1
|
Wang D, Pu D, De Smedt I, Zhu L, Yang X, Sun W, Xia H, Song Z, Li X, Li J, Zhang A, Feng X, Chen Y, Yang X, Fu TM, Wang J. Evolution of global O 3-NO x-VOCs sensitivity before and after the COVID-19 from the ratio of formaldehyde to NO 2 from satellite observations. J Environ Sci (China) 2025; 156:102-113. [PMID: 40412917 DOI: 10.1016/j.jes.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 05/27/2025]
Abstract
Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise. Here, we diagnose the impact of the decline in global human production activities level caused by the COVID-19 on ozone sensitivity through the ratio of formaldehyde (HCHO) and NO2 (FNR = HCHO/NO2) observations from the TROPOspheric Monitoring Instrument. We use a relative uncertainty threshold to clean the satellite FNR, and our satellite FNR present a good correlation (R = 0.6248) with U.S. Environmental Protection Agency observations. We found that the outbreak of the COVID-19 did not change the pattern of global ozone sensitivity, while the global regimes was transforming or strengthening to VOC-limited regimes due to the significant decline of human production activities levels. During the COVID-19, ozone sensitivity in Eastern China and East Africa continued to shift to VOC-limited regimes, while India, Western Europe and North America first moved to NOx-limited regimes, and then changed to VOC-limited regimes with the resumption of production and the increase in travel. The clustering results tell that urban ozone sensitivity tends to shift towards NOx-limited regimes as economic growing. The ozone formation in cities with lower FNR and per capita gross domestic product (GDP) are more sensitive to changes in VOCs, while cities with higher FNR and per capita GDP are more sensitive to variations in NOx. Cities with intermediate FNR and GDP are good evidence of the existence of transitional regimes. Our study identifies the driving role of urban economics in orienting the evolution of ozone sensitivity regimes.
Collapse
Affiliation(s)
- Dakang Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Institute of Aerospace Remote Sensing Innovations, Guangzhou University, Guangzhou 510006, China
| | - Dongchuan Pu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isabelle De Smedt
- Division of Atmospheric Composition, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels 1180, Belgium
| | - Lei Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China.
| | - Xiankun Yang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Institute of Aerospace Remote Sensing Innovations, Guangzhou University, Guangzhou 510006, China.
| | - Wenfu Sun
- Division of Atmospheric Composition, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels 1180, Belgium
| | - Hui Xia
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Institute of Aerospace Remote Sensing Innovations, Guangzhou University, Guangzhou 510006, China
| | - Zhaolong Song
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Institute of Aerospace Remote Sensing Innovations, Guangzhou University, Guangzhou 510006, China
| | - Xicheng Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aoxing Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xu Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, United States
| | - Yuyang Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Tzung-May Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jinnian Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Institute of Aerospace Remote Sensing Innovations, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Li N, Sun T, Mudge S, Zhang Y, Gao Z, Huang L, Lin J. The role of atmospheric volatile organic compounds (VOCs) in ozone formation around China's largest plywood manufacturer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126197. [PMID: 40189087 DOI: 10.1016/j.envpol.2025.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
The volatile organic compounds (VOCs) are a dominant contributor to the formation of ozone (O3) in Linyi, the plywood capital of China. However, the temporal variations and source origins of VOCs in Linyi remain unclear. This study gathered ambient air samples (n = 214) from the urban center of Linyi during the period April to October of 2021-2023. The total volatile organic compounds (TVOCs) concentrations ranged from 28 ppbv to 32 ppbv with oxygenated volatile organic compounds (OVOCs) taking the large portion (50.76 %) of TVOCs, followed by alkanes (28.11 %), aromatics (13.71 %), alkenes (6.66 %), and alkynes (0.76 %). The OVOCs (44.10 %) were the dominant contributors to ozone formation potential (OFP). Formaldehyde, an OVOC and particular pollutant from plywood industries contributed the most to OFP (∼21.60 %). The average concentration of TVOCs in 2022 was the lowest (28.61 ± 10.76 ppbv), with VOCs species, such as isobutane and propane having the lowest concentrations in 2022 (p < 0.05), reflecting a decrease in transportation activity due to the impacts of pandemic lockdowns. Concentrations of OVOCs were annually increasing because of the annual growth of plywood yield. The TVOCs and OVOCs levels were significantly correlated to O3 levels (p < 0.01). The concentrations of TVOCs and OVOCs as well as O3 were highest in June and September (p < 0.05), when the temperature and the degree of photochemical reactions were high. The source apportionment analysis found that plywood industries were the main source (32.90 %) of TVOCs, followed by liquefied petroleum gas (LPG, 21.32 %). Trajectory statistical models (TSM) analysis suggested that Linyi is greatly affected by regional transport from the southwest (31.63 %). This study provides new insights into the mitigation and management of VOCs and O3 pollution in plywood industry cities.
Collapse
Affiliation(s)
- Ningjie Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Stephen Mudge
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yuanxun Zhang
- Yanshan Earth Critical Zone, National Observation and Research Station, University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lihui Huang
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
3
|
Rey-Pommier A, Chevallier F, Ciais P, Christoudias T, Kushta J, Georgiou G, Violaris A, Dubart F, Sciare J. Mapping NO x emissions in Cyprus using TROPOMI observations: evaluation of the flux-divergence scheme using multiple parameter sets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1932-1951. [PMID: 39751682 PMCID: PMC11775050 DOI: 10.1007/s11356-024-35851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
The production of nitrogen oxides (NOx = NO + NO2 ) is substantial in urban areas and from fossil fuel-fired power plants, causing both local and regional pollution, with severe consequences for human health. To estimate their emissions and implement air quality policies, authorities often rely on reported emission inventories. The island of Cyprus is de facto divided into two different political entities, and as a result, such emissions inventories are not systematically available for the whole island. We map NOx emissions in Cyprus for two 6-month periods in 2021 and 2022 with a flux-divergence scheme, using spaceborne retrievals of nitrogen dioxide (NO2 ) columns at high spatial resolution from the TROPOMI instrument, as well as horizontal wind data to derive advection and concentrations of OH, NO, and NO2 to derive chemical processes. Emissions are estimated under three different sets of parameters using ECMWF data and WRF-Chem simulations. These sets are chosen for their differences in spatial resolution and representation of wind and air composition. Exploiting the low emissions in Cyprus, we show that the flux-divergence method is limited by the resolution of wind and hydroxyl radical, the signal-to-noise ratio of the observed tropospheric column densities, and the NOx :NO2 ratio above the main pollution sources. Such limitations lead to large discrepancies in the emissions calculated with the three different sets of parameters, making it difficult to estimate NOx emissions for the five power plants of the island without high uncertainties. Nevertheless, the obtained emissions display a higher seasonality than reported or inventory emissions. For the two power plants in the south, the different mean daytime output estimates appear to be significantly higher than the bottom-up estimates. They are also higher than those from the power plants in the south combined, despite a much lower production capacity, illustrating the application of different environmental norms and the use of different technologies and fuels in the two parts of Cyprus.
Collapse
Affiliation(s)
- Anthony Rey-Pommier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus.
- European Commission, Joint Research Centre, 21027, Ispra, Italy.
| | - Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
| | | | - Jonilda Kushta
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
| | - Georges Georgiou
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
| | - Angelos Violaris
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
| | - Florence Dubart
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
- Rimes Technologies Cyprus, Karyatides Business Center, 2034, Nicosia, Cyprus
| | - Jean Sciare
- The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus
| |
Collapse
|
4
|
Tan T, Xu X, Gu H, Cao L, Liu T, Zhang Y, Wang J, Chen M, Li H, Ge X. The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing. TOXICS 2024; 12:868. [PMID: 39771083 PMCID: PMC11679105 DOI: 10.3390/toxics12120868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.9 ± 12.9 ppb and an average OFP of 90.1 ± 109.5 μg m-3. Alkanes constituted the largest fraction of VOCs, accounting for 44.1%, while alkenes emerged as the primary contributors to OFP, comprising 52.8%. TVOC concentrations peaked before dawn, a pattern attributed to early morning industrial activities and nighttime heavy vehicle operations. During periods classified as clean, when ozone levels were below 160 μg m-3, both TVOC (15.9 ± 12.9 ppb) and OFP (90.4 ± 110.0 μg m-3) concentrations were higher than those during polluted hours. The analysis identified the key sources of VOC emissions, including automobile exhaust, oil and gas evaporation, and industrial discharges, with additional potential pollution sources identified in adjacent regions. Health risk assessments indicated that acrolein exceeded the non-carcinogenic risk threshold at specific times. Moreover, trichloromethane, 1,3-butadiene, 1,2-dichloroethane, and benzene were found to surpass the acceptable lifetime carcinogenic risk level (1 × 10-6) during certain periods. These findings highlight the urgent need for enhanced monitoring and regulatory measures aimed at mitigating VOC emissions and protecting public health in industrial areas. In the context of complex air pollution in urban industrial areas, policymakers should focus on controlling industrial and vehicle emissions, which can not only reduce secondary pollution, but also inhibit the harm of toxic substances on human health.
