1
|
Yeh YT, Chen KD, Huang CH, Tsai JR, Kuo HC. Eggerthella lenta down regulated flavone and flavonol biosynthesis promoted Kawasaki disease. Virulence 2025; 16:2512401. [PMID: 40448518 DOI: 10.1080/21505594.2025.2512401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/13/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Kawasaki Disease (KD) is a multisystemic vasculitis of unknown aetiology in children. The incidence of KD varies by geographic area and correlates with differences in gut microbiota patterns, with the highest incidence in Asian. This study aimed to investigate alterations in faecal microbiota and assess their relationship with systemic inflammation in KD patients. A total of 59 patients and 55 matched controls were included. Fecal samples were collected at the onset of KD. The V3/V4 regions of 16S rDNA were sequenced using the MiSeq platform. PICRUSt 2 was used to analyse the potential functional pathways involved in gut dysbiosis. Alpha (p < 0.042) and beta (p < 0.001) diversity in KD were significantly decreased when compared to the control group. After multivariate regression, among the seven critical microbes, increased Eggerthella lenta (p = 0.016) and decreased Bacteroides ovatus (p = 0.014) could also predict KD risk using receiver operating characteristic curve (ROC) analysis (Eggerthella lenta: area under the ROC curve, AUC = 0.841, odds ratio = 23.956; Bacteroides ovatus: AUC = 0.816, odds ratio = 31.365). Notably, Bacteroides ovatus was positively correlated with blood segment cells (p = 0.006), but negatively correlated with blood lymphocytes (p = 0.013). After multivariate regression, flavone and flavonol biosynthesis decreased in children with KD (p < 0.001). Our results indicated that both Bacteroides ovatus and Eggerthella lenta may deregulate flavone and flavonol biosynthesis, consequently modulating immune cells and potentially triggering KD. This study suggests that alterations in the gut microbiota are closely associated with immune responses and provides a new perspective on the aetiology, pathogenesis, and treatment of KD.
Collapse
Affiliation(s)
- Yao-Tsung Yeh
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
| | - Jia-Rong Tsai
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Nagayama M, Gogokhia L, Longman RS. Precision microbiota therapy for IBD: premise and promise. Gut Microbes 2025; 17:2489067. [PMID: 40190259 PMCID: PMC11980506 DOI: 10.1080/19490976.2025.2489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn's Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10-15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
Collapse
Affiliation(s)
- Manabu Nagayama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lasha Gogokhia
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Zhang Y, Mo C, Ai P, He X, Xiao Q, Yang X. Pharmacomicrobiomics: a new field contributing to optimizing drug therapy in Parkinson's disease. Gut Microbes 2025; 17:2454937. [PMID: 39875349 PMCID: PMC11776486 DOI: 10.1080/19490976.2025.2454937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gut microbiota, which act as a determinant of pharmacokinetics, have long been overlooked. In recent years, a growing body of evidence indicates that the gut microbiota influence drug metabolism and efficacy. Conversely, drugs also exert a substantial influence on the function and composition of the gut microbiota. Pharmacomicrobiomics, an emerging field focusing on the interplay of drugs and gut microbiota, provides a potential foundation for making certain advances in personalized medicine. Understanding the communication between gut microbiota and antiparkinsonian drugs is critical for precise treatment of Parkinson's disease. Here, we provide a historical overview of the interplay between gut microbiota and antiparkinsonian drugs. Moreover, we discuss potential mechanistic insights into the complex associations between gut microbiota and drug metabolism. In addition, we also draw attention to microbiota-based biomarkers for predicting antiparkinsonian drug efficacy and examine current state-of-the-art knowledge of microbiota-based strategies to optimize drug therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Snelson M, Muralitharan RR, Liu CF, Markó L, Forslund SK, Marques FZ, Tang WHW. Gut-Heart Axis: The Role of Gut Microbiota and Metabolites in Heart Failure. Circ Res 2025; 136:1382-1406. [PMID: 40403109 PMCID: PMC12101525 DOI: 10.1161/circresaha.125.325516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/24/2025]
Abstract
Heart failure is a global health issue with significant mortality and morbidity. There is increasing evidence that alterations in the gastrointestinal microbiome, gut epithelial permeability, and gastrointestinal disorders contribute to heart failure progression through various pathways, including systemic inflammation, metabolic dysregulation, and modulation of cardiac function. Moreover, several medications used to treat heart failure directly impact the microbiome. The relationship between the gastrointestinal tract and the heart is bidirectional, termed the gut-heart axis. It is increasingly understood that diet-derived microbial metabolites are key mechanistic drivers of the gut-heart axis. This includes, for example, trimethylamine N-oxide and short-chain fatty acids. This review discusses current insights into the interplay between heart failure, its associated risk factors, and the gut microbiome, focusing on key metabolic pathways, the role of dietary interventions, and the potential for gut-targeted therapies. Understanding these complex interactions could pave the way for novel strategies to mitigate heart failure progression and improve patient outcomes.
Collapse
Affiliation(s)
- Matthew Snelson
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - Lajos Markó
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
| | - Sofia K. Forslund
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Francine Z. Marques
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
5
|
Mangoni AA, Woodman RJ, Jarmuzewska EA. Pharmacokinetic and pharmacodynamic alterations in older people: what we know so far. Expert Opin Drug Metab Toxicol 2025:1-19. [PMID: 40338211 DOI: 10.1080/17425255.2025.2503848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Healthcare professionals face increasing challenges when managing older patients, a group characterized by significant interindividual variability in comorbidity patterns, homeostatic capacity, frailty status, cognitive function, and life expectancy. Complex therapeutic decisions may increase the risk of inappropriate polypharmacy, drug-drug, and drug-disease interactions in the context of age-associated pharmacokinetic and pharmacodynamic alterations, with consequent drug accumulation and toxicity. AREAS COVERED This state-of-the-art narrative review article summarizes and critically appraises the results of original research studies and reviews published in PubMed, Scopus, and Web of Science, from inception to 9 April 2025, on age-associated changes in critical organs and systems and relevant pharmacokinetic and pharmacodynamic alterations. It also discusses the emerging role of frailty and the gut microbiota in influencing such alterations and the potential utility of machine learning techniques in identifying new signals of drug efficacy and toxicity in older patients. EXPERT OPINION The available knowledge regarding specific age-associated pharmacokinetic and pharmacodynamic alterations applies to a limited number of drugs, some of which are not frequently prescribed in contemporary practice. Future studies investigating a wider range of drugs and their patterns of use will likely enhance therapeutic efficacy and minimize toxicity in the older patient population.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Richard J Woodman
- Discipline of Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Elzbieta A Jarmuzewska
- Department of Internal Medicine, Polyclinic IRCCS, Ospedale Maggiore, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Zhu Y, Liu Q, Alffenaar JW, Wang S, Cao J, Dong S, Zhou X, Li X, Li X, Xiong H, Zhu L, Hu Y, Wang W. Gut Microbiota in Patients with Tuberculosis Associated with Different Drug Exposures of Antituberculosis Drugs. Clin Pharmacol Ther 2025. [PMID: 40326511 DOI: 10.1002/cpt.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Interindividual variability in drug exposure can significantly influence treatment outcomes and may lead to drug concentration-related side effects during tuberculosis (TB) treatment. Although the gut microbiota is known to affect drug metabolism, its impact on anti-TB drugs has not been thoroughly explored. This study sought to elucidate the relationship between pre-treatment gut microbiota and drug exposure levels among patients with pulmonary TB. Two cohorts were analyzed: a discovery cohort (N = 99) and a validation cohort (N = 32), both comprising patients undergoing anti-TB therapy with rifampicin, isoniazid, pyrazinamide, and ethambutol. The gut microbiota patterns of participants from the discovery cohort and the validation cohort were profiled by 16S rRNA gene sequencing and metagenomics, respectively. Analyses of both cohorts robustly established a positive association between pre-treatment microbial diversity and drug exposure, as well as significant differences in gut microbiota composition across various drug exposure groups. At the species level, Faecalibacterium prausnitzii was positively associated with drug exposure to rifampicin. Moreover, functional analysis revealed that starch and sucrose metabolism and secondary bile acid biosynthesis were more abundant in the high drug exposure group. To identify biomarkers capable of stratifying patients based on their drug exposure levels, 11 taxa, represented by Faecalibacterium, were selected in the discovery cohort (AUC = 0.992) and were confirmed in the validation cohort with high predictive accuracy (AUC = 0.894). This study demonstrated a correlation between microbial dysbiosis and reduced exposure to anti-TB medications. Optimizing treatment by regulating gut microbiota to improve drug exposure levels requires further validation through larger scale multicenter clinical trials.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
- Department of Clinical Pharmacology, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jiayi Cao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Shulan Dong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xiangkang Zhou
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xiaoxue Li
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xuliang Li
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Weibing Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Dong Z, Yu P, Li J, Zhou H, Li R, Wang S, Yang G, Nie Y, Liu L, Bian X, Jiang W, Gu Y, Yang Y. Discovery of an ene-reductase initiating resveratrol catabolism in gut microbiota and its application in disease treatment. Cell Rep 2025; 44:115517. [PMID: 40186869 DOI: 10.1016/j.celrep.2025.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Resveratrol (RSV) is a plant-derived natural compound with multiple biological activities. Upon entering the intestine, RSV undergoes rapid metabolism and transformation by the gut microbiota. In this study, we isolated a bacterium capable of efficiently metabolizing RSV, Eggerthella lenta J01. Through induced enrichment transcriptomics and bioinformatic analyses, we identified an RSV reductase (RER) from E. lenta J01. Using RER structure simulation, site-directed mutagenesis, and biochemical assays, we further determined the key amino acids in RER associated with RSV catalytic activity. Studies in animal models demonstrated that RER enhances RSV's ability to alleviate inflammatory bowel disease. Additionally, bioinformatics analysis revealed that the abundance of the rer gene in the gut microbiota of healthy individuals was higher than in patients with enteritis. Collectively, these findings suggest that the activity of natural products may be modulated by the gut microbiota through metabolic transformations.
