae). MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503585. [PMID: 37003646 DOI: 10.1016/j.mrgentox.2023.503585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Invertebrates are harmed by pollution of their habitats. Litter-dwelling sedentary scorpions, such as Tityus pusillus, studied here, may be good models for examining the genotoxic effects of xenobiotics in soil. Thirty specimens were collected from five sites in Northeast Brazil with different levels of human disturbance, as well as a laboratory group. The comet assay was performed on hemolymph cell samples. Damage Index (DI) and Damage Frequency (DF%) were measured. Much higher genotoxicity was observed in animals collected in an area with human interference and solid waste, compared to those obtained in more pristine areas or the laboratory. T. pusillus may be a useful model for environmental genotoxicity assays.
Collapse
|
43
|
Pillay R, Watson JEM, Hansen AJ, Jantz PA, Aragon-Osejo J, Armenteras D, Atkinson SC, Burns P, Ervin J, Goetz SJ, González-Del-Pliego P, Robinson NP, Supples C, Virnig ALS, Williams BA, Venter O. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nat Ecol Evol 2022; 6:1840-1849. [PMID: 36329351 DOI: 10.1038/s41559-022-01915-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Reducing deforestation underpins global biodiversity conservation efforts. However, this focus on retaining forest cover overlooks the multitude of anthropogenic pressures that can degrade forest quality and imperil biodiversity. We use remotely sensed indices of tropical rainforest structural condition and associated human pressures to quantify the relative importance of forest cover, structural condition and integrity (the cumulative effect of condition and pressures) on vertebrate species extinction risk and population trends across the global humid tropics. We found that tropical rainforests of high integrity (structurally intact and under low pressures) were associated with lower likelihood of species being threatened and having declining populations, compared with forest cover alone (without consideration of condition and pressures). Further, species were more likely to be threatened or have declining populations if their geographic ranges contained high proportions of degraded forest than if their ranges contained lower proportions of forest cover but of high quality. Our work suggests that biodiversity conservation policies to preserve forest integrity are now urgently required alongside ongoing efforts to halt deforestation in the hyperdiverse humid tropics.
Collapse
Affiliation(s)
- Rajeev Pillay
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hansen
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Patrick A Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jose Aragon-Osejo
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Dolors Armenteras
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Patrick Burns
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jamison Ervin
- United Nations Development Programme, New York, NY, USA
| | - Scott J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | | | - Brooke A Williams
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
44
|
Li P, Zhang J, Ding S, Yan P, Zhang P, Ding S. Environmental Effects on Taxonomic Turnover in Soil Fauna across Multiple Forest Ecosystems in East Asia. INSECTS 2022; 13:1103. [PMID: 36555013 PMCID: PMC9786105 DOI: 10.3390/insects13121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The large-scale spatial variation in and causes of biotic turnover of soil fauna remain poorly understood. Analyses were conducted based on published data from 14 independent sampling sites across five forest ecosystems in East Asia. Jaccard and Sørensen's indices were used to measure turnover rates in soil fauna orders. A redundancy analysis was used to investigate multiple environmental controls of the composition of soil fauna communities. The results showed that both Jaccard's and Sørensen's index increased significantly with increasing latitude difference. The environment explained 54.1%, 50.6%, 57.3% and 50.9% of the total variance, and spatial factors explained 13.8%, 15.9%, 21.0% and 12.6% of the total variance in the orders' composition regarding overall, phytophagous, predatory and saprophagous fauna, respectively. In addition, climate factors in environmental processes were observed to have a stronger effect than soil factors on the orders' turnover rates. Our results support the hypothesis that the effect of environment factors on soil animal taxa turnover is more important than the effect of spatial factors. Climatic factors explained more variation in the turnover of phytophagic fauna, but soil and environment factors equally explained the variation in the turnover of predatory fauna. This study provides evidence to support both environmental filtering and dispersal limitation hypotheses at the regional and population scales.
