1
|
Senenko AI, Marchenko AA, Kurochkin O, Kapitanchuk OL, Kravets M, Nazarenko VG, Sashuk V. Spontaneous switching and fine structure of donor-acceptor Stenhouse adducts on Au(111). NANOSCALE 2024; 17:214-218. [PMID: 39559967 DOI: 10.1039/d4nr03942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We present the spontaneous isomerization of donor-acceptor Stenhouse adducts anchored onto a gold surface, visualized using scanning tunneling spectroscopy. Our investigation reveals a palette of molecular arrangements, including those with ferroelectric-like ordering, evolving over time into a fine pattern consisting of both open and closed forms of the photoswitch.
Collapse
Affiliation(s)
- Anton I Senenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
| | - Alexandr A Marchenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
| | - Oleksandr Kurochkin
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Oleksiy L Kapitanchuk
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-B Metrologichna str., Kyiv, 03143, Ukraine
| | - Mykola Kravets
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vassili G Nazarenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Sarabamoun E, Aryal P, Bietsch JM, Curran M, Verma S, Johnson G, Yoon LU, Reid AG, Tsai EHR, Machan CW, Paolucci C, Wang G, Choi JJ. Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20599-20608. [PMID: 39660081 PMCID: PMC11626517 DOI: 10.1021/acs.jpcc.4c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
We contrast the switching of photoluminescence (PL) of PbS quantum dots (QDs) cross-linked with photochromic diarylethene molecules with different end groups, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1C) and 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenethiocarboxylic acid] (2T). Our results show that the QDs cross-linked with the carboxylic acid end group molecules (1C) exhibit a greater amount of switching in photoluminescence intensity compared to QDs cross-linked with the thiocarboxylic acid end group (2T). We also demonstrate that regardless of the molecule used, greater switching amounts are observed for smaller quantum dots. Varying these parameters allows for the fabrication of photoswitches with tunable PL change. We relate these observations to the differences in the HOMO energy levels between the QDs and the photochromic molecules. Our findings demonstrate how the size of the QDs and the energy levels of the linker ligands influences the charge tunneling rate and thus the PL switching performance in tunneling-based photoswitches.
Collapse
Affiliation(s)
- Ephraiem
S. Sarabamoun
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Pramod Aryal
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jonathan M. Bietsch
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Maurice Curran
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sugandha Verma
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lucy U. Yoon
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Amelia G. Reid
- Department
of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Esther H. R. Tsai
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Charles W. Machan
- Department
of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Guijun Wang
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Joshua J. Choi
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Henríquez-Guerra E, Almonte L, Li H, Elvira D, Calvo MR, Castellanos-Gomez A. Modulation of the Superconducting Phase Transition in Multilayer 2H-NbSe 2 Induced by Uniform Biaxial Compressive Strain. NANO LETTERS 2024; 24:10504-10509. [PMID: 39075987 PMCID: PMC11363131 DOI: 10.1021/acs.nanolett.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Strain is a powerful tool for tuning the properties of two-dimensional materials. Here, we investigated the effects of large, uniform biaxial compressive strain on the superconducting phase transition of multilayered 2H-NbSe2 flakes. We observed a consistent decrease in the critical temperature of NbSe2 flakes induced by the large thermal compression of a polymeric substrate (>1.2%) at cryogenic temperatures. For thin flakes (∼10 nm thick), a strong modulation of the critical temperature up to 1.5 K is observed, which monotonically decreases with increasing flake thickness. The effects of biaxial compressive strain remain significant even for relatively thick samples up to 80 nm thick, indicating efficient transfer of strain not only from the substrate to the flakes but also across several van der Waals layers. This work demonstrates that compressive strain induced from substrate thermal deformation can effectively tune phase transitions at low temperatures in 2D materials.
Collapse
Affiliation(s)
- Eudomar Henríquez-Guerra
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales IUMA, Universidad
de Alicante, 03690 Alicante, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Lisa Almonte
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales IUMA, Universidad
de Alicante, 03690 Alicante, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Hao Li
- 2D
Foundry Group, Instituto de Ciencia de Materiales
de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Daniel Elvira
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales IUMA, Universidad
de Alicante, 03690 Alicante, Spain
| | - M. Reyes Calvo
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales IUMA, Universidad
de Alicante, 03690 Alicante, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Andres Castellanos-Gomez
- 2D
Foundry Group, Instituto de Ciencia de Materiales
de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
4
|
Cheng G, Lin MH, Chen HY, Wang D, Wang Z, Qin W, Zhang Z, Zeng C. Reversible modulation of superconductivity in thin-film NbSe 2 via plasmon coupling. Nat Commun 2024; 15:6037. [PMID: 39019892 PMCID: PMC11255238 DOI: 10.1038/s41467-024-50452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
In recent years, lightwave has stood out as an ultrafast, non-contact control knob for developing compact superconducting circuitry. However, the modulation efficiency is limited by the low photoresponse of superconductors. Plasmons, with the advantages of strong light-matter interaction, present a promising route to overcome the limitations. Here we achieve effective modulation of superconductivity in thin-film NbSe2 via near-field coupling to plasmons in gold nanoparticles. Upon resonant plasmon excitation, the superconductivity of NbSe2 is substantially suppressed. The modulation factor exceeds 40% at a photon flux of 9.36 × 1013 s-1mm-2, and the effect is significantly diminished for thicker NbSe2 samples. Our observations can be theoretically interpreted by invoking the non-equilibrium electron distribution in NbSe2 driven by the plasmon-associated evanescent field. Finally, a reversible plasmon-driven superconducting switch is realized in this system. These findings highlight plasmonic tailoring of quantum states as an innovative strategy for superconducting electronics.
Collapse
Affiliation(s)
- Guanghui Cheng
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, China.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | | | | | - Dongli Wang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zheyan Wang
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Wei Qin
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Changgan Zeng
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, China.
