1
|
Shadmani A, Wu AY. Navigating the path to corneal healing success and challenges: a comprehensive overview. Eye (Lond) 2025; 39:1047-1055. [PMID: 39939391 PMCID: PMC11978883 DOI: 10.1038/s41433-025-03619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
The cornea serves to protect the eye from external insults and refracts light to the retina. Maintaining ocular homeostasis requires constant epithelial renewal and an efficient healing process following injury. Corneal wound healing is a dynamic process involving several key cell populations and molecular pathways. Immediately after a large corneal epithelial injury involving limbal stem cells, conjunctival epithelial cells migrate toward the center of the wound guided by the newly formed electrical field (EF). Proliferation and transdifferentiation play a critical role in corneal epithelial regeneration. Corneal nerve endings migrate through the EF, connect with the migrating epithelial cells, and provide them with multiple growth factors. Finally, the migrated epithelial cells undergo differentiation, which is also regulated by corneal nerve endings. All these processes require energy and effective cellular cross-talk between different cell lines and extracellular matrix molecules. We provide an overview of the roles and interactions between corneal wound regeneration components that may help develop fascinating new targeted therapeutic strategies to enhance corneal wound healing with less injury-related corneal opacity and neovascularization.
Collapse
Affiliation(s)
- Athar Shadmani
- Bascom Palmer Eye Institute, University of Miami, Naples, FL, USA
- Omid Salmat Clinic, Firozabad, Shiraz University of Medical Sciences, Firozabad, Iran
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Yang YCSH, Tsai CC, Yang YN, Liu FC, Lee SY, Yang JC, Crawford DR, Chiu HC, Lu MC, Li ZL, Chen YC, Chu TY, Whang-Peng J, Lin HY, Wang K. Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma. Oncol Rep 2025; 53:32. [PMID: 39791224 DOI: 10.3892/or.2025.8865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/17/2024] [Indexed: 01/12/2025] Open
Abstract
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells. It inhibits critical signal transduction pathways promoted by the EGF. In the current study, EGF‑induced signal activation and proliferative effects were investigated in cholangiocarcinoma cells and its molecular targets using qPCR and western blotting analyses. In addition, cell viability assays were performed to assess the growth effects of EGF and heteronemin. Heteronemin reversed the effects of EGF and was further enhanced by blockage of PI3K's activity. In summary, EGF stimulates cholangiocarcinoma cell growth. On the other hand, heteronemin inhibited PI3K activation and PD‑L1 expression to reverse the stimulative effects of EGF‑induced gene expression and proliferation in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chung-Che Tsai
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Yung-Ning Yang
- School of Medicine, College of Medicine, I‑Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Feng-Cheng Liu
- Division of Rheumatology, Immunology and Allergy, Tri‑Service General Hospital, Taipei 11490, Taiwan, R.O.C
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri‑Service General Hospital, Taipei 11490, Taiwan, R.O.C
| | - Mei-Chin Lu
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan, R.O.C
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Yi-Chen Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Tin-Yi Chu
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
3
|
Zhao M, Jankovic D, Link VM, Souza COS, Hornick KM, Oyesola O, Belkaid Y, Lack J, Loke P. Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically. Nat Commun 2025; 16:1030. [PMID: 39863579 PMCID: PMC11762786 DOI: 10.1038/s41467-025-56379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling reveals C57BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated C57BL/6 TRMs demonstrate an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeras indicates that transcriptional differences and synergy are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.
Collapse
Affiliation(s)
- Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragana Jankovic
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine M Hornick
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Oyebola Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Calligaris M, Spanò DP, Puccio MC, Müller SA, Bonelli S, Lo Pinto M, Zito G, Blobel CP, Lichtenthaler SF, Troeberg L, Scilabra SD. Development of a Proteomic Workflow for the Identification of Heparan Sulphate Proteoglycan-Binding Substrates of ADAM17. Proteomics 2024; 24:e202400076. [PMID: 39318062 DOI: 10.1002/pmic.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
Ectodomain shedding, which is the proteolytic release of transmembrane proteins from the cell surface, is crucial for cell-to-cell communication and other biological processes. The metalloproteinase ADAM17 mediates ectodomain shedding of over 50 transmembrane proteins ranging from cytokines and growth factors, such as TNF and EGFR ligands, to signalling receptors and adhesion molecules. Yet, the ADAM17 sheddome is only partly defined and biological functions of the protease have not been fully characterized. Some ADAM17 substrates (e.g., HB-EGF) are known to bind to heparan sulphate proteoglycans (HSPG), and we hypothesised that such substrates would be under-represented in traditional secretome analyses, due to their binding to cell surface or pericellular HSPGs. Thus, to identify novel HSPG-binding ADAM17 substrates, we developed a proteomic workflow that involves addition of heparin to solubilize HSPG-binding proteins from the cell layer, thereby allowing their mass spectrometry detection by heparin-treated secretome (HEP-SEC) analysis. Applying this methodology to murine embryonic fibroblasts stimulated with an ADAM17 activator enabled us to identify 47 transmembrane proteins that were shed in response to ADAM17 activation. This included known HSPG-binding ADAM17 substrates (i.e., HB-EGF, CX3CL1) and 14 novel HSPG-binding putative ADAM17 substrates. Two of these, MHC-I and IL1RL1, were validated as ADAM17 substrates by immunoblotting.
Collapse
Affiliation(s)
- Matteo Calligaris
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Donatella Pia Spanò
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Maria Chiara Puccio
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simone Bonelli
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA
- School of Medicine, Technical University Munich, Munich, Germany
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, USA
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- School of Medicine, Technical University Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simone Dario Scilabra
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
5
|
Zhang Y, Tang L, Liu H, Cheng Y. The Multiple Functions of HB-EGF in Female Reproduction and Related Cancer: Molecular Mechanisms and Targeting Strategies. Reprod Sci 2024; 31:2588-2603. [PMID: 38424408 DOI: 10.1007/s43032-024-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Heparin-binding growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) ligand family which has a crucial role in women's health. However, there is a lack of comprehensive review to summarize the significance of HB-EGF. Therefore, this work first described the expression patterns of HB-EGF in the endometrium and ovary of different species and gestational time. Then, the focus was on exploring how it promotes the successful implantation and regulates the process of decidualization and the function of ovarian granulosa cells as an intermediate molecule. Otherwise, we also focused on the clinical and prognostic significance of HB-EGF in female-related cancers (including ovarian cancer, cervical cancer, and endometrial cancer) and breast cancer. Lastly, the article also summarizes the current drugs targeting HB-EGF in the treatment of ovarian cancer and breast cancer. Overall, these studies found that the expression of HB-EGF in the endometrium is spatiotemporal and species-specific. And it mediates the dialogue between the blastocyst and endometrium, promoting synchronous development of the blastocyst and endometrium as an intermediate molecule. HB-EGF may serve as a potentially valuable prognostic clinical indicator in tumors. And the specific inhibitor of HB-EGF (CRM197) has a certain anti-tumor ability, which can exert synergistic anti-tumor effects with conventional chemotherapy drugs. However, it also suggests that more research is needed in the future to elucidate its specific mechanisms and to accommodate clinical studies with a larger sample size to clarify its clinical value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
6
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 PMCID: PMC11830984 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T. Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
7
|
Patel AS, Ludwinski FE, Kerr A, Farkas S, Kapoor P, Bertolaccini L, Fernandes R, Jones PR, McLornan D, Livieratos L, Saha P, Smith A, Modarai B. A subpopulation of tissue remodeling monocytes stimulates revascularization of the ischemic limb. Sci Transl Med 2024; 16:eadf0555. [PMID: 38896604 DOI: 10.1126/scitranslmed.adf0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Despite decades of effort aimed at developing clinically effective cell therapies, including mixed population mononuclear cells, to revascularize the ischemic limb, there remains a paucity of patient-based studies that inform the function and fate of candidate cell types. In this study, we showed that circulating proangiogenic/arteriogenic monocytes (PAMs) expressing the FcγIIIA receptor CD16 were elevated in patients with chronic limb-threatening ischemia (CLTI), and these amounts decreased after revascularization. Unlike CD16-negative monocytes, PAMs showed large vessel remodeling properties in vitro when cultured with endothelial cells and smooth muscle cells and promoted salvage of the ischemic limb in vivo in a mouse model of hindlimb ischemia. PAMs showed a propensity to migrate toward and bind to ischemic muscle and to secrete angiogenic/arteriogenic factors, vascular endothelial growth factor A (VEGF-A) and heparin-binding epidermal growth factor. We instigated a first-in-human single-arm cohort study in which autologous PAMs were injected into the ischemic limbs of five patients with CLTI. Greater than 25% of injected cells were retained in the leg for at least 72 hours, of which greater than 80% were viable, with evidence of enhanced large vessel remodeling in the injected muscle area. In summary, we identified up-regulation of a circulatory PAM subpopulation as an endogenous response to limb ischemia in CLTI and tested a potentially clinically relevant therapeutic strategy.
