1
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
2
|
Poddar R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp Neurol 2021; 336:113541. [PMID: 33278453 PMCID: PMC7856041 DOI: 10.1016/j.expneurol.2020.113541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of the amino acid homocysteine is a common metabolic disorder that is considered to be a risk factor for ischemic stroke. However, it is still unclear whether predisposition to hyperhomocysteinemia could contribute to the severity of stroke outcome. This review highlights the advantages and limitations of the current rodent models of hyperhomocysteinemia, describes the consequence of mild hyperhomocysteinemia on the severity of ischemic brain damage in preclinical studies and summarizes the mechanisms involved in homocysteine induced neurotoxicity. The findings provide the premise for establishing hyperhomocysteinemia as a comorbidity for ischemic stroke and should be taken into consideration while developing potential therapeutic agents for stroke treatment.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Deep SN, Mitra S, Rajagopal S, Paul S, Poddar R. GluN2A-NMDA receptor-mediated sustained Ca 2+ influx leads to homocysteine-induced neuronal cell death. J Biol Chem 2019; 294:11154-11165. [PMID: 31167782 DOI: 10.1074/jbc.ra119.008820] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Indexed: 11/06/2022] Open
Abstract
Homocysteine, a metabolite of the methionine cycle, is a known agonist of N-methyl-d-aspartate receptor (NMDAR), a glutamate receptor subtype and is involved in NMDAR-mediated neurotoxicity. Our previous findings have shown that homocysteine-induced, NMDAR-mediated neurotoxicity is facilitated by a sustained increase in phosphorylation and activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK MAPK). In the current study, we investigated the role GluN1/GluN2A-containing functional NMDAR (GluN2A-NMDAR) and GluN1/GluN2B-containing functional NMDAR (GluN2B-NMDAR) in homocysteine-induced neurotoxicity. Our findings revealed that exposing primary cortical neuronal cultures to homocysteine leads to a sustained low-level increase in intracellular Ca2+ We also showed that pharmacological inhibition of GluN2A-NMDAR or genetic deletion of the GluN2A subunit attenuates homocysteine-induced increase in intracellular Ca2+ Our results further established the role of GluN2A-NMDAR in homocysteine-mediated sustained ERK MAPK phosphorylation and neuronal cell death. Of note, the preferential role of GluN2A-NMDAR in homocysteine-induced neurotoxicity was distinctly different from glutamate-NMDAR-induced excitotoxic cell death that involves overactivation of GluN2B-NMDAR and is independent of ERK MAPK activation. These findings indicate a critical role of GluN2A-NMDAR-mediated signaling in homocysteine-induced neurotoxicity.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sumonto Mitra
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
4
|
Bano D, Ankarcrona M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663:79-85. [DOI: 10.1016/j.neulet.2017.08.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
|
5
|
Otmakhov N, Gorbacheva EV, Regmi S, Yasuda R, Hudmon A, Lisman J. Excitotoxic insult results in a long-lasting activation of CaMKIIα and mitochondrial damage in living hippocampal neurons. PLoS One 2015; 10:e0120881. [PMID: 25793533 PMCID: PMC4368532 DOI: 10.1371/journal.pone.0120881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1-3 hours) or transient (~20 min) and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons during excitotoxic insults.