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
5
|
Zhang X, Zhu T, Zhang S, Chen Z, Song A, Zhang C, Gao R, Niu W, Chen Y, Fei F, Tai Y, Li G, Ge B, Lou W, Shen J, Zhang H, Chang K, Song F, Zhang R, Wang X. Light-induced giant enhancement of nonreciprocal transport at KTaO 3-based interfaces. Nat Commun 2024; 15:2992. [PMID: 38582768 PMCID: PMC10998845 DOI: 10.1038/s41467-024-47231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1 T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tongshuai Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
- College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhongqiang Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Anke Song
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Rongzheng Gao
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wei Niu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yequan Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yilin Tai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Guoan Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wenkai Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haijun Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Kai Chang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Sarabamoun ES, Bietsch JM, Aryal P, Reid AG, Curran M, Johnson G, Tsai EHR, Machan CW, Wang G, Choi JJ. Photoluminescence switching in quantum dots connected with fluorinated and hydrogenated photochromic molecules. RSC Adv 2024; 14:424-432. [PMID: 38173584 PMCID: PMC10759204 DOI: 10.1039/d3ra07539g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.
Collapse
Affiliation(s)
| | - Jonathan M Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Maurice Curran
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Grayson Johnson
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Joshua J Choi
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
7
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Methyl 5′-Chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro-[chromene-2,2′-indoline]-6-carboxylate. MOLBANK 2023. [DOI: 10.3390/m1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spiropyrans modified with reactive polyfunctional substituents are of great interest as building blocks for the creation of various smart systems with controllable properties for materials science and biomedicine. In this study, a new highly modified spiropyran of the indoline series, methyl 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene-2,2′-indoline]-6-carboxylate, was obtained via the cyclocondensation reaction from 5-chloro-1,2,3,3-tetramethyl-3H-indolium perchlorate and methyl 3,5-diformyl-2,4-dihydroxy-benzoate. The molecular structure of the target compound was confirmed by 1H, 13C NMR, and IR spectroscopy, as well as LC/MS and elemental analysis. Photochemical studies revealed photochromic activity for the obtained spiropyran at room temperature. The photoinduced merocyanine form demonstrated an enhanced lifetime and fluorescent properties in the red region of the spectrum.
Collapse
|
9
|
Pugachev AD, Ozhogin IV, Kozlenko AS, Tkachev VV, Shilov GV, Makarova NI, Rostovtseva IA, Borodkin GS, El-Sewify IM, Aldoshin SM, Metelitsa AV, Lukyanov BS. Comprehensive study of substituent effects on structure and photochromic properties of 1,3-benzoxazine-4-one spiropyrans. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Zhang H, Yan C, Ge Z, Weinert M, Li L. Impenetrable Barrier at the Metal-Mott Insulator Junction in Polymorphic 1H and 1T NbSe 2 Lateral Heterostructure. J Phys Chem Lett 2022; 13:10713-10721. [PMID: 36367815 DOI: 10.1021/acs.jpclett.2c02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
When a metal makes contact with a band insulator, charge transfer occurs across the interface leading to band bending and a Schottky barrier with rectifying behavior. The nature of metal-Mott insulator junctions, however, is still debated due to challenges in experimental probes of such vertical heterojunctions with buried interfaces. Here, we grow lateral polymorphic heterostructures of single-layer metallic 1H and Mott insulating 1T NbSe2 by molecular beam epitaxy. We find a one-dimensional metallic channel along the interface due to the appearance of quasiparticle states with an intensity decay following 1/x2, indicating an impenetrable barrier. Near the interface, the Mott gap exhibits a strong spatial dependence arising from the difference in lattice constants between the two phases, consistent with our density functional theory calculations. These results provide clear experimental evidence for an impenetrable barrier at the metal-Mott insulator junction and the high tunability of a Mott insulator by strain.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Chenhui Yan
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Zhuozhi Ge
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Michael Weinert
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, United States
| | - Lian Li
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Huang Y, Mitchell T, Zheng Y, Hu Y, Benedict JB, Seo JH, Ren S. Switching charge states in quasi-2D molecular conductors. PNAS NEXUS 2022; 1:pgac089. [PMID: 36741426 PMCID: PMC9896912 DOI: 10.1093/pnasnexus/pgac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
2D molecular entities build next-generation electronic devices, where abundant elements of organic molecules are attractive due to the modern synthetic and stimuli control through chemical, conformational, and electronic modifications in electronics. Despite its promising potential, the insufficient control over charge states and electronic stabilities must be overcome in molecular electronic devices. Here, we show the reversible switching of modulated charge states in an exfoliatable 2D-layered molecular conductor based on bis(ethylenedithio)tetrathiafulvalene molecular dimers. The multiple stimuli application of cooling rate, current, voltage, and laser irradiation in a concurrent manner facilitates the controllable manipulation of charge crystal, glass, liquid, and metal phases. The four orders of magnitude switching of electric resistance are triggered by stimuli-responsive charge distribution among molecular dimers. The tunable charge transport in 2D molecular conductors reveals the kinetic process of charge configurations under stimuli, promising to add electric functions in molecular circuitry.
Collapse
Affiliation(s)
- Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Travis Mitchell
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yixiong Zheng
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yong Hu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jason B Benedict
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jung-Hun Seo
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
13
|
Tanaka M, Auffray M, Nakanotani H, Adachi C. Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. NATURE MATERIALS 2022; 21:819-825. [PMID: 35637340 DOI: 10.1038/s41563-022-01265-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The performance of organic optoelectronic and energy-harvesting devices is largely determined by the molecular orientation and resultant permanent dipole moment, yet this property is difficult to control during film preparation. Here, we demonstrate the active control of dipole direction-that is, vector direction and magnitude-in organic glassy films by physical vapour deposition. An organic glassy film with metastable permanent dipole moment orientation can be obtained by utilizing the small surface free energy of a trifluoromethyl unit and intramolecular permanent dipole moment induced by functional groups. The proposed molecular design rule could pave a way toward the formation of spontaneously polarized organic glassy films, leading to improvement in the performance of organic molecular devices.