Collapse
Affiliation(s)
- Tao Tan
- Management Office of Nanjing Jiangbei New Materials Science and Technology Park, Nanjing 210044, China
| | - Xinyuan Xu
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haixin Gu
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li Cao
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ting Liu
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yunjiang Zhang
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junfeng Wang
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mindong Chen
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiwei Li
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xinlei Ge
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Sheng H, Fan L, Chen M, Wang H, Huang H, Ye D. Identification of NO x emissions and source characteristics by TROPOMI observations - A case study in north-central Henan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172779. [PMID: 38679100 DOI: 10.1016/j.scitotenv.2024.172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
With the development of industries, air pollution in north-central Henan is becoming increasingly severe. The TROPOspheric Monitoring Instrument (TROPOMI) provides nitrogen dioxide (NO2) column densities with high spatial resolution. Based on TROPOMI, in this study, the nitrogen oxides (NOx) emissions in north-central Henan are derived and the emission hotspots are identified with the flux divergence method (FDM) from May to September 2021. The results indicate that Zhengzhou has the highest NOx emissions in north-central Henan. The most prominent hotspots are in Guancheng Huizu District (Zhengzhou) and Yindu District (Anyang), with emissions of 448.4 g/s and 300.3 g/s, respectively. The Gaussian Mixture Model (GMM) is applied to quantify the characteristics of emission hotspots, including the diameter, eccentricity, and tilt angle, among which the tilt angle provides a novel metric for identifying the spatial distribution of pollution sources. Furthermore, the results are compared with the CAMS global anthropogenic emissions (CAMS-GLOB-ANT) and Multi-resolution Emission Inventory model for Climate and air pollution research (MEIC), and they are generally in good agreement. However, some point sources, such as power plants, may be missed by both inventories. It is also found that for emission hotspots near transportation hubs, CAMS-GLOB-ANT may not have fully considered the actual traffic flow, leading to an underestimation of transportation emissions. These findings provide key information for the accurate implementation of pollution prevention and control measures, as well as references for future optimization of emission inventories. Consequently, deriving NOx emissions from space, quantifying the characteristics of emission hotspots, and combining them with bottom-up inventories can provide valuable insights for targeted emission control.
Collapse
Affiliation(s)
- Huilin Sheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liya Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| | - Meifang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huanpeng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
| |
Collapse
|
6
|
Reyes‐Galindo V, Jaramillo‐Correa JP, Shishkova S, Sandoval‐Zapotitla E, Flores‐Ortiz CM, Piñero D, Spurgin LG, Martin CA, Torres‐Jardón R, Zamora‐Callejas C, Mastretta‐Yanes A. Histologic, metabolomic, and transcriptomic differences in fir trees from a peri-urban forest under chronic ozone exposure. Ecol Evol 2024; 14:e11343. [PMID: 38746548 PMCID: PMC11091488 DOI: 10.1002/ece3.11343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 01/06/2025] Open
Abstract
Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O3), which contributes to the decline of urban and peri-urban forests. A notable case are fir (Abies religiosa) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O3-related damage have been observed within a zone of significant O3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (≤15 years old; n = 10) using histologic, metabolomic, and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analyzed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (ß-pinene, ß-caryophylene oxide, α-caryophylene, and ß-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for 13 genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O3 tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.
Collapse
Affiliation(s)
- Verónica Reyes‐Galindo
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Programa de Maestría en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Juan P. Jaramillo‐Correa
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | | | - César Mateo Flores‐Ortiz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de MéxicoMexico
| | - Daniel Piñero
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Lewis G. Spurgin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorfolkUnited Kingdom
| | - Claudia A. Martin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorfolkUnited Kingdom
- School of Biological SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Ricardo Torres‐Jardón
- Departamento de Ciencias AmbientalesInstituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Alicia Mastretta‐Yanes
- Consejo Nacional de Humanidades, Ciencias y TecnologíasMexico CityMexico
- Departamento de Ecología de la BiodiversidadInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
7
|
Percy K, Dann T. Long-term trends in British Columbia lower mainland air quality: Criteria air pollutants and VOC. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:261-278. [PMID: 38363818 DOI: 10.1080/10962247.2024.2319770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98th percentile of the daily 24-hr average PM2.5 concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM2.5 concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM2.5 concentrations related to forest fires were a significant influence on PM2.5 ambient concentrations. Annual 4th highest daily maximum 8-hr average O3 concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO2 and SO2 concentrations, and in time-integrated annual VOC concentrations.Implications: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM2.5, O3, NO2, SO2 and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM2.5.
Collapse
Affiliation(s)
- Kevin Percy
- K.E. Percy Air Quality Effects Consulting Ltd, Nasonworth, NB, Canada
| | - Tom Dann
- RS Environmental, Ottawa, ON, Canada
| |
Collapse
|
8
|
Chu W, Li H, Ji Y, Zhang X, Xue L, Gao J, An C. Research on ozone formation sensitivity based on observational methods: Development history, methodology, and application and prospects in China. J Environ Sci (China) 2024; 138:543-560. [PMID: 38135419 DOI: 10.1016/j.jes.2023.02.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 12/24/2023]
Abstract
Observation-based method for O3 formation sensitivity research is an important tool to analyze the causes of ground-level O3 pollution, which has broad application potentials in determining the O3 pollution formation mechanism and developing prevention and control strategies. This paper outlined the development history of research on O3 formation sensitivity based on observational methods, described the principle and applicability of the methodology, summarized the relative application results in China and provided recommendations on the prevention and control of O3 pollution in China based on relevant study results, and finally pointed out the shortcomings and future development prospects in this field in China. The overview study showed that the O3 formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NOx-limited regime due to the implementation of the O3 precursors emission reduction policies; O3 pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O3 pollution control measures should be improved. There are still some current deficiencies in the study field in China. Therefore, it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved; the atmospheric chemical mechanisms should be vigorously developed, and standardized methods for determining the O3 formation sensitivity should be established in China in the near future.
Collapse
Affiliation(s)
- Wanghui Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Danesh Yazdi M, Amini H, Wei Y, Castro E, Shi L, Schwartz JD. Long-term exposure to PM2.5 species and all-cause mortality among Medicare patients using mixtures analyses. ENVIRONMENTAL RESEARCH 2024; 246:118175. [PMID: 38215924 PMCID: PMC11931413 DOI: 10.1016/j.envres.2024.118175] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND The relationship between long-term exposure to PM2.5 and mortality is well-established; however, the role of individual species is less understood. OBJECTIVES In this study, we assess the overall effect of long-term exposure to PM2.5 as a mixture of species and identify the most harmful of those species while controlling for the others. METHODS We looked at changes in mortality among Medicare participants 65 years of age or older from 2000 to 2018 in response to changes in annual levels of 15 PM2.5 components, namely: organic carbon, elemental carbon, nickel, lead, zinc, sulfate, potassium, vanadium, nitrate, silicon, copper, iron, ammonium, calcium, and bromine. Data on exposure were derived from high-resolution, spatio-temporal models which were then aggregated to ZIP code. We used the rate of deaths in each ZIP code per year as the outcome of interest. Covariates included demographic, temperature, socioeconomic, and access-to-care variables. We used a mixtures approach, a weighted quantile sum, to analyze the joint effects of PM2.5 species on mortality. We further looked at the effects of the components when PM2.5 mass levels were at concentrations below 8 μg/m3, and effect modification by sex, race, Medicaid status, and Census division. RESULTS We found that for each decile increase in the levels of the PM2.5 mixture, the rate of all-cause mortality increased by 1.4% (95% CI: 1.3%-1.4%), the rate of cardiovascular mortality increased by 2.1% (95% CI: 2.0%-2.2%), and the rate of respiratory mortality increased by 1.7% (95% CI: 1.5%-1.9%). These effects estimates remained significant and slightly higher when we restricted to lower concentrations. The highest weights for harmful effects were due to organic carbon, nickel, zinc, sulfate, and vanadium. CONCLUSIONS Long-term exposure to PM2.5 species, as a mixture, increased the risk of all-cause, cardiovascular, and respiratory mortality.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Lin Z, Fan X, Chen G, Hong Y, Li M, Xu L, Hu B, Yang C, Chen Y, Shao Z, Chen J. Sources appointment and health risks of PM 2.5-bound trace elements in a coastal city of southeastern China. J Environ Sci (China) 2024; 138:561-571. [PMID: 38135420 DOI: 10.1016/j.jes.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 12/24/2023]
Abstract
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
Collapse
Affiliation(s)
- Ziyi Lin
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gaojie Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mengren Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingling Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Baoye Hu
- Minnan Normal University, Zhangzhou 363000, China
| | - Chen Yang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiqian Shao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Li Y, Zhao Y, Kleeman MJ. Formaldehyde Exposure Racial Disparities in Southeast Texas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4680-4690. [PMID: 38412365 PMCID: PMC10938643 DOI: 10.1021/acs.est.3c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.
Collapse
Affiliation(s)
- Yiting Li
- Department
of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Yusheng Zhao
- Department
of Land, Air, and Water Resources, University
of California, Davis, California 95616, United States
| | - Michael J. Kleeman
- Department
of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
12
|
Pollack IB, Pan D, Marsavin A, Cope EJ, Juncosa Calahorrano J, Naimie L, Benedict KB, Sullivan AP, Zhou Y, Sive BC, Prenni AJ, Schichtel BA, Collett J, Fischer EV. Observations of ozone, acyl peroxy nitrates, and their precursors during summer 2019 at Carlsbad Caverns National Park, New Mexico. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:951-968. [PMID: 37850745 DOI: 10.1080/10962247.2023.2271436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Carlsbad Caverns National Park (CAVE) is located in southeastern New Mexico and is adjacent to the Permian Basin, one of the most productive oil and natural gas (O&G) production regions in the United States. Since 2018, ozone (O3) at CAVE has frequently exceeded the 70 ppbv 8-hour National Ambient Air Quality Standard. We examine the influence of regional emissions on O3 formation using observations of O3, nitrogen oxides (NOx = NO + NO2), a suite of volatile organic compounds (VOCs), peroxyacetyl nitrate (PAN), and peroxypropionyl nitrate (PPN). Elevated O3 and its precursors are observed when the wind is from the southeast, the direction of the Permian Basin. We identify 13 days during the July 25 to September 5, 2019 study period when the maximum daily 8-hour average (MDA8) O3 exceeded 65 ppbv; MDA8 O3 exceeded 70 ppbv on 5 of these days. The results of a positive matrix factorization (PMF) analysis are used to identify and attribute source contributions of VOCs and NOx. On days when the winds are from the southeast, there are larger contributions from factors associated with primary O&G emissions; and, on high O3 days, there is more contribution from factors associated with secondary photochemical processing of O&G emissions. The observed ratio of VOCs to NOx is consistently high throughout the study period, consistent with NOx-limited O3 production. Finally, all high O3 days coincide with elevated acyl peroxy nitrate abundances with PPN to PAN ratios > 0.15 ppbv ppbv-1 indicating that anthropogenic VOC precursors, and often alkanes specifically, dominate the photochemistry.Implications: The results above strongly indicate NOx-sensitive photochemistry at Carlsbad Caverns National Park indicating that reductions in NOx emissions should drive reductions in O3. However, the NOx-sensitivity is largely driven by emissions of NOx into a VOC-rich environment, and a high PPN:PAN ratio and its relationship to O3 indicate substantial influence from alkanes in the regional photochemistry. Thus, simultaneous reductions in emissions of NOx and non-methane VOCs from the oil and gas sector should be considered for reducing O3 at Carlsbad Caverns National Park. Reductions in non-methane VOCs will have the added benefit of reducing formation of other secondary pollutants and air toxics.