Collapse
Affiliation(s)
- Nikolai Otmakhov
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
- * E-mail:
| | - Elena V. Gorbacheva
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Shaurav Regmi
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Ryohei Yasuda
- Max Planck Florida Institute, One Max Planck Way, Jupiter, Florida, 33458, United States of America
| | - Andy Hudmon
- STARK Neuroscience Research Institute, Indiana University School of Medicine, 950 West Walnut Street, Research Building II, Room 480, Indianapolis, Indiana, 46202, United States of America
| | - John Lisman
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| |
Collapse
|
6
|
Shin JH, Kim ID, Kim SW, Lee HK, Jin Y, Park JH, Kim TK, Suh CK, Kwak J, Lee KH, Han PL, Lee JK. Ethyl pyruvate inhibits HMGB1 phosphorylation and release by chelating calcium. Mol Med 2015; 20:649-57. [PMID: 25333921 DOI: 10.2119/molmed.2014.00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 10/13/2014] [Indexed: 11/06/2022] Open
Abstract
Ethyl pyruvate (EP), a simple aliphatic ester of pyruvic acid, has been shown to have antiinflammatory effects and to confer protective effects in various pathological conditions. Recently, a number of studies have reported EP inhibits high mobility group box 1 (HMGB1) secretion and suggest this might contribute to its antiinflammatory effect. Since EP is used in a calcium-containing balanced salt solution (Ringer solution), we wondered if EP directly chelates Ca(2+) and if it is related to the EP-mediated suppression of HMGB1 release. Calcium imaging assays revealed that EP significantly and dose-dependently suppressed high K(+)-induced transient [Ca(2+)]i surges in primary cortical neurons and, similarly, fluorometric assays showed that EP directly scavenges Ca(2+) as the peak of fluorescence emission intensities of Mag-Fura-2 (a low-affinity Ca(2+) indicator) was shifted in the presence of EP at concentrations of ≥7 mmol/L. Furthermore, EP markedly suppressed the A23187-induced intracellular Ca(2+) surge in BV2 cells and, under this condition, A23187-induced activations of Ca(2+)-mediated kinases (protein kinase Cα and calcium/calmodulin-dependent protein kinase IV), HMGB1 phosphorylation and subsequent secretion of HMGB1 also were suppressed. (A23187 is a calcium ionophore and BV2 cells are a microglia cell line.) Moreover, the above-mentioned EP-mediated effects were obtained independent of cell death or survival, which suggests that they are direct effects of EP. Together, these results indicate that EP directly chelates Ca(2+), and that it is, at least in part, responsible for the suppression of HMGB1 release by EP.
Collapse
Affiliation(s)
- Joo-Hyun Shin
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yinchuan Jin
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ju-Hun Park
- Department of Chemistry, Ewha Womans University, Seoul, Republic of Korea
| | - Tae-Kyung Kim
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, Republic of Korea
| | - Chang-Kook Suh
- Department of Physiology and Biophysics, Inha University, Incheon, Republic of Korea
| | - Jiyeon Kwak
- Department of Physiology and Biophysics, Inha University, Incheon, Republic of Korea
| | - Keun-Hyeung Lee
- Department of Chemistry, Ewha Womans University, Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
7
|
Abstract
Anoxic depolarization of pyramidal neurons results from a large inward current that is activated, in part, by excessive glutamate release during exposure to anoxia/ischemia. Pannexin-1 (Panx1) channels can be activated both by ischemia and NMDA receptors (NMDARs), but the mechanisms of Panx1 activation are unknown. We used whole-cell recordings to show that pharmacological inhibition or conditional genetic deletion of Panx1 strongly attenuates the anoxic depolarization of CA1 pyramidal neurons in acute brain slices from rats and mice. Anoxia or exogenous NMDA activated Src family kinases (SFKs), as measured by increased phosphorylation of SFKs at Y416. The SFK inhibitor PP2 prevented Src activation and Panx1 opening during anoxia. A newly developed interfering peptide that targets the SFK consensus-like sequence of Panx1 (Y308) attenuated the anoxic depolarization (AD) without affecting SFK activation. Importantly, the NMDAR antagonists, D-APV and R-CPP, attenuated AD currents carried by Panx1, and the combined application of D-APV and (10)panx (a Panx1 blocker) inhibited AD currents to the same extent as either blocker alone. We conclude that activation of NMDARs during anoxia/ischemia recruits SFKs to open Panx1, leading to sustained neuronal depolarizations.