Collapse
Affiliation(s)
- Ashish S Patel
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Francesca E Ludwinski
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Alexander Kerr
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Simon Farkas
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Puja Kapoor
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Laura Bertolaccini
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Ramon Fernandes
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Paul R Jones
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Donal McLornan
- Department of Haematology, Guy's & St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Lefteris Livieratos
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
- Department of Nuclear Medicine, Guy's & St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Prakash Saha
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Alberto Smith
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Bijan Modarai
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| |
Collapse
|
8
|
Adrain C, Badenes M. Can the HB-EGF/EGFR pathway restore injured neurons? FEBS J 2024; 291:2094-2097. [PMID: 38680125 DOI: 10.1111/febs.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a transmembrane protein that, when cleaved by metalloproteases through a process called ectodomain shedding, binds to the EGF receptor (EGFR), activating downstream signaling. The HB-EGF/EGFR pathway is crucial in development and is involved in numerous pathophysiological processes. In this issue of The FEBS Journal, Sireci et al. reveal a previously unexplored function of the HB-EGF/EGFR pathway in promoting neuronal progenitor proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium in response to injury.
Collapse
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Marina Badenes
- Veterinary and Animal Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisbon, Portugal
| |
Collapse
|
9
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Sireci S, Kocagöz Y, Alkiraz AS, Güler K, Dokuzluoglu Z, Balcioglu E, Meydanli S, Demirler MC, Erdogan NS, Fuss SH. HB-EGF promotes progenitor cell proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium. FEBS J 2024; 291:2098-2133. [PMID: 38088047 DOI: 10.1111/febs.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Maintenance and regeneration of the zebrafish olfactory epithelium (OE) are supported by two distinct progenitor cell populations that occupy spatially discrete stem cell niches and respond to different tissue conditions. Globose basal cells (GBCs) reside at the inner and peripheral margins of the sensory OE and are constitutively active to replace sporadically dying olfactory sensory neurons (OSNs). In contrast, horizontal basal cells (HBCs) are uniformly distributed across the sensory tissue and are selectively activated by acute injury conditions. Here we show that expression of the heparin-binding epidermal growth factor-like growth factor (HB-EGF) is strongly and transiently upregulated in response to OE injury and signals through the EGF receptor (EGFR), which is expressed by HBCs. Exogenous stimulation of the OE with recombinant HB-EGF promotes HBC expansion and OSN neurogenesis in a pattern that resembles the tissue response to injury. In contrast, pharmacological inhibition of HB-EGF membrane shedding, HB-EGF availability, and EGFR signaling strongly attenuate or delay injury-induced HBC activity and OSN restoration without affecting maintenance neurogenesis by GBCs. Thus, HB-EGF/EGFR signaling appears to be a critical component of the signaling network that controls HBC activity and, consequently, repair neurogenesis in the zebrafish OE.
Collapse
Affiliation(s)
- Siran Sireci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Ecem Balcioglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Sinem Meydanli
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | | | - Stefan Herbert Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| |
Collapse
|
11
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
12
|
Kremer M, Burkemper N. Aging Skin and Wound Healing. Clin Geriatr Med 2024; 40:1-10. [PMID: 38000854 DOI: 10.1016/j.cger.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Responsible for many essential functions of life, human skin is made up of many components, each of which undergoes significant functional changes with aging and photodamage. Wound healing was previously thought to be defective in the elderly given the higher presence of chronic wounds and the longer time required for re-epithelialization of acute wounds. However, these notions have been challenged in recent research, which has shown that wound healing in the elderly is delayed but not defective. Poor healing of chronic wounds in older populations is more often attributable to comorbid conditions rather than age alone.
Collapse
Affiliation(s)
- Michael Kremer
- Department of Dermatology, SSM Saint Louis University Hospital, 1225 South Grand Boulevard 3L, St. Louis, MO 63104, USA
| | - Nicole Burkemper
- Department of Dermatology, SSM Saint Louis University Hospital, 1225 South Grand Boulevard 3L, St. Louis, MO 63104, USA.
| |
Collapse
|
13
|
Duggins-Warf M, Ghalali A, Sesen J, Martinez T, Fehnel KP, Pineda S, Zurakowski D, Smith ER. Disease specific urinary biomarkers in the central nervous system. Sci Rep 2023; 13:19244. [PMID: 37935834 PMCID: PMC10630515 DOI: 10.1038/s41598-023-46763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Urinary biomarkers can diagnose and monitor pathophysiologic conditions in the central nervous system (CNS). However, focus is often on single diseases, with limited data on discriminatory capability of this approach in a general setting. Here, we demonstrate that different classes of CNS disease exhibit distinct biomarker patterns, evidence of disease-specific "fingerprinting." Urine from 218 patients with pathology-confirmed tumors or cerebrovascular disease, controls (n = 33) were collected. ELISA and/or bead-based multiplexing quantified levels of 21 putative urinary biomarkers. Analysis identified biomarkers capable of distinguishing each disease from controls and other diseases. Mann-Whitney U tests identified biomarkers with differential expression between disease types and controls (P ≤ 0.001). Subsequent receiver-operating characteristic (ROC) analyses revealed distinguishing biomarkers with high sensitivity and specificity. Areas under the curve (AUCs) ranged 0.8563-1.000 (P values ≤ 0.0003), sensitivities ranged 80.00-100.00%, and specificities ranged 80.95-100.00%. These data demonstrate proof-of-principle evidence that disease-specific urinary biomarker signatures exist. In contrast to non-specific responses to ischemia or injury, these results suggest that urinary biomarkers accurately reflect unique biological processes distinct to different diseases. This work can be used to generate disease-specific panels for enhancing diagnosis, assisting less-invasive follow-up and herald utility by revealing putative disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Micah Duggins-Warf
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Katie P Fehnel
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Steven Pineda
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Younes R, Issa Y, Jdaa N, Chouaib B, Brugioti V, Challuau D, Raoul C, Scamps F, Cuisinier F, Hilaire C. The Secretome of Human Dental Pulp Stem Cells and Its Components GDF15 and HB-EGF Protect Amyotrophic Lateral Sclerosis Motoneurons against Death. Biomedicines 2023; 11:2152. [PMID: 37626649 PMCID: PMC10452672 DOI: 10.3390/biomedicines11082152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable paralytic disorder caused by the progressive death of upper and lower motoneurons. Although numerous strategies have been developed to slow disease progression and improve life quality, to date only a few therapeutic treatments are available with still unsatisfactory therapeutic benefits. The secretome of dental pulp stem cells (DPSCs) contains numerous neurotrophic factors that could promote motoneuron survival. Accordingly, DPSCs confer neuroprotective benefits to the SOD1G93A mouse model of ALS. However, the mode of action of DPSC secretome on motoneurons remains largely unknown. Here, we used conditioned medium of human DPSCs (DPSCs-CM) and assessed its effect on survival, axonal length, and electrical activity of cultured wildtype and SOD1G93A motoneurons. To further understand the role of individual factors secreted by DPSCs and to circumvent the secretome variability bias, we focused on GDF15 and HB-EGF whose neuroprotective properties remain elusive in the ALS pathogenic context. DPSCs-CM rescues motoneurons from trophic factor deprivation-induced death, promotes axon outgrowth of wildtype but not SOD1G93A mutant motoneurons, and has no impact on the spontaneous electrical activity of wildtype or mutant motoneurons. Both GDF15 and HB-EGF protect SOD1G93A motoneurons against nitric oxide-induced death, but not against death induced by trophic factor deprivation. GDF15 and HB-EGF receptors were found to be expressed in the spinal cord, with a two-fold increase in expression for the GDF15 low-affinity receptor in SOD1G93A mice. Therefore, the secretome of DPSCs appears as a new potential therapeutic candidate for ALS.