Collapse
Affiliation(s)
- Ilana B Pollack
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Da Pan
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Andrey Marsavin
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Elana J Cope
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
- Department of Chemistry, University of Oregon, Eugene, Oregon, USA
| | | | - L Naimie
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - K B Benedict
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Amy P Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Y Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - B C Sive
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
| | - Anthony J Prenni
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA
| | - Bret A Schichtel
- National Park Service, Air Resources Division, Lakewood, Colorado, USA
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA
| | - Jeffrey Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| | - Emily V Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Kim SJ, Lee HY, Lee SJ, Choi SD. Passive air sampling of VOCs, O 3, NO 2, and SO 2 in the large industrial city of Ulsan, South Korea: spatial-temporal variations, source identification, and ozone formation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125478-125491. [PMID: 37999843 DOI: 10.1007/s11356-023-31109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Concerns about volatile organic compounds (VOCs) have increased due to their toxicity and secondary reaction with nitrogen oxides (NOX) to form ozone (O3). In this study, passive air sampling of VOCs, O3, NO2, and SO2 was conducted in summer, fall, winter, and spring from 2019 to 2020 at six industrial and ten urban sites in Ulsan, the largest industrial city in South Korea. Over the entire sampling period, the concentration of toluene (mean: 8.75 μg/m3) was the highest of the 50 target VOCs, followed by m,p-xylenes (4.52 μg/m3), ethylbenzene (4.48 μg/m3), 3-methylpentane (4.40 μg/m3), and n-octane (4.26 μg/m3). Total (Σ50) VOC levels did not statistically differ between seasons, indicating that large amounts of VOCs are emitted into the atmosphere throughout the year. On the other hand, O3, NO2, and SO2 exhibited strong seasonal variation depending on the meteorological conditions and emission sources. The spatial distribution of Σ50 VOCs, NO2, and SO2 indicated that industrial complexes were major sources in Ulsan, while O3 had the opposite spatial distribution. Using a positive matrix factorization model, five major sources were identified, with industrial effects dominant. Aromatic compounds, such as m,p,o-xylenes, toluene, and 1,2,4-trimethylbenzene, significantly contributed to O3 formation. The VOC/NO2 ratio and O3 concentrations suggested that reducing VOC emissions is more effective than reducing NO2 emissions in terms of preventing the secondary formation of O3. The findings of this study allow for a better understanding of the relationship between VOCs, O3, NO2, and SO2 in industrial cities.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Wang H, Huang L, Qiao L, Zhou M, Mu J, Wu C, Zhu Y, Shen H, Huang C, Wang G, Wang T, Wang W, Xue L. Double-Edged Role of VOCs Reduction in Nitrate Formation: Insights from Observations during the China International Import Expo 2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15979-15989. [PMID: 37821356 DOI: 10.1021/acs.est.3c04629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Aerosol nitrate (NO3-) constitutes a significant component of fine particles in China. Prioritizing the control of volatile organic compounds (VOCs) is a crucial step toward achieving clean air, yet its impact on NO3- pollution remains inadequately understood. Here, we examined the role of VOCs in NO3- formation by combining comprehensive field measurements conducted during the China International Import Expo (CIIE) in Shanghai (from 10 October to 22 November 2018) and multiphase chemical modeling. Despite a decline in primary pollutants during the CIIE, NO3- levels increased compared to pre-CIIE and post-CIIE─NO3- concentrations decreased in the daytime (by -10 and -26%) while increasing in the nighttime (by 8 and 30%). Analysis of the observations and backward trajectory indicates that the diurnal variation in NO3- was mainly attributed to local chemistry rather than meteorological conditions. Decreasing VOCs lowered the daytime NO3- production by reducing the hydroxyl radical level, whereas the greater VOCs reduction at night than that in the daytime increased the nitrate radical level, thereby promoting the nocturnal NO3- production. These results reveal the double-edged role of VOCs in NO3- formation, underscoring the need for transferring large VOC-emitting enterprises from the daytime to the nighttime, which should be considered in formulating corresponding policies.
Collapse
Affiliation(s)
- Yingnan Zhang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Liubin Huang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Jiangshan Mu
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Hengqing Shen
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Likun Xue
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| |
Collapse
|
15
|
Baskoy M, Cetin O, Koylan S, Khan Y, Tuncel G, Erguder TH, Unalan HE. MXene-Decorated Nylon Mesh Filters for Improvement of Indoor Air Quality by PM 2.5 Filtration. ACS OMEGA 2023; 8:23465-23476. [PMID: 37426223 PMCID: PMC10323941 DOI: 10.1021/acsomega.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Air pollution is a problem that is increasing day by day and poses a threat on a global scale. Particulate matter (PM) is one of the air pollutants that is the biggest concern regarding air quality. In order to control PM pollution, highly effective air filters are required. This is especially necessary for PM with a diameter of less than 2.5 micrometers (PM2.5), which poses a health risk to humans. In this study, we demonstrate for the first time the use of a two-dimensional titanium carbide (Ti3C2) MXene nanosheets-decorated nylon mesh (MDNM) as a low cost and highly efficient PM2.5 filter. This study develops a proof-of-concept method to capture PM2.5. Thanks to their high specific surface area and active surface-terminating groups, conductive MXene nanosheets have made nylon mesh filters promising candidates for air filtration. The developed filters used electrostatic force to capture PM2.5 and showed high removal efficiency (90.05%) when an ionizer was used and under an applied voltage of 10 V, while a commercial high-efficiency particulate air (HEPA) filter had a removal efficiency of 91.03% measured under identical conditions. The proposed filters, which stand out with their low energy consumption, low pressure drop (∼14 Pa), and cost-effectiveness, have the potential to be a strong competitor to conventional PM filter systems used in many fields.
Collapse
Affiliation(s)
- Melek
Hazal Baskoy
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Oyku Cetin
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Serkan Koylan
- Quantum
Solid State Physics (QSP), KU Leuven, Celestijnenlaan 220D, Leuven 3001, Belgium
| | - Yaqoob Khan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Gurdal Tuncel
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Tuba Hande Erguder
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Husnu Emrah Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| |
Collapse
|
16
|
Wang W, Fang H, Zhang Y, Ding Y, Hua F, Wu T, Yan Y. Characterizing sources and ozone formations of summertime volatile organic compounds observed in a medium-sized city in Yangtze River Delta region. CHEMOSPHERE 2023; 328:138609. [PMID: 37023901 DOI: 10.1016/j.chemosphere.2023.138609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Volatile organic compounds (VOCs) emitted from various sources into atmosphere could cause serious O3 pollution in urban areas. Although characterizations of ambient VOCs have been extensively studied in megacities, they are scarcely investigated in medium/small-sized cities, which could present different pollution characterizations due to the factors like emission sources and populations. Herein, field campaigns were conducted concurrently at six sites in a medium-sized city of Yangtze River Delta region to determine ambient levels, O3 formations and source contributions of summertime VOCs. During the observation period, the total VOC (TVOCs) mixing ratios ranged from 27.10 ± 3.35 to 39.09 ± 10.84 ppb at six sites. The ozone formation potential (OFP) results showed that alkenes, aromatics and oxygenated VOCs (OVOCs) were dominant contributors, together sharing 81.4% of total calculated OFPs. Ethene ranked the largest OFP contributor at all six sites. A high VOC site, KC, was selected as a case to detailed analyze diurnal variations of VOCs and its relationship with O3. Consequently, diurnal patterns varied with VOC groups, and TVOC concentrations were lowest during strong photochemical period (15:00-18:00 p.m.), opposite to the O3 peak. VOCs/NOx ratios and observation-based model (OBM) analysis revealed that O3 formation sensitivity was primarily in transition regime in summertime and that the reduction of VOCs rather than NOX would be more efficient to suppress O3 peak at KC during pollution episode. Additionally, source apportionment conducted with positive matrix factorization (PMF) indicated that industrial emission (29.2%-51.7%) and gasoline exhaust (22.4%-41.1%) were major sources for VOCs at all six sites, and that VOCs from industrial emissions and gasoline exhaust were the key precursors for ozone formation. Our results shed light on the importance of alkenes, aromatics and OVOCs in forming O3 and propose that preferentially reducing VOCs especially those from industrial emission and gasoline exhaust would benefit alleviating O3 pollution.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Ying Zhang
- Wuhu Ecological and Environmental Monitoring Center of Anhui Province, Wuhu, 241005, China
| | - Yueyue Ding
- Wuhu Ecological and Environmental Monitoring Center of Anhui Province, Wuhu, 241005, China
| | - Fei Hua
- Wuhu Institute of Technology, Wuhu, 241006, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| |
Collapse
|
17
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
18
|
Yuan L, Hu P, Hu B, Han J, Ma S, Yang F, Volinsky AA. Metallic and non-metallic components and morphology of iron-based catalytic effects for selective catalytic reduction performance: A systematic review. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Rickly PS, Coggon MM, Aikin KC, Alvarez RJ, Baidar S, Gilman JB, Gkatzelis GI, Harkins C, He J, Lamplugh A, Langford AO, McDonald BC, Peischl J, Robinson MA, Rollins AW, Schwantes RH, Senff CJ, Warneke C, Brown SS. Influence of Wildfire on Urban Ozone: An Observationally Constrained Box Modeling Study at a Site in the Colorado Front Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1257-1267. [PMID: 36607321 DOI: 10.1021/acs.est.2c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.