Collapse
Affiliation(s)
- Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi-ku, Fukuoka, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi-ku, Fukuoka, Japan.
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Nishi-ku, Fukuoka, Japan.
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi-ku, Fukuoka, Japan.
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
14
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
15
|
Yamamoto HM. Phase-Transition Devices Based on Organic Mott Insulators. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi M. Yamamoto
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Seguchi N, Tanaka R, Fujita Y, Matsuda M. Organic Field-Effect Transistors Based on a Lithium Phthalocyanine Stable Radical Compound. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoe Seguchi
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Ryoma Tanaka
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yusuke Fujita
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Matsuda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
17
|
Kusamoto T, Kimura S. Photostable Luminescent Triarylmethyl Radicals and Their Metal Complexes: Photofunctions Unique to Open-shell Electronic States. CHEM LETT 2021. [DOI: 10.1246/cl.210201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuro Kusamoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shun Kimura
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Electric dipole induced bulk ferromagnetism in dimer Mott molecular compounds. Sci Rep 2021; 11:1332. [PMID: 33446711 PMCID: PMC7809364 DOI: 10.1038/s41598-020-79262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetic properties of Mott–Hubbard systems are generally dominated by strong antiferromagnetic interactions produced by the Coulomb repulsion of electrons. Although theoretical possibility of a ferromagnetic ground state has been suggested by Nagaoka and Penn as single-hole doping in a Mott insulator, experimental realization has not been reported more than half century. We report the first experimental possibility of such ferromagnetism in a molecular Mott insulator with an extremely light and homogeneous hole-doping in π-electron layers induced by net polarization of counterions. A series of Ni(dmit)2 anion radical salts with organic cations, where dmit is 1,3-dithiole-2-thione-4,5-dithiolate can form bi-layer structure with polarized cation layers. Heat capacity, magnetization, and ESR measurements substantiated the formation of a bulk ferromagnetic state around 1.0 K with quite soft magnetization versus magnetic field (M–H) characteristics in (Et-4BrT)[Ni(dmit)2]2 where Et-4BrT is ethyl-4-bromothiazolium. The variation of the magnitude of net polarizations by using the difference of counter cations revealed the systematic change of the ground state from antiferromagnetic one to ferromagnetic one. We also report emergence of metallic states through further doping and applying external pressures for this doping induced ferromagnetic state. The realization of ferromagnetic state in Nagaoka–Penn mechanism can paves a way for designing new molecules-based ferromagnets in future.
Collapse
|
19
|
Li YX, Wang XL, Li Y, Sato O, Yao ZS, Tao J. Stepwise Dielectric Switching Occurs in Two Photo-Responsive Complexes Possessing Two-Dimensional Structures. Inorg Chem 2021; 60:380-386. [PMID: 33320643 DOI: 10.1021/acs.inorgchem.0c03031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two organic-inorganic hybrid complexes, (CH3NH3)Na[Fe(CN)5NO]·H2O (1) and (CH3NH3)2[Fe(CN)5NO] (2), which exhibit stepwise dielectric switching as well as photo-induced structural transformation, are synthesized and examined. In these two compounds, the photo-responsive complex anions, [Fe(CN)5NO]2-, connected by Na+ through N-Na coordination bonds or CH3NH3+ through N···H-N hydrogen bonds, form two-dimensional structures. One organic cation, CH3NH3+, that resides in the intralaminar cavity and plays a role as a template, undergoes a temperature-controlled order-disorder structural phase transition. As the frozen-thawed state change of the polar organic cations modifies the polarizability of materials, stepwise dielectric switching is observed at the phase transition temperature. Furthermore, the photo-induced linkage isomerism of [Fe(CN)5NO]2- building block survives in the new compounds at the low-temperature range, which is verified by variable-temperature IR spectra after photo-irradiation. The coexistence of switchable dielectric properties and photo-induced structural variation suggests multiple optical-electric roles of the present materials.
Collapse
Affiliation(s)
- Yu-Xia Li
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Xiao-Lei Wang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Yue Li
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
20
|
Ozhogin IV, Mukhanov EL, Chernyshev AV, Pugachev AD, Lukyanov BS, Metelitsa AV. Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Abe H, Kawasaki A, Takeda T, Hoshino N, Matsuda W, Seki S, Akutagawa T. Switching of Electron and Ion Conductions by Reversible H 2O Sorption in n-Type Organic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37391-37399. [PMID: 32814389 DOI: 10.1021/acsami.0c09501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polar H2O molecules generally act as trapping sites and suppress the electron mobility of n-type organic semiconductors, making chemical design of H2O-tolerant and responsive n-type semiconductors an important step toward multifunctional electron-ion coupling devices. The introduction of effective electrostatic interactions between potassium ions (K+) and carboxylate (-COO-) anions into the electron-transporting naphthalenediimide π-framework enables the design of high-performance H2O-tolerant n-type semiconductors with a reversible H2O adsorption-desorption ability, where the electron mobility and K+ ionic conductivity were coupled with the reversible H2O sorption behavior. The reversible H2O adsorption into the crystals enhanced the electron mobility from 0.04 to 0.28 cm2 V-1 s-1, whereas the K+ ionic conductivity decreased from 3.4 × 10-5 to 4.7 × 10-7 S cm-1. Because this reversible electron-ion conducting switch is responsive to H2O sorption behavior, it is a strong candidate for H2O gating carrier transport systems.
