1
|
Mason RD, Zhang B, Morano NC, Shen CH, McKee K, Heimann A, Du R, Nazzari AF, Hodges S, Kanai T, Lin BC, Louder MK, Doria-Rose NA, Zhou T, Shapiro L, Roederer M, Kwong PD, Gorman J. Structural development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage. Cell Rep 2025; 44:115223. [PMID: 39826122 PMCID: PMC11883830 DOI: 10.1016/j.celrep.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the apex of the HIV-1-envelope (Env) trimer comprise the most potent category of HIV-1 bNAbs and have emerged as promising therapeutics. Here, we investigate the development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage and report cryo-EM structures at 3.4 Å resolution of PGDM1400 and of an improved PGT145 variant (PGT145-R100aS), each bound to the BG505 Env trimer. Cross-species-based engineering improves PGT145 IC80 breadth to near that of PGDM1400. Despite similar breadth and potency, the two antibodies differ in their residue-level interactions with important apex features, including N160 glycans and apex cavity, with residue 100i of PGT145 (sulfated tyrosine) penetrating ∼7 Å farther than residue 100i of PGDM1400 (aspartic acid). While apex-directed bNAbs from other donors use maturation pathways that often converge on analogous residue-level recognition, our results demonstrate that divergent residue-level recognition can occur within the same lineage, thereby enabling improved coverage of escape variants.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelby Hodges
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tapan Kanai
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
2
|
Foulkes C, Friedrich N, Ivan B, Stiegeler E, Magnus C, Schmidt D, Karakus U, Weber J, Günthard HF, Pasin C, Rusert P, Trkola A. Assessing bnAb potency in the context of HIV-1 envelope conformational plasticity. PLoS Pathog 2025; 21:e1012825. [PMID: 39836706 PMCID: PMC11774494 DOI: 10.1371/journal.ppat.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection. 23 mutations resulted in a highly neutralization sensitive phenotype, which was associated with de-stabilization of the closed, prefusion conformation. Including 19 of these mutants into a Sensitivity Env mutant panel (SENSE-19), we classified bnAbs according to potency variations in response to trimer opening. To verify that these sensitivity patterns are independent of the in vitro assay system, replication-competent SENSE-19 mutant viruses were tested on primary CD4 T cells. While loss of potency on SENSE-19 was registered for bnAbs from several classes recognizing quaternary epitopes on pre-triggered Env, structural destabilization benefitted MPER bnAbs and other inhibitors known to have post-CD4 attachment neutralization activity. Importantly, for a subset of CD4bs bnAbs, and the interface bnAb PGT151, particularly low potency variation was noted, suggesting that Env conformational tolerance can be achieved but is not the rule. In summary, SENSE-19 screens revealed distinct tolerance levels to Env conformational intermediates between bnAbs that provide mechanistic insights in their function and broaden current neutralization breadth assessments.
Collapse
Affiliation(s)
- Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Branislav Ivan
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
3
|
Cale EM, Shen CH, Olia AS, Radakovich NA, Rawi R, Yang Y, Ambrozak DR, Bennici AK, Chuang GY, Crooks ED, Driscoll JI, Lin BC, Louder MK, Madden PJ, Messina MA, Osawa K, Stewart-Jones GBE, Verardi R, Vrakas Z, Xie D, Zhang B, Binley JM, Connors M, Koup RA, Pierson TC, Doria-Rose NA, Kwong PD, Mascola JR, Gorman J. A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies. Cell Rep 2024; 43:115010. [PMID: 39675002 DOI: 10.1016/j.celrep.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.01 in complex with the Env trimer reveals binding to the same gp120-gp41 interface site of vulnerability as antibody 35O22 from a different HIV-1-infected donor. In addition to having similar angles of approach and extensive contacts with glycans N88 and N625, VRC44 and 35O22 derive from the same IGHV1-18 gene and share convergent mutations, indicating these two antibodies to be members of the only known highly glycan-dependent multidonor class. Strikingly, both lineages achieved almost 100% neutralization breadth against virus strains displaying high-mannose glycans. The high breadth and reproducible elicitation of VRC44 and 35O22 lineages validate germline-based methods of immunogen design for targeting the HIV-1 gp120-gp41 interface.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony K Bennici
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma D Crooks
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick J Madden
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zoe Vrakas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Xie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, Weston, MA 02493, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
4
|
Wang H, Cheng C, Dal Santo JL, Shen CH, Bylund T, Henry AR, Howe CA, Hwang J, Morano NC, Morris DJ, Pletnev S, Roark RS, Zhou T, Hansen BT, Hoyt FH, Johnston TS, Wang S, Zhang B, Ambrozak DR, Becker JE, Bender MF, Changela A, Chaudhary R, Corcoran M, Corrigan AR, Foulds KE, Guo Y, Lee M, Li Y, Lin BC, Liu T, Louder MK, Mandolesi M, Mason RD, McKee K, Nair V, O'Dell S, Olia AS, Ou L, Pegu A, Raju N, Rawi R, Roberts-Torres J, Sarfo EK, Sastry M, Schaub AJ, Schmidt SD, Schramm CA, Schwartz CL, Smith SC, Stephens T, Stuckey J, Teng IT, Todd JP, Tsybovsky Y, Van Wazer DJ, Wang S, Doria-Rose NA, Fischer ER, Georgiev IS, Karlsson Hedestam GB, Sheng Z, Woodward RA, Douek DC, Koup RA, Pierson TC, Shapiro L, Shaw GM, Mascola JR, Kwong PD. Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques. Cell 2024; 187:7214-7231.e23. [PMID: 39471811 PMCID: PMC11645223 DOI: 10.1016/j.cell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID50] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%-60% (50% inhibitory concentration [IC50] < 50 μg/mL) and total lineage-concentrations estimates of 50-200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
Collapse
Affiliation(s)
- Hua Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Dal Santo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin A Howe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juyun Hwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel J Morris
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan S Roark
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Forrest H Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nair
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindi L Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Modex Therapeutics Inc., Natick, MA 01760, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
5
|
Le Bihan T, Nunez de Villavicencio Diaz T, Reitzel C, Lange V, Park M, Beadle E, Wu L, Jovic M, Dubois RM, Couzens AL, Duan J, Han X, Liu Q, Ma B. De novo protein sequencing of antibodies for identification of neutralizing antibodies in human plasma post SARS-CoV-2 vaccination. Nat Commun 2024; 15:8790. [PMID: 39389968 PMCID: PMC11466954 DOI: 10.1038/s41467-024-53105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
The antibody response to vaccination and infection is a key component of the immune response to pathogens. Sequencing of peripheral B cells may not represent the complete B cell receptor repertoire. Here we present a method for sequencing human plasma-derived polyclonal IgG using a combination of mass spectrometry and B-cell sequencing. We investigate the IgG response to the Moderna Spikevax COVID-19 vaccine. From the sequencing data of the natural polyclonal response to vaccination, we generate 12 recombinant antibodies. Six derived recombinant antibodies, including four generated with de novo protein sequencing, exhibit similar or higher binding affinities than the original natural polyclonal antibody. Neutralization tests reveal that the six antibodies possess neutralizing capabilities against the target antigen. This research provides insights into sequencing polyclonal IgG antibodies and the potential of our approach in generating recombinant antibodies with robust binding affinity and neutralization capabilities. Directly examining the circulating IgG pool is crucial due to potential misrepresentations by B-cell analysis alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Wu
- Rapid Novor, Kitchener, ON, Canada
| | | | | | | | - Jin Duan
- Rapid Novor, Kitchener, ON, Canada
| | | | | | - Bin Ma
- Rapid Novor, Kitchener, ON, Canada.