Collapse
Affiliation(s)
- Pamela S Rickly
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Raul J Alvarez
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Sunil Baidar
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Colin Harkins
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jian He
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Aaron Lamplugh
- Institute of Behavioral Science, University of Colorado, Boulder, Colorado80309, United States
| | - Andrew O Langford
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Michael A Robinson
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Andrew W Rollins
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Christoph J Senff
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
20
|
Xu K, Liu Y, Li F, Li C, Zhang C, Zhang H, Liu X, Li Q, Xiong M. A retrospect of ozone formation mechanisms during the COVID-19 lockdown: The potential role of isoprene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120728. [PMID: 36427823 PMCID: PMC9679402 DOI: 10.1016/j.envpol.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Wuhan took strict measures to prevent the spread of COVID-19 from January 26 to April 7 in 2020. The lockdown reduced the concentrations of atmospheric pollutants, except ozone (O3). To investigate the increase in O3 during the lockdown, trace gas pollutants were collected. The initial concentrations of volatile organic compounds (VOCs) were calculated based on a photochemical ratio method, and the ozone formation potential (OFP) was obtained using the initial and measured VOC concentrations. The O3 formation regime was NOX-limited based on the VOCs/NOX diurnal ratios during the lockdown period. The reduced nitric oxide (NO) concentrations and lower wind speed (WS) could explain the night-time O3 accumulation. The initial total VOCs (TVOCs) during the lockdown were 47.6 ± 2.9 ppbv, and alkenes contributed 48.1%. The photochemical loss amounts of alkenes were an order of magnitude higher than those of alkenes in the same period in 2019 and increased from 16.6 to 28.0 ppbv in the daytime. The higher initial alkene concentrations sustained higher OFP during the lockdown, reaching between 252.4 and 504.4 ppbv. The initial isoprene contributed approximately 35.0-55.0% to the total OFP and had a positive correlation with the increasing O3 concentrations. Approximately 75.5% of the temperatures were concentrated in the range of 5 and 20 °C, which were higher than those in 2019. In addition to stronger solar radiation, the higher temperatures induced higher isoprene emission rates, partially accounting for the higher isoprene concentrations. Lower isoprene-emitting trees should be considered for future urban vegetation to control O3 episodes.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Feng Li
- Jining Ecological Environment Monitoring Center, Jining, 272000, China
| | - Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Qijie Li
- Wuhan Municipality Environmental Monitoring Center, Wuhan, 430015, China
| | - Min Xiong
- Chongqing University, College of Environment and Ecology, Chongqing, 400030, China
| |
Collapse
|
21
|
Wang R, Bei N, Hu B, Wu J, Liu S, Li X, Jiang Q, Tie X, Li G. The relationship between the intensified heat waves and deteriorated summertime ozone pollution in the Beijing-Tianjin-Hebei region, China, during 2013-2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120256. [PMID: 36152720 DOI: 10.1016/j.envpol.2022.120256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Summertime ozone (O3) pollution has frequently occurred in the Beijing-Tianjin-Hebei (BTH) region, China, since 2013, resulting in detrimental impacts on human health and ecosystems. The contribution of weather shifts to O3 concentration variability owing to climate change remains elusive. By combining regional air chemistry model simulations with near-surface observations, we found that anthropogenic emission changes contributed to approximately 23% of the increase in maximum daily 8-h average O3 concentrations in the BTH region in June-July-August (JJA) 2017 (compared with that in 2013). With respect to the weather shift influence, the frequencies, durations, and magnitudes of O3 exceedance were consistent with those of the heat wave events in the BTH region during JJA in 2013-2017. Intensified heat waves are a significant driver for worsening O3 pollution. In particular, the prolonged duration of heat waves creates consecutive adverse weather conditions that cause O3 accumulation and severe O3 pollution. Our results suggest that the variability in extreme summer heat is closely related to the occurrence of high O3 concentrations, which is a significant driver of deteriorating O3 pollution.
Collapse
Affiliation(s)
- Ruonan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naifang Bei
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiarui Wu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Xia Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qian Jiang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Xuexi Tie
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
22
|
Chitranshi M, Chen DR, Kosel P, Cahay M, Schulz M. Flexible and Lightweight Carbon Nanotube Composite Filter for Particulate Matter Air Filtration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4094. [PMID: 36432378 PMCID: PMC9695831 DOI: 10.3390/nano12224094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Particulate Matter (PM) has become an important source of air pollution. We proposed a flexible and lightweight carbon nanotube (CNT) composite air filter for PM removal. The developed CNT filtering layers were fabricated using a floating catalyst chemical vapor deposition (FC-CVD) synthesis process and then combined with conventional filter fabrics to make a composite air filter. Filtration performance for CNT filtering layer alone and composited with other conventional filter fabrics for particles size 0.3 μm to 2.5 μm was investigated in this study. The CNT composite filter is highly hydrophobic, making it suitable for humid environments. The CNT composite filter with two layers of tissue CNT performed best and achieved a filtration efficiency over 90% with a modest pressure drop of ~290 Pa for a particle size of 2.5 μm. This CNT composite filter was tested over multiple cycles to ensure its reusability. The developed filter is very light weight and flexible and can be incorporated into textiles for wearable applications or used as a room filter.
Collapse
Affiliation(s)
- Megha Chitranshi
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel Rui Chen
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter Kosel
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Marc Cahay
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mark Schulz
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
23
|
Zhang J, Chen P, Zu L, Yang J, Sun Y, Li H, Chen B, Wang ZL. Self-Powered High-Voltage Recharging System for Removing Noxious Tobacco Smoke by Biomimetic Hairy-Contact Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202835. [PMID: 35871577 DOI: 10.1002/smll.202202835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The most common size range of particulate matter (PM) in tobacco smoke is 1.0 to 5.0 microns; however, a high number of the most harmful PM is as small as 0.5 micron that is a serious threat to human health, and it is difficult to remove. There is an urgent need to develop a new purification technology for high-efficiency removing tobacco smoke with easily construction and low cost. Here, a method of self-powered high-voltage recharging system is demonstrated by designing biomimetic hairy-contact triboelectric nanogenerator (BHC-TENG) for long-lasting adsorption with a wide range from PM 0.5 to PM 10. The open-circuit voltage of BHC-TENGs reaches 8.42 KV, which can continuously charge injection to the melt-blown fabric, whose surface potential is able to maintain nearly 260 V level and create a uniform electrostatic adsorption field on the surface. This high-voltage recharging system reduces the concentration of PMs to World Health Organization (WHO) standards, maintaining the purification efficiency of PM 0.5- PM 10 persistently over 90%.
Collapse
Affiliation(s)
- Jianjun Zhang
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Pengfei Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lulu Zu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Yang
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yanshuo Sun
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Hao Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Baodong Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Applied Nanotechnology, Jiaxing, Zhejiang, 314031, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
24
|
How Can Ozone and Relative Humidity Affect Artists’ Alkyd Paints? A FT-IR and Py-GC/MS Systematic Study. Polymers (Basel) 2022; 14:polym14091831. [PMID: 35566997 PMCID: PMC9101010 DOI: 10.3390/polym14091831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Knowledge of the chemical–physical reactions that determine the main degradation behaviour of artists’ alkyd paints represents one of the main problems within the museum exhibitions. The collection and interpretation of these data on degradation phenomena, especially after ozone exposure at different relative humidity values, can be useful for their conservation needs. Therefore, a systematic investigation of these materials may help achieve this goal. Firstly, surface-level identification of the main functional groups of ad hoc created and aged alkyd paints was performed using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Subsequently, these paints were investigated by pyrolysis–gas chromatography and mass spectrometry (Py–GC/MS), allowing for precise bulk identification of the organic compounds before and after accelerated ageing. A first successful attempt to provide quantitative Py–GC/MS data on alkyd-based paints is here presented and discussed. Comparing the results, it was possible to obtain new insights into the degradation behaviour of alkyd paints when exposed to ozone, allowing us to devise specific preventive and conservation strategies for these artistic materials.
Collapse
|
25
|
Meidan D, Brown SS, Sinha V, Rudich Y. Nocturnal Atmospheric Oxidative Processes in the Indo-Gangetic Plain and Their Variation During the COVID-19 Lockdowns. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097472. [PMID: 35601504 PMCID: PMC9111199 DOI: 10.1029/2021gl097472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigates selected secondary atmospheric responses to the widely reported emission change attributed to COVID-19 lockdowns in the highly polluted Indo-Gangetic Plain (IGP) using ground-based measurements of trace gases and particulate matter. We used a chemical box-model to show that production of nighttime oxidant, NO3, was affected mainly by emission decrease (average nighttime production rates 1.2, 0.8 and 1.5 ppbv hr-1 before, during and relaxation of lockdown restrictions, respectively), while NO3 sinks were sensitive to both emission reduction and seasonal variations. We have also shown that the maximum potential mixing ratio of nitryl chloride, a photolytic chlorine radical source which has not been previously considered in the IGP, is as high as 5.5 ppbv at this inland site, resulting from strong nitrate radical production and a potentially large particulate chloride mass. This analysis suggests that air quality measurement campaigns and modeling explicitly consider heterogeneous nitrogen oxide and halogen chemistry.