Collapse
|
8
|
Aiba I, Shuttleworth CW. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J Physiol 2012; 590:5877-93. [PMID: 22907056 PMCID: PMC3528997 DOI: 10.1113/jphysiol.2012.234476] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023] Open
Abstract
Spreading depolarizations (SDs) are slowly propagating waves of near-complete neuronal and glial depolarization. SDs have been recorded in patients with brain injury, and the incidence of SD significantly correlates with outcome severity. Although it is well accepted that the ionic dyshomeostasis of SD presents a severe metabolic burden, there is currently limited understanding of SD-induced injury processes at a cellular level. In the current study we characterized events accompanying SD in the hippocampal CA1 region of murine brain slices, using whole-cell recordings and single-cell Ca(2+) imaging. We identified an excitatory phase that persisted for approximately 2 min following SD onset, and accompanied with delayed dendritic ionic dyshomeostasis. The excitatory phase coincided with a significant increase in presynaptic glutamate release, evidenced by a transient increase in spontaneous EPSC frequency and paired-pulse depression of evoked EPSCs. Activation of NMDA receptors (NMDARs) during this late excitatory phase contributed to the duration of individual neuronal depolarizations and delayed recovery of extracellular slow potential changes. Selectively targeting the NMDAR activation following SD onset (by delayed pressure application of a competitive NMDAR antagonist) significantly decreased the duration of cellular depolarizations. Recovery of dendritic Ca(2+) elevations following SD were also sensitive to delayed NMDA antagonist application. Partial inhibition of neuronal energy metabolism converted SD into an irrecoverable event with persistent Ca(2+) overload and membrane compromise. Delayed NMDAR block was sufficient to prevent these acute injurious events in metabolically compromised neurons. These results identify a significant contribution of a late component of SD that could underlie neuronal injury in pathological circumstances.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
9
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
10
|
Yin Z, Albrecht J, Syversen T, Jiang H, Summar M, Rocha JBT, Farina M, Aschmer M. Comparison of alterations in amino acids content in cultured astrocytes or neurons exposed to methylmercury separately or in co-culture. Neurochem Int 2009; 55:136-42. [PMID: 19428818 PMCID: PMC2680756 DOI: 10.1016/j.neuint.2009.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant that induces enduring neuropsychological deficits in humans. Although the mechanisms associated with MeHg-induced neurotoxicity have not yet been fully elucidated, some lines of evidence point out to excitatory amino acids dyshomeostasis as an important outcome of MeHg exposure. The present study was designed to characterize the effects of MeHg on amino acid content in co-cultured astrocytes and neurons or in each cell type under solitary conditions. The results showed that glutamate concentrations significantly decreased in neurons, but not in astrocyte cultures exposed to 10 microM MeHg. The decrease in neurons was fully reversed when these cells were co-cultured with astrocytes. The content of other amino acids (aspartate, alanine, glycine and serine) decreased upon exposure to 10 microM MeHg in both neurons and astrocytes cultured in solitary conditions, although the effect was generally smaller in astrocytes than in neurons. However, the content of these amino acids in each of the cell types was indistinguishable from controls when co-cultures were treated with MeHg. Overall, the results indicate that astrocytes, which are more resistant to amino acid modulation by MeHg, can (i) mitigate the effects of MeHg that occur in neurons cultured in solitary conditions and (ii) become themselves more MeHg resistant in the presence of neurons. Delineating the mechanisms underlying the mutual neuroprotective effects of astrocytes and neurons in co-culture to MeHg-induced amino acid imbalance requires further investigation.
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, and the Kennedy Center for Research on human Development, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jan Albrecht
- Department of Neurotoxicology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Tore Syversen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, and the Kennedy Center for Research on human Development, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marshall Summar
- Departments of Pediatrics and Molecular Physiology, and the Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joao BT Rocha
- Departamento de Ciências Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschmer
- Departments of Pediatrics and Pharmacology, and the Kennedy Center for Research on human Development, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Shier WT. Sphingosine Analogs: an Emerging New Class of Toxins that Includes the Fumonisins. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549209115821] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Ito E, Oka K, Collin C, Schreurs BG, Sakakibara M, Alkon DL. Tumor Necrosis Factor-α (TNF-α), Interferon-γ, and Interleukin-6 but Not TNF-β Induce Differentiation of Neuroblastoma Cells: The Role of Nitric Oxide. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.1994.62041337.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
The kinetic properties for the uptake, storage and release of Ca2+ from isolated mitochondria accurately predict the behaviour of the organelles within the intact cell. While the steady-state cycling of Ca2+ across the inner membrane between independent uptake and efflux pathways seems at first sight to be symmetrical, the distinctive kinetics of the uniporter, which is highly dependent on external free Ca2+ concentration and the efflux pathway, whose activity is clamped over a wide range of total matrix Ca2+ by the solubility of the calcium phosphate complex provide a mechanism whereby mitochondria reversibly sequester transient elevations in cytoplasmic Ca2+. Under non-stimulated conditions, the same transport processes can regulate matrix Ca2+ concentrations and hence citric acid cycle activity.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Age Research, Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