Collapse
Affiliation(s)
- Zhixiang Dong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100039, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Jianxu Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Hui Zhou
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Rui Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Song Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Gaohua Yang
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yanhong Nie
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| |
Collapse
|
8
|
Fountoulakis PN, Theofilis P, Vlachakis PK, Karakasis P, Pamporis K, Sagris M, Dimitroglou Y, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Gut Microbiota in Heart Failure-The Role of Inflammation. Biomedicines 2025; 13:911. [PMID: 40299538 PMCID: PMC12024997 DOI: 10.3390/biomedicines13040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Heart failure (HF) has become an immense health concern affecting almost 1-2% of the population globally. It is a complex syndrome characterized by activation of the sympathetic nervous system and the Renin-Angiotensin-Aldosterone (RAAS) axis as well as endothelial dysfunction, oxidative stress, and inflammation. The recent literature points towards the interaction between the intestinal flora and the heart, also called the gut-heart axis. The human gastrointestinal tract is naturally inhabited by various microbes, which are distinct for each patient, regulating the functions of many organs. Alterations of the gut microbiome, a process called dysbiosis, may result in systemic diseases and have been associated with heart failure through inflammatory and autoimmune mechanisms. The disorder of intestinal permeability favors the translocation of microbes and many metabolites capable of inducing inflammation, thus further contributing to the deterioration of normal cardiac function. Besides diet modifications and exercise training, many studies have revealed possible gut microbiota targeted treatments for managing heart failure. The aim of this review is to demonstrate the impact of the inflammatory environment induced by the gut microbiome and its metabolites on heart failure and the elucidation of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Petros N. Fountoulakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Marios Sagris
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Yannis Dimitroglou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| |
Collapse
|
9
|
Wu Q, Song D, Zhao Y, Verdegaal AA, Turocy T, Duncan-Lowey B, Goodman AL, Palm NW, Crawford JM. Activity of GPCR-targeted drugs influenced by human gut microbiota metabolism. Nat Chem 2025:10.1038/s41557-025-01789-w. [PMID: 40181149 DOI: 10.1038/s41557-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Microbiota-mediated drug metabolism can affect pharmacological efficacy. Here we conducted a systematic comparative metabolomics investigation of drug metabolism modes by evaluating the impacts of human gut commensal bacteria on 127 G-protein-coupled receptor (GPCR)-targeted drugs. For the most extensively metabolized drugs in our screen, we elucidated both conventional and unconventional drug transformations and the corresponding activities of generated metabolites. Comparisons of drug metabolism by a gut microbial community versus individual species revealed both taxon intrinsic and collaborative processes that influenced the activity of the metabolized drugs against target GPCRs. We also observed iloperidone inactivation by generating unconventional metabolites. The human gut commensal bacteria mixture incorporated sulfur in the form of a thiophene motif, whereas Morganella morganii used a cascade reaction to incorporate amino-acid-derived tricyclic systems into the drug metabolites. Our results reveal a broad impact of human gut commensal bacteria on GPCR-targeted drug structures and activities through diverse microbiota-mediated biotransformations.
Collapse
Affiliation(s)
- Qihao Wu
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yanyu Zhao
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Brianna Duncan-Lowey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Schmitz MA, Dimonaco NJ, Clavel T, Hitch TCA. Lineage-specific microbial protein prediction enables large-scale exploration of protein ecology within the human gut. Nat Commun 2025; 16:3204. [PMID: 40180917 PMCID: PMC11968815 DOI: 10.1038/s41467-025-58442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Microbes use a range of genetic codes and gene structures, yet these are often ignored during metagenomic analysis. This causes spurious protein predictions, preventing functional assignment which limits our understanding of ecosystems. To resolve this, we developed a lineage-specific gene prediction approach that uses the correct genetic code based on the taxonomic assignment of genetic fragments, removes incomplete protein predictions, and optimises prediction of small proteins. Applied to 9634 metagenomes and 3594 genomes from the human gut, this approach increased the landscape of captured expressed microbial proteins by 78.9%, including previously hidden functional groups. Optimised small protein prediction captured 3,772,658 small protein clusters, which form an improved microbial protein catalogue of the human gut (MiProGut). To enable the ecological study of a protein's prevalence and association with host parameters, we developed InvestiGUT, a tool which integrates both the protein sequences and sample metadata. Accurate prediction of proteins is critical to providing a functional understanding of microbiomes, enhancing our ability to study interactions between microbes and hosts.