Collapse
Affiliation(s)
- D. Meidan
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - S. S. Brown
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
- Department of ChemistryUniversity of ColoradoBoulderCOUSA
| | - V. Sinha
- Department of Earth and Environmental SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Y. Rudich
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
26
|
Li C, Liu Y, Cheng B, Zhang Y, Liu X, Qu Y, An J, Kong L, Zhang Y, Zhang C, Tan Q, Feng M. A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O 3 formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150247. [PMID: 34562762 DOI: 10.1016/j.scitotenv.2021.150247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Observations of volatile organic compounds (VOCs) are a prerequisite for evaluating the effectiveness of government efforts targeting VOC pollution. Here, based on the one-year online VOC measurement in 2018 in Beijing, systematic analyses and model simulation were conducted to illuminate VOC characteristics, emission sources, regional hotspots and behaviours in response to O3 formation. The observed mean VOC concentration in 2018 was 29.12 ± 17.64 ppbv declined distinctly compared to that in 2015 and 2016. Vehicle exhaust (39.95%), natural gas/liquefied petroleum gas (22.04%) and industrial sources (20.64%) were the main contributors to VOCs in Beijing. Regional transport, mainly from the south-south-east (SSE) and south-south-west (SSW), quantitatively contributed 36.65%-55.06% to VOCs based on our developed method. O3 sensitivity tended to be in the transition regime in summer identified by ground-based and satellite observations. Strong solar radiation along with high temperature and low humidity aggravated O3 pollution that was further intensified by regional transport from southern polluted regions. The model simulation determined that turning off CH3CHO related reactions brought about the most predominantly short-term and long-run O3 reduction, indicating that control policies in VOC species should be tailored, instead of one-size-fits-all. Overall, region-collaborated and active VOC-species-focused strategies on VOC controls are imperative.
Collapse
Affiliation(s)
- Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bingfen Cheng
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuepeng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Liuwei Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| |
Collapse
|
27
|
Ma J, Chen Z, Wang J, Wang Y, Li L. Diffusion simulation, health risks, ozone and secondary organic aerosol formation potential of gaseous pollutants from rural comprehensive waste treatment plant. CHEMOSPHERE 2022; 286:131857. [PMID: 34392199 DOI: 10.1016/j.chemosphere.2021.131857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive waste treatment plants (CWTPs) are significant sources of gaseous pollutants such as odors, volatile organic compounds (VOCs) and nitrogen oxides (NOx), polluting the environment and endangering human health. This study conducted on-site investigations on gaseous pollutants emissions from different areas of a CWTP. A total of 10 pollutants were identified of which ammonia (11.32 mg/m³ in average) was the main odorous substance, and benzene (19.51 mg/m³ in average) and toluene (42.07 mg/m³ in average) were the main VOCs. The feeding workshop (FW) was considered the main source of gaseous pollutants. The Gaussian plume model demonstrated that the pollution became more serious after spreading in the southeast downwind direction. Occupational exposure risks of on-site workers were mainly attributed to hydrogen sulfide, ammonia, benzene, and toluene, as their hazard index (HI) and lifetime cancer risk (CR) exceeded the recommended occupational safety limits. The gaseous pollutants diffused from CWTP may still pose a potential health risk to residents within a range of up to 7.5 km. The emulation and quantification of ozone formation potential by methods of Propyl-Equiv and MIR demonstrated that the contribution rate of toluene presented in each stage of CWTP exceed 80 %. Toluene was also the largest contributor to secondary organic aerosol with the contribution rate reached 56.34-85.14 %, followed by benzene (14.72-38.52 %). This research provides a basis for the reduction and control of gaseous pollutants in the treatment and disposal of rural domestic waste.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
28
|
Meng Y, Song J, Zeng L, Zhang Y, Zhao Y, Liu X, Guo H, Zhong L, Ou Y, Zhou Y, Zhang T, Yue D, Lai S. Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation. J Environ Sci (China) 2022; 111:104-117. [PMID: 34949340 DOI: 10.1016/j.jes.2021.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/14/2023]
Abstract
We present the continuously measurements of volatile organic compounds (VOCs) at a receptor site (Wan Qing Sha, WQS) in the Pearl River Delta (PRD) region from September to November of 2017. The average mixing ratios of total VOCs (TVOCs) was 36.3 ± 27.9 ppbv with the dominant contribution from alkanes (55.5%), followed by aromatics (33.3%). The diurnal variation of TVOCs showed a strong photochemical consumption during daytime, resulting in the formation of ozone (O3). Five VOC sources were resolved by the positive matrix factorization (PMF) model, including solvent usage (28.6%), liquid petroleum gas (LPG) usage (24.4%), vehicle exhaust (21.0%), industrial emissions (13.2%) and gasoline evaporation (12.9%). The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs. Low ratios of TVOCs/NOx (1.53 ± 0.88) suggested that the O3 formation regime at WQS site was VOC-limited, which also confirmed by a photochemical box model with the master chemical mechanism (PBM-MCM). Furthermore, the observation on high-O3 episode days revealed that frequent O3 outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions. This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective.
Collapse
Affiliation(s)
- Yao Meng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junwei Song
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Lewei Zeng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhao
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Xufei Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liuju Zhong
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Yubo Ou
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhou
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Tao Zhang
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Liu C, Shi K. A review on methodology in O 3-NOx-VOC sensitivity study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118249. [PMID: 34600066 DOI: 10.1016/j.envpol.2021.118249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Gaining insight into the response of surface ozone (O3) formation to its precursors plays an important role in the policy-making of O3 pollution control. However, the real atmosphere is an open and dissipative system, and its complexity poses a great challenge to the study of nonlinear relations between O3 and its precursors. At present, model-based methods based on reductionism try to restore the real atmospheric photochemical system, by coupling meteorological model and chemical transport model in temporal and spatial resolution completely. Nevertheless, large inconsistencies between predictions and true values still exist, due to the great uncertainty originated from emission inventory, photochemical reaction mechanism and meteorological factors. Recently, based on field observations, some nonlinear methods have successfully revealed the complex emergent properties (long-term persistence, multi-fractal, etc) in coupling correlation between O3 and its precursors at different time scales. The emergent properties are closely associated with the intrinsic dynamics of atmospheric photochemical system. Taking them into account when building O3 prediction model, is helpful to reduce the uncertainty in the results. Nonlinear methods (fractal, chaos, etc) based on holism can give new insights into the nonlinear relations between O3 and its precursors. Changes of thinking models in methodology are expected to improve the precision of forecasting O3 concentration. This paper has reviewed the advances of different methods for studying the sensitivity of O3 formation to its precursors during the past few decades. This review highlights that it is necessary to incorporate the emergent properties obtained by nonlinear methods into the modern models, for assessing O3 formation under combined air pollution environment more accurately. Moreover, the scaling property of coupling correlation detected in the real observations of O3 and its precursors could be used to test and improve the simulation performance of modern models.
Collapse
Affiliation(s)
- Chunqiong Liu
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong, Sichuan, China; College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Kai Shi
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong, Sichuan, China; College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
30
|
Shen H, Sun Z, Chen Y, Russell AG, Hu Y, Odman MT, Qian Y, Archibald AT, Tao S. Novel Method for Ozone Isopleth Construction and Diagnosis for the Ozone Control Strategy of Chinese Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15625-15636. [PMID: 34787397 DOI: 10.1021/acs.est.1c01567] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ozone (O3) isopleths describe the nonlinear responses of O3 concentrations to changes in nitrogen oxides (NOX) and volatile organic compounds (VOCs) and thus are pivotal to the determination of O3 control requirements. In this study, we innovatively use the Community Multiscale Air Quality model with the high-order decoupled direct method (CMAQ-HDDM) to simulate O3 pollution of China in 2017 and derive O3 isopleths for individual cities. Our simulation covering the entire China Mainland suggests severe O3 pollution as 97% of the residents experienced at least 1 day, in 2017, in excess of Chinese Level-II Ambient Air Quality Standards for O3 as 160 μg·m-3 (81.5 ppbV equally). The O3 responses to emissions of precursors vary widely across individual cities. Densely populated metropolitan areas such as Jing-Jin-Ji, Yangtze River Delta, and Pearl River Delta are following NOX-saturated regimes, where a small amount of NOX reduction increases O3. Ambient O3 pollution in the eastern region generally is limited by VOCs, while in the west by NOX. The city-specific O3 isopleths generated in this study are instrumental in forming hybrid and differentiated strategies for O3 abatement in China.
Collapse
Affiliation(s)
- Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhe Sun
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Yilin Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mehmet Talât Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yu Qian
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexander T Archibald
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Lien J, Hung HM. The contribution of transport and chemical processes on coastal ozone and emission control strategies to reduce ozone. Heliyon 2021; 7:e08210. [PMID: 34729439 PMCID: PMC8545683 DOI: 10.1016/j.heliyon.2021.e08210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
The interaction between transport and chemistry is pivotal for local ozone (O3) concentration, especially for a coastal region where the upstream sources might change diurnally. In the current emission control policy, most pollutants, such as particulate matter, SO2, NOx, and CO, decrease while the annual O3 trend might increase due to the complex feedbacks of precursors. In this study, we investigate the influence of transport upon the wintertime O3 diurnal trend over ZuoYing Kaohsiung, an urban coastal site in southern Taiwan, by constructing a two-dimensional numerical model coupling both physical mechanisms and core chemical processes and provide a feasible emission control strategy. The transport process (i.e., import vs. export) for the daytime is determined using the Leighton Ratio (Φ), the ratio of O3-production over O3-loss rate, under the pseudo-steady-state condition. Φ shows a deviation of -9 to +13% from the photo-stationary state, and experiences a transition from import effect before 10:15 to weakening import or net export effect afterward associated with a net O3 production as sea breeze starts developing. The significantly higher Φ derived from observation than from simulation by a factor of 1.35 might be resulted from the over-reported NO2 due to NOy contribution on the NO2 measurement, and the influence of aerosol and cloud possibly reducing ∼30% on applied NO2 photolysis rate constant, associated with aerosol optical depth of 0.75 ± 0.15 and single scattering albedo of 0.85 ± 0.15. In this studied NOx-saturated regime, the addition of sea breeze convergence over the land enhances the maximal O3 by ∼10%, mainly due to the O3 accumulation (∼88%). Furthermore, the ozone isopleth analysis as a function of non-methane hydrocarbons and NOx emissions provides an achievable strategy to decrease both maximum daily ozone and the increment of ozone from morning to maximum by reducing hydrocarbons and NOx emissions, which can also eliminate the additional nitrate contribution on the aerosols.