Collapse
Affiliation(s)
- Richard Younes
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
- LBN, University of Montpellier, 34193 Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon
| | - Youssef Issa
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Nadia Jdaa
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Batoul Chouaib
- LBN, University of Montpellier, 34193 Montpellier, France
- Human Health Department, IRSN, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | | | - Désiré Challuau
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | | | | | - Cécile Hilaire
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| |
Collapse
|
15
|
Li X, Mo K, Tian G, Zhou J, Gong J, Li L, Huang X. Shikimic Acid Regulates the NF-κB/MAPK Signaling Pathway and Gut Microbiota to Ameliorate DSS-Induced Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37257042 DOI: 10.1021/acs.jafc.3c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shikimic acid (SA) is a compound extracted from the plant anise and has anti-inflammatory effects. However, any impact on intestinal inflammation or mechanisms involved has not been investigated. The present study used a dextran sulfate sodium (DSS)-induced mouse colitis model to investigate the effects of SA on intestinal inflammation. Intragastric administration of SA slowed DSS-induced weight loss, reduced disease activity index (DAI) score, enhanced the intestinal barrier, reduced the destruction of the colonic structure, inhibited the phosphorylation of key proteins in MAPK and NF-κB signaling pathways, inhibited the expression of inflammatory factors TNF-α, IL-1β, and MPO (P < 0.05), decreased IFN-γ expression (P < 0.05), and increased immunoglobulin IgG content (P < 0.05). After 50 mg/kg SA treatment, the content of Bacteroidetes increased and Proteobacteria decreased in the cecal feces of mice with colitis (P < 0.05) and the richness of gut species increased. In conclusion, SA could improve intestinal inflammation and enhance intestinal immunity, indicating its suitability as a therapeutic candidate.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaibin Mo
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ge Tian
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Zhou
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiongzhou Gong
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
17
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
18
|
Van Hiep N, Sun WL, Feng PH, Lin CW, Chen KY, Luo CS, Dung LN, Van Quyet H, Wu SM, Lee KY. Heparin binding epidermal growth factor-like growth factor is a prognostic marker correlated with levels of macrophages infiltrated in lung adenocarcinoma. Front Oncol 2022; 12:963896. [PMID: 36439487 PMCID: PMC9686304 DOI: 10.3389/fonc.2022.963896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background The interactions between tumor cells and the host immune system play a crucial role in lung cancer progression and resistance to treatment. The alterations of EGFR signaling have the potential to produce an ineffective tumor-associated immune microenvironment by upregulating a series of immune suppressors, including inhibitory immune checkpoints, immunosuppressive cells, and cytokines. Elevated Heparin-binding EGF-like growth factor (HB-EGF) expression, one EGFR ligand correlated with higher histology grading, worse patient prognosis, and lower overall survival rate, acts as a chemotactic factor. However, the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the accumulation of immune cells in the tumor microenvironment remains unclear. Methods The clinical association of HB-EGF expression in lung cancer was examined using the Gene Expression Omnibus (GEO) repository. HB-EGF expression in different cell types was determined using single-cell RNA sequencing (scRNA-seq) dataset. The correlation between HB-EGF expression and cancer-immune infiltrated cells was investigated by performing TIMER and ClueGo pathways analysis from TCGA database. The chemotaxis of HB-EGF and macrophage infiltration was investigated using migration and immunohistochemical staining. Results The high HB-EGF expression was significantly correlated with poor overall survival in patients with lung adenocarcinoma (LUAD) but not lung squamous cell carcinoma (LUSC). Moreover, HB-EGF expression was correlated with the infiltration of monocytes, macrophages, neutrophils, and dendritic cells in LUAD but not in LUSC. Analysis of scRNA-seq data revealed high HB-EGF expression in lung cancer cells and myeloid cells. Results from the pathway analysis and cell-based experiment indicated that elevated HB-EGF expression was associated with the presence of macrophage and lung cancer cell migration. HB-EGF was highly expressed in tumors and correlated with M2 macrophage infiltration in LUAD. Conclusions HB-EGF is a potential prognostic marker and therapeutic target for lung cancer progression, particularly in LUAD.
Collapse
Affiliation(s)
- Nguyen Van Hiep
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Oncology Center, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam,Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Le Ngoc Dung
- Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Hoang Van Quyet
- Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Kang-Yun Lee, ; Sheng-Ming Wu,
| | - Kang-Yun Lee
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Kang-Yun Lee, ; Sheng-Ming Wu,
| |
Collapse
|
19
|
Park SH, Yoon SJ, Choi S, Jung J, Park JY, Park YH, Seo J, Lee J, Lee MS, Lee SJ, Son MY, Cho YL, Kim JS, Lee HJ, Jeong J, Kim DS, Park YJ. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. Exp Mol Med 2022; 54:1901-1912. [PMID: 36352257 PMCID: PMC9722902 DOI: 10.1038/s12276-022-00886-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Although many cohort studies have reported that long-term exposure to particulate matter (PM) can cause lung cancer, the molecular mechanisms underlying the PM-induced increase in cancer metastasis remain unclear. To determine whether PM contributes to cancer metastasis, cancer cells were cultured with conditioned medium from PM-treated THP1 cells, and the migration ability of the treated cancer cells was assessed. The key molecules involved were identified using RNA-seq analysis. In addition, metastatic ability was analyzed in vivo by injection of cancer cells into the tail vein and intratracheal injection of PM into the lungs of C57BL/6 mice. We found that PM enhances the expression of heparin-binding EGF-like growth factor (HBEGF) in macrophages, which induces epithelial-to-mesenchymal transition (EMT) in cancer cells, thereby increasing metastasis. Macrophage stimulation by PM results in activation and subsequent nuclear translocation of the aryl hydrocarbon receptor and upregulation of HBEGF. Secreted HBEGF activates EGFR on the cancer cell surface to induce EMT, resulting in increased migration and invasion in vitro and increased metastasis in vivo. Therefore, our study reveals a critical PM-macrophage-cancer cell signaling axis mediating EMT and metastasis and provides an effective therapeutic approach for PM-induced malignancy.
