1
|
Brakta C, Tabet AC, Puel M, Pacault M, Stolzenberg MC, Goudet C, Merger M, Reumaux H, Lambert N, Alioua N, Malan V, Hanein S, Dupin-Deguine D, Treiner E, Lefèvre G, Farhat MM, Luca LE, Hureaux M, Li H, Chelloug N, Dehak R, Boussion S, Ouachée-Chardin M, Schleinitz N, Abou Chahla W, Barlogis V, Vély F, Oksenhendler E, Quartier P, Pasquet M, Suarez F, Bustamante J, Neven B, Picard C, Rieux-Laucat F, Lévy J, Rosain J. 2q33 Deletions Underlying Syndromic and Non-syndromic CTLA4 Deficiency. J Clin Immunol 2024; 45:46. [PMID: 39578275 DOI: 10.1007/s10875-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE CTLA4 deficiency is an inborn error of immunity (IEI) due to heterozygosity for germline loss-of-function variants of the CTLA4 gene located on chromosome 2q33.2. CTLA4 deficiency underlies pleiotropic immune and lymphoproliferation-mediated features with incomplete penetrance. It has been identified in hundreds of patients but copy number variants (CNVs) have been reported in only 12 kindreds, including nine which displayed large 2q33.1-2q33.2 deletions encompassing CTLA4. METHODS We conducted a nationwide study in France to identify patients with 2q33 deletions encompassing CTLA4. We investigated the clinical and immunological phenotypes and genotypes of these patients. RESULTS We identified 12 patients across six unrelated kindreds with clinical immunodeficiency. Neurological features were recorded in three patients, including one with syndromic neurodevelopmental disorder. Single-nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) array analysis, and targeted high-throughput sequencing revealed five different heterozygous 2q33 deletions of 26 kilobases to 7.12 megabases in size and encompassing one to 41 genes. We identified a contiguous gene syndrome (CGS) due to associated KLF7 deficiency in a kindred with a neurodevelopmental phenotype. CONCLUSION Deletions within the 2q33 region encompassing CTLA4 are rare and not extensively explored, and are probably underdiagnosed in cytogenetic practice. A literature review identified 14 different CGS loci including at least one gene responsible for an IEI. The deletions involved in IEIs should be systematically delimited, to facilitate screening for CGS.
Collapse
Affiliation(s)
- Charlyne Brakta
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Mathilde Pacault
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Claire Goudet
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Marguerite Merger
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Héloïse Reumaux
- Pediatric Rheumatology Unit, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Najiba Alioua
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Valérie Malan
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, Université Paris-Cité and Structure Fédérative de Recherche Necker, INSERM UMR1163, Imagine, Paris, EU, France
| | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
- Otoneurosurgery and Pediatric ENT Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, Toulouse, EU, France
| | - Guillaume Lefèvre
- Institute for Translational Research in Inflammation (INFINITE), Inserm U1286, University of Lille, Lille, EU, France
- Laboratory of Immunology, University of Lille, Lille, EU, France
| | - Méryem-Maud Farhat
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Luminita Elena Luca
- Department of Internal Medicine, Infectious and Tropical Diseases, University Hospital Center of Poitiers, Poitiers, EU, France
| | - Marguerite Hureaux
- Department of Genetics, Georges-Pompidou European Hospital, AP-HP, Paris, EU, France
- Reference Center for Hereditary Kidney Diseases in Children and Adults (MARHEA), University of Paris Cité, Paris, EU, France
| | - Hailun Li
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
| | - Nora Chelloug
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Rabha Dehak
- Department of Pediatrics, Calais Hospital, Calais, EU, France
| | - Simon Boussion
- Clinical Genetics Department, University of Lille, Lille, EU, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology, IHOPe, Hospices Civils de Lyon, Lyon, EU, France
| | - Nicolas Schleinitz
- Department of Internal Medicine La Timone, Aix-Marseille University, Assistance Publique - AP-HM, Marseille, EU, France
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Vincent Barlogis
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, Marseille, EU, France
- Departement of Immunology, Assistance Publique Des Hôpitaux de Marseille, Hôpital de La Timone, Marseille Immunopole, Marseille, EU, France
| | - Eric Oksenhendler
- Clinical Immunology Department, Saint-Louis Hospital, Paris-Diderot University, Paris, EU, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, EU, France
| | - Felipe Suarez
- Université Paris-Cité, Paris, EU, France
- Department of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Imagine Institute, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France.
- Université Paris-Cité, Paris, EU, France.
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA.
| |
Collapse
|
2
|
Jeanpierre M, Cognard J, Tusseau M, Riller Q, Bui LC, Berthelet J, Laurent A, Crickx E, Parlato M, Stolzenberg MC, Suarez F, Leverger G, Aladjidi N, Collardeau-Frachon S, Pietrement C, Malphettes M, Froissart A, Bole-Feysot C, Cagnard N, Rodrigues Lima F, Walzer T, Rieux-Laucat F, Belot A, Mathieu AL. Haploinsufficiency in PTPN2 leads to early-onset systemic autoimmunity from Evans syndrome to lupus. J Exp Med 2024; 221:e20232337. [PMID: 39028869 PMCID: PMC11259789 DOI: 10.1084/jem.20232337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
An exome sequencing strategy employed to identify pathogenic variants in patients with pediatric-onset systemic lupus or Evans syndrome resulted in the discovery of six novel monoallelic mutations in PTPN2. PTPN2 is a phosphatase that acts as an essential negative regulator of the JAK/STAT pathways. All mutations led to a loss of PTPN2 regulatory function as evidenced by in vitro assays and by hyperproliferation of patients' T cells. Furthermore, patients exhibited high serum levels of inflammatory cytokines, mimicking the profile observed in individuals with gain-of-function mutations in STAT factors. Flow cytometry analysis of patients' blood cells revealed typical alterations associated with autoimmunity and all patients presented with autoantibodies. These findings further supported the notion that a loss of function in negative regulators of cytokine pathways can lead to a broad spectrum of autoimmune manifestations and that PTPN2 along with SOCS1 haploinsufficiency constitute a new group of monogenic autoimmune diseases that can benefit from targeted therapy.
Collapse
Affiliation(s)
- Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Department of Medical Genetics, Hospices Civils de Lyon, Bron, France
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Audrey Laurent
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Etienne Crickx
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
- Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-immunes de L’adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive TheRapy for ImmUne disordErs, Assistance Publique Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France
| | - Marianna Parlato
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Felipe Suarez
- Department of Adult Hematology, Necker-Enfants Malades University Hospital and Centre de Référence des déficits Immunitaires Héréditaires, Assistance Publique Hôpitaux de Paris, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Guy Leverger
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, UMR_S938, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l’Enfant, Bordeaux, France
- Pediatric Oncology Hemato-Immunology Unit, University Hospital, Plurithématique Centre d’Investigation Clinique, 1401, INSERM, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Institute of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Société Française de Foetopathologie Paris, Paris, France
| | - Christine Pietrement
- Centre Hospitalier Universitaire de Reims, Service de Pédiatrie Spécialisée et Généralisée, Université Reims Champagne Ardenne, Reims, France
| | - Marion Malphettes
- Service d’Immunopathologie Clinique, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Antoine Froissart
- Service Médecine Interne, Hôpital Intercommunal de Créteil, Créteil, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | | | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
3
|
Tusseau M, Belot A. [Rare Autoimmune Diseases Role of Genetics - Example of Systemic Lupus Erythematosus]. Biol Aujourdhui 2024; 218:9-18. [PMID: 39007772 DOI: 10.1051/jbio/2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 07/16/2024]
Abstract
Systemic lupus erythematosus (SLE) presents a complex clinical landscape with diverse manifestations, suggesting a multifactorial etiology. However, the identification of rare monogenic forms of the disease has shed light on specific genetic defects underlying SLE pathogenesis, offering valuable insights into its underlying mechanisms and clinical heterogeneity. By categorizing these monogenic forms based on the implicated signaling pathways, such as apoptotic body clearance, type I interferon signaling, JAK-STAT pathway dysregulation, innate immune receptor dysfunction and lymphocytic abnormalities, a more nuanced understanding of SLE's molecular basis emerges. Particularly in pediatric populations, where monogenic forms are more prevalent, routine genetic testing becomes increasingly important, with a diagnostic yield of approximately 10% depending on the demographic and methodological factors involved. This approach not only enhances diagnostic accuracy but also informs personalized treatment strategies tailored to the specific molecular defects driving the disease phenotype.