14
|
Vander Jagt TA, Connor JA, Shuttleworth CW. Localized loss of Ca2+ homeostasis in neuronal dendrites is a downstream consequence of metabolic compromise during extended NMDA exposures. J Neurosci 2008; 28:5029-39. [PMID: 18463256 PMCID: PMC2707144 DOI: 10.1523/jneurosci.5069-07.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/21/2022] Open
Abstract
Excessive Ca(2+) loading is central to most hypotheses of excitotoxic neuronal damage. We examined dendritic Ca(2+) signals in single CA1 neurons, injected with fluorescent indicators, after extended exposures to a low concentration of NMDA (5 microM). As shown previously, NMDA produces an initial transient Ca(2+) elevation of several micromolar, followed by recovery to submicromolar levels. Then after a delay of approximately 20-40 min, a large Ca(2+) elevation appears in apical dendrites and propagates to the soma. We show here that this large delayed Ca(2+) increase is required for ultimate loss of membrane integrity. However, transient removal of extracellular Ca(2+) for varying epochs before and after NMDA exposure does not delay the propagation of these events. In contrast to compound Ca(2+) elevations, intracellular Na(+) elevations are monophasic and were promptly reversed by the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. MK-801 applied after the transient Ca(2+) elevations blocked the delayed propagating Ca(2+) increase. Even if applied after the propagating response was visualized, MK-801 restored resting Ca(2+) levels. Propagating Ca(2+) increases in dendrites were delayed or prevented by (1) reducing extracellular Na(+), (2) injecting ATP together with the Ca(2+) indicator, or (3) provision of exogenous pyruvate. These results show that extended NMDA exposure initiates degenerative signaling generally in apical dendrites. Although very high Ca(2+) levels can report the progression of these responses, Ca(2+) itself may not be required for the propagation of degenerative signaling along dendrites. In contrast, metabolic consequences of sustained Na(+) elevations may lead to failure of ionic homeostasis in dendrites and precede Ca(2+)-dependent cellular compromise.
Collapse
Affiliation(s)
- Thomas A. Vander Jagt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - John A. Connor
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| |
Collapse
|
15
|
Dietz RM, Kiedrowski L, Shuttleworth CW. Contribution of Na(+)/Ca(2+) exchange to excessive Ca(2+) loading in dendrites and somata of CA1 neurons in acute slice. Hippocampus 2008; 17:1049-59. [PMID: 17598158 DOI: 10.1002/hipo.20336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple Ca(2+) entry routes have been implicated in excitotoxic Ca(2+) loading in neurons and reverse-operation of sodium-calcium exchangers (NCX) has been shown to contribute under conditions where intracellular Na(+) levels are enhanced. We have investigated effects of KB-R7943, an inhibitor of reverse-operation NCX activity, on Ca(2+) elevations in single CA1 neurons in acute hippocampal slices. KB-R7943 had no significant effect on input resistance, action potential waveform, or action potential frequency adaptation, but reduced L-type Ca(2+) entry in somata. Nimodipine was therefore included in subsequent experiments to prevent complication from effects of L-type influx on evaluation of NCX activity. NMDA produced transient primary Ca(2+) increases, followed by propagating secondary Ca(2+) increases that initiated in apical dendrites. KB-R7943 had no significant effect on primary or secondary Ca(2+) increases generated by NMDA. The Na(+)/K(+) ATPase inhibitor ouabain (30 microM) produced degenerative Ca(2+) overload that was initiated in basal dendrites. KB-R7943 significantly reduced initial Ca(2+) increases and delayed the propagation of degenerative Ca(2+) loads triggered by ouabain, raising the possibility that excessive intracellular Na(+) loading can trigger reverse-operation NCX activity. A combination of NMDA and ouabain produced more rapid Ca(2+) overload, that was contributed to by NCX activity. These results suggest that degenerative Ca(2+) signaling can be triggered by NMDA in dendrites, before intracellular Na(+) levels become sufficient to reverse NCX activity. However, since Na(+)/K(+) ATPase inhibition does appear to produce significant reverse-operation NCX activity, this additional Ca(2+) influx pathway may operate in ATP-deprived CA1 neurons and play a role in ischemic neurodegeneration.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
16
|
Fewtrell C, Mohr FC, Ryan TA, Millard PJ. Calcium: an important second messenger in mast cells. CIBA FOUNDATION SYMPOSIUM 2007; 147:114-27; discussion 128-32. [PMID: 2695305 DOI: 10.1002/9780470513866.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently there has been considerable controversy over the mechanism(s) by which intracellular Ca2+ is elevated when receptors for IgE on the surface of mast cells are aggregated by antigen. The central role played by calcium in the initiation of secretion from these cells has also been called into question. In a mast cell line which has been widely used to study stimulus-secretion coupling in non-excitable cells it is now clear that calcium is indeed important in the physiological response of the cells but that other intracellular messengers are also involved. In addition it has been shown that while the increase in intracellular Ca2+ probably originates from intracellular stores it can only be sustained by the influx of calcium across the plasma membrane. The nature of the Ca2+ permeability pathway has yet to be elucidated although a number of candidates for the calcium channel in mast cells have been proposed. Significant oscillations and spatial gradients of Ca2+ are often seen when the responses of individual antigen-stimulated cells are measured using digital imaging microscopy. The complexity of these responses highlights the importance of single-cell measurements in elucidating the relationship between IgE receptor activation, Ca2+ movements and exocytosis.