Collapse
Affiliation(s)
- Peikun Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jian Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Shunping Ding
- Plant Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Peisen Yan
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Panpan Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Shengyan Ding
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
45
|
Lalagüe H, Vedel V, Pétillon J. Small scale changes in spider diversity and composition between two close elevations in a Neotropical forest. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2022. [DOI: 10.1080/01650521.2022.2117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hadrien Lalagüe
- UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou Cedex, France
| | - Vincent Vedel
- UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou Cedex, France
| | - Julien Pétillon
- UMR Ecobio, Université de Rennes 1, Rennes, France
- Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
46
|
Kasmiatun, Hartke TR, Buchori D, Hidayat P, Siddikah F, Amrulloh R, Hiola MS, Najmi L, Noerdjito WA, Scheu S, Drescher J. Rainforest conversion to smallholder cash crops leads to varying declines of beetles (Coleoptera) on Sumatra. Biotropica 2022. [DOI: 10.1111/btp.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kasmiatun
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Tamara R. Hartke
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Zoological Research Museum Alexander König (ZFMK) Centre for Biodiversity Monitoring Bonn Germany
| | - Damayanti Buchori
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
- Center for Transdisciplinary and Sustainability Sciences IPB University Bogor West Java Indonesia
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Fatimah Siddikah
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Rosyid Amrulloh
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | | | - Lailatun Najmi
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Woro A. Noerdjito
- Research Center for Biology Indonesian Institute of Sciences Bogor West Java Indonesia
| | - Stefan Scheu
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Göttingen Germany
| | - Jochen Drescher
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| |
Collapse
|
47
|
Donkersley P, Ashton L, Lamarre GPA, Segar S. Global insect decline is the result of wilful political failure: A battle plan for entomology. Ecol Evol 2022; 12:e9417. [PMID: 36254301 PMCID: PMC9555050 DOI: 10.1002/ece3.9417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023] Open
Abstract
The Millennium Ecosystem Assessment assessed ecosystem change, human wellbeing and scientific evidence for sustainable use of biological systems. Despite intergovernmental acknowledgement of the problem, global ecological decline has continued, including declines in insect biodiversity, which has received much media attention in recent years. Several roadmaps to averting biological declines have failed due to various economic and political factors, and so biodiversity loss continues, driven by several interacting human pressures. Humans are innately linked with nature but tend to take it for granted. The benefits we gain from the insect world are broad, yet aversion or phobias of invertebrates are common, and stand firmly in the path of their successful conservation. Providing an integrated synthesis for policy teams, conservation NGOs, academic researchers and those interested in public engagement, this article considers: (1) The lack of progress to preserve and protect insects. (2) Examples relating to insect decline and contributions insects make to people worldwide, and consequently what we stand to lose. (3) How to engage the public, governmental organizations and researchers through "insect contributions to people" to better address insect declines. International political will has consistently acknowledged the existence of biodiversity decline, but apart from a few narrow cases of charismatic megafauna, little meaningful change has been achieved. Public values are reflected in political willpower, the progress being made across the world, changing views on insects in the public should initiate a much-needed political sea-change. Taking both existing activity and required future actions, we outline an entomologist's "battle plan" to enormously expand our efforts and become the champions of insect conservation that the natural world needs.
Collapse
Affiliation(s)
| | - Louise Ashton
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Greg P. A. Lamarre
- Faculty of Science, Biology Centre of the Czech Academy of SciencesUniversity of South BohemiaCeske BudejoviceCzech Republic
- ForestGEOSmithsonian Tropical Research InstituteAnconPanama
| | | |
Collapse
|
48
|
Houghton DC, Erickson LG, Kintz RC, Rowland KL, Gipe NC, Adams C. The Distinctive Plant and Insect Assemblages of An Experimental Forest in Northern Lower Michigan (United States). ENVIRONMENTAL ENTOMOLOGY 2022; 51:716-727. [PMID: 35639617 DOI: 10.1093/ee/nvac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 06/15/2023]
Abstract
The effects of plants on insects are not completely clear due to potential covariation of weather or location affecting both assemblages. To address this question, plant and insect assemblages were described during summer 2019 and 2020 in two different forest habitats of northern Lower Michigan. The first habitat was a hardwood forest typical of secondary succession in the region. The second was a hydric forest located ~20 m from the hardwood forest which developed after lake sediment was deposited into a 10-ha area in the early 2000s. Reflecting this sediment deposition, soil of the hydric forest had higher water content and organic matter, and was dominated by the plant genera Solidago (Asterales: Asteraceae), Rubus (Rosales: Rosaceae), and Salix (Malpighiales: Salicaceae). In contrast, the hardwood forest had greater inorganic sediment and was dominated by Pteridium (Polypodiales: Dennstaedtiaceae), Carex (Poales: Cyperaceae), and Acer. Nearly 140,000 insect specimens were sampled using pitfall trapping, sweep netting, flight intercept trapping, ultraviolet light trapping, and yellow and blue pan trapping. The first three methods each sampled a unique insect assemblage, whereas the last three overlapped in taxa sampled. Insect assemblages of the two forests were distinct from each other using any of the six methods, with abundance of Pteridium and Salix (Sapindales: Sapindaceae) generally associating with changes in insect composition. A total of 41 insect taxa indicated the hydric forest and 14 indicated the hardwood forest. Insect richness increased with that of plants. These results demonstrate that differences in soil composition and plant assemblages associate with differences in forest insect assemblages, even of forests in very close proximity.