| |
Collapse
|
6
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
7
|
Koornneef A, Vanshylla K, Hardenberg G, Rutten L, Strokappe NM, Tolboom J, Vreugdenhil J, Boer KFD, Perkasa A, Blokland S, Burger JA, Huang WC, Lovell JF, van Manen D, Sanders RW, Zahn RC, Schuitemaker H, Langedijk JPM, Wegmann F. CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits. Nat Commun 2024; 15:3128. [PMID: 38605096 PMCID: PMC11009251 DOI: 10.1038/s41467-024-47492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Lucy Rutten
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | | | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Johannes P M Langedijk
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
8
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
10
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Einav T, Ma R. Using interpretable machine learning to extend heterogeneous antibody-virus datasets. CELL REPORTS METHODS 2023; 3:100540. [PMID: 37671020 PMCID: PMC10475791 DOI: 10.1016/j.crmeth.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 09/07/2023]
Abstract
A central challenge in biology is to use existing measurements to predict the outcomes of future experiments. For the rapidly evolving influenza virus, variants examined in one study will often have little to no overlap with other studies, making it difficult to discern patterns or unify datasets. We develop a computational framework that predicts how an antibody or serum would inhibit any variant from any other study. We validate this method using hemagglutination inhibition data from seven studies and predict 2,000,000 new values ± uncertainties. Our analysis quantifies the transferability between vaccination and infection studies in humans and ferrets, shows that serum potency is negatively correlated with breadth, and provides a tool for pandemic preparedness. In essence, this approach enables a shift in perspective when analyzing data from "what you see is what you get" into "what anyone sees is what everyone gets."
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rong Ma
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Tan ZC, Lux A, Biburger M, Varghese P, Lees S, Nimmerjahn F, Meyer AS. Mixed IgG Fc immune complexes exhibit blended binding profiles and refine FcR affinity estimates. Cell Rep 2023; 42:112734. [PMID: 37421619 PMCID: PMC10404157 DOI: 10.1016/j.celrep.2023.112734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/21/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures. How this influences effector responses has not been examined. Here, we measure Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a continuum between pure cases and quantitatively matches a mechanistic model, except for several low-affinity interactions mostly involving IgG2. We find that the binding model provides refined estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable binding through avidity, though it is insufficient to induce effector responses. Overall, this work demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Prabha Varghese
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stephen Lees
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Aaron S Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Sastry M, Changela A, Gorman J, Xu K, Chuang GY, Shen CH, Cheng C, Geng H, O'Dell S, Ou L, Rawi R, Reveiz M, Stewart-Jones GBE, Wang S, Zhang B, Zhou T, Biju A, Chambers M, Chen X, Corrigan AR, Lin BC, Louder MK, McKee K, Nazzari AF, Olia AS, Parchment DK, Sarfo EK, Stephens T, Stuckey J, Tsybovsky Y, Verardi R, Wang Y, Zheng CY, Chen Y, Doria-Rose NA, McDermott AB, Mascola JR, Kwong PD. Diverse Murine Vaccinations Reveal Distinct Antibody Classes to Target Fusion Peptide and Variation in Peptide Length to Improve HIV Neutralization. J Virol 2023; 97:e0160422. [PMID: 37098956 PMCID: PMC10234334 DOI: 10.1128/jvi.01604-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/21/2023] [Indexed: 04/27/2023] Open
Abstract
While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Mallika Sastry
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Changela
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela R. Corrigan
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark K. Louder
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Adam S. Olia
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Edward K. Sarfo
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yiran Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adrian B. McDermott
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
17
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533993. [PMID: 36993197 PMCID: PMC10055425 DOI: 10.1101/2023.03.23.533993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera known to target the CD4-binding site that neutralize diverse strains of HIV. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one sera targeting two epitopes within the CD4 binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E. Radford
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Department of Genome Sciences & Medical Scientist Training
Program, University of Washington, Seattle, Washington, 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Timothy C. Yu
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center,
Seattle, Washington, 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
18
|
Kuriakose Gift S, Wieczorek L, Sanders-Buell E, Zemil M, Molnar S, Donofrio G, Townsley S, Chenine AL, Bose M, Trinh HV, Barrows BM, Sriplienchan S, Kitsiripornchai S, Nitayapan S, Eller LA, Rao M, Ferrari G, Michael NL, Ake JA, Krebs SJ, Robb ML, Tovanabutra S, Polonis VR. Evolution of Antibody Responses in HIV-1 CRF01_AE Acute Infection: Founder Envelope V1V2 Impacts the Timing and Magnitude of Autologous Neutralizing Antibodies. J Virol 2023; 97:e0163522. [PMID: 36749076 PMCID: PMC9973046 DOI: 10.1128/jvi.01635-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Understanding the dynamics of early immune responses to HIV-1 infection, including the evolution of initial neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, will inform HIV vaccine design. In this study, we assess the development of autologous neutralizing antibodies (ANAbs) against founder envelopes (Envs) from 18 participants with HIV-1 CRF01_AE acute infection. The timing of ANAb development directly associated with the magnitude of the longitudinal ANAb response. Participants that developed ANAbs within 6 months of infection had significantly higher ANAb responses at 1 year (50% inhibitory concentration [IC50] geometric mean titer [GMT] = 2,010 versus 184; P = 0.001) and 2 years (GMT = 3,479 versus 340; P = 0.015), compared to participants that developed ANAb responses after 6 months. Participants with later development of ANAb tended to develop an earlier, potent heterologous tier 1 (92TH023) neutralizing antibody (NAb) response (P = 0.049). CRF01_AE founder Env V1V2 loop lengths correlated indirectly with the timing (P = 0.002, r = -0.675) and directly with magnitude (P = 0.005, r = 0.635) of ANAb responses; Envs with longer V1V2 loop lengths elicited earlier and more potent ANAb responses. While ANAb responses did not associate with viral load, the viral load set point correlated directly with neutralization of the heterologous 92TH023 strain (P = 0.007, r = 0.638). In contrast, a striking inverse correlation was observed between viral load set point and peak ADCC against heterologous 92TH023 Env strain (P = 0.0005, r = -0.738). These data indicate that specific antibody functions can be differentially related to viral load set point and may affect HIV-1 pathogenesis. Exploiting Env properties, such as V1V2 length, could facilitate development of subtype-specific vaccines that elicit more effective immune responses and improved protection. IMPORTANCE Development of an effective HIV-1 vaccine will be facilitated by better understanding the dynamics between the founder virus and the early humoral responses. Variations between subtypes may influence the evolution of immune responses and should be considered as we strive to understand these dynamics. In this study, autologous founder envelope neutralization and heterologous functional humoral responses were evaluated after acute infection by HIV-1 CRF01_AE, a subtype that has not been thoroughly characterized. The evolution of these humoral responses was assessed in relation to envelope characteristics, magnitude of elicited immune responses, and viral load. Understanding immune parameters in natural infection will improve our understanding of protective responses and aid in the development of immunogens that elicit protective functional antibodies. Advancing our knowledge of correlates of positive clinical outcomes should lead to the design of more efficacious vaccines.