Collapse
Affiliation(s)
- Justin Lien
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hui-Ming Hung
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
32
|
Zhu J, Xu C. Intraspecific differences in plant functional traits are related to urban atmospheric particulate matter. BMC PLANT BIOLOGY 2021; 21:430. [PMID: 34551719 PMCID: PMC8456647 DOI: 10.1186/s12870-021-03207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Functional trait-based ecological research has been instrumental in advancing our understanding of environmental changes. It is still, however, unclear how the functional traits of urban plants respond to atmospheric particulate matter, and which trade-off strategies are shown. In order to explore the variation of plant functional traits with the gradient of urban atmospheric particulate matter, we divided atmospheric particulate matter into three levels according to road distance, and measured the variation of six essential leaf functional traits and their trade-off strategies. RESULTS Here, we show that the functional traits of plants can be used as predictors of plant response to urban atmospheric particulate matter. Within the study, leaf thickness, leaf dry matter content, leaf tissue density, stomatal density were positively correlated with atmospheric particulate matter. On the contrary, chlorophyll content index and specific leaf area were negatively correlated with atmospheric particulate matter. Plants can improve the efficiency of gas exchange by optimizing the spatial distribution of leaf stomata. Under the atmospheric particulate matter environment, urban plants show a trade-off relationship of economics spectrum traits at the intraspecific level. CONCLUSION Under the influence of urban atmospheric particulate matter, urban plant shows a "slow investment-return" type in the leaf economics spectrum at the intraspecific level, with lower specific leaf area, lower chlorophyll content index, ticker leaves, higher leaf dry matter content, higher leaf tissue density and higher stomatal density. This finding provides a new perspective for understanding the resource trades-off strategy of plants adapting to atmospheric particulate matter.
Collapse
Affiliation(s)
- Jiyou Zhu
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation ofMinistry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chengyang Xu
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation ofMinistry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
33
|
Robinson MA, Decker ZCJ, Barsanti KC, Coggon MM, Flocke FM, Franchin A, Fredrickson CD, Gilman JB, Gkatzelis GI, Holmes CD, Lamplugh A, Lavi A, Middlebrook AM, Montzka DM, Palm BB, Peischl J, Pierce B, Schwantes RH, Sekimoto K, Selimovic V, Tyndall GS, Thornton JA, Van Rooy P, Warneke C, Weinheimer AJ, Brown SS. Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10280-10290. [PMID: 34255503 DOI: 10.1021/acs.est.1c01963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).
Collapse
Affiliation(s)
- Michael A Robinson
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Zachary C J Decker
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kelley C Barsanti
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Frank M Flocke
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Alessandro Franchin
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carley D Fredrickson
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Georgios I Gkatzelis
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Holmes
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Aaron Lamplugh
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Avi Lavi
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Ann M Middlebrook
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Denise M Montzka
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Brett B Palm
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jeff Peischl
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brad Pierce
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Rebecca H Schwantes
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Vanessa Selimovic
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Geoffrey S Tyndall
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Paul Van Rooy
- Department of Chemical and Environmental Engineering and College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, California 92507, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Andrew J Weinheimer
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
Misra P, Takigawa M, Khatri P, Dhaka SK, Dimri AP, Yamaji K, Kajino M, Takeuchi W, Imasu R, Nitta K, Patra PK, Hayashida S. Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Sci Rep 2021; 11:9800. [PMID: 33963208 PMCID: PMC8105320 DOI: 10.1038/s41598-021-87673-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
COVID-19 related restrictions lowered particulate matter and trace gas concentrations across cities around the world, providing a natural opportunity to study effects of anthropogenic activities on emissions of air pollutants. In this paper, the impact of sudden suspension of human activities on air pollution was analyzed by studying the change in satellite retrieved NO2 concentrations and top-down NOx emission over the urban and rural areas around Delhi. NO2 was chosen for being the most indicative of emission intensity due to its short lifetime of the order of a few hours in the planetary boundary layer. We present a robust temporal comparison of Ozone Monitoring Instrument (OMI) retrieved NO2 column density during the lockdown with the counterfactual baseline concentrations, extrapolated from the long-term trend and seasonal cycle components of NO2 using observations during 2015 to 2019. NO2 concentration in the urban area of Delhi experienced an anomalous relative change ranging from 60.0% decline during the Phase 1 of lockdown (March 25-April 13, 2020) to 3.4% during the post-lockdown Phase 5. In contrast, we find no substantial reduction in NO2 concentrations over the rural areas. To segregate the impact of the lockdown from the meteorology, weekly top-down NOx emissions were estimated from high-resolution TROPOspheric Monitoring Instrument (TROPOMI) retrieved NO2 by accounting for horizontal advection derived from the steady state continuity equation. NOx emissions from urban Delhi and power plants exhibited a mean decline of 72.2% and 53.4% respectively in Phase 1 compared to the pre-lockdown business-as-usual phase. Emission estimates over urban areas and power-plants showed a good correlation with activity reports, suggesting the applicability of this approach for studying emission changes. A higher anomaly in emission estimates suggests that comparison of only concentration change, without accounting for the dynamical and photochemical conditions, may mislead evaluation of lockdown impact. Our results shall also have a broader impact for optimizing bottom-up emission inventories.
Collapse
Affiliation(s)
- Prakhar Misra
- Research Institute for Humanity and Nature, Kyoto, Japan.
| | - Masayuki Takigawa
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Pradeep Khatri
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Surendra K Dhaka
- Radio and Atmospheric Physics Lab, Rajdhani College, University of Delhi, New Delhi, India
| | - A P Dimri
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
| | - Wataru Takeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Ryoichi Imasu
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Kaho Nitta
- Faculty of Science, Nara Women's University, Nara, Japan
| | - Prabir K Patra
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Sachiko Hayashida
- Research Institute for Humanity and Nature, Kyoto, Japan
- Faculty of Science, Nara Women's University, Nara, Japan
| |
Collapse
|
35
|
Go T, Kim J, Lee SJ. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124116. [PMID: 33049638 DOI: 10.1016/j.jhazmat.2020.124116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants are considered as a possible modality to reduce particulate matter (PM) particles from ambient air in an ecofriendly manner. A new precise monitoring technique that can explore interactions between individual PM particles and a leaf surface is necessary to understand the underlying mechanisms of PM removal of plant leaves. In this study, a digital in-line holographic microscopy (DIHM) was employed to experimentally investigate the settling motions of PM particles over the leaf surface. The in-plane positions and sizes of opaque PMs with irregular shapes were obtained from the projection images of numerically reconstructed holographic images. The depth positions of PMs were determined by using proper selection of an autofocusing criterion with automatic segmentation method. The edge of a hairy Perilla frutescens leaf was detected by adopting several digital imaging processing techniques. The DIHM technique was applied in this study to accurately detect 3D settling trajectories of PMs with velocity information of PMs in the midair and near leaf surface, simultaneously.
Collapse
Affiliation(s)
- Taesik Go
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
36
|
Kang YH, You S, Bae M, Kim E, Son K, Bae C, Kim Y, Kim BU, Kim HC, Kim S. The impacts of COVID-19, meteorology, and emission control policies on PM 2.5 drops in Northeast Asia. Sci Rep 2020; 10:22112. [PMID: 33335171 PMCID: PMC7747715 DOI: 10.1038/s41598-020-79088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
In January 2020, anthropogenic emissions in Northeast Asia reduced due to the COVID-19 outbreak. When outdoor activities of the public were limited, PM2.5 concentrations in China and South Korea between February and March 2020 reduced by − 16.8 μg/m3 and − 9.9 μg/m3 respectively, compared with the average over the previous three years. This study uses air quality modeling and observations over the past four years to separate the influence of reductions in anthropogenic emissions from meteorological changes and emission control policies on this PM2.5 concentration change. Here, we show that the impacts of anthropogenic pollution reduction on PM2.5 were found to be approximately − 16% in China and − 21% in South Korea, while those of meteorology and emission policies were − 7% and − 8% in China, and − 5% and − 4% in South Korea, respectively. These results show that the influence on PM2.5 concentration differs across time and region and according to meteorological conditions and emission control policies. Finally, the influence of reductions in anthropogenic emissions was greater than that of meteorological conditions and emission policies during COVID-19 period.
Collapse
Affiliation(s)
- Yoon-Hee Kang
- Environmental Research Institute, Ajou University, Suwon, Republic of Korea
| | - Seunghee You
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Minah Bae
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Eunhye Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Kyuwon Son
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Changhan Bae
- Emission Inventory Management Team, National Air Emission Inventory and Research Center, Ministry of Environment, Cheongju, Republic of Korea
| | - Yoonha Kim
- Environmental Research Institute, Ajou University, Suwon, Republic of Korea
| | - Byeong-Uk Kim
- Georgia Environmental Protection Division, Atlanta, GA, 30354, USA
| | - Hyun Cheol Kim
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, 20740, USA.,Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, 20740, USA
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
37
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
38
|
Xiong Y, Zhou J, Xing Z, Du K. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential. ENVIRONMENTAL RESEARCH 2020; 191:110217. [PMID: 32971083 DOI: 10.1016/j.envres.2020.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) play a vital role in the formation of photochemical smog and haze in large urban environments. Previous source apportionment studies have focused on the contribution of different sources to VOC concentration with a view to pinpointing the major culprits for effective emission mitigation. However, different VOC sources may have different ozone (O3) and secondary organic aerosol (SOA) formation potentials. From a control perspective, it would be more rational to consider the role of individual VOC sources in secondary pollution; therefore, here, we propose a tiered source identification method that considers the formation potentials of O3 and SOA, which we applied in Calgary, Alberta, a site under the influence of multiple competing VOC sources. The pollution characteristics, secondary pollutant formation potential, and geographical origin of VOC sources were investigated over a five-year period. Seven major sources were identified using the positive matrix factorization (PMF) model, among which vehicle exhausts and solid fuel combustion were the dominant VOC sources responsible for O3 (60%) and SOA (63%) formation. Combustion of both liquid fuel (gasoline and diesel) and solid fuel (wood and coal) has exceeded the contribution of oil and gas production and become the top contributor to O3 and aerosol pollution in Calgary. This finding is consistent with the significant reduction (32.2-99.8%) in oil and gas production in Calgary over the period of 2013-2017. The source apportionment results show that the primary VOC source has shifted from conventional oil and gas extraction to a mixture of vehicle exhausts and oil and gas extraction, indicating the effectiveness of emission control measures taken in the energy sectors. Moreover, regionally transported VOCs from combustion sources in southeastern British Columbia have greatly increased the VOC level and secondary pollutant formation in Calgary. To effectively alleviate secondary pollution problems, the performance of joint pollution control measures has been suggested by the governments of both Alberta and British Columbia. These findings reveal that the tiered source identification strategy combining the traditional receptor model with socioeconomic factors, emission inventory, and source region analysis is a robust and promising tool for the interpretation of source apportionment results and optimization of secondary pollution control.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhenyu Xing
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
39
|
Jia H, Huo J, Fu Q, Duan Y, Lin Y, Jin X, Hu X, Cheng J. Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115612. [PMID: 33254633 PMCID: PMC7480229 DOI: 10.1016/j.envpol.2020.115612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.