Collapse
Affiliation(s)
- Maud Tusseau
- Laboratoire de génétique des cancers et maladies multifactorielles, Service de génétique médicale, Hospices Civils de Lyon, Bron, France - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France - Centre de référence des maladies rhumatologiques inflammatoires, des maladies auto-immunes et interféronopathies systémiques de l'enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France - Service de néphrologie, rhumatologie, dermatologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Alinger JB, Mace EM, Porter JR, Mah-Som AY, Daugherty AL, Li S, Throm AA, Pingel JT, Saucier N, Yao A, Chinn IK, Lupski JR, Ehlayel M, Keller M, Bowman GR, Cooper MA, Orange JS, French AR. Human PLCG2 haploinsufficiency results in a novel natural killer cell immunodeficiency. J Allergy Clin Immunol 2024; 153:216-229. [PMID: 37714437 PMCID: PMC11389843 DOI: 10.1016/j.jaci.2023.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.
Collapse
Affiliation(s)
- Joshua B Alinger
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Emily M Mace
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Mo
| | - Annelise Y Mah-Som
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Allyssa L Daugherty
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Stephanie Li
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Allison A Throm
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Jeanette T Pingel
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Nermina Saucier
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Albert Yao
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Ivan K Chinn
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - James R Lupski
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | | | | | - Greg R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Mo
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Jordan S Orange
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Anthony R French
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
5
|
Dantsev IS, Parfenenko MA, Radzhabova GM, Nikolaeva EA. An FGFR2 mutation as the potential cause of a new phenotype including early-onset osteoporosis and bone fractures: a case report. BMC Med Genomics 2023; 16:329. [PMID: 38098042 PMCID: PMC10722747 DOI: 10.1186/s12920-023-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Osteoporosis is a systemic, multifactorial disorder of bone mineralization. Many factors contributing to the development of osteoporosis have been identified so far, including gender, age, nutrition, lifestyle, exercise, drug use, as well as a range of comorbidities. In addition to environmental and lifestyle factors, molecular genetic factors account for 50-85% of osteoporosis cases. For example, the vitamin D receptor (VDR), collagen type I (COL1), estrogen receptor (ER), apolypoprotein Е (ApoE), bone morphogenetic protein (BMP), and Low-density lipoprotein receptor-related protein 5 (LRP5) are all involved in the pathogenesis of osteoporosis. Among the candidate genes, the pathogenic variants in which are involved in the pathogenesis of osteoporosis is FGFR2. Additionally, FGFs/FGFRs-dependent signaling has been shown to regulate skeletal development and has been linked to a plethora of heritable disorders of the musculoskeletal system. In this study we present the clinical, biochemical and radiological findings, as well as results of molecular genetic testing of a 13-year-old male proband with heritable osteoporosis, arthralgia and multiple fractures and a family history of abnormal bone mineralization and fractures. Whole exome sequencing found a heterozygous previously undescribed variant in the FGFR2 gene (NM_000141.5) (GRCh37.p13 ENSG00000066468.16: g.123298133dup; ENST00000358487.5:c.722dup; ENSP00000351276.5:p.Asn241LysfsTer43). The same variant was found in two affected relatives. These data lead us to believe that the variant in FGFR2 found in our proband and his relatives could be related to their phenotype. Therefore, modern methods of molecular genetic testing can allow us to differentiate between osteogenesis imperfecta and other bone mineralization disorders.
Collapse
Affiliation(s)
- Ilya S Dantsev
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| | - Mariia A Parfenenko
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia.
| | - Gulnara M Radzhabova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| | - Ekaterina A Nikolaeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| |
Collapse
|
6
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
7
|
Spaan AN, Neehus AL, Laplantine E, Staels F, Ogishi M, Seeleuthner Y, Rapaport F, Lacey KA, Van Nieuwenhove E, Chrabieh M, Hum D, Migaud M, Izmiryan A, Lorenzo L, Kochetkov T, Heesterbeek DAC, Bardoel BW, DuMont AL, Dobbs K, Chardonnet S, Heissel S, Baslan T, Zhang P, Yang R, Bogunovic D, Wunderink HF, Haas PJA, Molina H, Van Buggenhout G, Lyonnet S, Notarangelo LD, Seppänen MRJ, Weil R, Seminario G, Gomez-Tello H, Wouters C, Mesdaghi M, Shahrooei M, Bossuyt X, Sag E, Topaloglu R, Ozen S, Leavis HL, van Eijk MMJ, Bezrodnik L, Blancas Galicia L, Hovnanian A, Nassif A, Bader-Meunier B, Neven B, Meyts I, Schrijvers R, Puel A, Bustamante J, Aksentijevich I, Kastner DL, Torres VJ, Humblet-Baron S, Liston A, Abel L, Boisson B, Casanova JL. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science 2022; 376:eabm6380. [PMID: 35587511 PMCID: PMC9233084 DOI: 10.1126/science.abm6380] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.
Collapse
Affiliation(s)
- András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Emmanuel Laplantine
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, CNRS ERL8255, Sorbonne University, 75724 Paris, France
- Institut de Recherche St. Louis, Hôpital St. Louis, INSERM U944, CNRS U7212, Paris Cité University, 75010 Paris, France
| | - Frederik Staels
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Erika Van Nieuwenhove
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Araksya Izmiryan
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Genetic Skin Diseases, INSERM U1163, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Tatiana Kochetkov
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Solenne Chardonnet
- Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, UMS Production et Analyse de données en Sciences de la vie et en Santé, PASS, INSERM, Sorbonne University, 75013 Paris, France
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Dusan Bogunovic
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Herman F Wunderink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Griet Van Buggenhout
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Stanislas Lyonnet
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory Embryology and Genetics of Malformations, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, 00260 Helsinki, Finland
| | - Robert Weil
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, CNRS ERL8255, Sorbonne University, 75724 Paris, France
| | - Gisela Seminario
- Center for Clinical Immunology, Immunology Group Children's Hospital Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Héctor Gomez-Tello
- Immunology Department, Poblano Children's Hospital, 72190 Puebla, Mexico
| | - Carine Wouters
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mehrnaz Mesdaghi
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, 15468-155514 Tehran, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, 15468-155514 Ahvaz, Iran
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Erdal Sag
- Department of Pediatric Rheumatology, Hacettepe University, 06230 Ankara, Turkey
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, 06230 Ankara, Turkey
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Maarten M J van Eijk
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Liliana Bezrodnik
- Center for Clinical Immunology, Immunology Group Children's Hospital Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | | | - Alain Hovnanian
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Genetic Skin Diseases, INSERM U1163, 75015 Paris, France
- Department of Genetics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Aude Nassif
- Centre Médical, Institut Pasteur, 75724 Paris, France
| | - Brigitte Bader-Meunier
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Bénédicte Neven
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stéphanie Humblet-Baron
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Adrian Liston
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven 3000, Belgium
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Yuan H, Nishikori M, Ueda C, Fujimoto M, Yasumi T, Otsuka Y, Kitawaki T, Hirata M, Haga H, Kanegane H, Takaori-Kondo A. A sporadic case of CTLA4 haploinsufficiency manifesting as Epstein-Barr virus-positive diffuse large B-cell lymphoma. J Clin Exp Hematop 2021; 62:52-57. [PMID: 34707038 PMCID: PMC9010496 DOI: 10.3960/jslrt.21026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) is a coinhibitory receptor that plays an essential role in maintaining immune system homeostasis by suppressing T-cell activation. We report a sporadic case of CTLA4 haploinsufficiency in a patient with Epstein–Barr virus-positive diffuse large B-cell lymphoma and subsequent benign lymphadenopathy. A missense mutation in exon 2 of the CTLA4 gene (c.251T>C, p.V84A) was found in the patient’s peripheral blood and buccal cell DNA, but not in her parents’ DNA. CTLA4 expression decreased in the peripheral regulatory T cells upon stimulation, whereas CTLA4 and PD-1-positive T cell subsets increased, possibly to compensate for the defective CTLA4 function. This case suggests that some adult lymphoma patients with no remarkable medical history have primary immune disorder. As immune-targeted therapies are now widely used for the treatment of malignancies, it is increasingly important to recognize the underlying primary immune disorders to properly manage the disease and avoid unexpected complications of immunotherapies.