Collapse
Affiliation(s)
- Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Song Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jaeeun Jung
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jun-Young Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center, KRIBB, Ochang, Republic of Korea
| | - Jinho Seo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mi-Young Son
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Republic of Korea
| | - Young-Lai Cho
- Metabolic Regulation Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Dae-Soo Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Cheng JC, Han X, Meng Q, Guo Y, Liu B, Song T, Jia Y, Fang L, Sun YP. HB-EGF upregulates StAR expression and stimulates progesterone production through ERK1/2 signaling in human granulosa-lutein cells. Cell Commun Signal 2022; 20:166. [PMID: 36284301 PMCID: PMC9598000 DOI: 10.1186/s12964-022-00983-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heparin-binding epidermal growth factor-like growth factor (HB-EGF) belongs to the epidermal growth factor (EGF) family of growth factors. HB-EGF and its receptors, epidermal growth factor receptor (EGFR) and HER4, are expressed in the human corpus luteum. HB-EGF has been shown to regulate luteal function by preventing cell apoptosis. Steroidogenesis is the primary function of the human corpus luteum. Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis. StAR expression and progesterone (P4) production in human granulosa-lutein (hGL) cells have been shown to be upregulated by a ligand of EGFR, amphiregulin. However, whether HB-EGF can achieve the same effects remains unknown. Methods A steroidogenic human ovarian granulosa-like tumor cell line, KGN, and primary culture of hGL cells obtained from patients undergoing in vitro fertilization treatment were used as experimental models. The underlying molecular mechanisms mediating the effects of HB-EGF on StAR expression and P4 production were explored by a series of in vitro experiments. Results Western blot showed that EGFR, HER2, and HER4 were expressed in both KGN and hGL cells. Treatment with HB-EGF for 24 h induced StAR expression but did not affect the expression of steroidogenesis-related enzymes, P450 side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, and aromatase. Using pharmacological inhibitors and a siRNA-mediated knockdown approach, we showed that EGFR, HER4, but not HER2, were required for HB-EGF-stimulated StAR expression and P4 production. In addition, HB-EGF-induced upregulations of StAR expression and P4 production were mediated by the activation of the ERK1/2 signaling pathway. Conclusion This study increases the understanding of the physiological role of HB-EGF in human luteal functions. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00983-4.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Xiaoyu Han
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Qingxue Meng
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Yanjie Guo
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Boqun Liu
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Tinglin Song
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Yuanyuan Jia
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Lanlan Fang
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Ying-Pu Sun
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| |
Collapse
|
21
|
Loo S, Kam A, Tam JP. Hyperstable EGF-like bleogen derived from cactus accelerates corneal healing in rats. Front Pharmacol 2022; 13:942168. [PMID: 36052138 PMCID: PMC9424907 DOI: 10.3389/fphar.2022.942168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal scarring reduces corneal transparency, compromises vision, and is a major cause of vision loss worldwide. Epidermal growth factor (EGF), which is the prototypic member of the EGF receptor (EGFR) agonists, is present in tears to provide repair and regeneration. Recently, we discovered bleogen pB1 in the cactus plant Pereskia bleo and showed that it is a non-canonical and hyperstable EGFR agonist with EGF-like wound healing properties for diabetic rats. Here, we apply bleogen pB1 to accelerate corneal wound healing in rats. To assess the corneal healing effects of bleogen pB1, we induced an acute alkali burn to the right eye of male Wistar rats. After five consecutive ophthalmic applications, fluorescein staining and opacity scores of the bleogen pB1-treated, and the positive control EGF-treated groups improved significantly compared to the saline control group. Immunohistochemical analyses revealed that infiltrated CD68+ macrophages and the expression of the myofibroblast marker alpha smooth muscle actin (α-SMA) were significantly decreased in the bleogen pB1- and the EGF-treated groups. By employing a differential gene expression analysis of bleogen pB1- and EGF-treated keratinocytes through RNA-seq, we demonstrated that bleogen pB1 or EGF treatments can affect the expression of genes associated with inflammatory responses and extracellular matrix remodeling. Taken together, our results indicate that the plant-derived EGFR agonist bleogen pB1 can produce similar effects to those of EGF in accelerating corneal wound healing as well as in reducing persistent inflammation and myofibroblast accumulation in the cornea.
Collapse
|
22
|
Zhang JJ, Cao CX, Wan LL, Zhang W, Liu ZJ, Wang JL, Guo Q, Tang H. Forkhead Box q1 promotes invasion and metastasis in colorectal cancer by activating the epidermal growth factor receptor pathway. World J Gastroenterol 2022; 28:1781-1797. [PMID: 35633908 PMCID: PMC9099194 DOI: 10.3748/wjg.v28.i17.1781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an extremely malignant tumor with a high mortality rate. Little is known about the mechanism by which forkhead Box q1 (FOXQ1) causes CRC invasion and metastasis through the epidermal growth factor receptor (EGFR) pathway.
AIM To illuminate the mechanism by which FOXQ1 promotes the invasion and metastasis of CRC by activating the heparin binding epidermal growth factor (HB-EGF)/EGFR pathway.
METHODS We investigated the differential expression and prognosis of FOXQ1 and HB-EGF in CRC using the Gene Expression Profiling Interactive Analysis (GEPIA) website (http://gepia.cancer-pku.cn/index.html). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of FOXQ1 and HB-EGF in cell lines and tissues, and we constructed a stable low-expressing FOXQ1 cell line and verified it with the above method. The expression changes of membrane-bound HB-EGF (proHB-EGF) and soluble HB-EGF (sHB-EGF) in the low-expressing FOXQ1 cell line were detected by flow cytometry and ELISA. Western blotting was used to detect changes in the expression levels of HB-EGF and EGFR pathway-related downstream genes when exogenous recombinant human HB-EGF was added to FOXQ1 knockdown cells. Proliferation experiments, transwell migration experiments, and scratch experiments were carried out to determine the mechanism by which FOXQ1 activates the EGFR signaling pathway through HB-EGF, and then to evaluate the clinical relevance of FOXQ1 and HB-EGF.
RESULTS GEPIA showed that the expression of FOXQ1 in CRC tissues was relatively high and was related to a lower overall survival rate. PCR array results showed that FOXQ1 is related to the HB-EGF and EGFR pathways. Knockdown of FOXQ1 suppressed the expression of HB-EGF, and led to a decrease in EGFR and its downstream genes AKT, RAF, KRAS expression levels. After knockdown of FOXQ1 in CRC cell lines, cell proliferation, migration and invasion were attenuated. Adding HB-EGF restored the migration and invasion ability of CRC, but not the cell proliferation ability. Kaplan–Meier survival analysis results showed that the combination of FOXQ1 and HB-EGF may serve to predict CRC survival.
CONCLUSION Based on these collective data, we propose that FOXQ1 promotes the invasion and metastasis of CRC via the HB-EGF/EGFR pathway.
Collapse
Affiliation(s)
- Jin-Jin Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan Province, China
| | - Chang-Xiong Cao
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Li-Lan Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Wen Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Zhong-Jiang Liu
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Jin-Li Wang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Hui Tang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| |
Collapse
|
23
|
Han Y, Ding Z, Chen B, Liu Y, Liu Y. A Novel Inflammatory Response–Related Gene Signature Improves High-Risk Survival Prediction in Patients With Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:767166. [PMID: 35480305 PMCID: PMC9035793 DOI: 10.3389/fgene.2022.767166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and malignant tumor that is difficult to effectively prognosticate outcomes. Recent reports have suggested that inflammation is strongly related to tumor progression, and several biomarkers linked to inflammation have been demonstrated to be useful for making a prognosis. The goal of this research was to explore the relevance between the inflammatory-related genes and HNSCC prognosis. Methods: The clinical information and gene expression data of patients with HNSCC were acquired from publicly available data sources. A multigene prognostic signature model was constructed in The Cancer Genome Atlas and verified in the Gene Expression Omnibus database. According to the risk score calculated for each patient, they were divided into low- and high-risk groups based on the median. The Kaplan–Meier survival curve and receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Further analysis identified the independent prognostic factors, and a prognostic nomogram was built. The relationship between tumor immune infiltration status and risk scores was investigated using Spearman correlation analysis. Finally, to confirm the expression of genes in HNSCC, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Results: A prognostic model consisting of 14 inflammatory-related genes was constructed. The samples with a high risk had an apparently shorter overall survival than those with a low risk. Independent prognostic analysis found that risk scores were a separate prognostic factor in HNSCC patients. Immune infiltration analysis suggested that the abundance of B cells, CD8 T cells, M2 macrophages, myeloid dendritic cells, and monocytes in the low-risk group was higher, while that of M0, M1 macrophages, and resting NK cells was obviously higher in the high-risk group. The risk scores were related to chemotherapeutic sensitivity and the expression of several immune checkpoint genes. Moreover, CCL22 and IL10 were significantly higher in HNSCC tissues, as determined by qRT-PCR. Conclusion: Taken together, we constructed a novel inflammatory response–related gene signature, which may be used to estimate outcomes for patients with HNSCC and may be developed into a powerful tool for forecasting the efficacy of immunotherapeutic and chemotherapeutic drugs for HNSCC.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
24
|
EGFR Signaling in Lung Fibrosis. Cells 2022; 11:cells11060986. [PMID: 35326439 PMCID: PMC8947373 DOI: 10.3390/cells11060986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
In this review article, we will first provide a brief overview of the ErbB receptor-ligand system and its importance in developmental and physiological processes. We will then review the literature regarding the role of ErbB receptors and their ligands in the maladaptive remodeling of lung tissue, with special emphasis on idiopathic pulmonary fibrosis (IPF). Here we will focus on the pathways and cellular processes contributing to epithelial-mesenchymal miscommunication seen in this pathology. We will also provide an overview of the in vivo studies addressing the efficacy of different ErbB signaling inhibitors in experimental models of lung injury and highlight how such studies may contribute to our understanding of ErbB biology in the lung. Finally, we will discuss what we learned from clinical applications of the ErbB1 signaling inhibitors in cancer in order to advance clinical trials in IPF.