Collapse
Affiliation(s)
- David C Houghton
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Lily G Erickson
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Robert C Kintz
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Kaitlyn L Rowland
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Nathaniel C Gipe
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Charles Adams
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| |
Collapse
|
49
|
Ramos D, Hartke TR, Buchori D, Dupérré N, Hidayat P, Lia M, Harms D, Scheu S, Drescher J. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ 2022; 10:e13898. [PMID: 35990898 PMCID: PMC9390325 DOI: 10.7717/peerj.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Rainforest canopies, home to one of the most complex and diverse terrestrial arthropod communities, are threatened by conversion of rainforest into agricultural production systems. However, little is known about how predatory arthropod communities respond to such conversion. To address this, we compared canopy spider (Araneae) communities from lowland rainforest with those from three agricultural systems in Jambi Province, Sumatra, Indonesia, i.e., jungle rubber (rubber agroforest) and monoculture plantations of rubber and oil palm. Using canopy fogging, we collected 10,676 spider specimens belonging to 36 families and 445 morphospecies. The four most abundant families (Salticidae N = 2,043, Oonopidae N = 1,878, Theridiidae N = 1,533 and Clubionidae N = 1,188) together comprised 62.2% of total individuals, while the four most speciose families, Salticidae (S = 87), Theridiidae (S = 83), Araneidae (S = 48) and Thomisidae (S = 39), contained 57.8% of all morphospecies identified. In lowland rainforest, average abundance, biomass and species richness of canopy spiders was at least twice as high as in rubber or oil palm plantations, with jungle rubber showing similar abundances as rainforest, and intermediate biomass and richness. Community composition of spiders was similar in rainforest and jungle rubber, but differed from rubber and oil palm, which also differed from each other. Canonical Correspondence Analysis showed that canopy openness, aboveground tree biomass and tree density together explained 18.2% of the variation in spider communities at family level. On a morphospecies level, vascular plant species richness and tree density significantly affected the community composition but explained only 6.8% of the variance. While abundance, biomass and diversity of spiders declined strongly with the conversion of rainforest into monoculture plantations of rubber and oil palm, we also found that a large proportion of the rainforest spider community can thrive in extensive agroforestry systems such as jungle rubber. Despite being very different from rainforest, the canopy spider communities in rubber and oil palm plantations may still play a vital role in the biological control of canopy herbivore species, thus contributing important ecosystem services. The components of tree and palm canopy structure identified as major determinants of canopy spider communities may aid in decision-making processes toward establishing cash-crop plantation management systems which foster herbivore control by spiders.
Collapse
Affiliation(s)
- Daniel Ramos
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Tamara R. Hartke
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Damayanti Buchori
- Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Nadine Dupérré
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Mayanda Lia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Danilo Harms
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Stefan Scheu
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
- Center for Biodiversity and Sustainable Land Use, Georg-August Universität Göttingen, Göttingen, Germany
| | - Jochen Drescher
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| |
Collapse
|
50
|
Rodríguez LA, Medianero E. The composition of braconid wasp communities in three forest fragments in a tropical lowland forest of Panama. BMC Ecol Evol 2022; 22:98. [PMID: 35964010 PMCID: PMC9375304 DOI: 10.1186/s12862-022-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background In the last 171 years, the forests along the eastern bank of the Panama Canal have been pressured by anthropic activities. Studies of the influence of habitat fragmentation on braconid wasp communities in Central America is scarce, showing the existing information gap on these communities required to implement strategic plans for ecosystem sustainability and conservation. This study investigated how fragmentation affects braconid wasp communities in three areas in Panama City: Metropolitan Natural Park, Albrook and Corozal. Two permanent Malaise Traps were installed in the center of each fragment and were reviewed weekly from May 2019 to March 2020. Alpha and beta diversity indices and the similarity index were used to demonstrate the composition of braconid wasp communities in three forest fragments. Results A similarity of 94% was estimated for the subfamily composition and 74% was estimated for the morphospecies composition of wasp community in the fragments studied. Wasp subfamily and morphospecies assemblages were more similar between fragments of Albrook and Metropolitan Natural Park. Richness and abundance of braconid wasps observed were statistically different between the fragments studied. Conclusion Richness, abundance, and composition of braconid wasps differ among habitat fragments with high similarity between subfamilies and morphospecies. Therefore, the fragments studied can be used as stepping stones to maintain remaining populations of braconid wasp communities. Monitoring is recommended to assess the effect of fragmentation on the remaining forests.
Collapse
|