Collapse
Affiliation(s)
- Matthias A Schmitz
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Nicholas J Dimonaco
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Thomas Clavel
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
11
|
Loddo F, Laganà P, Rizzo CE, Calderone SM, Romeo B, Venuto R, Maisano D, Fedele F, Squeri R, Nicita A, Nirta A, Genovese G, Bartucciotto L, Genovese C. Intestinal Microbiota and Vaccinations: A Systematic Review of the Literature. Vaccines (Basel) 2025; 13:306. [PMID: 40266208 PMCID: PMC11946530 DOI: 10.3390/vaccines13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Vaccination constitutes a low-cost, safe, and efficient public health measure that can help prevent the spread of infectious diseases and benefit the community. The fact that vaccination effectiveness varies among populations, and that the causes of this are still unclear, indicates that several factors are involved and should be thoroughly examined. The "intestinal microbiota" is the most crucial of these elements. Numerous clinical studies demonstrate the intestinal microbiota's significance in determining the alleged "immunogenicity" and efficacy of vaccines. This systematic review aimed to review all relevant scientific literature and highlight the role of intestinal microbiota in COVID-19, Salmonella typhi, Vibrio cholerae, and rotavirus vaccinations. Materials and Methods: The MESH terms "vaccines" and "microbiota" were used to search the major scientific databases PubMed, SciVerse Scopus, Web of Knowledge, and the Cochrane Central Register of Controlled Clinical Trials. Results: Between February 2024 and October 2024, the analysis was conducted using electronic databases, yielding a total of 235 references. Finally, 24 RCTs were chosen after meeting all inclusion criteria: eight studies of COVID-19, two studies of Salmonella typhi, three studies of Vibrio cholerae, and eleven studies of rotavirus. Only six of these demonstrated good study quality with a Jadad score of three or four. Conclusions: According to the review's results, the intestinal microbiota surely plays a role in vaccinations' enhanced immunogenicity, especially in younger people. As it is still unclear what mechanisms underlie this effect, more research is needed to better understand the role of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| | | | - Cristina Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| |
Collapse
|
12
|
Amir S, Kumar M, Kumar V, Mohanty D. HgutMgene-Miner: In silico genome mining tool for deciphering the drug-metabolizing potential of human gut microbiome. Comput Biol Med 2025; 186:109679. [PMID: 39862468 DOI: 10.1016/j.compbiomed.2025.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining. HgutMgene-Miner derives its predictive power from the MicrobiomeMetDB database, which systematically catalogs all known biotransformation reactions of xenobiotics and primary metabolites mediated by host-associated microbial enzymes. Over 10,000 isolate genomes from 830 different bacterial species found in the Unified Human Gastrointestinal Genome (UHGG) collection have been analyzed by HgutMgene-Miner. This led to the identification of 89,377 xenobiotic metabolizing enzymes (XMEs) across 13 phyla, with the greatest diversity in Bacteroidota, Firmicutes_A, Firmicutes, and Proteobacteria. Bacteroides, Clostridium, and Alitsipes were found to be the richest genera, while Actinomyces were found to encode the fewest XMEs, primarily metabolizing Diclofenac, a nonsteroidal anti-inflammatory drug. Overall, we discovered XMEs in 220 genera, exceeding the number experimentally reported in fewer than 10 genera. Notably, Eggerthella lenta's cgr2 involved in Digoxin inactivation was identified in very distant Holdemania genera, likewise Clostridium leptum's nitroreductase, involved in Nitrazepam metabolism, was found in Fusobacterium. These findings highlight the extensive and diverse distribution of XMEs across microbial taxa.
Collapse
Affiliation(s)
- Sana Amir
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vikas Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
13
|
Shen S, Tian B, Zhang H, Wang YC, Li T, Cao Y. Heart Failure and Gut Microbiota: What Is Cause and Effect? RESEARCH (WASHINGTON, D.C.) 2025; 8:0610. [PMID: 39981296 PMCID: PMC11839986 DOI: 10.34133/research.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Emerging evidence highlights the central role of gut microbiota in maintaining physiological homeostasis within the host. Disruptions in gut microbiota can destabilize systemic metabolism and inflammation, driving the onset and progression of cardiometabolic diseases. In heart failure (HF), intestinal dysfunction may induce the release of endotoxins and metabolites, leading to dysbiosis and exacerbating HF through the gut-heart axis. Understanding the relationship between gut microbiota and HF offers critical insights into disease mechanisms and therapeutic opportunities. Current research highlights promising potential to improve patient outcomes by restoring microbiota balance. In this review, we summarize the current studies in understanding the gut microbiota-HF connection and discuss avenues for future investigation.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Beiduo Tian
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Haizhu Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics,
University of California, Los Angeles, CA, USA
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics,
West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
14
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
15
|
Jaimez-Alvarado S, López-Tenorio II, Barragán-De los Santos J, Bello-Vega DC, Gómez FJR, Amedei A, Berrios-Bárcenas EA, Aguirre-García MM. Gut-Heart Axis: Microbiome Involvement in Restrictive Cardiomyopathies. Biomedicines 2025; 13:144. [PMID: 39857728 PMCID: PMC11761909 DOI: 10.3390/biomedicines13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health. Studies have shown that gut dysbiosis, an imbalance in the composition of intestinal bacteria, can contribute to systemic inflammation, a key factor in many cardiovascular conditions. An increase in gut permeability, frequently caused by dysbiosis, allows bacterial endotoxins to enter the bloodstream, activating inflammatory pathways that exacerbate cardiac dysfunction. Recent reports highlight the potential role of microbiome in amyloidogenesis, as certain bacteria produce proteins that accelerate the formation of amyloid fibrils. Concurrently, advancements in amyloidosis treatments have sparked renewed hopes, marking a promising era for managing these kinds of diseases. These findings suggest that the gut-heart axis may be a potential factor in the development and progression of cardiovascular disease like RCM, opening new paths for therapeutic intervention. The aim of this review is to provide a detailed overview of the gut-heart axis, focusing on RCM.
Collapse
Affiliation(s)
- Samuel Jaimez-Alvarado
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Itzel Ivonn López-Tenorio
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Javier Barragán-De los Santos
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Dannya Coral Bello-Vega
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Francisco Javier Roldán Gómez
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| | | | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| |
Collapse
|
16
|
Alam Y, Hakopian S, Ortiz de Ora L, Tamburini I, Avelar-Barragan J, Jung S, Long Z, Chao A, Whiteson K, Jang C, Bess E. Variation in human gut microbiota impacts tamoxifen pharmacokinetics. mBio 2025; 16:e0167924. [PMID: 39584836 PMCID: PMC11708054 DOI: 10.1128/mbio.01679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Tamoxifen is the most prescribed drug used to prevent breast cancer recurrence, but patients show variable responses to tamoxifen. Such differential inter-individual response has a significant socioeconomic impact as one in eight women will develop breast cancer and nearly half a million people in the United States are treated with tamoxifen annually. Tamoxifen is orally delivered and must be activated by metabolizing enzymes in the liver; however, clinical studies show that neither genotype nor hepatic metabolic enzymes are sufficient to predict why some patients have sub-therapeutic levels of the drug. Here, using gnotobiotic- and antibiotics-treated mice, we show that tamoxifen pharmacokinetics are heavily influenced by gut bacteria and prolonged exposure to tamoxifen. Interestingly, 16S rRNA gene sequencing shows tamoxifen does not affect overall microbiota composition and abundance. Metabolomics, however, reveals differential metabolic profiles across the microbiomes of different donors cultured with tamoxifen, suggesting an enzymatic diversity within the gut microbiome that influences response to tamoxifen. Consistent with this notion, we found that β-glucuronidase (GUS) enzymes vary in their hydrolysis activity of glucuronidated tamoxifen metabolites across the gut microbiomes of people. Together, these findings highlight the importance of the gut microbiome in tamoxifen's pharmacokinetics.IMPORTANCEOne in eight women will develop breast cancer in their lifetime, and tamoxifen is used to suppress breast cancer recurrence, but nearly 50% of patients are not effectively treated with this drug. Given that tamoxifen is orally administered and, thus, reaches the intestine, this variable patient response to the drug is likely related to the gut microbiota composed of trillions of bacteria, which are remarkably different among individuals. This study aims to understand the impact of the gut microbiome on tamoxifen absorption, metabolism, and recycling. The significance of our research is in defining the role that gut microbes play in tamoxifen pharmacokinetics, thus paving the way for more tailored and effective therapeutic interventions in the prevention of breast cancer recurrence.
Collapse
Affiliation(s)
- Yasmine Alam
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Sheron Hakopian
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Lizett Ortiz de Ora
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Ian Tamburini
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Julio Avelar-Barragan
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Zane Long
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Alina Chao
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, USA
| | - Elizabeth Bess
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
17
|
Trepka KR, Olson CA, Upadhyay V, Zhang C, Turnbaugh PJ. Pharma[e]cology: How the Gut Microbiome Contributes to Variations in Drug Response. Annu Rev Pharmacol Toxicol 2025; 65:355-373. [PMID: 39107044 PMCID: PMC11864876 DOI: 10.1146/annurev-pharmtox-022724-100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.