Collapse
Affiliation(s)
- Syna Kuriakose Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Gina Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Agnes L. Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Somchai Sriplienchan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suchai Kitsiripornchai
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayapan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Leigh-Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
Cyrillus Tan Z, Lux A, Biburger M, Varghese P, Lees S, Nimmerjahn F, Meyer AS. Mixed IgG Fc immune complexes exhibit blended binding profiles and refine FcR affinity estimates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528730. [PMID: 36824734 PMCID: PMC9949097 DOI: 10.1101/2023.02.15.528730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Immunoglobulin (Ig)G antibodies coordinate immune effector responses by selectively binding to target antigens and then interacting with various effector cells via the Fcγ receptors. The Fc domain of IgG can promote or inhibit distinct effector responses across several different immune cell types through variation based on subclass and Fc domain glycosylation. Extensive characterization of these interactions has revealed how the inclusion of certain Fc subclasses or glycans results in distinct immune responses. During an immune response, however, IgG is produced with mixtures of Fc domain properties, so antigen-IgG immune complexes are likely to almost always be comprised of a combination of Fc forms. Whether and how this mixed composition influences immune effector responses has not been examined. Here, we measured Fcγ receptor binding to immune complexes of mixed Fc domain composition. We found that the binding properties of the mixed-composition immune complexes fell along a continuum between those of the corresponding pure cases. Binding quantitatively matched a mechanistic binding model, except for several low-affinity interactions mostly involving IgG2. We found that the affinities of these interactions are different than previously reported, and that the binding model could be used to provide refined estimates of these affinities. Finally, we demonstrated that the binding model can predict effector-cell elicited platelet depletion in humanized mice, with the model inferring the relevant effector cell populations. Contrary to the previous view in which IgG2 poorly engages with effector populations, we observe appreciable binding through avidity, but insufficient amounts to observe immune effector responses. Overall, this work demonstrates a quantitative framework for reasoning about effector response regulation arising from IgG of mixed Fc composition. Summary points The binding behavior of mixed Fc immune complexes is a blend of the binding properties for each constituent IgG species.An equilibrium, multivalent binding model can be generalized to incorporate immune complexes of mixed Fc composition.Particularly for low-affinity IgG-Fcγ receptor interactions, immune complexes provide better estimates of affinities.The FcγR binding model predicts effector-elicited cell clearance in humanized mice.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles (UCLA)
| | - Anja Lux
- Department of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg
| | - Markus Biburger
- Department of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg
| | - Prabha Varghese
- Department of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg
| | | | - Falk Nimmerjahn
- Department of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg
| | - Aaron S. Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles (UCLA),Department of Bioengineering, UCLA,Jonsson Comprehensive Cancer Center, UCLA,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA,Corresponding author.
| |
Collapse
|
20
|
Einav T, Creanga A, Andrews SF, McDermott AB, Kanekiyo M. Harnessing low dimensionality to visualize the antibody-virus landscape for influenza. NATURE COMPUTATIONAL SCIENCE 2023; 3:164-173. [PMID: 38177625 PMCID: PMC10766546 DOI: 10.1038/s43588-022-00375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2024]
Abstract
Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, Asokan M, Bender MF, Bylund T, Damron L, Gollapudi D, Lei P, Li Y, Liu C, Louder MK, McKee K, Olia AS, Rawi R, Schön A, Wang S, Yang ES, Yang Y, Carlton K, Doria-Rose NA, Shapiro L, Seaman MS, Mascola JR, Kwong PD. Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency. MAbs 2023; 15:2165390. [PMID: 36729903 PMCID: PMC9897750 DOI: 10.1080/19420862.2023.2165390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 μg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 μg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Young D. Kwon
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cara W. Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael F. Bender
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Leland Damron
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Gollapudi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Paula Lei
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yile Li
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Mark K. Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Adam S. Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Carlton
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Columbia University, New York, NY, USA
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John R. Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA,Department of Biochemistry, Columbia University, New York, NY, USA,CONTACT Peter D. Kwong Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
22
|
Raju N, Zhan X, Das S, Karwal L, Dean HJ, Crowe JE, Carnahan RH, Georgiev IS. Neutralization fingerprinting technology for characterizing polyclonal antibody responses to dengue vaccines. Cell Rep 2022; 41:111807. [PMID: 36516766 DOI: 10.1016/j.celrep.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue is a major public health threat. There are four dengue virus (DENV) serotypes; therefore, efforts are focused on developing safe and effective tetravalent DENV vaccines. While neutralizing antibodies contribute to protective immunity, there are still important gaps in understanding of immune responses elicited by dengue infection and vaccination. To that end, here, we develop a computational modeling framework based on the concept of antibody-virus neutralization fingerprints in order to characterize samples from clinical studies of TAK-003, a tetravalent vaccine candidate currently in phase 3 trials. Our results suggest a similarity of neutralizing antibody specificities in baseline-seronegative individuals. In contrast, amplification of pre-existing neutralizing antibody specificities is predicted for baseline-seropositive individuals, thus quantifying the role of immunologic imprinting in driving antibody responses to DENV vaccines. The neutralization fingerprinting analysis framework presented here can contribute to understanding dengue immune correlates of protection and help guide further vaccine development and optimization.