Collapse
Affiliation(s)
- Hepei Yuan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chiyoko Ueda
- Department of Hematology, Kyoto Katsura Hospital, Kyoto Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Otsuka
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Apavaloaei A, Laverdure JP, Perreault C. PSMB11 regulates gene expression in cortical thymic epithelial cells. Cell Rep 2021; 36:109546. [PMID: 34496243 DOI: 10.1016/j.celrep.2021.109546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The PSMB11 proteasomal subunit, expressed only in cortical thymic epithelial cells (cTECs), is essential for the development of functional CD8+ T cells. An attractive yet unproven theory holds that PSMB11 generates unique major histocompatibility complex class I (MHC I)-associated peptides required for positive selection. We recently reported that PSMB11 regulates the expression of hundreds of genes in cTECs, mainly by differential proteolysis of transcription factors. Thereby, PSMB11 maintains the distinctness of cTECs relative to medullary TECs (mTECs) and promotes cortex-to-medulla migration of developing thymocytes. These conclusions have been challenged by Ohigashi and colleagues, who suggest that their data show that PSMB11 uniquely controls antigen presentation without affecting cTEC biology. Here, we perform a comprehensive reanalysis of transcriptomic and proteomic data from the Ohigashi lab and confirm our original conclusions. This Matters Arising paper is in response to Ohigashi et al. (2019), published in Cell Reports. See also the response by Ohigashi and Takahama (2021), published in this issue of Cell Reports.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | | | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
11
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Erdős M, Tsumura M, Kállai J, Lányi Á, Nyul Z, Balázs G, Okada S, Maródi L. Novel STAT-3 gain-of-function variant with hypogammaglobulinemia and recurrent infection phenotype. Clin Exp Immunol 2021; 205:354-362. [PMID: 34050927 PMCID: PMC8374224 DOI: 10.1111/cei.13625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT‐3) gain‐of‐function (GOF) syndrome is an early‐onset monogenic inborn error of immunity characterized by multi‐organ autoimmune disorders, growth failure and lymphoproliferation. We describe that STAT‐3 GOF syndrome may be presented with hypogammaglobulinemia and recurrent severe upper and lower respiratory tract infections. In addition, the patient had lymphoproliferation, short stature and interstitial lung disease. Chest computerized tomography examinations showed mild bronchiectasis with areas of non‐fibrosing alveolar‐interstitial disease and maldevelopment of bilateral first ribs. Using Sanger sequencing, we revealed a novel c.508G>C, p.D170H STAT‐3 variant affecting the coiled coil domain of STAT‐3. Functional studies confirmed that p.D170H was a GOF variant, as shown by increased phosphorylated STAT‐3 (pSTAT‐3) and STAT‐3 transcriptional activity. Our observation suggests that STAT‐3 GOF syndrome can manifest in early childhood with hypogammaglobulinemia and recurrent severe respiratory tract infections. We suggest that patients with lymphoproliferation, hypogammaglobulinemia and severe recurrent infections should be screened for STAT‐3 variants, even if autoimmune manifestations are missing.
Collapse
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Nyul
- Department of Pediatrics, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - György Balázs
- Center for Pediatric MRI and CT, Heim Pál National Institute of Pediatrics, Budapest, Hungary
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Asano T, Khourieh J, Zhang P, Rapaport F, Spaan AN, Li J, Lei WT, Pelham SJ, Hum D, Chrabieh M, Han JE, Guérin A, Mackie J, Gupta S, Saikia B, Baghdadi JEI, Fadil I, Bousfiha A, Habib T, Marr N, Ganeshanandan L, Peake J, Droney L, Williams A, Celmeli F, Hatipoglu N, Ozcelik T, Picard C, Abel L, Tangye SG, Boisson-Dupuis S, Zhang Q, Puel A, Béziat V, Casanova JL, Boisson B. Human STAT3 variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. J Exp Med 2021; 218:212397. [PMID: 34137790 PMCID: PMC8217968 DOI: 10.1084/jem.20202592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joëlle Khourieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Tanwir Habib
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar.,College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luckshman Ganeshanandan
- Department of Clinical Immunology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Australia
| | - Luke Droney
- Department of Clinical Immunology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrew Williams
- Immunology Laboratory, Children's Hospital Westmead, Westmead, Australia
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science Antalya Education and Research Hospital, Antalya, Turkey
| | - Nevin Hatipoglu
- Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Capucine Picard
- Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et de la Recherche Médicale UMR 1163, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| |
Collapse
|
14
|
Gámez-Díaz L, Grimbacher B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J 2021; 44:400-411. [PMID: 34384744 PMCID: PMC8514790 DOI: 10.1016/j.bj.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited non-malignant and non-infectious lymphoproliferative syndrome caused by mutations in genes affecting the extrinsic apoptotic pathway (FAS, FASL, CASP10). The resulting FAS-mediated apoptosis defect accounts for the expansion and accumulation of autoreactive (double-negative) T cells leading to cytopenias, splenomegaly, lymphadenopathy, autoimmune disorders, and risk of lymphoma. However, there are other monogenetic disorders known as ALPS-like syndromes that can be clinically similar to ALPS but are genetically and biologically different, such as observed in patients with immune checkpoint deficiencies, particularly cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive beige-like anchor protein LRBA deficiency. CTLA-4 insufficiency is caused by heterozygous mutations in CTLA-4, an essential negative immune regulator that is constitutively expressed on regulatory T (Treg) cells. Mutations in CTLA-4 affect CTLA-4 binding to CD80-CD86 costimulatory molecules, CTLA-4 homodimerization, or CTLA-4 intracellular vesicle trafficking upon cell activation. Abnormal CTLA-4 trafficking is also observed in patients with LRBA deficiency, a syndrome caused by biallelic mutations in LRBA that abolishes the LRBA protein expression. Both immune checkpoint deficiencies are biologically characterized by low levels of CTLA-4 protein on the cell surface of Tregs, accounting for the autoimmune manifestations observed in CTLA4-insufficient and LRBA-deficient patients. In addition, both immune checkpoint deficiencies present with an overlapping but heterogeneous clinical picture despite the difference in inheritance and penetrance. In this review, we describe the most prominent clinical features of ALPS, CTLA-4 insufficiency and LRBA deficiency, emphasizing their corresponding biological mechanisms. We also provide some clinical and laboratory approaches to diagnose these three rare immune disorders, together with therapeutic strategies that have worked best at improving prognosis and quality life of patients.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
15
|
Rapaport F, Boisson B, Gregor A, Béziat V, Boisson-Dupuis S, Bustamante J, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Gleeson JG, Quintana-Murci L, Casanova JL, Abel L, Patin E. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc Natl Acad Sci U S A 2021; 118:e2001248118. [PMID: 33408250 PMCID: PMC7826345 DOI: 10.1073/pnas.2001248118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.