Collapse
|
25
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
26
|
Zhou L, Zhou W, Joseph AM, Chu C, Putzel GG, Fang B, Teng F, Lyu M, Yano H, Andreasson KI, Mekada E, Eberl G, Sonnenberg GF. Group 3 innate lymphoid cells produce the growth factor HB-EGF to protect the intestine from TNF-mediated inflammation. Nat Immunol 2022; 23:251-261. [PMID: 35102343 PMCID: PMC8842850 DOI: 10.1038/s41590-021-01110-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor (TNF) drives chronic inflammation and cell death in the intestine, and blocking TNF is a therapeutic approach in inflammatory bowel disease (IBD). Despite this knowledge, the pathways that protect the intestine from TNF are incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3s) protect the intestinal epithelium from TNF-induced cell death. This occurs independent of interleukin-22 (IL-22), and we identify that ILC3s are a dominant source of heparin-binding epidermal growth factor-like growth factor (HB-EGF). ILC3s produce HB-EGF in response to prostaglandin E2 (PGE2) and engagement of the EP2 receptor. Mice lacking ILC3-derived HB-EGF exhibit increased susceptibility to TNF-mediated epithelial cell death and experimental intestinal inflammation. Finally, human ILC3s produce HB-EGF and are reduced from the inflamed intestine. These results define an essential role for ILC3-derived HB-EGF in protecting the intestine from TNF and indicate that disruption of this pathway contributes to IBD.
Collapse
|
27
|
Sacks MA, Mendez YS, Khan FA, Propst R, Zuppan CW, Wilson CG, Radulescu A. Prenatal administration of heparin-binding epidermal growth factor-like growth factor in an experimental model of necrotizing enterocolitis decreased both incidence and severity of the disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2022; 5:e000345. [PMID: 36474622 PMCID: PMC9716957 DOI: 10.1136/wjps-2021-000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/29/2021] [Indexed: 11/03/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is the leading gastrointestinal cause of death in premature infants and causes long-term disabilities. Previously, enteral heparin-binding epidermal growth factor-like growth factor (HB-EGF) administered after birth demonstrated decreased incidence and severity of NEC in a neonatal animal model of NEC. We investigated the potential prophylactic strategy of preventing NEC using prenatally administered HB-EGF. Methods An HB-EGF (800 µg/kg/dose) dose was injected into pregnant rats via tail vein or intraperitoneal route 2 hours prior to delivery. After cesarean section (C-section) at 21 days' gestation, the rat pups were subjected to the NEC protocol by inducing stressors: hypoxia, hypothermia, hypertonic feeds, and orogastric gavage of lipopolysaccharide (2 mg/kg). Postnatally, pups were monitored for 96 hours and assessed for the development of clinical and postmortem histological NEC. Results The experimental NEC incidence in untreated, stressed rat pups was 66%. Compared with untreated pups, the maternal administration of HB-EGF correlated with a significant NEC incidence and severity decrease in rat pups. The strongest decrease was seen when HB-EGF was administered via the intraperitoneal route 2 hours prior to C-section (66% vs 31%, *p<0.05). Prenatal HB-EGF administration significantly increased pups' survival after NEC protocol exposure, with the greatest benefit observed in the group that received HB-EGF intraperitoneally 2 hours before delivery. Conclusions Prenatal administration of HB-EGF decreases the incidence and severity of NEC, preserves gut barrier function and increases survival. This may represent a novel prophylactic clinical strategy for NEC offered to mothers at risk of delivering a premature infant.
Collapse
Affiliation(s)
- Marla Ashley Sacks
- Division of Pediatric Surgery, Department of Surgery, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Yomara Stephanie Mendez
- Division of Pediatric Surgery, Department of Surgery, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Faraz A Khan
- Division of Pediatric Surgery, Department of Surgery, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Robert Propst
- Department of Pathology, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Craig W Zuppan
- Department of Pathology, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Christopher G Wilson
- Department of Neonatology, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Andrei Radulescu
- Division of Pediatric Surgery, Department of Surgery, Loma Linda University Children's Hospital, Loma Linda, California, USA
| |
Collapse
|
28
|
Singh S, Drude N, Blank L, Desai PB, Königs H, Rütten S, Langen K, Möller M, Mottaghy FM, Morgenroth A. Protease Responsive Nanogels for Transcytosis across the Blood-Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells. Adv Healthc Mater 2021; 10:e2100812. [PMID: 34490744 PMCID: PMC11468667 DOI: 10.1002/adhm.202100812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Despite profound advances in treatment approaches, gliomas remain associated with very poor prognoses. The residual cells after incomplete resection often migrate and proliferate giving a seed for highly resistant gliomas. The efficacy of chemotherapeutic drugs is often strongly limited by their poor selectivity and the blood brain barrier (BBB). Therefore, the development of therapeutic carrier systems for efficient transport across the BBB and selective delivery to tumor cells remains one of the most complex problems facing molecular medicine and nano-biotechnology. To address this challenge, a stimuli sensitive nanogel is synthesized using pre-polymer approach for the effective delivery of nano-irradiation. The nanogels are cross-linked via matrix metalloproteinase (MMP-2,9) substrate and armed with Auger electron emitting drug 5-[125 I]Iodo-4"-thio-2"-deoxyuridine ([125 I]ITdU) which after release can be incorporated into the DNA of tumor cells. Functionalization with diphtheria toxin receptor ligand allows nanogel transcytosis across the BBB at tumor site. Functionalized nanogels efficiently and increasingly explore transcytosis via BBB co-cultured with glioblastoma cells. The subsequent nanogel degradation correlates with up-regulated MMP2/9. Released [125 I]ITdU follows the thymidine salvage pathway ending in its incorporation into the DNA of tumor cells. With this concept, a highly efficient strategy for intracellular delivery of radiopharmaceuticals across the challenging BBB is presented.
Collapse
Affiliation(s)
- Smriti Singh
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Max Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
| | - Natascha Drude
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Lena Blank
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Prachi Bharat Desai
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Hiltrud Königs
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Stephan Rütten
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Karl‐Josef Langen
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Institute of Neuroscience and MedicineForschungszentrum JülichJülich52428Germany
| | - Martin Möller
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Felix M. Mottaghy
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastricht6229 HXThe Netherlands
| | | |
Collapse
|
29
|
A design-thinking approach to therapeutic translation: tympanic regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 28:274-280. [PMID: 32833885 DOI: 10.1097/moo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Clinician researchers face the pressures of meeting academic benchmarks combined with advancing new therapies to patients. The vast majority of drug discoveries fail in translation. A new method of meeting the challenges of preclinical therapeutic translation is presented using the example of tympanic regeneration. RECENT FINDINGS The key to a design-thinking approach to therapeutic translation is to 'begin with the end in mind' by widening the scope of the problem, with multiple points of view, to not only understand the disease but the context for the patient and the health system in which it occurs. Idea for therapeutics should be tested in relevant models early and once proof of efficacy is established, translational milestones that represent the greatest risk, such as safety and toxicity should be addressed first. It is important to seek the feedback of industry early to understand what milestones should be best addressed next with limited academic resources. Whenever proceeding, guidelines for maintaining scientific reproducibility should be followed to minimize risk of failure during transfer into industry. SUMMARY A Design-thinking approach addresses the potential failures in drug discovery and preclinical translation.