Collapse
Affiliation(s)
- Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Subash Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Hansi J Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
Dănăilă VR, Avram S, Buiu C. The applications of machine learning in HIV neutralizing antibodies research-A systematic review. Artif Intell Med 2022; 134:102429. [PMID: 36462896 DOI: 10.1016/j.artmed.2022.102429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Machine learning algorithms play an essential role in bioinformatics and allow exploring the vast and noisy biological data in unrivaled ways. This paper is a systematic review of the applications of machine learning in the study of HIV neutralizing antibodies. This significant and vast research domain can pave the way to novel treatments and to a vaccine. We selected the relevant papers by investigating the available literature from the Web of Science and PubMed databases in the last decade. The computational methods are applied in neutralization potency prediction, neutralization span prediction against multiple viral strains, antibody-virus binding sites detection, enhanced antibodies design, and the study of the antibody-induced immune response. These methods are viewed from multiple angles spanning data processing, model description, feature selection, evaluation, and sometimes paper comparisons. The algorithms are diverse and include supervised, unsupervised, and generative types. Both classical machine learning and modern deep learning were taken into account. The review ends with our ideas regarding future research directions and challenges.
Collapse
Affiliation(s)
- Vlad-Rareş Dănăilă
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| | - Speranţa Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| |
Collapse
|
24
|
Melzi E, Willis JR, Ma KM, Lin YC, Kratochvil S, Berndsen ZT, Landais EA, Kalyuzhniy O, Nair U, Warner J, Steichen JM, Kalyuzhniy A, Le A, Pecetta S, Perez M, Kirsch K, Weldon SR, Falcone S, Himansu S, Carfi A, Sok D, Ward AB, Schief WR, Batista FD. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022; 55:2168-2186.e6. [PMID: 36179690 PMCID: PMC9671093 DOI: 10.1016/j.immuni.2022.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.
Collapse
Affiliation(s)
- Eleonora Melzi
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sven Kratochvil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise A Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amber Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simone Pecetta
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Manfredo Perez
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kathrin Kirsch
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Extrapolating missing antibody-virus measurements across serological studies. Cell Syst 2022; 13:561-573.e5. [PMID: 35798005 DOI: 10.1016/j.cels.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023]
Abstract
The development of new vaccines, as well as our understanding of key processes that shape viral evolution and host antibody repertoires, relies on measuring multiple antibody responses against large panels of viruses. Given the enormous diversity of circulating virus strains and antibody responses, comprehensively testing all antibody-virus interactions is infeasible. Even within individual studies with limited panels, exhaustive testing is not always performed, and there is no common framework for combining information across studies with partially overlapping panels, especially when the assay type or host species differ. Prior studies have demonstrated that antibody-virus interactions can be characterized in a vastly simpler and lower dimensional space, suggesting that relatively few measurements could predict unmeasured antibody-virus interactions. Here, we apply matrix completion to several large-scale influenza and HIV-1 studies. We explore how prediction accuracy evolves as the number of measurements changes and approximates the number of additional measurements necessary in several highly incomplete datasets (suggesting ∼250,000 measurements could be saved). In addition, we show how the method can combine disparate datasets, even when the number of available measurements is below the theoretical limit that guarantees successful prediction. This approach can be readily generalized to other viruses or more broadly to other low-dimensional biological datasets.
Collapse
|
26
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Zhou T, Chen L, Gorman J, Wang S, Kwon YD, Lin BC, Louder MK, Rawi R, Stancofski ESD, Yang Y, Zhang B, Quigley AF, McCoy LE, Rutten L, Verrips T, Weiss RA, Doria-Rose NA, Shapiro L, Kwong PD. Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure 2022; 30:862-875.e4. [PMID: 35413243 PMCID: PMC9177634 DOI: 10.1016/j.str.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Nanobodies can achieve remarkable neutralization of genetically diverse pathogens, including HIV-1. To gain insight into their recognition, we determined crystal structures of four llama nanobodies (J3, A12, C8, and D7), all of which targeted the CD4-binding site, in complex with the HIV-1 envelope (Env) gp120 core, and determined a cryoelectron microscopy (cryo-EM) structure of J3 with the Env trimer. Crystal and cryo-EM structures of J3 complexes revealed this nanobody to mimic binding to the prefusion-closed trimer for the primary site of CD4 recognition as well as a secondary quaternary site. In contrast, crystal structures of A12, C8, and D7 with gp120 revealed epitopes that included portions of the gp120 inner domain, inaccessible on the prefusion-closed trimer. Overall, these structures explain the broad and potent neutralization of J3 and limited neutralization of A12, C8, and D7, which utilized binding modes incompatible with the neutralization-targeted prefusion-closed conformation of Env.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Forsman Quigley
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy Rutten
- University of Utrecht, Utrecht, the Netherlands
| | | | - Robin A Weiss
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
28
|
Lewitus E, Townsley SM, Li Y, Donofrio GC, Dearlove BL, Bai H, Sanders-Buell E, O’Sullivan AM, Bose M, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Michael NL, Polonis VR, Ake JA, Vasan S, Robb ML, Tovanabutra S, Krebs SJ, Rolland M. HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathog 2022; 18:e1010369. [PMID: 35303045 PMCID: PMC8967031 DOI: 10.1371/journal.ppat.1010369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth. Vaccines against viral pathogens protect through the induction of broadly neutralizing antibodies (bnAbs). No HIV-1 vaccine has successfully elicited bnAbs, and a successful HIV-1 vaccine will need to accelerate the process of development of a broadly neutralizing response that typically takes a couple of years to develop in natural infection. We studied diversity in the HIV-1 envelope gene from initial infection to several years out in 126 individuals from two cohorts. We showed that the development of bnAbs at 2–3 years was not due to transmissible viral genetics, but rather associated with diversity during the first month of infection. We propose that designing a vaccine that mimics an infection with multiple, minimally distant founder variants may successfully elicit the development of bnAbs and provide effective prophylaxis against HIV-1.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Samantha M. Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Gina C. Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Bethany L. Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fredrick K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Phylogenetic inference of changes in amino acid propensities with single-position resolution. PLoS Comput Biol 2022; 18:e1009878. [PMID: 35180226 PMCID: PMC9106220 DOI: 10.1371/journal.pcbi.1009878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/13/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.