Collapse
Affiliation(s)
- Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, La Jolla, CA 92093
- Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, 75015 Paris, France
- Chair of Human Genomics and Evolution, Collège de France, 75231 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10065
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, 75015 Paris, France
| |
Collapse
|
16
|
Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance. J Clin Immunol 2021; 41:639-657. [PMID: 33417088 DOI: 10.1007/s10875-020-00930-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Germline heterozygous mutations of GATA2 underlie a variety of hematological and clinical phenotypes. The genetic, immunological, and clinical features of GATA2-deficient patients with mycobacterial diseases in the familial context remain largely unknown. METHODS We enrolled 15 GATA2 index cases referred for mycobacterial disease. We describe their genetic and clinical features including their relatives. RESULTS We identified 12 heterozygous GATA2 mutations, two of which had not been reported. Eight of these mutations were loss-of-function, and four were hypomorphic. None was dominant-negative in vitro, and the GATA2 locus was found to be subject to purifying selection, strongly suggesting a mechanism of haploinsufficiency. Three relatives of index cases had mycobacterial disease and were also heterozygous, resulting in 18 patients in total. Mycobacterial infection was the first clinical manifestation in 11 patients, at a mean age of 22.5 years (range: 12 to 42 years). Most patients also suffered from other infections, monocytopenia, or myelodysplasia. Strikingly, the clinical penetrance was incomplete (32.9% by age 40 years), as 16 heterozygous relatives aged between 6 and 78 years, including 4 older than 60 years, were completely asymptomatic. CONCLUSION Clinical penetrance for mycobacterial disease was found to be similar to other GATA2 deficiency-related manifestations. These observations suggest that other mechanisms contribute to the phenotypic expression of GATA2 deficiency. A diagnosis of autosomal dominant GATA2 deficiency should be considered in patients with mycobacterial infections and/or other GATA2 deficiency-related phenotypes at any age in life. Moreover, all direct relatives should be genotyped at the GATA2 locus.
Collapse
|
17
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Dougan M, Pietropaolo M. Time to dissect the autoimmune etiology of cancer antibody immunotherapy. J Clin Invest 2020; 130:51-61. [PMID: 31895048 PMCID: PMC6934191 DOI: 10.1172/jci131194] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has transformed the treatment landscape for a wide range of human cancers. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that block the immune-regulatory "checkpoint" receptors CTLA-4, PD-1, or its ligand PD-L1, can produce durable responses in some patients. However, coupled with their success, these treatments commonly evoke a wide range of immune-related adverse events (irAEs) that can affect any organ system and can be treatment-limiting and life-threatening, such as diabetic ketoacidosis, which appears to be more frequent than initially described. The majority of irAEs from checkpoint blockade involve either barrier tissues (e.g., gastrointestinal mucosa or skin) or endocrine organs, although any organ system can be affected. Often, irAEs resemble spontaneous autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid disease, type 1 diabetes mellitus (T1D), and autoimmune pancreatitis. Yet whether similar molecular or pathologic mechanisms underlie these apparent autoimmune adverse events and classical autoimmune diseases is presently unknown. Interestingly, evidence links HLA alleles associated with high risk for autoimmune disease with ICI-induced T1D and colitis. Understanding the genetic risks and immunologic mechanisms driving ICI-mediated inflammatory toxicities may not only identify therapeutic targets useful for managing irAEs, but may also provide new insights into the pathoetiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, Schubert D, Warnatz K, Grimbacher B. Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 ( IKZF1) in a Cohort of Patients With Primary Immunodeficiency. Front Immunol 2019; 10:568. [PMID: 31057532 PMCID: PMC6477086 DOI: 10.3389/fimmu.2019.00568] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.
Collapse
Affiliation(s)
- Zoya Eskandarian
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rosie Hague
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Cristian Roberto Smulski
- Department of Medical Physics, Centro Atómico Bariloche, CONICET, San Carlos de Bariloche, Argentina
| | - Desirée Schubert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, CCI, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Satellite Center Freiburg, RESIST-Cluster of Excellence 2155, Hanover Medical School, Freiburg, Germany.,Satellite Center Freiburg, German Center for Infection Research, Freiburg, Germany.,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
20
|
Gonzalez-Granado LI, Ruiz-García R, Blas-Espada J, Moreno-Villares JM, Germán-Diaz M, López-Nevado M, Paz-Artal E, Toldos O, Rodriguez-Gil Y, de Inocencio J, Domínguez-Pinilla N, Allende LM. Acquired and Innate Immunity Impairment and Severe Disseminated Mycobacterium genavense Infection in a Patient With a NF-κB1 Deficiency. Front Immunol 2019; 9:3148. [PMID: 30761159 PMCID: PMC6362422 DOI: 10.3389/fimmu.2018.03148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
Background: NF-κB1 is a master regulator of both acquired and innate responses. NFKB1 loss-of-function mutations elicit a wide clinical phenotype with asymptomatic individuals at one end of the spectrum and patients with common variable immunodeficiency, combined immunodeficiency or autoinflammation at the other. Impairment of acquired and innate immunity and disseminated Mycobacterium genavense infection expands the clinical and immunological phenotype of NF-κB1 deficiency. Objective: Functional and molecular characterization of a patient with a novel phenotype of NF-κB1 deficiency. Methods: Circulating T, B, dendritic cell subsets and innate or unconventional T-cells were quantified. The cytokine production in stimulated whole blood samples was assessed and molecular characterization by next generation sequencing and gene expression assays were also performed. Results: We report a patient presenting with features of combined immunodeficiency (CID) and disseminated Mycobacterium genavense infection. Sequencing of genomic DNA identified a novel synonymous mutation (c.705G > A) in NFKB1 gene which resulted in exon 8 skipping and haploinsufficiency of the NF-κB1 subunit p50. The susceptibility to atypical mycobacterial infection has not been previously reported and may be the result of a dendritic cell deficiency. A selective deficiency of circulating follicular helper T (cTFH) cells responsible for mediating the differentiation of naive B cells into memory and plasma cells was also present in the patient. It could affect the maturation of innate or unconventional T cells where NF-κB1 could also be involved. Conclusion: These findings showed that the role of NF-κB1 in humans could be critical for the development of acquired and innate immunity and further highlights the role of human T cells in anti-mycobacterial immunity.
Collapse
Affiliation(s)
- Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain.,Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Raquel Ruiz-García
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Javier Blas-Espada
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - José Manuel Moreno-Villares
- Pediatric Nutrition, Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta Germán-Diaz
- Pediatric Nutrition, Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta López-Nevado
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunology Department, University San Pablo CEU, Madrid, Spain
| | - Oscar Toldos
- Pathology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Jaime de Inocencio
- Pediatric Rheumatology Unit, Department of Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Pediatric Hematology and Oncology, Hospital Virgen de la Salud, Toledo, Spain
| | - Luis M Allende
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
21
|
Tuijnenburg P, Lango Allen H, Burns SO, Greene D, Jansen MH, Staples E, Stephens J, Carss KJ, Biasci D, Baxendale H, Thomas M, Chandra A, Kiani-Alikhan S, Longhurst HJ, Seneviratne SL, Oksenhendler E, Simeoni I, de Bree GJ, Tool ATJ, van Leeuwen EMM, Ebberink EHTM, Meijer AB, Tuna S, Whitehorn D, Brown M, Turro E, Thrasher AJ, Smith KGC, Thaventhiran JE, Kuijpers TW. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142:1285-1296. [PMID: 29477724 PMCID: PMC6148345 DOI: 10.1016/j.jaci.2018.01.039] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.