Collapse
Affiliation(s)
- C Fewtrell
- Department of Pharmacology, Cornell University, Ithaca, NY 14853
| | | | | | | |
Collapse
|
17
|
Hyrc KL, Rzeszotnik Z, Kennedy BR, Goldberg MP. Determining calcium concentration in heterogeneous model systems using multiple indicators. Cell Calcium 2007; 42:576-89. [PMID: 17376527 PMCID: PMC7343377 DOI: 10.1016/j.ceca.2007.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 11/17/2022]
Abstract
Intracellular free calcium concentrations ([Ca2+]i) are assessed by measuring indicator fluorescence in entire cells or subcellular regions using fluorescence microscopy. [Ca2+]i is calculated using equations which link fluorescence intensities (or intensity ratios) to calcium concentrations [G. Grynkiewicz, M. Poenie, R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260 (1985) 3440-3450]. However, if calcium ions are heterogeneously distributed within a region of interest, then the observed average fluorescence intensity may not reflect average [Ca2+]i. We assessed potential calcium determination errors in mathematical and experimental models consisting of 'low' and 'high' calcium compartments, using indicators with different affinity for calcium. [Ca2+] calculated using average fluorescence intensity was lower than the actual mean concentrations. Low affinity indicators reported higher (more accurate) values than their high affinity counterparts. To estimate compartment dimensions and respective [Ca2+], we extended the standard approach by using different indicator responses to the same [Ca2+]. While two indicators were sufficient to provide a partial characterization of two-compartment model systems, the use of three or more indicators offered full description of the model provided compartmental [Ca2+] were within the indicator sensitivity ranges. These results show that uneven calcium distribution causes underestimation of actual [Ca2+], and offers novel approaches to estimating calcium heterogeneity.
Collapse
Affiliation(s)
- Krzysztof L Hyrc
- Hope Center for Neurological Disorders, Alafi Neuroimaging Laboratory and Department of Neurology, Washington University School of Medicine, St. Louis, MI 63110, USA.
| | | | | | | |
Collapse
|
18
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
19
|
Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm (Vienna) 2006; 113:1671-7. [PMID: 17053873 DOI: 10.1007/s00702-006-0591-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/22/2006] [Indexed: 10/24/2022]
Abstract
The glutamatergic system is the most widespread neurotransmitter system in the mammalian brain. It is connected to the acetylcholinergic neurotransmitter system to form the glutamatergic/aspartatergic-acetylcholinergic circuit, which is the morphobiochemical basis of learning, memory and cognition assisted by the glutamatergic N-methyl-D-aspartate receptor, which mediates long-term potentiation as the fundamental molecular mechanisms of these mental capacities. Glutamate and acetylcholine as ligands of the two neurotransmitter systems are products of the neuronal glucose metabolism as holds true also for advanced glycation end products (AGEs), which are markers of damaged and/or aged proteins. During normal aging, both the neurotransmitters glutamate and acetylcholine undergo strong functional variations. Their synthesis was found to be reduced as a common feature. In contrast, basal release of acetylcholine and receptor number decrease, whereas basal release of glutamate and receptor number increase. AGEs increase during aging obviously preferentially in glutamatergic pyramidal neurons in cerebral cortical layers prone to neurodegeneration. In sporadic Alzheimer disease (SAD), glutamate concentration was shown to fall since it may serve as a substitute for lacking glucose in the beginning of the disease. In contrast, glutamate receptor density was found to be much less involved indicating an excessive activation of the glutamatergic neurotransmitter system particularly via the NMDA receptor, mediating endogenous excitotoxicity. The morphological hallmarks of SAD neuritic plaques and neurofibrillary tangles have been demonstrated to crosslink with AGEs causing an increased rate of free radical production. First data from animal studies and investigations on human beings may indicate that the NMDA receptor antagonist memantine may have beneficial effects on the course of SAD and its clinical symptoms.