Collapse
|
30
|
Xiang J, Zhang S, Xu R, Chu H, Biswas S, Yu S, Miao D, Li W, Li S, Brown AJ, Yang H, Xu Y, Li B, Liu H. Elevated HB-EGF expression in neural stem cells causes middle age obesity by suppressing Hypocretin/Orexin expression. FASEB J 2021; 35:e21345. [PMID: 33715219 DOI: 10.1096/fj.202001945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Obesity is common in the middle aged population and it increases the risks of diabetes, cardiovascular diseases, certain cancers, and dementia. Yet, its etiology remains incompletely understood. Here, we show that ectopic expression of HB-EGF, an important regulator of neurogenesis, in Nestin+ neuroepithelial progenitors with the Cre-LoxP system leads to development of spontaneous middle age obesity in male mice accompanied by hyperglycemia and insulin resistance. The Nestin-HB-EGF mice show decreases in food uptake, energy expenditure, and physical activity, suggesting that reduced energy expenditure underlies the pathogenesis of this obesity model. However, HB-EGF expression in appetite-controlling POMC or AgRP neurons or adipocytes fails to induce obesity. Mechanistically, HB-EGF suppresses expression of Hypocretin/Orexin, an orexigenic neuropeptide hormone, in the hypothalamus of middle aged Nestin-HB-EGF mice. Hypothalamus Orexin administration alleviates the obese and hyperglycemic phenotypes in Nestin-HB-EGF mice. This study uncovers an important role for HB-EGF in regulating Orexin expression and energy expenditure and establishes a midlife obesity model whose pathogenesis involves age-dependent changes in hypothalamus neurons.
Collapse
Affiliation(s)
- Jinnan Xiang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyang Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyao Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshang Chu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxiang Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Weidong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shentian Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Yuhong Xu
- Pharmacy School, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Center for Traditional Chinese Medicine and Stem Cell Research, The Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Huijuan Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Wu Y, Liu Z, Tang D, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Lin L, Christiani DC, Wang Q, Wei Q. Potentially functional variants of HBEGF and ITPR3 in GnRH signaling pathway genes predict survival of non-small cell lung cancer patients. Transl Res 2021; 233:92-103. [PMID: 33400994 PMCID: PMC8184605 DOI: 10.1016/j.trsl.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) signaling pathway controls reproductive functions and cancer growth and progression. However, few studies investigated roles of genetic variants of GnRH pathway genes in survival of patients with non-small cell lung cancer (NSCLC). Therefore, we first evaluated associations between 22,528 single-nucleotide polymorphisms (SNPs) in 101 GnRH pathway genes and survival of 1185 NSCLC patients using a dataset from Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. We found 572 SNPs to be significantly associated with overall survival (OS) of NSCLC (P ≤ 0.05, Bayesian false discovery probability ≤0.80). We then validated these SNPs in another dataset with 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. Finally, two independent SNPs (HBEGF rs4150236G>A and ITPR3 rs116454384C>T) remained significantly associated with NSCLC OS in the combined analysis with hazards ratios of 0.84 (95% confidence interval = 0.76-0.92, P = 0.0003) and 0.85 (0.78-0.94, 0.0012), respectively; their genetic score (the number of protective genotypes) was associated with a better OS and disease-specific survival (Ptrend = 0.0002 and 0.0001, respectively). Further expression quantitative trail loci analysis showed a significant correlation between ITPR3 rs116454384 T allele and an increased mRNA expression level in both whole blood and normal lung tissue, and high ITPR3 mRNA expression levels in tumors were associated with a better survival of NSCLC patients. Because ITPR3 mutations were rare in tumors, ITPR3 rs116454384C>T likely had an effect on cancer progression by regulating the gene expression. Therefore, genetic variants of HBEGF rs4150236G>A and ITPR3 rs116454384C>T may be predictors for NSCLC survival, but HBEGF rs4150236G>A functional relevance remains to be determined.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Dongfang Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Lijuan Lin
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
32
|
Loo S, Kam A, Li BB, Feng N, Wang X, Tam JP. Discovery of Hyperstable Noncanonical Plant-Derived Epidermal Growth Factor Receptor Agonist and Analogs. J Med Chem 2021; 64:7746-7759. [PMID: 34015925 DOI: 10.1021/acs.jmedchem.1c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report the discovery of the first plant-derived and noncanonical epidermal growth factor receptor (EGFR) agonist, the 36-residue bleogen pB1 from Pereskia bleo of the Cactaceae family. We show that bleogen pB1 is a low-affinity EGFR agonist using a suite of chemical, biochemical, cellular, and animal experiments which include incisor eruption and wound-healing mouse models. A focused positional scanning pB1 library of Ala- and d-amino acid scans yielded a high-affinity pB1 analog, [K29k]pB1, with a 60-fold-improved EGFR affinity and mitogenicity. We show that the potency of [K29k]pB1 and the epidermal growth factor (EGF) is comparable in a diabetic mouse wound-healing model. We also show that both bleogen pB1 and [K29k]pB1 are hyperstable, being >100-fold more stable than EGF against proteolytic degradation. Overall, our discovery of a noncanonical proteolytic-resistant EGFR agonist scaffold could open new avenues for developing wound healing and skin regeneration therapeutics and biomaterials.
Collapse
Affiliation(s)
- Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Bin Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nan Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
33
|
Mang D, Roy SR, Zhang Q, Hu X, Zhang Y. Heparan Sulfate-Instructed Self-Assembly Selectively Inhibits Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17236-17242. [PMID: 33830729 DOI: 10.1021/acsami.1c00934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition.
Collapse
Affiliation(s)
- Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Diaz-Dussan D, Peng YY, Kumar P, Narain R. Oncogenic Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma Mediated by Dynamic Sugar-Benzoxaborole Polyplexes. ACS Macro Lett 2020; 9:1464-1470. [PMID: 35653664 DOI: 10.1021/acsmacrolett.0c00599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although, various types of pharmaceuticals have been developed for cervical carcinomas, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance. Here, we aimed at modifying the genetic profiling of cancer cells by silencing the expression of the epidermal growth factor receptor (EGFR) gene. We have synthesized two kinds of RAFT-made, biocompatible, and cationic polymers for the encapsulation of silencing RNA (siRNA). This vector has a dual capability: it contains a cationic segment to complex with the siRNA and an omega-end modified with an oxaborole group via thiol-ene click chemistry that responds to the acidic tumor microenvironment. This structural innovation enables this macromolecule to interact with multiple polyplexes and release the siRNA in a mild acidic environment. A strategy that has shown enhanced gene silencing without elevating the cytotoxicity of the system, as determined by Western blot analysis. The success of this approach has afforded further interest in utilizing boron-carbohydrate interaction in the development of nonviral vectors for gene therapy.
Collapse
Affiliation(s)
- Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, T6G 1Z2, Alberta, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| |
Collapse
|
35
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
36
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Okitsu-Sakurayama S, Higa-Nakamine S, Torihara H, Higashiyama S, Yamamoto H. Roles of Pyk2 in signal transduction after gonadotropin-releasing hormone receptor stimulation. J Cell Physiol 2020; 236:3033-3043. [PMID: 32984962 DOI: 10.1002/jcp.30077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) is highly expressed in hypothalamic neurons. It has been reported that GnRH treatment of cultured GnRH neurons (GT1-7 cells) activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in the activation of extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 (ERK1/2). In the present study, we first examined the possibility that GnRH treatment might activate epidermal growth factor receptor (EGFR). We found that activation of EGFR after GnRH treatment for 5 min was much less than after EGF or heparin-binding EGF treatment. Next, we examined whether or not Pyk2 bound to growth factor receptor-binding protein 2 (Grb2). We overexpressed FLAG-fused Pyk2 in GT1-7 cells, and immunoprecipitated Pyk2 using an anti-FLAG antibody. The binding of Pyk2 to Grb2 was detected only after GnRH treatment. In contrast, a site-directed mutant of Pyk2 wherein tyrosine 881 was mutated to phenylalanine did not bind to Grb2. Studies with small interfering RNA and inhibitors indicated that the activation of Grb2/Ras/Raf/MEK was a major pathway to ERK1/2 activation after the short-term treatment of GT1-7 cells with GnRH.