Collapse
Affiliation(s)
- Paul Tuijnenburg
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Machiel H Jansen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Emily Staples
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Keren J Carss
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniele Biasci
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Helen Baxendale
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Moira Thomas
- Department of Immunology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sorena Kiani-Alikhan
- Department of Immunology, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Hilary J Longhurst
- Department of Immunology, Barts Health NHS Trust, London, United Kingdom
| | - Suranjith L Seneviratne
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Godelieve J de Bree
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Ester M M van Leeuwen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Deborah Whitehorn
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matthew Brown
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust London, London, United Kingdom
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc Natl Acad Sci U S A 2018; 115:E8007-E8016. [PMID: 30072435 DOI: 10.1073/pnas.1805437115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Isolated congenital asplenia (ICA) is the only known human developmental defect exclusively affecting a lymphoid organ. In 2013, we showed that private deleterious mutations in the protein-coding region of RPSA, encoding ribosomal protein SA, caused ICA by haploinsufficiency with complete penetrance. We reported seven heterozygous protein-coding mutations in 8 of the 23 kindreds studied, including 6 of the 8 multiplex kindreds. We have since enrolled 33 new kindreds, 5 of which are multiplex. We describe here 11 new heterozygous ICA-causing RPSA protein-coding mutations, and the first two mutations in the 5'-UTR of this gene, which disrupt mRNA splicing. Overall, 40 of the 73 ICA patients (55%) and 23 of the 56 kindreds (41%) carry mutations located in translated or untranslated exons of RPSA. Eleven of the 43 kindreds affected by sporadic disease (26%) carry RPSA mutations, whereas 12 of the 13 multiplex kindreds (92%) carry RPSA mutations. We also report that 6 of 18 (33%) protein-coding mutations and the two (100%) 5'-UTR mutations display incomplete penetrance. Three mutations were identified in two independent kindreds, due to a hotspot or a founder effect. Finally, RPSA ICA-causing mutations were demonstrated to be de novo in 7 of the 23 probands. Mutations in RPSA exons can affect the translated or untranslated regions and can underlie ICA with complete or incomplete penetrance.
Collapse
|
23
|
The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 2018; 38:558-568. [PMID: 29911256 DOI: 10.1007/s10875-018-0523-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant and non-infectious uncontrolled proliferation of lymphocytes accompanied by autoimmune cytopenia. The genetic etiology of the ALPS was described in 1995 by the discovery of the FAS gene mutations. The related apoptosis defect accounts for the accumulation of autoreactive lymphocytes as well as for specific clinical and biological features that distinguish the ALPS-FAS from other monogenic defects of this apoptosis pathway, such as FADD and CASPASE 8 deficiencies. The ALPS-FAS was the first description of a monogenic cause of autoimmunity, but its non-Mendelian expression remained elusive until the description of somatic and germline mutations in ALPS patients. The recognition of these genetic diseases brought new information on the role of this apoptotic pathway in controlling the adaptive immune response in humans.
Collapse
|
24
|
Laufer VA, Chen JY, Langefeld CD, Bridges SL. Integrative Approaches to Understanding the Pathogenic Role of Genetic Variation in Rheumatic Diseases. Rheum Dis Clin North Am 2018; 43:449-466. [PMID: 28711145 DOI: 10.1016/j.rdc.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of high-throughput omics may help to understand the contribution of genetic variants to the pathogenesis of rheumatic diseases. We discuss the concept of missing heritability: that genetic variants do not explain the heritability of rheumatoid arthritis and related rheumatologic conditions. In addition to an overview of how integrative data analysis can lead to novel insights into mechanisms of rheumatic diseases, we describe statistical approaches to prioritizing genetic variants for future functional analyses. We illustrate how analyses of large datasets provide hope for improved approaches to the diagnosis, treatment, and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Vincent A Laufer
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, SHEL 236, Birmingham, AL 35294-2182, USA
| | - Jake Y Chen
- The Informatics Institute, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, THT 137, Birmingham, AL 35294-0006, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; Public Health Genomics, Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - S Louis Bridges
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, SHEL 178, Birmingham, AL 35294-2182, USA.
| |
Collapse
|
25
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
26
|
Guérin A, Kerner G, Marr N, Markle JG, Fenollar F, Wong N, Boughorbel S, Avery DT, Ma CS, Bougarn S, Bouaziz M, Béziat V, Della Mina E, Oleaga-Quintas C, Lazarov T, Worley L, Nguyen T, Patin E, Deswarte C, Martinez-Barricarte R, Boucherit S, Ayral X, Edouard S, Boisson-Dupuis S, Rattina V, Bigio B, Vogt G, Geissmann F, Quintana-Murci L, Chaussabel D, Tangye SG, Raoult D, Abel L, Bustamante J, Casanova JL. IRF4 haploinsufficiency in a family with Whipple's disease. eLife 2018; 7:e32340. [PMID: 29537367 PMCID: PMC5915175 DOI: 10.7554/elife.32340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
Most humans are exposed to Tropheryma whipplei (Tw). Whipple's disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance.
Collapse
Affiliation(s)
- Antoine Guérin
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | | | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
| | - Florence Fenollar
- Research Unit of Infectious and Tropical Emerging DiseasesUniversity Aix-Marseille, URMITE, UM63, CNRS 7278, IRD 198MarseilleFrance
| | - Natalie Wong
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | | | - Danielle T Avery
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Cindy S Ma
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | | | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Erika Della Mina
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Tomi Lazarov
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ludwig CenterMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lisa Worley
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Tina Nguyen
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Department of Genomes and GeneticsInstitut PasteurParisFrance
- CNRS UMR2000ParisFrance
- Center of Bioinformatics, Biostatistics and Integrative BiologyInstitut PasteurParisFrance
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | | | - Sophie Edouard
- Research Unit of Infectious and Tropical Emerging DiseasesUniversity Aix-Marseille, URMITE, UM63, CNRS 7278, IRD 198MarseilleFrance
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
| | - Vimel Rattina
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
| | | | - Frédéric Geissmann
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ludwig CenterMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and GeneticsInstitut PasteurParisFrance
- CNRS UMR2000ParisFrance
- Center of Bioinformatics, Biostatistics and Integrative BiologyInstitut PasteurParisFrance
| | | | - Stuart G Tangye
- Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Didier Raoult
- Research Unit of Infectious and Tropical Emerging DiseasesUniversity Aix-Marseille, URMITE, UM63, CNRS 7278, IRD 198MarseilleFrance
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
- Center for the Study of Primary ImmunodeficienciesAssistance Publique-Hôpitaux de Paris, Necker Hospital for Sick ChildrenParisFrance
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163ParisFrance
- Imagine InstituteParis Descartes UniversityParisFrance
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUnited States
- Pediatric Hematology and Immunology UnitAssistance Publique-Hôpitaux de Paris, Necker Hospital for Sick ChildrenParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
27
|
Hoeger B, Serwas NK, Boztug K. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences. Front Immunol 2018; 8:1978. [PMID: 29403474 PMCID: PMC5778108 DOI: 10.3389/fimmu.2017.01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.