Collapse
Affiliation(s)
- P Riederer
- Institute of Clinical Neurochemistry and National Parkinson Foundation Centre of Excellence Laboratory, Clinic for Psychiatry and Psychotherapy, Bayerische Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
20
|
Azimi-Zonooz A, Shuttleworth CW, Connor JA. GABAergic protection of hippocampal pyramidal neurons against glutamate insult: deficit in young animals compared to adults. J Neurophysiol 2006; 96:299-308. [PMID: 16624995 DOI: 10.1152/jn.01082.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-ischemia (HI) injury in neonatal animals leads to selective regional loss of neurons including CA1 and CA3 pyramidal neurons of the hippocampus as well as nonlethal pathologies. Glutamate-receptor over-activation and Ca2+ influx are involved in these neonatal changes. We examined glutamate-evoked Ca2+ responses in neonatal (PN 7-13) and young adult (PN 21-27) CA1 pyramidal neurons in acute slices from rats. In neonates, transient exposure to glutamate produced large Ca2+ increases throughout neurons, including distal dendrites (primary Ca2+ responses). Repeated exposures resulted in sustained Ca2+ increases in apical dendrites (secondary Ca2+ responses) that were independent of continued glutamate exposure. These responses propagated and invaded the soma, resulting in irrecoverably high Ca2+ elevations. In neurons from adults, identical glutamate exposure evoked primary Ca2+ responses only in somata and proximal apical dendrites. Repeated glutamate exposures in the adult neurons also led to secondary Ca2+ responses, but they arose in the peri-somatic region and then spread outward to distal apical dendrites, again without recovery. More stimuli were required to initiate secondary responses in neurons from adult versus neonates. Block of GABAA receptors in adults caused the primary and secondary responses to revert to the spatial pattern seen in the neonates and greatly increased their vulnerability to glutamate. These findings suggest that neurodegenerative secondary Ca2+ events may be important determinants of susceptibility to HI injury in the developing CNS and that immature CA1 neurons may be more susceptible to excitotoxic injury due at least in part to insufficient development of GABAergic inputs to their dendrites.
Collapse
Affiliation(s)
- Aryan Azimi-Zonooz
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
21
|
Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273:433-50. [PMID: 16420469 DOI: 10.1111/j.1742-4658.2005.05103.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Szentagothai Knowledge Center, Budapest, Hungary
| | | |
Collapse
|
22
|
Larsen GA, Skjellegrind HK, Moe MC, Vinje ML, Berg-Johnsen J. Endoplasmic reticulum dysfunction and Ca2+ deregulation in isolated CA1 neurons during oxygen and glucose deprivation. Neurochem Res 2005; 30:651-9. [PMID: 16176069 DOI: 10.1007/s11064-005-2753-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intracellular calcium ([Ca2+]i) plays a pivotal role in neuronal ischemia. The aim of the present study was to investigate the routes of Ca2+ entry during non-excitotoxic oxygen and glucose deprivation (OGD) in acutely dissociated rat CA1 neurons. During OGD the fluo-3/fura red ratio reflecting [Ca2+]i increased rapidly and irreversibly. [Ca2+]i increased to the same degree in Ca2 + depleted medium, and also when both the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate (IP3) receptors were blocked. When the endoplasmic reticulum (ER) Ca2+ stores were emptied with thapsigargin no increase in [Ca2+]i was observed independent of extracellular Ca2+. The OGD induced Ca2+ deregulation in isolated CA1 neurons is not prevented by removing Ca2+, or by blocking the IP3- or RyR receptors. However, when SERCA was blocked, no increase in [Ca2+]i was observed suggesting that SERCA dysfunction represents an important mechanism for ischemic Ca2+ overload.