Collapse
|
30
|
Ng QR, Tee KK, Binley JM, Tong T. Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Res Hum Retroviruses 2022; 38:162-172. [PMID: 34006141 PMCID: PMC9206480 DOI: 10.1089/aid.2020.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
Collapse
Affiliation(s)
- Qi Ron Ng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James M. Binley
- HIV and Coronavirus Vaccine Development, San Diego Biomedical Research Institute, San Diego, California, USA
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Address correspondence to: Tommy Tong, Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
31
|
Lee M, Changela A, Gorman J, Rawi R, Bylund T, Chao CW, Lin BC, Louder MK, Olia AS, Zhang B, Doria-Rose NA, Zolla-Pazner S, Shapiro L, Chuang GY, Kwong PD. Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nat Commun 2021; 12:6470. [PMID: 34753907 PMCID: PMC8578620 DOI: 10.1038/s41467-021-26579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Antibody-Framework-to-Antigen Distance (AFAD) - the distance between the body of an antibody and a protein antigen - is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.
Collapse
Affiliation(s)
- Myungjin Lee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita Changela
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cara W Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Zolla-Pazner
- Department of Medicine and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lawrence Shapiro
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
32
|
Cottrell CA, Manne K, Kong R, Wang S, Zhou T, Chuang GY, Edwards RJ, Henderson R, Janowska K, Kopp M, Lin BC, Louder MK, Olia AS, Rawi R, Shen CH, Taft JD, Torres JL, Wu NR, Zhang B, Doria-Rose NA, Cohen MS, Haynes BF, Shapiro L, Ward AB, Acharya P, Mascola JR, Kwong PD. Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Rep 2021; 37:109922. [PMID: 34731616 PMCID: PMC9058982 DOI: 10.1016/j.celrep.2021.109922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Recognition of N-linked glycan at residue N276 (glycan276) at the periphery of the CD4-binding site (CD4bs) on the HIV-envelope trimer is a formidable challenge for many CD4bs-directed antibodies. To understand how this glycan can be recognized, here we isolate two lineages of glycan276-dependent CD4bs antibodies. Antibody CH540-VRC40.01 (named for donor-lineage.clone) neutralizes 81% of a panel of 208 diverse strains, while antibody CH314-VRC33.01 neutralizes 45%. Cryo-electron microscopy (cryo-EM) structures of these two antibodies and 179NC75, a previously identified glycan276-dependent CD4bs antibody, in complex with HIV-envelope trimer reveal substantially different modes of glycan276 recognition. Despite these differences, binding of glycan276-dependent antibodies maintains a glycan276 conformation similar to that observed in the absence of glycan276-binding antibodies. By contrast, glycan276-independent CD4bs antibodies, such as VRC01, displace glycan276 upon binding. These results provide a foundation for understanding antibody recognition of glycan276 and suggest its presence may be crucial for priming immunogens seeking to initiate broad CD4bs recognition.
Collapse
Affiliation(s)
- Christopher A Cottrell
- IAVI Neutralizing Antibody Center, Consortium for HIV/AIDS Vaccine Development (CHAVD), Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Manne
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert J Edwards
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Megan Kopp
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan L Torres
- IAVI Neutralizing Antibody Center, Consortium for HIV/AIDS Vaccine Development (CHAVD), Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nelson R Wu
- IAVI Neutralizing Antibody Center, Consortium for HIV/AIDS Vaccine Development (CHAVD), Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron S Cohen
- Departments of Medicine, Epidemiology, and Microbiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, Consortium for HIV/AIDS Vaccine Development (CHAVD), Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Priyamvada Acharya
- Duke University Human Vaccine Institute, Departments of Medicine and Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC 27710, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
33
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|
34
|
Lee JH, Toy L, Kos JT, Safonova Y, Schief WR, Havenar-Daughton C, Watson CT, Crotty S. Vaccine genetics of IGHV1-2 VRC01-class broadly neutralizing antibody precursor naïve human B cells. NPJ Vaccines 2021; 6:113. [PMID: 34489473 PMCID: PMC8421370 DOI: 10.1038/s41541-021-00376-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
A successful HIV vaccine eliciting broadly neutralizing antibodies (bnAbs) must overcome the hurdle of being able to activate naive precursor B cells encoding features within their germline B cell receptors (BCR) that allow recognition of broadly neutralizing epitopes. Knowledge of whether bnAb precursor B cells are circulating at sufficient frequencies within individuals in communities heavily impacted by HIV may be important. Using a germline-targeting eOD-GT8 immunogen and high-throughput droplet-based single-cell BCR sequencing, we demonstrate that large numbers of paired BCR sequences from multiple donors can be efficiently screened to elucidate precursor frequencies of rare, naive VRC01-class B cells. Further, we analyzed IGHV1-2 allelic usage among three different cohorts; we find that IGHV1-2 alleles traditionally thought to be incompatible with VRC01-class responses are relatively common in various human populations and that germline variation within IGHV1-2 associates with gene usage frequencies in the naive BCR repertoire.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Toy
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yana Safonova
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
- Computer Science and Engineering Department, University of California San Diego, San Diego, CA, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Colin Havenar-Daughton
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
35
|
Tan ZC, Murphy MC, Alpay HS, Taylor SD, Meyer AS. Tensor-structured decomposition improves systems serology analysis. Mol Syst Biol 2021; 17:e10243. [PMID: 34487431 PMCID: PMC8420856 DOI: 10.15252/msb.202110243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Systems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms. Here, we report that coupled matrix-tensor factorization (CMTF) can reduce these data into consistent patterns by recognizing the intrinsic structure of these data. We use measurements from two previous studies of HIV- and SARS-CoV-2-infected subjects as examples. CMTF outperforms standard methods like principal components analysis in the extent of data reduction while maintaining equivalent prediction of immune functional responses and disease status. Under CMTF, model interpretation improves through effective data reduction, separation of the Fc and antigen-binding effects, and recognition of consistent patterns across individual measurements. Data reduction also helps make prediction models more replicable. Therefore, we propose that CMTF is an effective general strategy for data exploration in systems serology.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