Collapse
Affiliation(s)
- Haohao Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Huo
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yanfen Lin
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Xiaodan Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Fu S, Guo M, Luo J, Han D, Chen X, Jia H, Jin X, Liao H, Wang X, Fan L, Cheng J. Improving VOCs control strategies based on source characteristics and chemical reactivity in a typical coastal city of South China through measurement and emission inventory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140825. [PMID: 32755775 PMCID: PMC7354770 DOI: 10.1016/j.scitotenv.2020.140825] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
In China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018. For source apportionments (SAs) reliability, comparisons of source structures derived from positive matrix factorization (PMF) and EI were made mainly in terms of reaction losses, uncertainties and specific ratios. Finally, for the source-end control, a comprehensive reactivity control index (RCI) was established by combing SAs with reactive speciation profiles. Ambient measurements showed that the average concentration of VOCs was 26.38 ppbv, dominated by alkanes (36.7%) and oxygenated volatile organic compounds (OVOCs) (29.4%). VOC reactivity was estimated using ozone formation potential (52.35 ppbv) and propylene-equivalent concentration (4.22 ppbv). EI results displayed that the entire VOC, OFP, and propylene-equivalent emissions were 40.98 Gg, 67.98 Gg, and 105.93 Gg, respectively. Comparisons of source structures indicated that VOC SAs agreed within ±100% between two perspectives. Both PMF and EI results showed that petrochemical industry (24.0% and 33.0%), food processing and associated combustion (19.1% and 29.2%) were the significant contributors of anthropogenic VOCs, followed by other industrial processes (22.2% and 13.3%), transportation (18.9% and 12.0%), and solvent utilization (9.1% and10.5%). Aimed at VOCs abatement according to RCI: for terminal control, fifteen ambient highly reactive species (predominantly alkenes and alkanes) were targeted; for source control, the predominant anthropogenic sources (food industry, solvent usage, petrochemical industry and transportation) and their emitted highly reactive species were determined. Particularly, with low levels of ambient VOC and primary emissions, in this VOC and NOx double-controlled regime, crude disorganized emission from food industry contributed a high RCI.
Collapse
Affiliation(s)
- Shuang Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meixiu Guo
- Beihai Ecology and Environment Agency, Beihai, Guangxi 536000, China
| | - Jinmin Luo
- Beihai Ecology and Environment Agency, Beihai, Guangxi 536000, China
| | - Deming Han
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojia Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haohao Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodan Jin
- Environmental Protection Research Institute of Guangxi, Nanning, Guangxi 530022, China
| | - Haoxiang Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linping Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Yang Y, Wang Y, Yao D, Zhao S, Yang S, Ji D, Sun J, Wang Y, Liu Z, Hu B, Zhang R, Wang Y. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114657. [PMID: 33618483 DOI: 10.1016/j.envpol.2020.114657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 04/22/2020] [Indexed: 05/13/2023]
Abstract
To what extent anthropogenic emissions could influence volatile organic compound (VOCs) concentrations and related atmospheric reactivity is still poorly understood. China's 70th National Day holidays, during which anthropogenic emissions were significantly reduced to ensure good air quality on Anniversary Day, provides a unique opportunity to investigate these processes. Atmospheric oxidation capacity (AOC), OH reactivity, secondary transformation, O3 formation and VOCs-PM2.5 sensitivity are evaluated based on parameterization methods and simultaneous measurements of VOCs, O3, NOx, CO, SO2, PM2.5, JO1D, JNO2, JNO3 carried out at a suburban site between Beijing and Tianjin before, during, and after the National Day holiday 2019. During the National Day holidays, the AOC, OH reactivity, O3 formation potential (OFP) and secondary organic aerosol formation potential (SOAP) were 1.6 × 107 molecules cm-3 s-1, 41.8 s-1, 299.2 μg cm-3 and 1471.8 μg cm-3, respectively, which were 42%, 29%, 47% and 42% lower than pre-National Day values and -12%, 42%, 36% and 42% lower than post-National Day values, respectively. Reactions involving OH radicals dominated the AOC during the day, but OH radicals and O3 reactions at night. Alkanes (the degree of unsaturation = 0, (D, Equation (1)) accounted for the largest contributions to the total VOCs concentration, oxygenated VOCs (OVOCs; D ≤ 1) to OH reactivity and OFP, and aromatics (D = 4) to the SOAP. O3 production was identified as VOCs-limited by VOCs (ppbC)/NOx (ppbv) ratios during the sampling campaign, with greater VOCs limitation during post- National Day and more-aged air masses during the National Day. The VOCs-sensitivity coefficient (VOCs-S) suggested that VOCs were more sensitive to PM2.5 in low-pollution domains and during the National Day holiday. This study emphasizes the importance of not only the abundance, reactivity, and secondary transformation of VOCs but also the effects of VOCs on PM2.5 for the development of effective control strategies to minimize O3 and PM2.5 pollution.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, P.O.Box 64, 00014, University of Helsinki, Helsinki, Finland.
| | - Dan Yao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of the Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuman Zhao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuanghong Yang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Dongsheng Ji
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jie Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yinghong Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zirui Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Hu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Renjian Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of the Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
42
|
Xiong Y, Du K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137698. [PMID: 32169644 DOI: 10.1016/j.scitotenv.2020.137698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/26/2023]
Abstract
The common regulatory approach for managing ground-level ozone (O3) formation is based upon reducing the emission of total VOC in VOC limited regions, and the emission of NOx in NOx limited regions. However, the characteristic VOC species emitted from different sources are of different ozone formation potentials (OFP). Without an in-depth understanding of the relative OFP contributions from specific sources, the effectiveness of the existing approach for controlling ground-level O3 at the regional scale is limited. This study collected and analyzed five years (2012-2016) of monitoring data for 56 most photochemically reactive VOC species at Port Moody, an industrial city in Metro Vancouver, Canada that has experienced elevated O3 levels in its ambience. Source-specific contributions to OFP were quantified for major VOC emitters to deliberate the underlying causes of elevated O3 recently observed in this populated region. Six sources were identified using the positive matrix factorization (PMF) model, consisting of fuel production and combustion, fuel evaporation, vehicle exhaust, industrial coatings/solvents, petrochemical source, and other industrial emission. Although the top three contributors to total VOCs are fuel production and combustion (34.5%), fuel evaporation (21.4%), and vehicle exhaust (20.6%), the top three contributors to OFP are fuel production and combustion (27.1%), vehicle exhaust (23.7%), and industrial coatings/solvents (17.2%). Additionally, potential source contribution function (PSCF) analysis was conducted to generate the geographical distribution of VOC and OFP sources in different seasons. The results revealed that, in the Metro Vancouver area, the OFP hotspots have been significantly different from the VOC emission hotspots. In general, regional sources, especially those located in the northeastern direction of Metro Vancouver, have greater influence on the VOCs levels. However, OFP has been predominantly affected by transportation and industrial sources at the local scale. Therefore, to formulate effective strategies for reducing ground-level O3, the seasonal and spatial variations of major OFP sources should be assessed by the regulatory authorities.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
43
|
Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lockdowns due to the COVID-19 pandemic have been reported to reduce ambient air pollution in many cities globally. This study aims to examine whether air pollution dropped in Memphis, a typical U.S. metropolitan city and transportation hub, during the lockdown from 25 March to 4 May, 2020. Daily air pollution data measured at five representative monitoring stations in the Memphis Metropolitan Area were downloaded from the U.S. Environmental Protection Agency’s Air Quality System. The mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone during the lockdown were compared with the baseline concentrations measured during the same periods in 2017–2019 using linear regression models. The average vehicle miles traveled (VMT) reduced by 57% in this region during the lockdown compared to that during 1–24 March, 2020. The mean (± standard deviation) concentrations of PM2.5, NO2, and ozone were 7.5 ± 2.6 μg/m3, 16.5 ± 9.4 ppb, and 44.5 ± 8.4 ppb, respectively, during the lockdown. They did not statistically differ from the baseline concentrations, nor were they lower than the mean concentrations in the prior month (25 February–24 March, 2020), after accounting for meteorological conditions. The lack of effect could be explained by the small contribution of traffic emissions to air pollution. The results suggest that the “stay-at-home” order had an insignificant impact on reducing air pollution in Memphis.