Collapse
Affiliation(s)
- Kai R Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Christine A Olson
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Vaibhav Upadhyay
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Chen Zhang
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| | - Peter J Turnbaugh
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA;
| |
Collapse
|
18
|
Xu Y, Lv S, Li X, Zhai C, Shi Y, Li X, Feng Z, Luo G, Wang Y, Gao X. Photoaffinity probe-enabled discovery of sennoside A reductase in Bifidobacterium pseudocatenulatum. J Pharm Anal 2025; 15:101108. [PMID: 39902460 PMCID: PMC11788863 DOI: 10.1016/j.jpha.2024.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 02/05/2025] Open
Abstract
Sennoside A (SA), a typical prodrug, exerts its laxative effect only after its transformation into rheinanthrone catalyzed by gut microbial hydrolases and reductases. Hydrolases have been identified, but reductases remain unknown. By linking a photoreactive group to the SA scaffold, we synthesized a photoaffinity probe to covalently label SA reductases and identified SA reductases using activity-based protein profiling (ABPP). From lysates of an active strain, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 397 proteins were enriched and subsequently identified using mass spectrometry (MS). Among these proteins, chromate reductase/nicotinamide adenine dinucleotide (NADH) phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase/oxygen-insensitive NADPH nitroreductase (nfrA) was identified as a potent SA reductase through further bioinformatic analysis and The Universal Protein Resource (UniProt) database screening. We also determined that recombinant nfrA could reduce SA. Our study contributes to further illuminating mechanisms of SA transformation to rheinanthrone and simultaneously offers an effective method to identify gut bacterial reductases.
Collapse
Affiliation(s)
| | | | | | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yulian Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhiyang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
19
|
Yilmaz B, Macpherson AJ. Delving the depths of 'terra incognita' in the human intestine - the small intestinal microbiota. Nat Rev Gastroenterol Hepatol 2025; 22:71-81. [PMID: 39443711 DOI: 10.1038/s41575-024-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The small intestinal microbiota has a crucial role in gastrointestinal health, affecting digestion, immune function, bile acid homeostasis and nutrient metabolism. The challenges of accessibility at this site mean that our knowledge of the small intestinal microbiota is less developed than of the colonic or faecal microbiota. Here, we summarize the features and fluctuations of the microbiota along the small intestinal tract, focusing on humans, and discuss physicochemical factors and assessment methods, including the technical challenges of investigating the low microbial biomass of the proximal small bowel. We highlight the essential protective mechanisms of the small intestine, including motility, the paracellular barrier and mucus, and secretory immunity, to show their roles in limiting excessive exposure of host tissues to microbial metabolites. We address current knowledge gaps, particularly the variability among individuals, the effects of dysbiosis of the small intestinal microbiota on health and how different taxa in small intestinal microbiota could compensate for each other functionally.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Anwar F, Al-Abbasi FA, Al-Bar OA, Verma A, Kumar V. Gut microbiome and inflammation in cardiovascular drug response: trends in therapeutic success and commercial focus. Inflammopharmacology 2025; 33:49-68. [PMID: 39488611 DOI: 10.1007/s10787-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
The intricate Gut microbiome is evolving as an important system and is hypothesized to be a "metabolic organ" within the host. Alterations in Gut microbiota and inflammation associated with several diseases play a crucial role in drug transformation through microbiota-host co-metabolism, modified pharmacokinetic and pharmacodynamics profiles, and may result in the formation of toxic metabolites with interference in drug response. In recent studies, a large number of drugs are reported that are co-metabolized by the host and the Gut microbial enzymes. we summarize the direct and indirect involvement of Gut microbiome promotion or inhibition of cardiovascular diseases, mechanisms on bioavailability, and therapeutic outcomes of cardiovascular drugs, particularly pharmacokinetics and pharmacodynamics profiles in light of AUC, Tmax, Cmax, and bioavailability and drug transportation via immune cells, inter-individual variations in intestinal microbial taxonomy, influence of drugs on diversity and richness of microflora, high lightening limitations and significance of in personalized medicine. Recent advances in target-drug delivery by nanoparticles with limitations and challenges in application are discussed. The cross-talk between Gut microbiota and cardiovascular drugs signifies a better understanding and rationale for targeting the Gut microbiota to improve the therapeutic outcome for cardiovascular diseases, with present-day limitations.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Omar A Al-Bar
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| |
Collapse
|
21
|
McCoubrey LE, Shen C, Mwasambu S, Favaron A, Sangfuang N, Thomaidou S, Orlu M, Globisch D, Basit AW. Characterising and preventing the gut microbiota's inactivation of trifluridine, a colorectal cancer drug. Eur J Pharm Sci 2024; 203:106922. [PMID: 39368784 DOI: 10.1016/j.ejps.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Chenghao Shen
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sydney Mwasambu
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Nannapat Sangfuang
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Stavrina Thomaidou
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
22
|
Beldie LA, Dica CC, Moța M, Pirvu BF, Burticală MA, Mitrea A, Clenciu D, Efrem IC, Vladu BE, Timofticiuc DCP, Roșu MM, Gheonea TC, Amzolini AM, Moța E, Vladu IM. The Interactions Between Diet and Gut Microbiota in Preventing Gestational Diabetes Mellitus: A Narrative Review. Nutrients 2024; 16:4131. [PMID: 39683525 DOI: 10.3390/nu16234131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have revealed that dysbiosis, defined as alterations in gut microbiota, plays an important role in the development and the progression of many non-communicable diseases, including metabolic disorders, such as type 2 diabetes mellitus and gestational diabetes mellitus (GDM). The high frequency of GDM makes this disorder an important public health issue, which needs to be addressed in order to reduce both the maternal and fetal complications that are frequently associated with this disease. The studies regarding the connections between gut dysbiosis and GDM are still in their early days, with new research continuously emerging. This narrative review seeks to outline the mechanisms through which a healthy diet that protects the gut microbiota is able to prevent the occurrence of GDM, thus providing medical nutritional therapeutic perspectives for the management of GDM.
Collapse
Affiliation(s)
- Luiza-Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Cristina-Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bianca-Florentina Pirvu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Marilena-Alexandra Burticală
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Cristina Protasiewicz Timofticiuc
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
23
|
Anwardeen NR, Naja K, Elrayess MA. Advancements in precision medicine: multi-omics approach for tailored metformin treatment in type 2 diabetes. Front Pharmacol 2024; 15:1506767. [PMID: 39669200 PMCID: PMC11634602 DOI: 10.3389/fphar.2024.1506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Metformin has become the frontline treatment in addressing the significant global health challenge of type 2 diabetes due to its proven effectiveness in lowering blood glucose levels. However, the reality is that many patients struggle to achieve their glycemic targets with the medication and the cause behind this variability has not been investigated thoroughly. While genetic factors account for only about a third of this response variability, the potential influence of metabolomics and the gut microbiome on drug efficacy opens new avenues for investigation. This review explores the different molecular signatures to uncover how the complex interplay between genetics, metabolic profiles, and gut microbiota can shape individual responses to metformin. By highlighting the insights from recent studies and identifying knowledge gaps regarding metformin-microbiota interplay, we aim to highlight the path toward more personalized and effective diabetes management strategies and moving beyond the one-size-fits-all approach.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Shaman JA. The Future of Pharmacogenomics: Integrating Epigenetics, Nutrigenomics, and Beyond. J Pers Med 2024; 14:1121. [PMID: 39728034 DOI: 10.3390/jpm14121121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Pharmacogenomics (PGx) has revolutionized personalized medicine by empowering the tailoring of drug treatments based on individual genetic profiles. However, the complexity of drug response mechanisms necessitates the integration of additional biological and environmental factors. This article explores integrating epigenetics, nutrigenomics, microbiomes, protein interactions, exosomes, and metabolomics with PGx to enhance personalized medicine. In addition to discussing these scientific advancements, we examine the regulatory and ethical challenges of translating multi-omics into clinical practice, including considerations of data privacy, regulatory oversight, and equitable access. By framing these factors within the context of Medication Adherence, Medication Appropriateness, and Medication Adverse Events (MA3), we aim to refine therapeutic strategies, improve drug efficacy, and minimize adverse effects, with the goal of improving personalized medicine. This approach has the potential to benefit patients, healthcare providers, payers, and the healthcare system as a whole by enabling more precise and effective treatments.