Collapse
Affiliation(s)
- Haruka Abe
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Ayumi Kawasaki
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Norihisa Hoshino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Wakana Matsuda
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shu Seki
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
22
|
Qin L, Huang Y, Xia F, Wang L, Ning J, Chen H, Wang X, Zhang W, Peng Y, Liu Q, Zhang Z. 5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography. NANO LETTERS 2020; 20:4916-4923. [PMID: 32559096 DOI: 10.1021/acs.nanolett.0c00978] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of reliable, mass-produced, and cost-effective sub-10 nm nanofabrication technology leads to an unprecedented level of integration of photonic devices. In this work, we describe the development of a laser direct writing (LDW) lithography technique with ∼5 nm feature size, which is about 1/55 of the optical diffraction limit of the LDW system (405 nm laser and 0.9 NA objective), and the realization of 5 nm nanogap electrodes. This LDW lithography exhibits an attractive capability of well-site control and mass production of ∼5 × 105 nanogap electrodes per hour, breaking the trade-off between resolution and throughput in a nanofabrication technique. Nanosensing chips have been demonstrated with the as-obtained nanogap electrodes, where controllable surface enhancement Raman scattering of rhodamine 6G has been realized via adjusting the gap width and, especially, the applied bias voltages. Our results establish that such a low-cost and high-efficient lithography technology has great potential to fabricate compact integrated circuits and biochips.
Collapse
Affiliation(s)
- Liang Qin
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yuanqing Huang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences and Technology, Electron Microscopy Centre of Lanzhou University, Lab of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Feng Xia
- College of Physics, Qingdao University, Qingdao 266000, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiqiang Ning
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Hongmei Chen
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xu Wang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei Zhang
- Suzhou HWN Nanotec. Co., LTD., Suzhou 215123, China
| | - Yong Peng
- School of Physical Sciences and Technology, Electron Microscopy Centre of Lanzhou University, Lab of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qian Liu
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyang Zhang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
23
|
Brohmann M, Wieland S, Angstenberger S, Herrmann NJ, Lüttgens J, Fazzi D, Zaumseil J. Guiding Charge Transport in Semiconducting Carbon Nanotube Networks by Local Optical Switching. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28392-28403. [PMID: 32476400 DOI: 10.1021/acsami.0c05640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoswitchable, ambipolar field-effect transistors (FETs) are fabricated with dense networks of polymer-sorted, semiconducting single-walled carbon nanotubes (SWCNTs) in top-gate geometry with photochromic molecules mixed in the polymer matrix of the gate dielectric. Both hole and electron transport are strongly affected by the presence of spiropyran and its photoisomer merocyanine. A strong and persistent reduction of charge carrier mobilities and thus drain currents upon UV illumination (photoisomerization) and its recovery by annealing give these SWCNT transistors the basic properties of optical memory devices. Temperature-dependent mobility measurements and density functional theory calculations indicate scattering of charge carriers by the large dipoles of the merocyanine molecules and electron trapping by protonated merocyanine as the underlying mechanism. The direct dependence of carrier mobility on UV exposure is employed to pattern high- and low-resistance areas within the FET channel and thus to guide charge transport through the nanotube network along predefined paths with micrometer resolution. Near-infrared electroluminescence imaging enables the direct visualization of such patterned current pathways with good contrast. Elaborate mobility and thus current density patterns can be created by local optical switching, visualized and erased again by reverse isomerization through heating.
Collapse
Affiliation(s)
- Maximilian Brohmann
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sonja Wieland
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Angstenberger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Niklas J Herrmann
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Lüttgens
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Daniele Fazzi
- Institute for Physical Chemistry, Universität zu Köln, D-50939 Köln, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening Materials with Photoswitches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905966. [PMID: 31975456 DOI: 10.1002/adma.201905966] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated.
Collapse
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| | - Fabian Eisenreich
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
| |
Collapse
|
25
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
26
|
Chen H, Zhang W, Li M, He G, Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem Rev 2020; 120:2879-2949. [PMID: 32078296 DOI: 10.1021/acs.chemrev.9b00532] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weining Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mingliang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Gen He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
27
|
Kadoya T, Sugiura S, Tahara K, Higashino T, Kubo K, Sasaki T, Takimiya K, Yamada JI. Two-dimensional radical–cationic Mott insulator based on an electron donor containing neither a tetrathiafulvalene nor tetrathiapentalene skeleton. CrystEngComm 2020. [DOI: 10.1039/d0ce00878h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have succeeded in developing a two-dimensional radical–cationic Mott insulator that does not contain a 1,3-dithiol-2-ylidene moiety.
Collapse
Affiliation(s)
- Tomofumi Kadoya
- Graduate School of Material Science
- University of Hyogo
- Ako-gun
- Japan
| | - Shiori Sugiura
- Institute for Materials Research
- Tohoku University
- Sendai 980-8577
- Japan
| | - Keishiro Tahara
- Graduate School of Material Science
- University of Hyogo
- Ako-gun
- Japan
| | - Toshiki Higashino
- National Institute of Advanced Industrial Science and Technology
- Tsukuba
- Japan
| | - Kazuya Kubo
- Graduate School of Material Science
- University of Hyogo
- Ako-gun
- Japan
| | - Takahiko Sasaki
- Institute for Materials Research
- Tohoku University
- Sendai 980-8577
- Japan
| | - Kazuo Takimiya
- Emergent Molecular Function Research Team
- RIKEN Center for Emergent Matter Science (CEMS)
- Wako
- Japan
- Department of Chemistry
| | - Jun-ichi Yamada
- Graduate School of Material Science
- University of Hyogo
- Ako-gun
- Japan
| |
Collapse
|
28
|
Abstract
A new superconducting field-effect transistor (FET) in the vicinity of bandwidth-controlled Mott transition was developed using molecular strongly correlated system κ-(BEDT-TTF)2Cu[N(CN)2]Br [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] laminated on CaF2 substrate. This device exhibited significant cooling-rate dependence of resistance below about 80 K, associated with glass transition of terminal ethylene group of BEDT-TTF molecule, where more rapid cooling through glass transition temperature leads to the decrease in bandwidth. We demonstrated that the FET properties such as ON/OFF ratio and polarity can be controlled by utilizing cooling rate. Our result may give a novel insight into the design of molecule-based functional devices.