Collapse
Affiliation(s)
- Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Kathrin Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Abstract
In this issue of Blood, Bocchini et al report a novel mechanism by which STAT3 mutations result in an unstable protein and give rise to a reduction in STAT3 signaling, suggesting that pathogenic mutations do not always confer dominant-negative effects via forming of nonfunctional STAT3 dimers but some may limit availability of total protein causing STAT3 haploinsufficiency.1
Collapse
|
29
|
Rieux-Laucat F. What's up in the ALPS. Curr Opin Immunol 2017; 49:79-86. [DOI: 10.1016/j.coi.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
30
|
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited syndrome characterized by abnormal lymphocyte survival caused by failure of apoptotic mechanisms to maintain lymphocyte homeostasis. This failure leads to the clinical manifestations of non-infectious and non-malignant lymphadenopathy, splenomegaly, and autoimmune pathology, most commonly, autoimmune cytopenias. Since ALPS was first characterized in the early 1990s, insights in disease biology have improved both diagnosis and management of this syndrome. Sirolimus is the best-studied and most effective corticosteroid-sparing therapy for ALPS and should be considered first-line for patients in need of chronic treatment. This review highlights practical clinical considerations for the diagnosis and management of ALPS. Further studies could reveal new proteins and regulatory pathways that are critical for lymphocyte activation and apoptosis.
Collapse
Affiliation(s)
- Karen Bride
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Teachey
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
31
|
Marquet S, Bucheton B, Reymond C, Argiro L, El-Safi SH, Kheir MM, Desvignes JP, Béroud C, Mergani A, Hammad A, Dessein AJ. Exome Sequencing Identifies Two Variants of the Alkylglycerol Monooxygenase Gene as a Cause of Relapses in Visceral Leishmaniasis in Children, in Sudan. J Infect Dis 2017; 216:22-28. [PMID: 28586473 DOI: 10.1093/infdis/jix277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (kala-azar, KA) is the most severe form of leishmaniasis, characterized by fever, weight loss, hepatosplenomegaly, and lymphadenopathy. During an outbreak of KA in Babar El Fugara (Sudan), 5.7% of cured patients displayed relapses, with familial clustering in half the cases. Methods We performed whole-exome sequencing on 10 relapsing individuals and 11 controls from 5 nuclear families. Results Rare homozygous and compound-heterozygous nonsense (c.1213C > T, rs139309795, p.Arg405*) and missense (c.701A > G, rs143439626, p.Lys234Arg) mutations of the alkylglycerol monooxygenase (AGMO) gene were associated with KA relapse in 3 families. Sequencing in additional family members confirmed the segregation of these mutations with relapse and revealed an autosomal dominant mode of transmission. These mutations were detected heterozygous in 2 subjects among 100 unrelated individuals with KA who never relapsed after cure, suggesting incomplete penetrance of AGMO deficiency. AGMO is expressed in hematopoietic cells, and is strongly expressed in the liver. AGMO modulates PAF production by mouse macrophages, suggesting that it may act through the PAF/PAF receptor pathway previously shown to have anti-Leishmania activity. Conclusions This is the first demonstration that relapses after a first episode of KA are due to differences in human genetic susceptibility and not to modifications of parasite pathogenicity.
Collapse
Affiliation(s)
- Sandrine Marquet
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Bruno Bucheton
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille.,Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Camille Reymond
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Laurent Argiro
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Sayda Hassan El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Musa Mohamed Kheir
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Christophe Béroud
- INSERM UMR910, GMGF, Aix-Marseille University.,AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Marseille, France
| | - Adil Mergani
- College of Applied Medical Sciences, Taif University, Turabah, Saudi Arabia
| | - Awad Hammad
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alain J Dessein
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| |
Collapse
|
32
|
Afzali B, Grönholm J, Vandrovcova J, O’Brien C, Sun HW, Vanderleyden I, Davis FP, Khoder A, Zhang Y, Hegazy AN, Villarino AV, Palmer IW, Kaufman J, Watts NR, Kazemian M, Kamenyeva O, Keith J, Sayed A, Kasperaviciute D, Mueller M, Hughes JD, Fuss IJ, Sadiyah MF, Montgomery-Recht K, McElwee J, Restifo NP, Strober W, Linterman MA, Wingfield PT, Uhlig HH, Roychoudhuri R, Aitman TJ, Kelleher P, Lenardo MJ, O’Shea JJ, Cooper N, Laurence ADJ. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 2017; 18:813-823. [PMID: 28530713 PMCID: PMC5593426 DOI: 10.1038/ni.3753] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.
Collapse
Affiliation(s)
- Behdad Afzali
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- MRC Centre for Transplantation, King’s College London, UK
| | - Juha Grönholm
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Jana Vandrovcova
- Molecular Neuroscience, Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Medicine, Imperial College London, UK
| | | | - Hong-Wei Sun
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ine Vanderleyden
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Fred P Davis
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad Khoder
- Department of Medicine, Imperial College London, UK
| | - Yu Zhang
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Ahmed N Hegazy
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Alejandro V Villarino
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ira W Palmer
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Kaufman
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Norman R Watts
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olena Kamenyeva
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Julia Keith
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Anwar Sayed
- Department of Medicine, Imperial College London, UK
| | | | - Michael Mueller
- Imperial BRC Genomics Facility Hammersmith hospital, Du Cane road, London, UK
| | - Jason D. Hughes
- Merck Research Laboratories, Merck & Co. Inc., Boston, MA, USA
| | - Ivan J. Fuss
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mohammed F Sadiyah
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Kim Montgomery-Recht
- Clinical Research Directorate/CMRP, Leidos Biomedical Research Inc., NCI at Frederick, Frederick, MD, USA
| | - Joshua McElwee
- Merck Research Laboratories, Merck & Co. Inc., Boston, MA, USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren Strober
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Paul T Wingfield
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Paediatrics, University of Oxford, UK
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Timothy J. Aitman
- Department of Medicine, Imperial College London, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | | | - Michael J Lenardo
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - John J O’Shea
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Arian DJ Laurence
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Haematology Northern Centre for Cancer Care, Freeman road, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, Goldsmith JD, Geha RS, Chou J. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 2017; 214:1937-1947. [PMID: 28600438 PMCID: PMC5502421 DOI: 10.1084/jem.20160724] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Badran et al. demonstrate an essential contribution of biallelic RELA expression in protecting stromal and epithelial cells from TNF-mediated cell death in patients with chronic mucocutaneous ulceration. The treatment of chronic mucocutaneous ulceration is challenging, and only some patients respond selectively to inhibitors of tumor necrosis factor-α (TNF). TNF activates opposing pathways leading to caspase-8–mediated apoptosis as well as nuclear factor κB (NF-κB)–dependent cell survival. We investigated the etiology of autosomal-dominant, mucocutaneous ulceration in a family whose proband was dependent on anti-TNF therapy for sustained remission. A heterozygous mutation in RELA, encoding the NF-κB subunit RelA, segregated with the disease phenotype and resulted in RelA haploinsufficiency. The patients’ fibroblasts exhibited increased apoptosis in response to TNF, impaired NF-κB activation, and defective expression of NF-κB–dependent antiapoptotic genes. Rela+/− mice have similarly impaired NF-κB activation, develop cutaneous ulceration from TNF exposure, and exhibit severe dextran sodium sulfate–induced colitis, ameliorated by TNF inhibition. These findings demonstrate an essential contribution of biallelic RELA expression in protecting stromal cells from TNF-mediated cell death, thus delineating the mechanisms driving the effectiveness of TNF inhibition in this disease.
Collapse
Affiliation(s)
- Yousef R Badran
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | | | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
34
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
35
|
NEIL1 is a candidate gene associated with common variable immunodeficiency in a patient with a chromosome 15q24 deletion. Clin Immunol 2017; 176:71-76. [PMID: 28093361 DOI: 10.1016/j.clim.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/07/2023]
Abstract
We report the first patient with an interstitial deletion of chromosome 15q24.1-q24.3 associated with common variable immunodeficiency (CVID). The 18-year old female patient's clinical and immunological phenotype was compared with 8 additional previously published patients with chr15q24 deletions. A CGH analysis estimated the deletion to be 3.767Mb in size (chr15: 74,410,916-78,178,418) and the result was confirmed using qRT-PCR. We defined an immune-related commonly deleted region (ICDR) within the chromosomal band 15q24.2, deleted in all four patients with different forms of antibody deficiencies. Mutations in the 14 genes within this ICDR were not identified in the remaining allele in our patient by WES and gene expression analyses showed haploinsufficiency of all the genes. Among these genes, we consider Nei Like DNA Glycosylase 1 (NEIL1) as a likely candidate gene due to its crucial role in B-cell activation and terminal differentiation.