| | - Madeleine C Murphy
- Computational and Systems BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Hakan S Alpay
- Department of Computer ScienceUniversity of California, Los AngelesLos AngelesCAUSA
| | - Scott D Taylor
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
36
|
Seydoux E, Wan YH, Feng J, Wall A, Aljedani S, Homad LJ, MacCamy AJ, Weidle C, Gray MD, Brumage L, Taylor JJ, Pancera M, Stamatatos L, McGuire AT. Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Rep 2021; 35:109084. [PMID: 33951425 PMCID: PMC8127986 DOI: 10.1016/j.celrep.2021.109084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 10/27/2022] Open
Abstract
An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Abigail Wall
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Safia Aljedani
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Matthew D Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Lauren Brumage
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Justin J Taylor
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA; University of Washington, Department of Immunology, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Gorman J, Chuang GY, Lai YT, Shen CH, Boyington JC, Druz A, Geng H, Louder MK, McKee K, Rawi R, Verardi R, Yang Y, Zhang B, Doria-Rose NA, Lin B, Moore PL, Morris L, Shapiro L, Mascola JR, Kwong PD. Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Rep 2021; 31:107488. [PMID: 32268107 DOI: 10.1016/j.celrep.2020.03.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022] Open
Abstract
Antibodies targeting the V1V2 apex of the HIV-1 envelope (Env) trimer comprise one of the most commonly elicited categories of broadly neutralizing antibodies. Structures of these antibodies indicate diverse modes of Env recognition typified by antibodies of the PG9 class and the PGT145 class. The mode of recognition, however, has been unclear for the most potent of the V1V2 apex-targeting antibodies, CAP256-VRC26.25 (named for donor-lineage.clone and referred to hereafter as VRC26.25). Here, we determine the cryoelectron microscopy structure at 3.7 Å resolution of the antigen-binding fragment of VRC26.25 in complex with the Env trimer thought to have initiated the lineage. The 36-residue protruding loop of VRC26.25 displays recognition incorporating both strand-C interactions similar to the PG9 class and V1V2 apex insertion similar to the PGT145 class. Structural elements of separate antibody classes can thus intermingle to form a "combined" class, which in this case yields an antibody of extraordinary potency.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Penny L Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella 4013, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella 4013, South Africa
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J, Yap C, Hatch L, Stephens T, Tsybovsky Y, Crank MC, Ledgerwood JE, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat Commun 2021; 12:1722. [PMID: 33741916 PMCID: PMC7979723 DOI: 10.1038/s41467-021-21954-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.
Collapse
Affiliation(s)
- Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liam Hatch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Townsley SM, Donofrio GC, Jian N, Leggat DJ, Dussupt V, Mendez-Rivera L, Eller LA, Cofer L, Choe M, Ehrenberg PK, Geretz A, Gift S, Grande R, Lee A, Peterson C, Piechowiak MB, Slike BM, Tran U, Joyce MG, Georgiev IS, Rolland M, Thomas R, Tovanabutra S, Doria-Rose NA, Polonis VR, Mascola JR, McDermott AB, Michael NL, Robb ML, Krebs SJ. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021; 29:564-578.e9. [PMID: 33662277 DOI: 10.1016/j.chom.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Determining which immunological mechanisms contribute to the development of broad neutralizing antibodies (bNAbs) during HIV-1 infection is a major goal to inform vaccine design. Using samples from a longitudinal HIV-1 acute infection cohort, we found key B cell determinants within the first 14-43 days of viremia that predict the development of bNAbs years later. Individuals who develop neutralization breadth had significantly higher B cell engagement with the autologous founder HIV envelope (Env) within 1 month of initial viremia. A higher frequency of founder-Env-specific naive B cells was associated with increased B cell activation and differentiation and predictive of bNAb development. These data demonstrate that the initial B cell interaction with the founder HIV Env is important for the development of broadly neutralizing antibodies and provide evidence that events within HIV acute infection lead to downstream functional outcomes.
Collapse
Affiliation(s)
- Samantha M Townsley
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ningbo Jian
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David J Leggat
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lauryn Cofer
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Syna Gift
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rebecca Grande
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anna Lee
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Caroline Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mary Bryson Piechowiak
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Victoria R Polonis
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
40
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
41
|
Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. Immunity 2021; 54:324-339.e8. [PMID: 33453152 DOI: 10.1016/j.immuni.2020.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022]
Abstract
Vaccine elicitation of broadly neutralizing antibodies (bnAbs) is a key HIV-research goal. The VRC01 class of bnAbs targets the CD4-binding site on the HIV-envelope trimer and requires extensive somatic hypermutation (SHM) to neutralize effectively. Despite substantial progress, vaccine-induced VRC01-class antibodies starting from unmutated precursors have exhibited limited neutralization breadth, particularly against viruses bearing glycan on loop D residue N276 (glycan276), present on most circulating strains. Here, using sequential immunization of immunoglobulin (Ig)-humanized mice expressing diverse unmutated VRC01-class antibody precursors, we elicited serum responses capable of neutralizing viruses bearing glycan276 and isolated multiple lineages of VRC01-class bnAbs, including two with >50% breadth on a 208-strain panel. Crystal structures of representative bnAbs revealed the same mode of recognition as known VRC01-class bnAbs. Structure-function studies further pinpointed key mutations and correlated their induction with specific immunizations. VRC01-class bnAbs can thus be matured by sequential immunization from unmutated ancestors to >50% breadth, and we delineate immunogens and regimens inducing key SHM.