Collapse
|
44
|
Kalemos A. The nature of the chemical bond in NO3, neutral and anion. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Liu Y, Song M, Liu X, Zhang Y, Hui L, Kong L, Zhang Y, Zhang C, Qu Y, An J, Ma D, Tan Q, Feng M. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113599. [PMID: 31796324 DOI: 10.1016/j.envpol.2019.113599] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Concentrations of 99 volatile organic compounds (VOCs) were continuously measured online at an urban site in Beijing, China, in January, April, July, and October 2016. Characterization and sources of VOCs and their related changes during days with heavy ozone (O3) pollution were analysed. The total observed concentration of VOCs (TVOCs) was 44.0 ± 28.9 ppbv. The VOC pollution level has decreased in Beijing but remains higher than in other Chinese cities. Alkanes comprised the highest proportion among seven major sampled VOC groups. The concentrations and sources of ambient VOCs showed obvious temporal variations. Six emission sources were identified by the positive matrix factorization (PMF), including biomass burning, coal combustion, gasoline vehicles, diesel vehicles, solvent usage, and biogenic + secondary emissions. The combustion source was the key control factor for VOC reduction in Beijing. From the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model, Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shandong, and Henan were identified as major potential source regions of ambient VOCs. O3 formation was sensitive to VOCs in Beijing according to the VOC/NOx ratio (ppbC/ppbv, 8:1 threshold). High- and low-O3 days in July were identified, and high O3 levels were due to both enhanced VOC emission levels and meteorological conditions favourable to the production of O3. These findings provide evidence that the fuel combustion and regional transport have a great impact on concentrations and sources of VOCs in urban Beijing.
Collapse
Affiliation(s)
- Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengdi Song
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yuepeng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lirong Hui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liuwei Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Depeng Ma
- Appraisal Center for Environment & Engineering, Ministry of Environment and Ecology, Beijing 100012, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| |
Collapse
|
46
|
Deng Z, Weng D, Chen J, Liu R, Wang Z, Bao J, Zheng Y, Wu Y. AirVis: Visual Analytics of Air Pollution Propagation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:800-810. [PMID: 31443012 DOI: 10.1109/tvcg.2019.2934670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Air pollution has become a serious public health problem for many cities around the world. To find the causes of air pollution, the propagation processes of air pollutants must be studied at a large spatial scale. However, the complex and dynamic wind fields lead to highly uncertain pollutant transportation. The state-of-the-art data mining approaches cannot fully support the extensive analysis of such uncertain spatiotemporal propagation processes across multiple districts without the integration of domain knowledge. The limitation of these automated approaches motivates us to design and develop AirVis, a novel visual analytics system that assists domain experts in efficiently capturing and interpreting the uncertain propagation patterns of air pollution based on graph visualizations. Designing such a system poses three challenges: a) the extraction of propagation patterns; b) the scalability of pattern presentations; and c) the analysis of propagation processes. To address these challenges, we develop a novel pattern mining framework to model pollutant transportation and extract frequent propagation patterns efficiently from large-scale atmospheric data. Furthermore, we organize the extracted patterns hierarchically based on the minimum description length (MDL) principle and empower expert users to explore and analyze these patterns effectively on the basis of pattern topologies. We demonstrated the effectiveness of our approach through two case studies conducted with a real-world dataset and positive feedback from domain experts.
Collapse
|
47
|
Abstract
The atmosphere is composed of nitrogen, oxygen and argon, a variety of trace gases, and particles or aerosols from a variety of sources. Reactive, trace gases have short mean residence time in the atmosphere and large spatial and temporal variations in concentration. Many trace gases are removed by reaction with hydroxyl radical and deposition in rainfall or dryfall at the Earth's surface. The upper atmosphere, the stratosphere, contains ozone that screens ultraviolet light from the Earth's surface. Chlorofluorocarbons released by humans lead to the loss of stratospheric ozone, which might eventually render the Earth's land surface uninhabitable. Changes in the composition of the atmosphere, especially rising concentrations of CO2, CH4, and N2O, will lead to climatic changes over much of the Earth's surface.
Collapse
|
48
|
Wang Y, Xu Y, Wang D, Zhang Y, Zhang X, Liu J, Zhao Y, Huang C, Jin X. Polytetrafluoroethylene/Polyphenylene Sulfide Needle-Punched Triboelectric Air Filter for Efficient Particulate Matter Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48437-48449. [PMID: 31790597 DOI: 10.1021/acsami.9b18341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The demand for air filtration materials in recent years has been substantially increasing on a worldwide scale because people are paying extensive attention to particulate matter (PM) pollution. In this work, we report a type of needle-punched triboelectric air filter (N-TAF) consisting of polytetrafluoroethylene (PTFE) fibers modified by silica nanoparticles and polyphenylene sulfide (PPS) fibers. Compared to conventional electrostatic precipitators, the N-TAF can be charged online by a unique nonwoven processing technology without additional energy consumption and toxic ozone emission. Owing to the triboelectrification effect, a large number of charges were generated during the process of carding and needle-punching, resulting in an increased filtration performance. Benefiting from the addition of silica nanoparticles, the PTFE fibers are endowed with many pores and grooves and substantial surface roughness, which contributes to the enhancement of triboelectrification. As a result, the N-TAF with 2 wt % silica nanoparticles (N-TAF-2) exhibited a high removal efficiency of 89.4% for PM, which is 45% higher than unmodified N-TAF (61.8%), and a low pressure drop of 18.6 Pa. Meanwhile, the decay of the removal efficiency for N-TAF-2 remained at a low level (6.4%) for 60 days. More importantly, N-TAF-2 could realize a high efficiency of 99.7% and a low pressure drop of 55.4 Pa at a high surface density. In addition, the washed N-TAF has an excellent charge regeneration performance via air blowing or manual rubbing, thus recovering the removal efficiency easily and rapidly. Ultimately, the powerful dust holding capacity (227 g m-2) for N-TAF-2 indicates that the filter has a long service life, which makes it a promising air purification material. The filter reported in this work has the potential to be practically applied to air purification fields because it has excellent filtration performance and is easy to be produced on a large industrial scale.
Collapse
Affiliation(s)
- Yuxiao Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yukang Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Dan Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yinjiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xing Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Jinxin Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yi Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Chen Huang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xiangyu Jin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| |
Collapse
|
49
|
Beirle S, Borger C, Dörner S, Li A, Hu Z, Liu F, Wang Y, Wagner T. Pinpointing nitrogen oxide emissions from space. SCIENCE ADVANCES 2019; 5:eaax9800. [PMID: 31763456 PMCID: PMC6853767 DOI: 10.1126/sciadv.aax9800] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/17/2019] [Indexed: 05/22/2023]
Abstract
Satellite observations of nitrogen dioxide (NO2) provide valuable information on the location and strength of NO x emissions, but spatial resolution is limited by horizontal transport and smearing of temporal averages due to changing wind fields. In this study, we map NO x emissions on high spatial resolution from TROPOMI observations of NO2 combined with wind fields based on the continuity equation. The divergence of horizontal fluxes proves to be highly sensitive for point sources like exhaust stacks. Thus, NO x emissions from individual power plants can be resolved and quantified even on top of considerably high urban pollution from the Saudi Arabian capital city Riyadh. This allows us to catalog NO x emissions from large point sources globally, as demonstrated for South Africa and Germany, with a detection limit of about 0.11 kg/s down to 0.03 kg/s for ideal conditions.
Collapse
Affiliation(s)
- Steffen Beirle
- Max-Planck-Institut für Chemie, Mainz, Germany
- Corresponding author.
| | | | | | - Ang Li
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, P.R. China
| | - Zhaokun Hu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, P.R. China
| | - Fei Liu
- Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Yang Wang
- Max-Planck-Institut für Chemie, Mainz, Germany
| | - Thomas Wagner
- Max-Planck-Institut für Chemie, Mainz, Germany
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
50
|
Yu H, Yang W, Wang X, Yin B, Zhang X, Wang J, Gu C, Ming J, Geng C, Bai Z. A seriously sand storm mixed air-polluted area in the margin of Tarim Basin: Temporal-spatial distribution and potential sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:436-446. [PMID: 31048173 DOI: 10.1016/j.scitotenv.2019.04.298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
In order to analyze the temporal-spatial distribution characteristics of PM2.5, PM10, SO2, NO2, CO and O3 in five cities and the potential sources of PM10 in southern Xinjiang during 2016, we collected one year officially released data for analysis. The average PM10, PM2.5, SO2, NO2, O3 and CO concentrations were 289 ± 363, 99 ± 106, 17 ± 9, 29 ± 11, 65 ± 25 μg m-3 and 1.3 ± 0.6 mg m-3 in southern Xinjiang in 2016, respectively. The air pollutants presented distinct seasonal and spatial distribution characteristics. During sandstorm process, the particulate matters (PM) concentrations increased abruptly, with the PM10 and PM2.5 maximum concentrations exceeding 1000 and 500 μg m-3 in each city. The backward trajectory results showed that the air masses in Akesu, Kurla, Hotan, Kashi and Atushi were mainly from the Bayingol Mongolian Autonomous Prefecture, Kyrgyzstan, Kizilesu Kirgiz Autonomous Prefecture and Taklimakan Desert (TD). In addition, TD was the main potential contributor to ambient PM10 in five cities during the dust season (DS), with a weighted potential source contribution function (WPSCF) > 0.9. While the trajectories of air masses from TD, Bayingol Mongolian Autonomous Prefecture, Urumqi-Changji Area and local emission were potential sources contributing to PM2.5 in these five cities during DS, with a WPSCF > 0.7. Moreover, the high weighted concentration weighted trajectory (WCWT) values were distributed in the Tarim basin, with PM10 > 700 μg m-3, however, the local emission and long distance transport contributed to the PM2.5 > 160 μg m-3 for five cities. This study comprehensively analyzes the pollution characteristics of air pollutants in five important cities in the southern margin of the Tarim Basin for the first time, and will provide an important reference basis for the prevention and control of air pollution in southern Xinjiang.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Baohui Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xian Zhang
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Chao Gu
- The Xinjiang Uygur Autonomous Region Environmental Monitoring Station, Urumchi, Xinjiang 830011, PR China
| | - Jing Ming
- Freelance Scientist, Victoria 3109, Australia
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|