Collapse
|
25
|
Wolff R, Garud NR. Pervasive selective sweeps across human gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573162. [PMID: 38187688 PMCID: PMC10769429 DOI: 10.1101/2023.12.22.573162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human gut microbiome is composed of a highly diverse consortia of species which are continually evolving within and across hosts. The ability to identify adaptations common to many human gut microbiomes would not only reveal shared selection pressures across hosts, but also key drivers of functional differentiation of the microbiome that may affect community structure and host traits. However, to date there has not been a systematic scan for adaptations that have spread across human gut microbiomes. Here, we develop a novel selection scan statistic named the integrated Linkage Disequilibrium Score (iLDS) that can detect the spread of adaptive haplotypes across host microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of hitchhiking of deleterious variants with the beneficial variant. Application of the statistic to ~30 of the most prevalent commensal gut species from 24 populations around the world revealed more than 300 selective sweeps across species. We find an enrichment for selective sweeps at loci involved in carbohydrate metabolism-potentially indicative of adaptation to features of host diet-and we find that the targets of selection significantly differ between Westernized and non-Westernized populations. Underscoring the potential role of diet in driving selection, we find a selective sweep absent from non-Westernized populations but ubiquitous in Westernized populations at a locus known to be involved in the metabolism of maltodextrin, a synthetic starch that has recently become a widespread component of Western diets. In summary, we demonstrate that selective sweeps across host microbiomes are a common feature of the evolution of the human gut microbiome, and that targets of selection may be strongly impacted by host diet.
Collapse
Affiliation(s)
- Richard Wolff
- Department of Ecology and Evolutionary Biology, UCLA
| | - Nandita R. Garud
- Department of Ecology and Evolutionary Biology, UCLA
- Department of Human Genetics, UCLA
| |
Collapse
|
26
|
Rendina M, Turnbaugh PJ, Bradley PH. Human xenobiotic metabolism proteins have full-length and split homologs in the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622278. [PMID: 39574613 PMCID: PMC11580864 DOI: 10.1101/2024.11.06.622278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Xenobiotics, including pharmaceutical drugs, can be metabolized by both host and microbiota, in some cases by homologous enzymes. We conducted a systematic search for all human proteins with gut microbial homologs. Because gene fusion and fission can obscure homology detection, we built a pipeline to identify not only full-length homologs, but also cases where microbial homologs were split across multiple adjacent genes in the same neighborhood or operon ("split homologs"). We found that human proteins with full-length gut microbial homologs disproportionately participate in xenobiotic metabolism. While this included many different enzyme classes, short-chain and aldo-keto reductases were the most frequently detected, especially in prevalent gut microbes, while cytochrome P450 homologs were largely restricted to lower-prevalence facultative anaerobes. In contrast, human proteins with split homologs tended to play roles in central metabolism, especially of nucleobase-containing compounds. We identify twelve specific drugs that gut microbial split homologs may metabolize; two of these, 6-mercaptopurine by xanthine dehydrogenase (XDH) and 5-fluorouracil by dihydropyrimidine dehydrogenase (DPYD), have been recently confirmed in mouse models. This work provides a comprehensive map of homology between the human and gut microbial proteomes, indicates which human xenobiotic enzyme classes are most likely to be shared by gut microorganisms, and finally demonstrates that split homology may be an underappreciated explanation for microbial contributions to drug metabolism.
Collapse
Affiliation(s)
- Matthew Rendina
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Patrick H. Bradley
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Kumar A, Sun R, Habib B, Bencivenga-Barry NA, Ivanov II, Tamblyn R, Goodman AL. Impacts of Medications on Microbiome-mediated Protection against Enteric Pathogens. RESEARCH SQUARE 2024:rs.3.rs-5199936. [PMID: 39483881 PMCID: PMC11527249 DOI: 10.21203/rs.3.rs-5199936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The majority of people in the U.S. manage health through at least one prescription drug. Drugs classified as non-antibiotics can adversely affect the gut microbiome and disrupt intestinal homeostasis. Here, we identified medications associated with an increased risk of GI infections across a population cohort of more than 1 million individuals monitored over 15 years. Notably, the cardiac glycoside digoxin and other drugs identified in this epidemiological study are sufficient to alter microbiome composition and risk of Salmonella enterica subsp. Typhimurium (S. Tm) infection in mice. The impact of digoxin treatment on S. Tm infection is transmissible via the microbiome, and characterization of this interaction highlights a digoxin-responsive β-defensin that alters microbiome composition and consequent immune surveillance of the invading pathogen. Combining epidemiological and experimental approaches thus provides an opportunity to uncover drug-host-microbiome-pathogen interactions that increase infection risk in humans.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ruizheng Sun
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bettina Habib
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
| | - Natasha A. Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Diseases Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robyn Tamblyn
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
29
|
Toh KY, Toh TS, Chua KP, Rajakumar P, Lee JWJ, Chong CW. Identification of age-associated microbial changes via long-read 16S sequencing. Gut Pathog 2024; 16:56. [PMID: 39369250 PMCID: PMC11456230 DOI: 10.1186/s13099-024-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Age-related gut microbial changes have been widely investigated over the past decade. Most of the previous age-related microbiome studies were conducted on the Western population, and the short-read sequencing (e.g., 16S V4 or V3-V4 region) was the most common microbiota profiling method. We evaluated the gut compositional differences using the long-read sequencing approach (i.e., PacBio sequencing targeting the full-length V1-V9 regions) to enable a deeper taxonomic resolution and better characterize the gut microbiome of Singaporeans from different age groups. RESULTS A total of 83 research participants were included in this study. Although no significant differences were detected in alpha and beta diversity, our study demonstrated several bacterial taxa with abundances that were significantly different across age groups. With young individuals as the reference group, Eggerthella lenta and Bacteroides uniformis were found to be significantly altered in the middle-aged group, while Catenibacterium mitsuokai and Bacteroides plebeius were significantly altered in the elderly group. These age-related differences in the gut microbiome were associated with aberrations in several predicted functional pathways, including dysregulations of pathways related to lipopolysaccharide and tricarboxylic acid cycle in older adults. CONCLUSIONS The utilization of long-read sequencing facilitated the identification of species- and strain-level differences across age groups, which was challenging with the partial 16S rRNA sequencing approach. Nevertheless, replication studies are warranted to confirm our findings, and if confirmed, further in vitro and in vivo studies are crucial to better understand the impact of the altered levels of age-related bacterial taxa. Additionally, the modest performance of strain-level taxonomic classification using 16S-ITS-23S gene sequences, likely due to the limited depth of currently available alignment databases, highlights the need for optimization and refinement in curating these databases for the long-read sequencing approach.
Collapse
Affiliation(s)
- Kai Yee Toh
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore.
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khi Pin Chua
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Priscilla Rajakumar
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
| | - Jonathan Wei Jie Lee
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine , National University Health System, Singapore, 119228, Singapore
- iHealthtech, National University of Singapore, Singapore, 117599, Singapore
- SynCTI, National University of Singapore, Singapore, 117456, Singapore
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- MUM Microbiome Research Centre, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
30
|
Nguyen SM, Tran TDC, Tran TM, Wang C, Wu J, Cai Q, Ye F, Shu XO. Influence of Peanut Consumption on the Gut Microbiome: A Randomized Clinical Trial. Nutrients 2024; 16:3313. [PMID: 39408280 PMCID: PMC11478729 DOI: 10.3390/nu16193313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Peanut consumption could impact cardiometabolic health through gut microbiota, a hypothesis that remains to be investigated. A randomized clinical trial in Vietnam evaluated whether peanut consumption alters gut microbiome communities. Methods: One hundred individuals were included and randomly assigned to the peanut intervention and control groups. A total of 51 participants were provided with and asked to consume 50 g of peanuts daily, while 49 controls maintained their usual dietary intake for 16 weeks. Stool samples were collected before and on the last day of the trial. After excluding 22 non-compliant participants and those who received antibiotic treatment, 35 participants from the intervention and 43 from the control were included in the analysis. Gut microbiota composition was measured by shotgun metagenomic sequencing. Associations of changes in gut microbial diversity with peanut intervention were evaluated via linear regression analysis. Linear mixed-effects models were used to analyze associations of composition, sub-community structure, and microbial metabolic pathways with peanut intervention. We also performed beta regression analysis to examine the impact of peanut intervention on the overall and individual stability of microbial taxa and metabolic pathways. All associations with false discovery rate (FDR)-corrected p-values of <0.1 were considered statistically significant. Results: No significant changes were found in α- and β-diversities and overall gut microbial stability after peanut intervention. However, the peanut intervention led to lower enrichment of five phyla, five classes, two orders, twenty-four metabolic pathways, and six species-level sub-communities, with a dominant representation of Bifidobacterium pseudocatenulatum, Escherichia coli D, Holdemanella biformis, Ruminococcus D bicirculans, Roseburia inulinivorans, and MGYG-HGUT-00200 (p < 0.05 and FDR < 0.1). The peanut intervention led to the short-term stability of several species, such as Faecalibacterium prausnitzii F and H, and a metabolic pathway involved in nitrate reduction V (p < 0.05; FDR < 0.1), known for their potential roles in human health, especially cardiovascular health. Conclusions: In summary, a 16-week peanut intervention led to significant changes in gut microbial composition, species-level sub-communities, and the short-term stability of several bacteria, but not overall gut microbial diversity and stability. Further research with a larger sample size and a longer intervention period is needed to confirm these findings and investigate the direct impact of gut-microbiome-mediated health effects of peanut consumption. Trial registration: The International Traditional Medicine Clinical Trial Registry (ITMCTR). Registration number: ITMCTR2024000050. Retrospectively Registered 24 April 2024.