Collapse
Affiliation(s)
- Shiho Okitsu-Sakurayama
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Hidetsugu Torihara
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Department of Biochemistry and Molecular Genetics, Proteo-Science Center, Ehime University Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
38
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
39
|
Guedj A, Volman Y, Geiger-Maor A, Bolik J, Schumacher N, Künzel S, Baines JF, Nevo Y, Elgavish S, Galun E, Amsalem H, Schmidt-Arras D, Rachmilewitz J. Gut microbiota shape 'inflamm-ageing' cytokines and account for age-dependent decline in DNA damage repair. Gut 2020; 69:1064-1075. [PMID: 31586932 DOI: 10.1136/gutjnl-2019-318491] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Failing to properly repair damaged DNA drives the ageing process. Furthermore, age-related inflammation contributes to the manifestation of ageing. Recently, we demonstrated that the efficiency of repair of diethylnitrosamine (DEN)-induced double-strand breaks (DSBs) rapidly declines with age. We therefore hypothesised that with age, the decline in DNA damage repair stems from age-related inflammation. DESIGN We used DEN-induced DNA damage in mouse livers and compared the efficiency of their resolution in different ages and following various permutations aimed at manipulating the liver age-related inflammation. RESULTS We found that age-related deregulation of innate immunity was linked to altered gut microbiota. Consequently, antibiotic treatment, MyD88 ablation or germ-free mice had reduced cytokine expression and improved DSBs rejoining in 6-month-old mice. In contrast, feeding young mice with a high-fat diet enhanced inflammation and facilitated the decline in DSBs repair. This latter effect was reversed by antibiotic treatment. Kupffer cell replenishment or their inactivation with gadolinium chloride reduced proinflammatory cytokine expression and reversed the decline in DSBs repair. The addition of proinflammatory cytokines ablated DSBs rejoining mediated by macrophage-derived heparin-binding epidermal growth factor-like growth factor. CONCLUSIONS Taken together, our results reveal a previously unrecognised link between commensal bacteria-induced inflammation that results in age-dependent decline in DNA damage repair. Importantly, the present study support the notion of a cell non-autonomous mechanism for age-related decline in DNA damage repair that is based on the presence of 'inflamm-ageing' cytokines in the tissue microenvironment, rather than an intrinsic cellular deficiency in the DNA repair machinery.
Collapse
Affiliation(s)
- Avital Guedj
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Geiger-Maor
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia Bolik
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Sven Künzel
- Institute for Evolutionary Biology, Max Planck, Plön, Germany
| | - John F Baines
- Institute for Evolutionary Biology, Max Planck, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah University Hospital-Mount Scopus, Jerusalem, Israel
| | | | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
40
|
Letsiou S, Bakea A, Le Goff G, Lopes P, Gardikis Κ, Alonso C, Álvarez PA, Ouazzani J. In vitro protective effects of marine-derived Aspergillus puulaauensis TM124-S4 extract on H 2O 2-stressed primary human fibroblasts. Toxicol In Vitro 2020; 66:104869. [PMID: 32320759 DOI: 10.1016/j.tiv.2020.104869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Nowadays, there is a huge interest in natural products obtained from marine organisms that can promote human health.The aim of the present study is to evaluate for the first time, the in vitro effects of marine Aspergillus puulaauensis TM124-S4 extract against oxidative stress in human fibroblasts, and its potential as a cosmetic ingredient. The strain was isolated from the Mediterranean Sea star, Echinaster sepositus, and identified according to ITS molecular sequence homology as a member of Aspergillus section versicolores.To gain insight on the bioactivity underpinning the effects of TM124-S4 extract on oxidative stress, we examined a panel of a hundred genes as well as cell viability. Initially, Aspergillus puulaauensis TM124-S4 promoted cell viability.The change in gene transcripts revealed that Aspergillus puulaauensis TM124-S4 extracts exhibited skin protection properties by mediating cell proliferation (EPS8, GDF15, CASP7, VEGFA), antioxidant response (CAT, SOD1, TXN, GPX1), skin hydration (CD44, CRABP2, SERPINE) and DNA repair (PCNA, P21). The extract also modulated the expression of genes involved in skin pigmentation and aging (TYR, FOXO3).These findings indicate that Aspergillus puulaauensis TM124-S4 extract possesses significant in-vitro skin protection activity against induced oxidative stress.Furthermore, new insights are provided into the beneficial role of fungal bioactive compounds in skin related research.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece.
| | - Artemis Bakea
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Philippe Lopes
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Κonstantinos Gardikis
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | | | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
42
|
Foroughi S, Tie J, Gibbs P, Burgess AW. Epidermal growth factor receptor ligands: targets for optimizing treatment of metastatic colorectal cancer. Growth Factors 2019; 37:209-225. [PMID: 31878812 DOI: 10.1080/08977194.2019.1703702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of epidermal growth factor (EGF) and its receptor (EGFR) revealed the connection between EGF-like ligands, signaling from the EGFR family members and cancer. Over the next fifty years, analysis of EGFR expression and mutation led to the use of monoclonal antibodies to target EGFR in the treatment of metastatic colorectal cancer (mCRC) and this treatment has improved outcomes for patients. The use of the RAS oncogene mutational status has helped to refine patient selection for EGFR antibody therapy, but an effective molecular predictor of likely responders is lacking. This review analyzes the potential utility of measuring the expression, levels and activation of EGF-like ligands and associated processes as prognostic or predictive markers for the identification of patient risk and more effective mCRC therapies.
Collapse
Affiliation(s)
- Siavash Foroughi
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jeanne Tie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Antony Wilks Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
43
|
Regulation of the inflammatory response by vascular grafts modified with Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration. Acta Biomater 2019; 97:360-373. [PMID: 31351251 DOI: 10.1016/j.actbio.2019.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
Abstract
The unabated inflammatory response is often the cause for inhibited vascular regeneration of transplanted small-diameter vascular grafts (diameter <6 mm) in vascular replacement therapies. We proposed that stimulating inflammatory resolution could be an effective approach for treatment of chronic vascular graft inflammation after transplantation. Aspirin-Triggered Resolvin D1 (AT-RvD1) plays critical roles in driving cellular processes toward the resolution of inflammation and suppressing downstream inflammatory signaling pathways. With the aim to facilitate vascular regeneration, we developed a polycaprolactone (PCL) vascular graft loaded with AT-RvD1. The results showed that AT-RvD1 promoted macrophage polarization into M2 macrophages in vitro. Macrophages pretreated with AT-RvD1 conditioned medium promoted endothelial cell tube formation. Furthermore, in vivo implantation was performed by replacing rat abdominal aorta. We observed fast endothelialization and enhanced smooth muscle regeneration in rats that received the AT-RvD1-containing graft implants. The presence of AT-RvD1 induced infiltration of a large number of M2 macrophages and integrin α4-positive (CD49d+) neutrophils into the graft wall after implantation. Vascular graft RNA-Seq analysis revealed that AT-RvD1 inhibited leukocyte and neutrophil migration and activation. Results also indicated that macrophage polarization to the M2 phenotype was promoted on day 7 post-implantation. These results demonstrated the ability of locally delivered AT-RvD1 to increase pro-regenerative immune subpopulations and promote vascular tissue regeneration. STATEMENT OF SIGNIFICANCE: Chronic inflammation is a key deciding factor in the failure of vascular regeneration of transplanted small-diameter vascular grafts (diameter <6 mm). Aspirin-triggered Resolvin D1 (AT-RvD1) is a critical driving force in cellular resolution inflammation and suppresses inflammatory signaling. Herein, we developed an electrospun polycaprolactone (PCL) vascular graft loaded with AT-RvD1. In vivo implantation was performed by replacing rat abdominal aorta and AT-RvD1-loaded grafts showed rapid endothelialization, enhanced capillary formation, and excellent smooth muscle regeneration by regulating inflammatory reaction and promoting its rapid resolution. Thus, our study provided new perspectives for long-term vascular graft survival and integration with the host tissue. We believe that AT-RvD1 can be widely applied in tissue engineering owing to its anti-inflammatory and therapeutic effects.