Collapse
|
36
|
Jin S, Zhu F, Wang Y, Yi G, Li J, Lian L, Zheng J, Xu G, Jiao R, Gong Y, Hou Z, Yang N. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken. Sci Rep 2016; 6:30172. [PMID: 27439785 PMCID: PMC4954956 DOI: 10.1038/srep30172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders.
Collapse
Affiliation(s)
- Sihua Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yanyun Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Guoqiang Yi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Rengang Jiao
- Rural Energy Management Station of Guizhou Province, Guiyang, 550001, China
| | - Yu Gong
- Livestock Genetic Resources Management Station of Guizhou Province, Guiyang, 550001, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
37
|
Schipp C, Nabhani S, Bienemann K, Simanovsky N, Kfir-Erenfeld S, Assayag-Asherie N, Oommen PT, Revel-Vilk S, Hönscheid A, Gombert M, Ginzel S, Schäfer D, Laws HJ, Yefenof E, Fleckenstein B, Borkhardt A, Stepensky P, Fischer U. Specific antibody deficiency and autoinflammatory disease extend the clinical and immunological spectrum of heterozygous NFKB1 loss-of-function mutations in humans. Haematologica 2016; 101:e392-e396. [PMID: 27365489 DOI: 10.3324/haematol.2016.145136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Cyrill Schipp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Schafiq Nabhani
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kirsten Bienemann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natalia Simanovsky
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomit Kfir-Erenfeld
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Shoshana Revel-Vilk
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Andrea Hönscheid
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Ginzel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Daniel Schäfer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jürgen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eitan Yefenof
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bernhard Fleckenstein
- Department of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Polina Stepensky
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
38
|
Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, Maffucci P, Pierce KR, Abbott JK, Voelkerding KV, South ST, Augustine NH, Bush JS, Dolen WK, Wray BB, Itan Y, Cobat A, Sorte HS, Ganesan S, Prader S, Martins TB, Lawrence MG, Orange JS, Calvo KR, Niemela JE, Casanova JL, Fleisher TA, Hill HR, Kumánovics A, Conley ME, Rosenzweig SD. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med 2016; 374:1032-1043. [PMID: 26981933 PMCID: PMC4836293 DOI: 10.1056/nejmoa1512234] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. METHODS We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. RESULTS Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. CONCLUSIONS Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- H S Kuehn
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B Boisson
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - C Cunningham-Rundles
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J Reichenbach
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Stray-Pedersen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - E W Gelfand
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - P Maffucci
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Pierce
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J K Abbott
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K V Voelkerding
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S T South
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - N H Augustine
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Bush
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - W K Dolen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B B Wray
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - Y Itan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Cobat
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H S Sorte
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Ganesan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Prader
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T B Martins
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M G Lawrence
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Orange
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J-L Casanova
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T A Fleisher
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H R Hill
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Kumánovics
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M E Conley
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| |
Collapse
|
39
|
Luksch H, Winkler S, Heymann MC, Schulze F, Hofmann SR, Roesler J, Rösen-Wolff A. Current knowledge on procaspase-1 variants with reduced or abrogated enzymatic activity in autoinflammatory disease. Curr Rheumatol Rep 2016; 17:45. [PMID: 26003867 DOI: 10.1007/s11926-015-0520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caspase-1 is a proinflammatory enzyme that is essential in many inflammatory conditions including infectious, autoimmune, and autoinflammatory disorders. The inflammation is mainly mediated by the generation of inflammasomes that activate caspase-1 and subsequently interleukin (IL)-1β and IL-18. In addition, homotypic CARD/CARD interaction of procaspase-1 with RIP2 and thereby activation of the NF-κB pathways may play some role in the inflammation. However, normally, this pathway seems to become downregulated rapidly by the cleavage and excretion of RIP2 by active (pro-)caspase-1. In patients with unexplained recurrent systemic inflammation, CASP1 variants were detected, which often destabilized the caspase-1 dimer interface. Obviously, the resulting decreased or abrogated enzymatic activity and IL-1β production did not prevent the febrile episodes. As an unexpected finding, the inactive procaspase-1 variants significantly enhanced proinflammatory signaling by increasing RIP2 mediated NF-κB activation in an in vitro cell transfection model. A likely reason is the failure of inactive procaspase-1 to cleave bound RIP2 and also to mediate its excretion out of the intracelluar space thereby keeping the RIP2-NF-κB pathway upregulated. Hence, proinflammatory effects of enzymatically inactive procaspase-1 variants may partially explain the inflammatory episodes of the patients.
Collapse
Affiliation(s)
- Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 03107, Dresden, Germany,
| | | | | | | | | | | | | |
Collapse
|
40
|
Genomics is rapidly advancing precision medicine for immunological disorders. Nat Immunol 2016; 16:1001-4. [PMID: 26382860 DOI: 10.1038/ni.3275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Fodil N, Langlais D, Gros P. Primary Immunodeficiencies and Inflammatory Disease: A Growing Genetic Intersection. Trends Immunol 2016; 37:126-140. [PMID: 26791050 DOI: 10.1016/j.it.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/08/2023]
Abstract
Recent advances in genome analysis have provided important insights into the genetic architecture of infectious and inflammatory diseases. The combined analysis of loci detected by genome-wide association studies (GWAS) in 22 inflammatory diseases has revealed a shared genetic core and associated biochemical pathways that play a central role in pathological inflammation. Parallel whole-exome sequencing studies have identified 265 genes mutated in primary immunodeficiencies (PID). Here, we examine the overlap between these two data sets, and find that it consists of genes essential for protection against infections and in which persistent activation causes pathological inflammation. Based on this intersection, we propose that, although strong or inactivating mutations (rare variants) in these genes may cause severe disease (PIDs), their more subtle modulation potentially by common regulatory/coding variants may contribute to chronic inflammation.
Collapse
Affiliation(s)
- Nassima Fodil
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - David Langlais
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
43
|
Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 2015; 112:E7128-37. [PMID: 26621750 PMCID: PMC4697435 DOI: 10.1073/pnas.1521651112] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.
Collapse
MESH Headings
- Adolescent
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Complement System Proteins/genetics
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Epidermodysplasia Verruciformis/genetics
- Epidermodysplasia Verruciformis/immunology
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Genetic Predisposition to Disease
- Humans
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infections/genetics
- Infections/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Malaria/genetics
- Malaria/immunology
- Models, Genetic
- Models, Immunological
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Neisseria/immunology
- Neisseria/pathogenicity
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Tinea/genetics
- Tinea/immunology
- Young Adult
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; Howard Hughes Medical Institute, New York, NY 10065; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France; Imagine Institute, Paris Descartes University, 75015 Paris, France; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
44
|
Bartha I, Rausell A, McLaren PJ, Mohammadi P, Tardaguila M, Chaturvedi N, Fellay J, Telenti A. The Characteristics of Heterozygous Protein Truncating Variants in the Human Genome. PLoS Comput Biol 2015; 11:e1004647. [PMID: 26642228 PMCID: PMC4671652 DOI: 10.1371/journal.pcbi.1004647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene’s tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 autosomal protein coding genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<10−4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases. Genome sequencing provides evidence for large numbers of putative protein truncating variants in humans. Most truncating variants are only observed in few individuals but are collectively prevalent and widely distributed across the coding genome. Most of the truncating variants are so rare that they are only observed in heterozygosis. The current study identifies 10% of genes where heterozygous truncations are not observed and describes their biological characteristics. In addition, for genes where rare truncations are observed, we argue that these are an unexplored source of diversity of phenotypic traits and diseases.