Collapse
|
29
|
Di CA, Shen H, Zhang F, Zhu D. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport. Acc Chem Res 2019; 52:1113-1124. [PMID: 30908012 DOI: 10.1021/acs.accounts.9b00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organic field-effect transistors (OFETs) are promising candidates for many electronic applications not only because of the intrinsic features of organic semiconductors in mechanical flexibility and solution processability but also owing to their multifunctionalities promised by combined signal switching and transduction properties. In contrast to rapid developments of high performance devices, the construction of multifunctional OFETs remains challenging. A key issue is fine-tuning the charge transport by modulating electric fields that are coupled with various external stimuli. Given that the charge transport is determined by complicated factors involving material and device engineering, the development of effective strategies to manipulate charge transport is highly desired toward state-of-the-art multifunctional OFETs. In this Account, we present our recent progress on device-engineered OFETs for sensing applications and thermoelectric studies of organic semiconductors. The interactions between organic semiconductors and the target analyte determine the performance of chemical sensors based on OFETs. We introduced gas receptors and in situ tailored molecular antenna on the surface of ultrathin active layers. The engineered interfaces enable direct and specific semiconductor-analyte interactions, as demonstrated in developed chemical sensors and biosensors with prominent sensitivity and good selectivity. In comparison with chemical stimuli, many physical stimuli such as pressure typically possess a limit effect on the charge transport properties of organic semiconductors. By utilizing the suspended-gate geometry, the carrier concentration in a conductive channel can be controlled quantitatively by the pressure dominated changes in the capacitance of an air dielectric layer, allowing for ultrasensitive pressure detection in a unique manner. More importantly, the transduced current can be further processed by a synaptic OFET, in which the proton/electron coupling interfaces contribute to the dynamic modulation of carrier concentration, thus mimicking biological synapses. The integrated pressure sensor and synaptic OFETs, namely, the dual-organic-transistor-based tactile-perception element, has exhibited promising applications in artificial intelligence elements. Aiming at revealing thermoelectric (TE) properties of organic semiconductors, we also investigated field-modulated TE performance of several high-mobility semiconductors by varying the driving electric field to the temperature gradient. This has been confirmed to offer a strategy to accelerate the search for promising TE materials from well-developed organic semiconductors. By tuning the charge transport process in the device, the functional modulation of OFETs has experienced significant progress in the preceding years. The exploration of new ways to create OFETs with more fascinating functionalities is still full of opportunities to obtain greater benefit from organic transistors.
Collapse
Affiliation(s)
- Chong-an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongguang Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjiao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Fujiyama S, Kato R. Fragmented Electronic Spins with Quantum Fluctuations in Organic Mott Insulators Near a Quantum Spin Liquid. PHYSICAL REVIEW LETTERS 2019; 122:147204. [PMID: 31050449 DOI: 10.1103/physrevlett.122.147204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Magnetic structures of organic Mott insulators X[Pd(dmit)_{2}]_{2} (X=Me_{4}P, Me_{4}Sb), of which electronic states are located near a quantum spin liquid (X=EtMe_{3}Sb), are demonstrated by ^{13}C nuclear magnetic resonance. Antiferromagnetic spectra and nuclear relaxations show two distinct magnetic moments within each Pd(dmit)_{2} molecule, which cannot be described by single band dimer-Mott model and requires intramolecular electronic correlation. This unconventional fragmentation of S=1/2 electron spin with strong quantum fluctuation is presumably caused by nearly degenerated intramolecular multiple orbitals, and shares a notion of quantum liquids where electronic excitations are fractionalized and S=1/2 spin is no longer an elementary particle.
Collapse
Affiliation(s)
- S Fujiyama
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| | - R Kato
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| |
Collapse
|
31
|
Yang M, Yan C, Ma Y, Li L, Cen C. Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO 3 substrate. Nat Commun 2019; 10:85. [PMID: 30622274 PMCID: PMC6325130 DOI: 10.1038/s41467-018-08024-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
The capability of controlling superconductivity by light is highly desirable for active quantum device applications. Since superconductors rarely exhibit strong photoresponses, and optically sensitive materials are often not superconducting, efficient coupling between these two characters can be very challenging in a single material. Here we show that, in FeSe/SrTiO3 heterostructures, the superconducting transition temperature in FeSe monolayer can be effectively raised by the interband photoexcitations in the SrTiO3 substrate. Attributed to a light induced metastable polar distortion uniquely enabled by the FeSe/SrTiO3 interface, this effect only requires a less than 50 µW cm-2 continuous-wave light field. The fast optical generation of superconducting zero resistance state is non-volatile but can be rapidly reversed by applying voltage pulses to the back of SrTiO3 substrate. The capability of switching FeSe repeatedly and reliably between normal and superconducting states demonstrate the great potential of making energy-efficient quantum optoelectronics at designed correlated interfaces.
Collapse
Affiliation(s)
- Ming Yang
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506, USA.,National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin, 300384, P. R. China
| | - Chenhui Yan
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Yanjun Ma
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Lian Li
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506, USA.
| | - Cheng Cen
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
32
|
Kawaguchi G, Bardin AA, Suda M, Uruichi M, Yamamoto HM. An Ambipolar Superconducting Field-Effect Transistor Operating above Liquid Helium Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805715. [PMID: 30407651 DOI: 10.1002/adma.201805715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Superconducting (SC) devices are attracting renewed attention as the demands for quantum-information processing, meteorology, and sensing become advanced. The SC field-effect transistor (FET) is one of the elements that can control the SC state, but its variety is still limited. Superconductors at the strong-coupling limit tend to require a higher carrier density when the critical temperature (TC ) becomes higher. Therefore, field-effect control of superconductivity by a solid gate dielectric has been limited only to low temperatures. However, recent efforts have resulted in achieving n-type and p-type SC FETs based on organic superconductors whose TC exceed liquid He temperature (4.2 K). Here, a novel "ambipolar" SC FET operating at normally OFF mode with TC of around 6 K is reported. Although this is the second example of an SC FET with such an operation mode, the operation temperature exceeds that of the first example, or magic-angle twisted-bilayer graphene that operates at around 1 K. Because the superconductivity in this SC FET is of unconventional type, the performance of the present device will contribute not only to fabricating SC circuits, but also to elucidating phase transitions of strongly correlated electron systems.