Collapse
Affiliation(s)
- Sang Minh Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Thi Du Chi Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System, Hanoi 10000, Vietnam; (T.D.C.T.); (T.M.T.)
- College of Health Sciences, VinUniversity (VinUni), Hanoi 67000, Vietnam
- Vinmec-VinUni Institute of Immunology, Hanoi 10000, Vietnam
| | - Thi Mo Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System, Hanoi 10000, Vietnam; (T.D.C.T.); (T.M.T.)
| | - Cong Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| | - Fei Ye
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (S.M.N.); (C.W.); (J.W.); (Q.C.); (F.Y.)
| |
Collapse
|
31
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
32
|
Liu Q, Xu Y, Lv X, Guo C, Zhu H, Yang L, Wang Y. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine alleviates diet-induced hyperlipidemia by modulating intestinal gene expression profiles and metabolic pathway. Life Sci 2024; 352:122891. [PMID: 38977060 DOI: 10.1016/j.lfs.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
There is a growing body of evidence suggesting that the composition of intestinal flora plays a significant role in regulating lipid metabolism. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (IMMH007) is a new candidate compound for regulating blood cholesterol and other lipids. In this study, we conducted metagenomic and metabolomic analyses on samples from high-fat diet-fed (HFD) hamsters treated with IMMH007. Our findings revealed that IMM-H007 reversed the imbalance of gut microbiota caused by a high-fat diet. Additionally, it activated adiponectin receptor and pantothenate and CoA biosynthesis pathway-related genes, which are known to regulate lipid and glucose metabolism. Furthermore, IMM-H007 promotes cholesterol metabolism by reducing the abundance of genes and species associated with 7α-dehydroxylation and bile salt hydrolase (BSH). Metabolomics and pharmacological studies have shown that IMM-H007 effectively improved glucose and lipid metabolism disorders caused by HFD, reduced the aggregation of secondary bile acids (SBAs), significantly increased the content of hyodeoxycholic acid (HDCA), and also activated the expression of VDR in the small intestine. As a result, there was a reduction in the leakage of diamine oxidase (DAO) into the bloodstream in hamsters, accompanied by an upregulation of ZO-1 expression in the small intestine. The results suggested that IMM-H007 regulated glucose and lipid metabolism, promoted cholesterol metabolism through activating the expression of VDR, inhibiting inflammatory and improving the permeability of the intestinal barrier. Thus, our study provides new understanding of how IMM-H007 interacts with intestinal function, microbiota, and relevant targets, shedding light on its mechanism of action.
Collapse
Affiliation(s)
- Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Core Facilities, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Xu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqi Lv
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Guo
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Senina A, Markelova M, Khusnutdinova D, Siniagina M, Kupriyanova O, Synbulatova G, Kayumov A, Boulygina E, Grigoryeva T. Two-Year Study on the Intra-Individual Dynamics of Gut Microbiota and Short-Chain Fatty Acids Profiles in Healthy Adults. Microorganisms 2024; 12:1712. [PMID: 39203554 PMCID: PMC11357285 DOI: 10.3390/microorganisms12081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
While the gut microbiome has been intensively investigated for more than twenty years already, its role in various disorders remains to be unraveled. At the same time, questions about what changes in the gut microbiota can be considered as normal or pathological and whether communities are able to recover after exposure to negative factors (diseases, medications, environmental factors) are still unclear. Here, we describe changes in the gut microbiota composition and the content of short-chain fatty acids in adult healthy volunteers (n = 15) over a 24 month-period. Intraindividual variability in gut microbial composition was 40%, whereas the short chain fatty acids profile remained relatively stable (2-year variability 20%, inter-individual 26%). The changes tend to accumulate over time. Nevertheless, both short-term and long-term changes in the gut microbiome composition were significantly smaller within individuals than interindividual differences (two-year interindividual variability was 75%). Seasonal changes in gut microbiota were found more often in autumn and spring involving the content of minor representatives (less than 1.5% of the community in average) in the phyla Actinobacteriota, Firmicutes and Proteobacteria.
Collapse
Affiliation(s)
- Anastasia Senina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Olga Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
- Regional Research and Testing Center “Pharmexpert”, Kazan State Medical University, 420012 Kazan, Russia
| | - Gulnaz Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Eugenia Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| |
Collapse
|
34
|
Nayak RR, Orellana DA. The impact of the human gut microbiome on the treatment of autoimmune disease. Immunol Rev 2024; 325:107-130. [PMID: 38864582 PMCID: PMC11338731 DOI: 10.1111/imr.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Autoimmune (or rheumatic) diseases are increasing in prevalence but selecting the best therapy for each patient proceeds in trial-and-error fashion. This strategy can lead to ineffective therapy resulting in irreversible damage and suffering; thus, there is a need to bring the promise of precision medicine to patients with autoimmune disease. While host factors partially determine the therapeutic response to immunosuppressive drugs, these are not routinely used to tailor therapy. Thus, non-host factors likely contribute. Here, we consider the impact of the human gut microbiome in the treatment of autoimmunity. We propose that the gut microbiome can be manipulated to improve therapy and to derive greater benefit from existing therapies. We focus on the mechanisms by which the human gut microbiome impacts treatment response, provide a framework to interrogate these mechanisms, review a case study of a widely-used anti-rheumatic drug, and discuss challenges with studying multiple complex systems: the microbiome, the human immune system, and autoimmune disease. We consider open questions that remain in the field and speculate on the future of drug-microbiome-autoimmune disease interactions. Finally, we present a blue-sky vision for how the microbiome can be used to bring the promise of precision medicine to patients with rheumatic disease.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Diego A Orellana
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
35
|
Oyanna VO, Clarke JD. Mechanisms of intestinal pharmacokinetic natural product-drug interactions. Drug Metab Rev 2024; 56:285-301. [PMID: 39078118 PMCID: PMC11606768 DOI: 10.1080/03602532.2024.2386597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The growing co-consumption of botanical natural products with conventional medications has intensified the need to understand potential effects on drug safety and efficacy. This review delves into the intricacies of intestinal pharmacokinetic interactions between botanical natural products and drugs, such as alterations in drug solubility, permeability, transporter activity, and enzyme-mediated metabolism. It emphasizes the importance of understanding how drug solubility, dissolution, and osmolality interplay with botanical constituents in the gastrointestinal tract, potentially altering drug absorption and systemic exposure. Unlike reviews that focus primarily on enzyme and transporter mechanisms, this article highlights the lesser known but equally important mechanisms of interaction. Applying the Biopharmaceutics Drug Disposition Classification System (BDDCS) can serve as a framework for predicting and understanding these interactions. Through a comprehensive examination of specific botanical natural products such as byakkokaninjinto, green tea catechins, goldenseal, spinach extract, and quercetin, we illustrate the diversity of these interactions and their dependence on the physicochemical properties of the drug and the botanical constituents involved. This understanding is vital for healthcare professionals to effectively anticipate and manage potential natural product-drug interactions, ensuring optimal patient therapeutic outcomes. By exploring these emerging mechanisms, we aim to broaden the scope of natural product-drug interaction research and encourage comprehensive studies to better elucidate complex mechanisms.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, WA State University, Spokane, Washington, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, WA State University, Spokane, Washington, USA
| |
Collapse
|
36
|
Stapleton TE, Lindsey LM, Sundar H, Dearing MD. Rodents consuming the same toxic diet harbor a unique functional core microbiome. Anim Microbiome 2024; 6:43. [PMID: 39080711 PMCID: PMC11289948 DOI: 10.1186/s42523-024-00330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.