Collapse
|
42
|
Dingens AS, Pratap P, Malone K, Hilton SK, Ketas T, Cottrell CA, Overbaugh J, Moore JP, Klasse PJ, Ward AB, Bloom JD. High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. eLife 2021; 10:e64281. [PMID: 33438580 PMCID: PMC7864656 DOI: 10.7554/elife.64281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mapping polyclonal serum responses is critical to rational vaccine design. However, most high-resolution mapping approaches involve isolating and characterizing individual antibodies, which incompletely defines the polyclonal response. Here we use two complementary approaches to directly map the specificities of the neutralizing and binding antibodies of polyclonal anti-HIV-1 sera from rabbits immunized with BG505 Env SOSIP trimers. We used mutational antigenic profiling to determine how all mutations in Env affected viral neutralization and electron microscopy polyclonal epitope mapping (EMPEM) to directly visualize serum Fabs bound to Env trimers. The dominant neutralizing specificities were generally only a subset of the more diverse binding specificities. Additional differences between binding and neutralization reflected antigenicity differences between virus and soluble Env trimer. Furthermore, we refined residue-level epitope specificity directly from sera, revealing subtle differences across sera. Together, mutational antigenic profiling and EMPEM yield a holistic view of the binding and neutralizing specificity of polyclonal sera.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Payal Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Keara Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - PJ Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
43
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathog 2020; 16:e1009101. [PMID: 33290394 PMCID: PMC7748270 DOI: 10.1371/journal.ppat.1009101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
The RV144 vaccine efficacy clinical trial showed a reduction in HIV-1 infections by 31%. Vaccine efficacy was associated with stronger binding antibody responses to the HIV Envelope (Env) V1V2 region, with decreased efficacy as responses wane. High levels of Ab-dependent cellular cytotoxicity (ADCC) together with low plasma levels of Env-specific IgA also correlated with decreased infection risk. We investigated whether B cell priming from RV144 vaccination impacted functional antibody responses to HIV-1 following infection. Antibody responses were assessed in 37 vaccine and 63 placebo recipients at 6, 12, and 36 months following HIV diagnosis. The magnitude, specificity, dynamics, subclass recognition and distribution of the binding antibody response following infection were different in RV144 vaccine recipients compared to placebo recipients. Vaccine recipients demonstrated increased IgG1 binding specifically to V1V2, as well as increased IgG2 and IgG4 but decreased IgG3 to HIV-1 Env. No difference in IgA binding to HIV-1 Env was detected between the vaccine and placebo recipients following infection. RV144 vaccination limited the development of broadly neutralizing antibodies post-infection, but enhanced Fc-mediated effector functions indicating B cell priming by RV144 vaccination impacted downstream antibody function. However, these functional responses were not associated with clinical markers of disease progression. These data reveal that RV144 vaccination primed B cells towards specific binding and functional antibody responses following HIV-1 infection.
Collapse
|
45
|
Wei Q, Hargett AA, Knoppova B, Duverger A, Rawi R, Shen CH, Farney SK, Hall S, Brown R, Keele BF, Heath SL, Saag MS, Kutsch O, Chuang GY, Kwong PD, Moldoveanu Z, Raska M, Renfrow MB, Novak J. Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. iScience 2020; 23:101711. [PMID: 33205023 PMCID: PMC7649354 DOI: 10.1016/j.isci.2020.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
HIV-1 envelope (Env) N-glycosylation impact virus-cell entry and immune evasion. How each glycan interacts to shape the Env-protein-sugar complex and affects Env function is not well understood. Here, analysis of two Env variants from the same donor, with differing functional characteristics and N-glycosylation-site composition, revealed that changes to key N-glycosylation sites affected the Env structure at distant locations and had a ripple effect on Env-wide glycan processing, virus infectivity, antibody recognition, and virus neutralization. Specifically, the N262 glycan, although not in the CD4-binding site, modulated Env binding to the CD4 receptor, affected Env recognition by several glycan-dependent neutralizing antibodies, and altered site-specific glycosylation heterogeneity, with, for example, N448 displaying limited glycan processing. Molecular-dynamic simulations visualized differences in glycan density and how specific oligosaccharide positions can move to compensate for a glycan loss. This study demonstrates how changes in individual glycans can alter molecular dynamics, processing, and function of the Env-glycan shield.