Collapse
Affiliation(s)
- Genta Kawaguchi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
| | - Andrey A Bardin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
| | - Masayuki Suda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
- RIKEN, Wako, Saitama, 351-0198, Japan
| | - Mikio Uruichi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi M Yamamoto
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
- RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
33
|
Oike H, Kamitani M, Tokura Y, Kagawa F. Kinetic approach to superconductivity hidden behind a competing order. SCIENCE ADVANCES 2018; 4:eaau3489. [PMID: 30310870 PMCID: PMC6173526 DOI: 10.1126/sciadv.aau3489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Exploration for superconductivity is one of the research frontiers in condensed matter physics. In strongly correlated electron systems, the emergence of superconductivity is often inhibited by the formation of a thermodynamically more stable magnetic/charge order. Thus, to develop the superconductivity as the thermodynamically most stable state, the free-energy balance between the superconductivity and the competing order has been controlled mainly by changing thermodynamic parameters, such as the physical/chemical pressure and carrier density. However, such a thermodynamic approach may not be the only way to materialize the superconductivity. We present a new kinetic approach to avoiding the competing order and thereby inducing persistent superconductivity. In the transition-metal dichalcogenide IrTe2 as an example, by using current pulse-based rapid cooling of up to ~107 K s-1, we successfully kinetically avoid a first-order phase transition to a competing charge order and uncover metastable superconductivity hidden behind. Because the electronic states at low temperatures depend on the history of thermal quenching, electric pulse applications enable nonvolatile and reversible switching of the metastable superconductivity, a unique advantage of the kinetic approach. Thus, our findings provide a new approach to developing and manipulating superconductivity beyond the framework of thermodynamics.
Collapse
Affiliation(s)
- Hiroshi Oike
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Manabu Kamitani
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Fumitaka Kagawa
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
34
|
Vlajić M, Schmidt J, Thomas A, Rück-Braun K. 2H
-Naphthopyran-Based Three-State Systems: From Solution Studies to Photoresponsive Organic/Inorganic Hybrid Materials. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Marina Vlajić
- Department of Chemistry; Technische Universität Berlin; Str. des 17. Juni 135 D-10623 Berlin Germany
| | - Johannes Schmidt
- Department of Chemistry Division of Functional Materials; Technische Universität Berlin; Hardenbergstr. 40 D-10623 Berlin Germany
| | - Arne Thomas
- Department of Chemistry Division of Functional Materials; Technische Universität Berlin; Hardenbergstr. 40 D-10623 Berlin Germany
| | - Karola Rück-Braun
- Department of Chemistry; Technische Universität Berlin; Str. des 17. Juni 135 D-10623 Berlin Germany
| |
Collapse
|
35
|
Hirata K, Kitagawa T, Miyazawa K, Okamoto T, Fukunaga A, Takatoh C, Fukuma T. Visualizing charges accumulated in an electric double layer by three-dimensional open-loop electric potential microscopy. NANOSCALE 2018; 10:14736-14746. [PMID: 30042993 DOI: 10.1039/c8nr03600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Charges accumulated in an electric double layer (EDL) play key roles in various interfacial phenomena and electronic devices. However, direct imaging of their spatial distribution has been a great challenge, which has hindered our nano-level understanding of the mechanisms of such interfacial phenomena and functions. In this study, we present direct imaging of charges accumulated at an electrode-electrolyte interface using three-dimensional open-loop electric potential microscopy (3D-OL-EPM). Conventional OL-EPM allows us to visualize two-dimensional potential distributions in liquid yet the zero of the measured potential is not well defined due to the influence of the long-range (LR) interaction between the cantilever and the sample. Here, we present practical ways to reduce such an influence by improving the equation for the potential calculation and subtracting the LR contribution estimated from a Z potential profile. These improvements enabled the calibration of the measured potential values with respect to the bulk solution potential. With these improvements, we visualized opposite charge accumulation behaviors on a polarizable and non-polarizable electrode with a varying electrode potential. Combining OL-EPM with a 3D tip scanning method, we also performed a 3D-OL-EPM measurement on a Cu fine wire and visualized the nanoscale distribution of the charges accumulated at the interface. Such real-space information on the charge distributions in an EDL should provide valuable insights into the mechanisms of interfacial phenomena and functions that are important in various academic and industrial research on electronic devices, electrochemistry, tribology and life sciences.
Collapse
Affiliation(s)
- Kaito Hirata
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nat Commun 2018; 9:2661. [PMID: 29985413 PMCID: PMC6037738 DOI: 10.1038/s41467-018-04932-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/27/2018] [Indexed: 11/29/2022] Open
Abstract
Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices. Photochromic molecules offer the unique opportunity to demonstrate multifunctional devices with light-tunable electrical characteristics. Gobbi et al. build light-switchable electronic heterojunctions based on atomically precise, photo-reversible molecular superlattices on graphene and MoS2.