Collapse
Affiliation(s)
- Tess E Stapleton
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - LeAnn M Lindsey
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - Hari Sundar
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
37
|
Zhong Z, An R, Ma S, Zhang N, Zhang X, Chen L, Wu X, Lin H, Xiang T, Tan H, Chen M. Association between the Maternal Gut Microbiome and Macrosomia. BIOLOGY 2024; 13:570. [PMID: 39194508 DOI: 10.3390/biology13080570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Fetal macrosomia is defined as a birthweight ≥4000 g and causes harm to pregnant women and fetuses. Studies reported that the maternal intestinal microbiome plays a key role in the establishment, growth, and development of the fetal intestinal microbiome. However, whether there is a relationship between maternal gut microbiota and macrosomia remains unclear. Our study aimed to identify gut microbiota that may be related to the occurrence of macrosomia, explore the possible mechanisms by which it causes macrosomia, and establish a prediction model to determine the feasibility of predicting macrosomia by early maternal gut microbiota. We conducted a nested case-control study based on an early pregnancy cohort (ChiCTR1900020652) in the Maternity and Child Health Hospital of Hunan Province on fecal samples of 93 women (31 delivered macrosomia as the case group and 62 delivered normal birth weight newborns as the control group) collected and included in this study. We performed metagenomic analysis to compare the composition and function of the gut microbiome between cases and controls. Correlation analysis was used to explore the association of differential species and differential functional pathways. A random forest model was used to construct an early pregnancy prediction model for macrosomia. At the species level, there were more Bacteroides salyersiae, Bacteroides plebeius, Ruminococcus lactaris, and Bacteroides ovatus in the intestinal microbiome of macrosomias' mothers compared with mothers bearing fetuses that had normal birth weight. Functional pathways of the gut microbiome including gondoate biosynthesis, L-histidine degradation III, cis-vaccenate biosynthesis, L-arginine biosynthesis III, tRNA processing, and mannitol cycle, which were more abundant in the macrosomia group. Significant correlations were found between species and functional pathways. Bacteroides plebeius was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.28, p = 0.005) and gondoate biosynthesis (r = 0.28, p < 0.001) and Bacteroides ovatus was positively associated with the pathway of cis-vaccenate biosynthesis (r = 0.29, p = 0.005) and gondoate biosynthesis (r = 0.32, p = 0.002). Bacteroides salyersiae was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.24, p = 0.018), gondoate biosynthesis (r = 0.31, p = 0.003), and L-histidine degradation III (r = 0.22, p = 0.291). Finally, four differential species and four clinical indicators were included in the random forest model for predicting macrosomia. The areas under the working characteristic curves of the training and validation sets were 0.935 (95% CI: 0.851~0.979) and 0.909 (95% CI: 0.679~0.992), respectively. Maternal gut microbiota in early pregnancy may play an important role in the development of macrosomia and can be used as potential predictors to prevent macrosomia.
Collapse
Affiliation(s)
- Zixin Zhong
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Rongjing An
- Chaoyang District Center for Diseases Prevention and Control of Beijing, Beijing 100020, China
| | - Shujuan Ma
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410008, China
| | - Na Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xian Zhang
- Department of Occupational and Environment Health, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xinrui Wu
- School of Medicine, Jishou University, Jishou 416000, China
| | - Huijun Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Tianyu Xiang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| |
Collapse
|
38
|
Xia KR, Zhang XY, Zhang HQ, Su KL, Shang EX, Xiao QL, Li WW, Guo S, Duan JA, Liu P. Network pharmacology analysis and experimental verification of the antithrombotic active compounds of trichosanthis pericarpium (Gualoupi) in treating coronary heart disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118158. [PMID: 38614263 DOI: 10.1016/j.jep.2024.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCβ], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCβ, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.
Collapse
Affiliation(s)
- Kai-Rou Xia
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Yu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Huang-Qin Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Ke-Lei Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Ling Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
39
|
Long AR, Mortara EL, Mendoza BN, Fink EC, Sacco FX, Ciesla MJ, Stack TMM. Sequence similarity network analysis of drug- and dye-modifying azoreductase enzymes found in the human gut microbiome. Arch Biochem Biophys 2024; 757:110025. [PMID: 38740275 PMCID: PMC11295148 DOI: 10.1016/j.abb.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Drug metabolism by human gut microbes is often exemplified by azo bond reduction in the anticolitic prodrug sulfasalazine. Azoreductase activity is often found in incubations with cell cultures or ex vivo gut microbiome samples and contributes to the xenobiotic metabolism of drugs and food additives. Applying metagenomic studies to personalized medicine requires knowledge of the genes responsible for sulfasalazine and other drug metabolism, and candidate genes and proteins for drug modifications are understudied. A representative gut-abundant azoreductase from Anaerotignum lactatifermentan DSM 14214 efficiently reduces sulfasalazine and another drug, phenazopyridine, but could not reduce all azo-bonded drugs in this class. We used enzyme kinetics to characterize this enzyme for its NADH-dependent reduction of these drugs and food additives and performed computational docking to provide the groundwork for understanding substrate specificity in this family. We performed an analysis of the Flavodoxin-like fold InterPro family (IPR003680) by computing a sequence similarity network to classify distinct subgroups of the family and then performed chemically-guided functional profiling to identify proteins that are abundant in the NIH Human Microbiome Project dataset. This strategy aims to reduce the number of unique azoreductases needed to characterize one protein family in the diverse set of potential drug- and dye-modifying activities found in the human gut microbiome.
Collapse
Affiliation(s)
- Audrey R Long
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Emma L Mortara
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Brisa N Mendoza
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Emma C Fink
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Francis X Sacco
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Matthew J Ciesla
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Tyler M M Stack
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States.
| |
Collapse
|
40
|
Noecker C, Turnbaugh PJ. Emerging tools and best practices for studying gut microbial community metabolism. Nat Metab 2024; 6:1225-1236. [PMID: 38961185 DOI: 10.1038/s42255-024-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nam Than
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
42
|
Kyaw TS, Zhang C, Sandy M, Trepka K, Zhang S, Ramirez Hernandez LA, Ramirez L, Goh JJ, Yu K, Dimassa V, Bess EN, Brockert JG, Dumlao DS, Bisanz JE, Turnbaugh PJ. Human gut Actinobacteria boost drug absorption by secreting P-glycoprotein ATPase inhibitors. iScience 2024; 27:110122. [PMID: 38947502 PMCID: PMC11214321 DOI: 10.1016/j.isci.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Drug efflux transporters are a major determinant of drug efficacy and toxicity. A canonical example is P-glycoprotein (P-gp), an efflux transporter that controls the intestinal absorption of diverse compounds. Despite a rich literature on the dietary and pharmaceutical compounds that impact P-gp activity, its sensitivity to gut microbial metabolites remains an open question. Surprisingly, we found that the cardiac drug-metabolizing gut Actinobacterium Eggerthella lenta increases drug absorption in mice. Experiments in cell culture revealed that E. lenta produces a soluble factor that post-translationally inhibits P-gp ATPase efflux activity. P-gp inhibition is conserved in the Eggerthellaceae family but absent in other Actinobacteria. Comparative genomics identified genes associated with P-gp inhibition. Finally, activity-guided biochemical fractionation coupled to metabolomics implicated a group of small polar metabolites with P-gp inhibitory activity. These results highlight the importance of considering the broader relevance of the gut microbiome for drug disposition beyond first-pass metabolism.