Collapse
|
44
|
Krynina OI, Korotkevych NV, Labyntsev AJ, Romaniuk SI, Kolybo DV, Komisarenko SV. Influence of human HB-EGF secreted form on cells with different EGFR and ErbB4 quantity. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
HIF-1α is Overexpressed in Odontogenic Keratocyst Suggesting Activation of HIF-1α and NOTCH1 Signaling Pathways. Cells 2019; 8:cells8070731. [PMID: 31319505 PMCID: PMC6678339 DOI: 10.3390/cells8070731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The odontogenic keratocyst (OKC) is an odontogenic cyst that shows aggressive and intriguing biological behavior. It is suggested that a hypoxic environment occurs in OKC, which led us to investigate the immunoexpression and location of hypoxia-inducible factor 1-alpha (HIF-1α) and other hypoxia-related proteins. Methods: Twenty cases of OKC were evaluated for the expression of Notch homolog 1 (NOTCH1), HIF-1α, disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12), and heparin-binding epidermal growth factor-like growth factor (HBEGF) by immunohistochemistry and compared to eight control cases of calcifying odontogenic cystic (COC), orthokeratinized odontogenic cyst (OOC), and normal oral mucosa (OM) in basal and parabasal layers. Results: In OKC, all the proteins tested were expressed significantly higher in both basal (except for NOTCH1 and HBEGF in OOC) and suprabasal epithelial layers compared to controls. Looking at the epithelial layers within OKC, we observed an increased NOTCH1 and HIF-1α expression in parabasal layers. Conclusions: These results suggest that hypoxia occurs more intensively in OKC compared to COC, OM, and OOC. Hypoxia appeared to be stronger in parabasal layers as observed by higher HIF-1α expression in upper cells. Overexpression of NOTCH1, ADAM-12, and HBEGF in OKC was observed, which suggests that microenvironmental hypoxia could potentially regulate the expression of hypoxia-related proteins, and consequently, its clinical and biological behavior.
Collapse
|
46
|
Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of GALGT2 Expression and GALGT2-Dependent Muscle and Neuromuscular Phenotypes. Mol Cell Biol 2019; 39:MCB.00140-19. [PMID: 31036568 DOI: 10.1128/mcb.00140-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.
Collapse
|
47
|
Role of the heparin-binding domain in intracellular trafficking of sHB-EGF. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Erliana UD, Fly AD. The Function and Alteration of Immunological Properties in Human Milk of Obese Mothers. Nutrients 2019; 11:nu11061284. [PMID: 31174304 PMCID: PMC6627488 DOI: 10.3390/nu11061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
Maternal obesity is associated with metabolic changes in mothers and higher risk of obesity in the offspring. Obesity in breastfeeding mothers appears to influence human milk production as well as the quality of human milk. Maternal obesity is associated with alteration of immunological factors concentrations in the human milk, such as C-reactive protein (CRP), leptin, IL-6, insulin, TNF-Alpha, ghrelin, adiponectin, and obestatin. Human milk is considered a first choice for infant nutrition due to the complete profile of macro nutrients, micro nutrients, and immunological properties. It is essential to understand how maternal obesity influences immunological properties of human milk because alterations could impact the nutrition status and health of the infant. This review summarizes the literature regarding the impact of maternal obesity on the concentration of particular immunological properties in the human milk.
Collapse
Affiliation(s)
- Ummu D Erliana
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| | - Alyce D Fly
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| |
Collapse
|
49
|
Ming YC, Chao HC, Chu SM, Luo CC. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) protected intestinal ischemia-reperfusion injury through JNK and p38/MAPK-dependent pathway for anti-apoptosis. Pediatr Neonatol 2019; 60:332-336. [PMID: 30455099 DOI: 10.1016/j.pedneo.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Heparin-Binding Epidermal Growth Factor-Like Growth Factor (HB-EGF) is a potent cytoprotective factor in various body systems, including gastrointestinal tract. In this study, we intended to examine whether HB-EGF exerts its protective effects through MAPK dependent anti-apoptosis after intestinal I/R injury. METHODS We randomly divided 30 laboratory 30 rats into 5 groups: (A) normal control group, (B) ischemia group with normal saline, (C) I/R group with normal saline, (D) ischemia group with HB-EGF (400 ug/kg), and (E) I/R group with HB-EGF (400 ug/kg). With Western blotting study, we determined JNK and p38/MAPK pathway and caspase-3 activity protein levels using Western analyses. RESULTS The JNK phosphorylation protein levels increased after intestinal ischemia or intestinal reperfusion phase, and HB-EGF pre-treatment was significantly decreased in JNK phosphorylation protein levels (p < 0.01). We found that p38 protein levels was increased after intestinal reperfusion phase, and that HB-EGF pre-treatment significantly decreased p38 protein levels (p < 0.01). The expression protein level of caspase 3 was increased after intestinal ischemia or intestinal reperfusion phase. HB-EGF pre-treatment significantly decreased Caspase 3 proteins. (p < 0.01). CONCLUSION Our study revealed that pre-treatment of HB-EGF decreased the amount of activity of JNK and p38/MAPK pathway and caspase-3 protein after intestinal I/R injury. These results may further support that the cytoprotective of HB-EGF after I/R injury could be through anti-apoptotic effect of activity of JNK and p38/MAPK pathway.
Collapse
Affiliation(s)
- Yung-Ching Ming
- Division of Pediatric Surgery, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsun-Chin Chao
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Cheng Luo
- Division of Pediatric Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Yong HYF, Rawji KS, Ghorbani S, Xue M, Yong VW. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol 2019; 16:540-546. [PMID: 30874626 DOI: 10.1038/s41423-019-0223-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation of the nervous system (neuroinflammation) is now recognized as a hallmark of virtually all neurological disorders. In neuroinflammatory conditions such as multiple sclerosis, there is prominent infiltration and a long-lasting representation of various leukocyte subsets in the central nervous system (CNS) parenchyma. Even in classic neurodegenerative disorders, where such immense inflammatory infiltrates are absent, there is still evidence of activated CNS-intrinsic microglia. The consequences of excessive and uncontrolled neuroinflammation are injury and death to neural elements, which manifest as a heterogeneous set of neurological symptoms. However, it is now readily acknowledged, due to instructive studies from the peripheral nervous system and a large body of CNS literature, that aspects of the neuroinflammatory response can be beneficial for CNS outcomes. The recognized benefits of inflammation to the CNS include the preservation of CNS constituents (neuroprotection), the proliferation and maturation of various neural precursor populations, axonal regeneration, and the reformation of myelin on denuded axons. Herein, we highlight the benefits of neuroinflammation in fostering CNS recovery after neural injury using examples from multiple sclerosis, traumatic spinal cord injury, stroke, and Alzheimer's disease. We focus on CNS regenerative responses, such as neurogenesis, axonal regeneration, and remyelination, and discuss the mechanisms by which neuroinflammation is pro-regenerative for the CNS. Finally, we highlight treatment strategies that harness the benefits of neuroinflammation for CNS regenerative responses.
Collapse
Affiliation(s)
| | | | | | - Mengzhou Xue
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|