Collapse
|
37
|
Qin F, Ideue T, Shi W, Zhang Y, Suzuki R, Yoshida M, Saito Y, Iwasa Y. Electric-field Control of Electronic States in WS2 Nanodevices by Electrolyte Gating. J Vis Exp 2018:56862. [PMID: 29708534 PMCID: PMC5933487 DOI: 10.3791/56862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A method of carrier number control by electrolyte gating is demonstrated. We have obtained WS2 thin flakes with atomically flat surface via scotch tape method or individual WS2 nanotubes by dispersing the suspension of WS2 nanotubes. The selected samples have been fabricated into devices by the use of the electron beam lithography and electrolyte is put on the devices. We have characterized the electronic properties of the devices under applying the gate voltage. In the small gate voltage region, ions in the electrolyte are accumulated on the surface of the samples which leads to the large electric potential drop and resultant electrostatic carrier doping at the interface. Ambipolar transfer curve has been observed in this electrostatic doping region. When the gate voltage is further increased, we met another drastic increase of source-drain current which implies that ions are intercalated into layers of WS2 and electrochemical carrier doping is realized. In such electrochemical doping region, superconductivity has been observed. The focused technique provides a powerful strategy for achieving the electric-filed-induced quantum phase transition.
Collapse
Affiliation(s)
- Feng Qin
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | - Toshiya Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo;
| | - Wu Shi
- Materials Sciences Division, Lawrence Berkeley National Laboratory
| | - Yijin Zhang
- Institute of Scientific and Industrial Research, Osaka University; Max Planck Institute for Solid State Research
| | - Ryuji Suzuki
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | | | - Yu Saito
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo; RIKEN Center for Emergent Matter Science (CEMS)
| |
Collapse
|
38
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
39
|
Suda M, Yamamoto HM. Field-, strain- and light-induced superconductivity in organic strongly correlated electron systems. Phys Chem Chem Phys 2018; 20:1321-1331. [PMID: 29149231 DOI: 10.1039/c7cp06716j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimulated by the discovery of high-temperature superconductivity in 1986, band-filling control of strongly correlated electron systems has been a persistent challenge over the past three decades in condensed matter science. In particular, recent efforts have been focused on electrostatic carrier doping of these materials, utilising field-effect transistor (FET) structures to find novel superconductivity. Our group found the first field-induced superconductivity in an organic-based material in 2013 and has been developing various types of superconducting organic FETs. In this perspective, we summarise our recent results on the development of novel superconducting organic FETs. In addition, this perspective describes novel functionality of superconducting FETs, such as strain- and light-responsivity. We believe that the techniques and knowledge described here will contribute to advances in future superconducting electronics as well as the understanding of superconductivity in strongly correlated electron systems.
Collapse
Affiliation(s)
- Masayuki Suda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | | |
Collapse
|
40
|
Suda M. A New Photo-Control Method for Organic–Inorganic Interface Dipoles and Its Application to Photo-Controllable Molecular Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170283] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masayuki Suda
- Institute for Molecular Science, 38, Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585
- RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198
| |
Collapse
|
41
|
Chen Q, Sheng L, Du J, Xi G, Zhang SXA. Photooxidation of oxazolidine molecular switches: uncovering an intramolecular ionization facilitated cyclization process. Chem Commun (Camb) 2018; 54:5094-5097. [DOI: 10.1039/c8cc00983j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photooxidation of oxazolidine molecular switches through media-induced intramolecular ionization forming a flexible donating group facilitated cyclization with1O2as the oxidant.
Collapse
Affiliation(s)
- Qiaonan Chen
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Lan Sheng
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Jiahui Du
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Guan Xi
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
42
|
Xia B, Zhou Y, Wang QL, Xu XF, Tong YZ, Bu XH, Li JR. Photoinduced electron transfer and remarkable enhancement of magnetic susceptibility in bridging pyrazine complexes. Dalton Trans 2018; 47:15888-15896. [DOI: 10.1039/c8dt03422b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three bridging pyrazine complexes that exhibit both photochromism and photomagnetism were prepared. Photoinduced electron transfer can be realized by constructing a donor–metal–accepter system.
Collapse
Affiliation(s)
- Bin Xia
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Zhou
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Qing-Lun Wang
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xiu-Fang Xu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu-Zhang Tong
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xian-He Bu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jian-Rong Li
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
43
|
Hagenmüller D, Schachenmayer J, Schütz S, Genes C, Pupillo G. Cavity-Enhanced Transport of Charge. PHYSICAL REVIEW LETTERS 2017; 119:223601. [PMID: 29286774 DOI: 10.1103/physrevlett.119.223601] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 05/22/2023]
Abstract
We theoretically investigate charge transport through electronic bands of a mesoscopic one-dimensional system, where interband transitions are coupled to a confined cavity mode, initially prepared close to its vacuum. This coupling leads to light-matter hybridization where the dressed fermionic bands interact via absorption and emission of dressed cavity photons. Using a self-consistent nonequilibrium Green's function method, we compute electronic transmissions and cavity photon spectra and demonstrate how light-matter coupling can lead to an enhancement of charge conductivity in the steady state. We find that depending on cavity loss rate, electronic bandwidth, and coupling strength, the dynamics involves either an individual or a collective response of Bloch states, and we explain how this affects the current enhancement. We show that the charge conductivity enhancement can reach orders of magnitudes under experimentally relevant conditions.
Collapse
Affiliation(s)
- David Hagenmüller
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Johannes Schachenmayer
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Stefan Schütz
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Claudiu Genes
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
- Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany
| | - Guido Pupillo
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| |
Collapse
|
44
|
Suda M, Takashina N, Namuangruk S, Kungwan N, Sakurai H, Yamamoto HM. N-Type Superconductivity in an Organic Mott Insulator Induced by Light-Driven Electron-Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606833. [PMID: 28661017 DOI: 10.1002/adma.201606833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The presence of interface dipoles in self-assembled monolayers (SAMs) gives rise to electric-field effects at the device interfaces. SAMs of spiropyran derivatives can be used as photoactive interface dipole layer in field-effect transistors because the photochromism of spiropyrans involves a large dipole moment switching. Recently, light-induced p-type superconductivity in an organic Mott insulator, κ-(BEDT-TTF)2 Cu[N(CN)2 ]Br (κ-Br: BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) has been realized, thanks to the hole carriers induced by significant interface dipole variation in the spiropyran-SAM. This report explores the converse situation by designing a new type of spiropyran monolayer in which light-induced electron-doping into κ-Br and accompanying n-type superconducting transition have been observed. These results open new possibilities for novel electronics utilizing a photoactive SAMs, which can design not only the magnitude but also the direction of photoinduced electric-fields at the device interfaces.