Collapse
Affiliation(s)
- Than S. Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chen Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moriah Sandy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shenwei Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis A. Ramirez Hernandez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Janice J.N. Goh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kristie Yu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vincent Dimassa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth N. Bess
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob G. Brockert
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Darren S. Dumlao
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jordan E. Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Ross PA, Xu W, Jalomo-Khayrova E, Bange G, Gumerov VM, Bradley PH, Sourjik V, Zhulin IB. Framework for exploring the sensory repertoire of the human gut microbiota. mBio 2024; 15:e0103924. [PMID: 38757952 PMCID: PMC11237719 DOI: 10.1128/mbio.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.
Collapse
Affiliation(s)
- Patricia A. Ross
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Patrick H. Bradley
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Simpson JB, Walker ME, Sekela JJ, Ivey SM, Jariwala PB, Storch CM, Kowalewski ME, Graboski AL, Lietzan AD, Walton WG, Davis KA, Cloer EW, Borlandelli V, Hsiao YC, Roberts LR, Perlman DH, Liang X, Overkleeft HS, Bhatt AP, Lu K, Redinbo MR. Gut microbial β-glucuronidases influence endobiotic homeostasis and are modulated by diverse therapeutics. Cell Host Microbe 2024; 32:925-944.e10. [PMID: 38754417 PMCID: PMC11176022 DOI: 10.1016/j.chom.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua J Sekela
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha M Ivey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron M Storch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kacey A Davis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee R Roberts
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - David H Perlman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Valentino TR, Burke BI, Kang G, Goh J, Dungan CM, Ismaeel A, Mobley CB, Flythe MD, Wen Y, McCarthy JJ. Microbial-Derived Exerkines Prevent Skeletal Muscle Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596432. [PMID: 38854012 PMCID: PMC11160717 DOI: 10.1101/2024.05.29.596432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Regular exercise yields a multitude of systemic benefits, many of which may be mediated through the gut microbiome. Here, we report that cecal microbial transplants (CMTs) from exercise-trained vs. sedentary mice have modest benefits in reducing skeletal muscle atrophy using a mouse model of unilaterally hindlimb-immobilization. Direct administration of top microbial-derived exerkines from an exercise-trained gut microbiome preserved muscle function and prevented skeletal muscle atrophy.
Collapse
Affiliation(s)
- Taylor R Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Buck Institute for Research on Aging, Novato, CA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Cory M Dungan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Department of Health, Human Performance, and Recreation, Robbins College of Health & Human Sciences, Baylor University, Waco, TX
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: School of Kinesiology, Auburn University, Auburn, AL
| | - Michael D Flythe
- USDA Agriculture Research Service, Forage-Animal Production Research Unit, University of Kentucky, Lexington, KY
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
46
|
Liu T, Zhang C, Zhang H, Jin J, Li X, Liang S, Xue Y, Yuan F, Zhou Y, Bian X, Wei H. A new evaluation system for drug-microbiota interactions. IMETA 2024; 3:e199. [PMID: 38898986 PMCID: PMC11183188 DOI: 10.1002/imt2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.
Collapse
Affiliation(s)
- Tian‐Hao Liu
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Chen‐Yang Zhang
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hang Zhang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jing Jin
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Xue Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Shi‐Qiang Liang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yu‐Zheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Feng‐Lai Yuan
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ya‐Hong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Xiu‐Wu Bian
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Hong Wei
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
| |
Collapse
|
47
|
Wang B, Ma F, Du X, Zhang G, Li J. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest. Front Microbiol 2024; 15:1394302. [PMID: 38881658 PMCID: PMC11176502 DOI: 10.3389/fmicb.2024.1394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The identification of microbe-drug associations can greatly facilitate drug research and development. Traditional methods for screening microbe-drug associations are time-consuming, manpower-intensive, and costly to conduct, so computational methods are a good alternative. However, most of them ignore the combination of abundant sequence, structural information, and microbe-drug network topology. Methods In this study, we developed a computational framework based on a modified graph attention variational autoencoder (MGAVAEMDA) to infer potential microbedrug associations by combining biological information with the variational autoencoder. In MGAVAEMDA, we first used multiple databases, which include microbial sequences, drug structures, and microbe-drug association databases, to establish two comprehensive feature matrices of microbes and drugs after multiple similarity computations, fusion, smoothing, and thresholding. Then, we employed a combination of variational autoencoder and graph attention to extract low-dimensional feature representations of microbes and drugs. Finally, the lowdimensional feature representation and graphical adjacency matrix were input into the random forest classifier to obtain the microbe-drug association score to identify the potential microbe-drug association. Moreover, in order to correct the model complexity and redundant calculation to improve efficiency, we introduced a modified graph convolutional neural network embedded into the variational autoencoder for computing low dimensional features. Results The experiment results demonstrate that the prediction performance of MGAVAEMDA is better than the five state-of-the-art methods. For the major measurements (AUC =0.9357, AUPR =0.9378), the relative improvements of MGAVAEMDA compared to the suboptimal methods are 1.76 and 1.47%, respectively. Discussion We conducted case studies on two drugs and found that more than 85% of the predicted associations have been reported in PubMed. The comprehensive experimental results validated the reliability of our models in accurately inferring potential microbe-drug associations.
Collapse
Affiliation(s)
- Bo Wang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, China
| | - Fangjian Ma
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Xiaoxin Du
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Guangda Zhang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Jingyou Li
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, China
| |
Collapse
|
48
|
Menozzi E, Schapira AHV. The Gut Microbiota in Parkinson Disease: Interactions with Drugs and Potential for Therapeutic Applications. CNS Drugs 2024; 38:315-331. [PMID: 38570412 PMCID: PMC11026199 DOI: 10.1007/s40263-024-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
49
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Cienkowski K, Cienkowska A, Kupczynska K, Bielecka-Dabrowa A. The Role of Gut Microbiota and Its Metabolites in Patients with Heart Failure. Biomedicines 2024; 12:894. [PMID: 38672248 PMCID: PMC11048107 DOI: 10.3390/biomedicines12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) is a significant health concern; early detection and prevention are crucial. Recent studies suggest that the gut microbiota and its metabolites may influence HF development and risk factors. We explored this relationship by examining changes in gut microbiota composition and metabolite levels in HF patients. HF patients often exhibit decreased alpha and beta diversity compared to controls, suggesting lower bacterial richness and community variation. Changes in specific bacterial phyla were observed, with decreases in Firmicutes (e.g., Ruminococcus) and Bacteroidetes (e.g., Prevotella) and increases in Proteobacteria (e.g., Escherichia, Shigella, and Klebsiella) and Actinobacteria. Gut-microbiota-related metabolites have been identified, potentially affecting various body systems, including the cardiovascular system. Among these are short-chain fatty acids (SCFAs), betaine, trimethylamine N-oxide (TMAO), phenylalanine, tryptophan-kynurenine, and phenylacetylgutamine (PAGIn). Although SCFAs positively affect our organisms, patients with HF have been observed to experience a decline in bacteria responsible for producing these chemical compounds. There have been indications of possible links between betaine, TMAO, phenylalanine, tryptophan-kynurenine, PAGIn, and heart failure. TMAO and phenylalanine, in particular, show promise as potential prognostic factors. However, their clinical significance has not yet been thoroughly evaluated and requires further investigation.
Collapse
Affiliation(s)
- Krzysztof Cienkowski
- Faculty of Medicine, Medical University of Lodz (MUL), al. Tadeusza Kosciuszki 4, 90419 Lodz, Poland
| | - Alicja Cienkowska
- Faculty of Biology and Environmental Protection, University of Lodz, ul. Gabriela Narutowicza 68, 90136 Lodz, Poland
| | - Karolina Kupczynska
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93338 Lodz, Poland; (K.K.)
| | - Agata Bielecka-Dabrowa
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93338 Lodz, Poland; (K.K.)
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93338 Lodz, Poland
| |
Collapse
|