Collapse
Affiliation(s)
- Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S. Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael S. Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
- Department of Immunology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Chuang GY, Asokan M, Ivleva VB, Pegu A, Yang ES, Zhang B, Chaudhuri R, Geng H, Lin BC, Louder MK, McKee K, O'Dell S, Wang H, Zhou T, Doria-Rose NA, Kueltzo LA, Lei QP, Mascola JR, Kwong PD. Removal of variable domain N-linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs 2020; 12:1836719. [PMID: 33121334 PMCID: PMC7643989 DOI: 10.1080/19420862.2020.1836719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Broadly neutralizing antibodies are showing promise in the treatment and prevention of HIV-1, with several now being evaluated clinically. Some lead clinical candidates, including antibodies CAP256-VRC26.25, N6, PGT121, and VRC07-523, have one or more N-linked glycosylation sequons in their variable domains (Fvs) from somatic hypermutation, and these glycans increase chemical heterogeneity, complicating the manufacture of these antibodies as products. Here we propose a general method to remove Fv glycans and use this method to develop engineered versions of these four antibodies with Fv glycans removed. When germline residues were introduced to remove each glycan, antibody properties between wild type and mutant were not significantly altered for CAP256-VRC26.25 and PGT121; however, germline mutants for N6 and VRC07-523 showed increased polyreactivity, which is known to correlate with unfavorable in vivo pharmacokinetics. To reduce polyreactivity induced by removal of Fv glycan, we mutated aromatic residues and arginines structurally proximal to the removed glycan and identified Fv glycan-removed variants with low polyreactivity for N6 and VRC07-523. Two such variants, N6-N72LCQ-R18LCD and VRC07-523-N72LCQ-R24LCD, showed thermostability, neutralization potency and breadth, and half-life in humanized FcRn mice that were similar to their wild-type Fv-glycosylated counterparts. The removal of Fv glycan and reduction of chemical heterogeneity were confirmed by liquid chromatography-mass spectrometry. With reduced heterogeneity, the Fv-glycan-removed variants developed here may have utility as products for treating or preventing infection by HIV-1.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Vera B Ivleva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Rajoshi Chaudhuri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Hairong Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Lisa A Kueltzo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MA, USA
| |
Collapse
|
47
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
48
|
Antigenic Variation of the Dengue Virus 2 Genotypes Impacts the Neutralization Activity of Human Antibodies in Vaccinees. Cell Rep 2020; 33:108226. [PMID: 33027653 PMCID: PMC7583086 DOI: 10.1016/j.celrep.2020.108226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) infects an estimated 390 million people each year worldwide. As tetravalent DENV vaccines have variable efficacy against DENV serotype 2 (DENV2), we evaluated the role of genetic diversity within the pre-membrane (prM) and envelope (E) proteins of DENV2 on vaccine performance. We generated a recombinant DENV2 genotype variant panel with contemporary prM and E isolates that are representative of global genetic diversity. The DENV2 genotype variants differ in growth kinetics, morphology, and virion stability. Importantly, the DENV2 genotypic variants are differentially neutralized by monoclonal antibodies, polyclonal serum neutralizing antibodies from DENV2-infected human subjects, and vaccine-elicited antibody responses from the TV003 NIH DENV2 monovalent and DENV tetravalent vaccines. We conclude that DENV2 prM and E genetic diversity significantly modulates antibody neutralization activity. These findings have important implications for dengue vaccines, which are being developed under the assumption that intraserotype variation has minimal impact on neutralizing antibodies. Martinez et al. demonstrate that dengue virus serotype 2 (DENV2) genetic variation modulates neutralizing antibody activity from infection and vaccination. This observation underlines that genotypic variation impacts dengue virus 2 evasion from humoral immunity, suggesting that intraserotype genotypic variation should be considered in designing dengue vaccines.
Collapse
|
49
|
Ahmed S, Shrivastava T, Kumar R, Kumar M, Banerjee M, Kumar N, Bansal M, Das S, Samal S. Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochim Biophys Acta Gen Subj 2020; 1865:129733. [PMID: 32949621 DOI: 10.1016/j.bbagen.2020.129733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) is the primary target for broadly neutralizing antibodies (bNAbs) which can block infection. The current design strategy of soluble forms of Env in native-like trimeric conformation induces neutralizing antibodies with minimal breadth and potency. Extensive shielding by N-glycans on the surface of the HIV-1 Env acts as an immune evasion mechanism by restricting B cell recognition of conserved neutralizing determinants. An alternate approach is to design Env protein with glycan deletion to expose the protein surface. METHODS A stable native-like trimeric Env with glycan holes at potentially immunogenic locations is expected to elicit better induction of germ-line B-cells due to exposure of the immunogenic regions. However, the extent and consequences of glycan removal from the trimer apex that form an important epitope is not explored. In this work, we have designed a construct with glycans deleted from the trimer apex of an Indian clade C origin Env that has previously been characterized for immunogenicity, to understand the impact of deglycosylation on the structural and functional integrity as well as on the antibody binding properties. RESULTS The V1V2 glycan-deleted protein maintains native-like trimeric conformation with improved accessibility of the V1V2-directed germ-line antibodies. Furthermore, we showed that the protein binds specifically to quaternary conformation-dependent bnAbs but minimally to non-neutralizing antibodies. CONCLUSIONS This study provide an important design aspect of HIV-1 Env-based immunogens with glycan holes in the apex region that could be useful in eliciting apex directed antibodies in immunization studies.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Tripti Shrivastava
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Naresh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manish Bansal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
50
|
A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex. J Virol 2020; 94:JVI.00814-20. [PMID: 32669335 DOI: 10.1128/jvi.00814-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is the sole target of broadly neutralizing antibodies (bnAbs). Several mechanisms, such as the acquisition of mutations, variability of the loop length, and alterations in the glycan pattern, are employed by the virus to shield neutralizing epitopes on Env to sustain survival and infectivity within the host. The identification of mutations that lead to viral evasion of the host immune response is essential for the optimization and engineering of Env-based trimeric immunogens. Here, we report a rare leucine-to-phenylalanine escape mutation (L184F) at the base of hypervariable loop 2 (population frequency of 0.0045%) in a 9-month-old perinatally HIV-1-infected infant broad neutralizer. The L184F mutation altered the trimer conformation by modulating intramolecular interactions stabilizing the trimer apex and led to viral escape from autologous plasma bnAbs and known N160 glycan-targeted bnAbs. The L184F amino acid change led to the acquisition of a relatively open trimeric conformation, often associated with tier 1 HIV-1 isolates and increased susceptibility to neutralization by polyclonal plasma antibodies of weak neutralizers. While there was no impact of the L184F mutation on free virus transmission, a reduction in cell-to-cell transmission was observed. In conclusion, we report a naturally selected viral mutation, L184F, that influenced a change in the conformation of the Env trimer apex as a mechanism of escape from contemporaneous plasma V2 apex-targeted nAbs. Further studies should be undertaken to define viral mutations acquired during natural infection, to escape selection pressure exerted by bnAbs, to inform vaccine design and bnAb-based therapeutic strategies.IMPORTANCE The design of HIV-1 envelope-based immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is currently under active research. Some of the most potent bnAbs target the quaternary epitope at the V2 apex of the HIV-1 Env trimer. By studying naturally circulating viruses from a perinatally HIV-1-infected infant with plasma neutralizing antibodies targeted to the V2 apex, we identified a rare leucine-to-phenylalanine substitution, in two out of six functional viral clones, that destabilized the trimer apex. This single-amino-acid alteration impaired the interprotomeric interactions that stabilize the trimer apex, resulting in an open trimer conformation and escape from broadly neutralizing autologous plasma antibodies and known V2 apex-directed bnAbs, thereby favoring viral evasion of the early bnAb response of the infected host. Defining the mechanisms by which naturally occurring viral mutations influence the sensitivity of HIV-1 to bnAbs will provide information for the development of vaccines and bnAbs as anti-HIV-1 reagents.
Collapse
|