Collapse
Affiliation(s)
- Masayuki Suda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
- RIKEN, Wako, Saitama, 351-0198, Japan
| | - Naoto Takashina
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Patumthani, 12120, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Hiroshi M Yamamoto
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
- RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
45
|
Bai Z, Hao L, Zhang Z, Huang Z, Qin S. Enhanced photoluminescence of corrugated Al 2O 3 film assisted by colloidal CdSe quantum dots. NANOTECHNOLOGY 2017; 28:205206. [PMID: 28445168 DOI: 10.1088/1361-6528/aa6a47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.
Collapse
Affiliation(s)
- Zhongchen Bai
- College of Medicine, Guizhou University, Guiyang City, 550025, People's Republic of China. Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Sato Y, Kawasugi Y, Suda M, Yamamoto HM, Kato R. Critical Behavior in Doping-Driven Metal-Insulator Transition on Single-Crystalline Organic Mott-FET. NANO LETTERS 2017; 17:708-714. [PMID: 28038313 DOI: 10.1021/acs.nanolett.6b03817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the carrier transport properties in the vicinity of a doping-driven Mott transition observed at a field-effect transistor (FET) channel using a single crystal of the typical two-dimensional organic Mott insulator κ-(BEDT-TTF)2CuN(CN)2Cl (κ-Cl). The FET shows a continuous metal-insulator transition (MIT) as electrostatic doping proceeds. The phase transition appears to involve two-step crossovers, one in Hall measurement and the other in conductivity measurement. The crossover in conductivity occurs around the conductance quantum e2/h, and hence is not associated with "bad metal" behavior, which is in stark contrast to the MIT in half-filled organic Mott insulators or that in doped inorganic Mott insulators. Through in-depth scaling analysis of the conductivity, it is found that the above carrier transport properties in the vicinity of the MIT can be described by a high-temperature Mott quantum critical crossover, which is theoretically argued to be a ubiquitous feature of various types of Mott transitions.
Collapse
Affiliation(s)
| | | | - Masayuki Suda
- RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
- Research Center for Integrative Molecular System (CIMoS), Institute for Molecular Science , 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hiroshi M Yamamoto
- RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
- Research Center for Integrative Molecular System (CIMoS), Institute for Molecular Science , 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Reizo Kato
- RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Murata S, Takahashi K, Mochida T, Sakurai T, Ohta H, Yamamoto T, Einaga Y. Cooperative spin-crossover transition from three-dimensional purely π-stacking interactions in a neutral heteroleptic azobisphenolate FeIII complex with a N3O3 coordination sphere. Dalton Trans 2017; 46:5786-5789. [DOI: 10.1039/c7dt01030c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first neutral spin-crossover FeIII complex with a N3O3 coordination sphere formed a purely π-stacking interaction network and exhibited the cooperative transition.
Collapse
Affiliation(s)
- Suguru Murata
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| | - Kazuyuki Takahashi
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| | - Tomoyuki Mochida
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| | - Takahiro Sakurai
- Research Facility Centre for Science and Technology
- Kobe University
- Hyogo 657-8501
- Japan
| | - Hitoshi Ohta
- Molecular Photoscience Research Centre
- Kobe University
- Hyogo 657-8501
- Japan
| | - Takashi Yamamoto
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Kanagawa 223-8522
- Japan
| | - Yasuaki Einaga
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Kanagawa 223-8522
- Japan
| |
Collapse
|
48
|
Goulet-Hanssens A, Utecht M, Mutruc D, Titov E, Schwarz J, Grubert L, Bléger D, Saalfrank P, Hecht S. Electrocatalytic Z → E Isomerization of Azobenzenes. J Am Chem Soc 2016; 139:335-341. [DOI: 10.1021/jacs.6b10822] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Manuel Utecht
- Theoretische
Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Potsdam-Golm, Germany
| | - Dragos Mutruc
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Evgenii Titov
- Theoretische
Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Potsdam-Golm, Germany
| | - Jutta Schwarz
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Lutz Grubert
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - David Bléger
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Peter Saalfrank
- Theoretische
Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Potsdam-Golm, Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
49
|
Kumar S, van Herpt J, Gengler RYN, Feringa BL, Rudolf P, Chiechi RC. Mixed Monolayers of Spiropyrans Maximize Tunneling Conductance Switching by Photoisomerization at the Molecule-Electrode Interface in EGaIn Junctions. J Am Chem Soc 2016; 138:12519-26. [PMID: 27602432 PMCID: PMC5053170 DOI: 10.1021/jacs.6b06806] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 01/19/2023]
Abstract
This paper describes the photoinduced switching of conductance in tunneling junctions comprising self-assembled monolayers of a spiropyran moiety using eutectic Ga-In top contacts. Despite separation of the spiropyran unit from the electrode by a long alkyl ester chain, we observe an increase in the current density J of a factor of 35 at 1 V when the closed form is irradiated with UV light to induce the ring-opening reaction, one of the highest switching ratios reported for junctions incorporating self-assembled monolayers. The magnitude of switching of hexanethiol mixed monolayers was higher than that of pure spiropyran monolayers. The first switching event recovers 100% of the initial value of J and in the mixed-monolayers subsequent dampening is not the result of degradation of the monolayer. The observation of increased conductivity is supported by zero-bias DFT calculations showing a change in the localization of the density of states near the Fermi level as well as by simulated transmission spectra revealing positive resonances that broaden and shift toward the Fermi level in the open form.
Collapse
Affiliation(s)
- Sumit Kumar
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jochem
T. van Herpt
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Régis Y. N. Gengler
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
50
|
Barachevsky VA. Electrical properties of photochromic organic systems (review). HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916050040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|