Collapse
Affiliation(s)
- István Bartha
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antonio Rausell
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul J. McLaren
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pejman Mohammadi
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- Computational Biology Group, ETH Zurich, Zurich, Switzerland
| | - Manuel Tardaguila
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nimisha Chaturvedi
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- SIB Swiss Institute of Bioinformatics, Lausanne and Basel, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amalio Telenti
- J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, Yang D, Demirkaya E, Takeuchi M, Tsai WL, Lyons JJ, Yu X, Ouyang C, Chen C, Chin DT, Zaal K, Chandrasekharappa SC, Hanson EP, Yu Z, Mullikin JC, Hasni SA, Wertz IE, Ombrello AK, Stone DL, Hoffmann P, Jones A, Barham BK, Leavis HL, van Royen-Kerkof A, Sibley C, Batu ED, Gül A, Siegel RM, Boehm M, Milner JD, Ozen S, Gadina M, Chae J, Laxer RM, Kastner DL, Aksentijevich I. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 2015; 48:67-73. [PMID: 26642243 PMCID: PMC4777523 DOI: 10.1038/ng.3459] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet's disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB-mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.
Collapse
Affiliation(s)
- Qing Zhou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Hongying Wang
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Daniella M Schwartz
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Monique Stoffels
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Yong Hwan Park
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Yuan Zhang
- Genetics and Pathogenesis of Allergy Section, National Institute of Allergy and Infectious Diseases, Laboratory of Allergic Diseases, Bethesda, Maryland, USA
| | - Dan Yang
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Erkan Demirkaya
- FMF Arthritis Vasculitis and Orphan Disease Research Center (FAVOR), Gulhane Military Medical Academy, Ankara, Turkey
| | - Masaki Takeuchi
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Jonathan J Lyons
- Genetics and Pathogenesis of Allergy Section, National Institute of Allergy and Infectious Diseases, Laboratory of Allergic Diseases, Bethesda, Maryland, USA
| | - Xiaomin Yu
- Genetics and Pathogenesis of Allergy Section, National Institute of Allergy and Infectious Diseases, Laboratory of Allergic Diseases, Bethesda, Maryland, USA
| | - Claudia Ouyang
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Celeste Chen
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - David T Chin
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Kristien Zaal
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Eric P Hanson
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Zhen Yu
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - James C Mullikin
- National Institute of Health Intramural Sequencing Center, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sarfaraz A Hasni
- Systemic Autoimmune Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Ingrid E Wertz
- Department of Molecular Oncology, Genentech, Inc., San Francisco, California, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anne Jones
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Beverly K Barham
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annet van Royen-Kerkof
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cailin Sibley
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, Oregon, USA
| | - Ezgi D Batu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Ahmet Gül
- Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Richard M Siegel
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Joshua D Milner
- Genetics and Pathogenesis of Allergy Section, National Institute of Allergy and Infectious Diseases, Laboratory of Allergic Diseases, Bethesda, Maryland, USA
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - JaeJin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ronald M Laxer
- Division of Rheumatology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Fliegauf M, L. Bryant V, Frede N, Slade C, Woon ST, Lehnert K, Winzer S, Bulashevska A, Scerri T, Leung E, Jordan A, Keller B, de Vries E, Cao H, Yang F, Schäffer A, Warnatz K, Browett P, Douglass J, Ameratunga R, van der Meer J, Grimbacher B. Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. Am J Hum Genet 2015; 97:389-403. [PMID: 26279205 DOI: 10.1016/j.ajhg.2015.07.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Common variable immunodeficiency (CVID), characterized by recurrent infections, is the most prevalent symptomatic antibody deficiency. In ∼90% of CVID-affected individuals, no genetic cause of the disease has been identified. In a Dutch-Australian CVID-affected family, we identified a NFKB1 heterozygous splice-donor-site mutation (c.730+4A>G), causing in-frame skipping of exon 8. NFKB1 encodes the transcription-factor precursor p105, which is processed to p50 (canonical NF-κB pathway). The altered protein bearing an internal deletion (p.Asp191_Lys244delinsGlu; p105ΔEx8) is degraded, but is not processed to p50ΔEx8. Altered NF-κB1 proteins were also undetectable in a German CVID-affected family with a heterozygous in-frame exon 9 skipping mutation (c.835+2T>G) and in a CVID-affected family from New Zealand with a heterozygous frameshift mutation (c.465dupA) in exon 7. Given that residual p105 and p50—translated from the non-mutated alleles—were normal, and altered p50 proteins were absent, we conclude that the CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency.
Collapse
|
47
|
Melki I, Crow YJ. Novel monogenic diseases causing human autoimmunity. Curr Opin Immunol 2015; 37:1-5. [PMID: 26262888 DOI: 10.1016/j.coi.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022]
Abstract
Fuelled by the on-going sequencing revolution, the last two years have seen a number of exciting discoveries relating to monogenic disorders predisposing to autoimmunity that provide new insights into the function of the human immune system. Here we discuss a selection of these diseases due to mutations in PRKCD, CTLA4, STAT3, IFIH1, TMEM173 and COPA.
Collapse
Affiliation(s)
- Isabelle Melki
- Pédiatrie générale, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, France; Hémato-Immunologie pédiatrique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, France; INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes - Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris, France
| | - Yanick J Crow
- INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes - Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris, France; Paris Descartes University, Paris, France; Manchester Centre for Genomic Medicine, Institute of Human Development Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, UK.
| |
Collapse
|
48
|
Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. ACTA ACUST UNITED AC 2015. [PMID: 26216125 PMCID: PMC4548062 DOI: 10.1084/jem.20142274] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Line S Reinert
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Ryo Narita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Sofie E Jørgensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Kristian A Skipper
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Klara Höning
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Veit Hornung
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Søren R Paludan
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Takashi Fujita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Mette Christiansen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine H Mogensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| |
Collapse
|
49
|
Watkin LB, Jessen B, Wiszniewski W, Vece T, Jan M, Sha Y, Thamsen M, Santos-Cortez RLP, Lee K, Gambin T, Forbes L, Law CS, Stray-Petersen A, Cheng MH, Mace EM, Anderson MS, Liu D, Tang LF, Nicholas SK, Nahmod K, Makedonas G, Canter D, Kwok PY, Hicks J, Jones KD, Penney S, Jhangiani SN, Rosenblum MD, Dell SD, Waterfield MR, Papa FR, Muzny DM, Zaitlen N, Leal SM, Gonzaga-Jauregui C, Baylor-Hopkins Center for Mendelian Genomics, Boerwinkle E, Eissa NT, Gibbs RA, Lupski JR, Orange JS, Shum AK. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47:654-60. [PMID: 25894502 PMCID: PMC4513663 DOI: 10.1038/ng.3279] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.
Collapse
Affiliation(s)
- Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Birthe Jessen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Timothy Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Max Jan
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Maike Thamsen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | | | - Kwanghyuk Lee
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Christopher S. Law
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Asbjørg Stray-Petersen
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Mickie H. Cheng
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Emily M. Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Mark S. Anderson
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Dongfang Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Ling Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Sarah K. Nicholas
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Karen Nahmod
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - George Makedonas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX
| | - Kirk D. Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Sharon D. Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Feroz R. Papa
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Noah Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - N. Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Anthony K. Shum
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol 2015; 32:90-105. [PMID: 25645939 PMCID: PMC4364384 DOI: 10.1016/j.coi.2015.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Pierre Quartier
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|