Collapse
Affiliation(s)
- Geir Arne Larsen
- Institute for Surgical Research, Department of Neurosurgery, National Hospital, Rikshospitalet, N-0027, Oslo, Norway.
| | | | | | | | | |
Collapse
|
23
|
Santos HA, Chirea M, García-Morales V, Silva F, Manzanares JA, Kontturi K. Electrochemical Study of Interfacial Composite Nanostructures: Polyelectrolyte/Gold Nanoparticle Multilayers Assembled on Phospholipid/Dextran Sulfate Monolayers at a Liquid−Liquid Interface. J Phys Chem B 2005; 109:20105-14. [PMID: 16853599 DOI: 10.1021/jp052485p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The build up and electrochemical characterization of interfacial composite nanostructures containing a cationic polyelectrolyte and negatively charged mercaptosuccinic acid stabilized gold nanoparticles (AuNPs) is reported. The nanostructures were formed at the interface between two immiscible electrolyte solutions in which the organic phase is an immobilized 2-nitrophenyl octyl ether/PVC gel. The growth of the multilayer was verified with UV-vis spectra, and approximately a linear increase in UV-vis absorbance with increasing number of layers was observed. The interfacial capacitance of the multilayers was measured as a function of the potential and a theoretical model was developed to explain the results. The excellent agreement between theoretical and experimental capacitance curves allows us to conclude that nanocomposites behave similarly to polyelectrolyte multilayers, with the outmost layer determining the alternating sign of the outer surface charge density. Cyclic voltammograms were used to evaluate the transfer rate constant across the multilayers of a model drug, metoprolol, and the standard probe tetraethylammonium cation. The apparent rate constants were slightly larger than in other studies in the literature and decrease with the increasing number of layers.
Collapse
Affiliation(s)
- Hélder A Santos
- Department of Chemical Technology, Laboratory of Physical Chemistry and Electrochemistry, Helsinki University of Technology, P.O. Box 6100, FIN-02015 HUT, Finland.
| | | | | | | | | | | |
Collapse
|
24
|
Ichikawa K. A modeling environment with three-dimensional morphology, A-Cell-3D, and Ca2+ dynamics in a spine. Neuroinformatics 2005; 3:49-64. [PMID: 15897616 DOI: 10.1385/ni:3:1:049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A-Cell-3D was developed to model and simulate a neuron with three-dimensional (3D) morphology utilizing graphic user interface (GUI)-based operations. A-Cell-3D generates and compartmentalizes 3D morphologies of a whole cell or a part of a cell based on a small number of parameters. A-Cell-3D has functions for embedding biochemical reactions and electrical equivalent circuits in the generated 3D morphology, automatically generating a simulation program for spatiotemporal numerical integration, and for visualizing the simulation results. A-Cell-3D is a free software and will be a powerful tool for both experimental and theoretical researchers in modeling and simulating neurons. The Ca2+ dynamics in a dendritic spine and its parent dendrite were modeled and simulated to demonstrate the capabilities of A-Cell-3D. The constructed reaction-diffusion model comprised Ca2+ entry at the spine head, Ca2+ buffering by endogenous buffers, Ca2+ extrusion, and Ca2+ diffusion with or without exogenous Ca2+ indicator dyes. A simulation program was generated by A-Cell-3D, and differential equations were numerically integrated by the fourth-order Runge-Kutta method.
Collapse
Affiliation(s)
- Kazuhisa Ichikawa
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Advanced Research Institute for Science and Engineering, Waseda University, 3-1 Yatsukaho Hakusan Kanazawa, 924-0838 Japan.
| |
Collapse
|
25
|
Santos HA, García-Morales V, Roozeman RJ, Manzanares JA, Kontturi K. Interfacial interaction between dextran sulfate and lipid monolayers: an electrochemical study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5475-84. [PMID: 15924478 DOI: 10.1021/la046825u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The interaction between dextran sulfate (DS) with zwitterionic dipalmitoylphosphatidylcholine (DPPC) and negatively charged dipalmitoylphosphatidic acid monolayers at different surface pressures at air-liquid and liquid-liquid interfaces was studied using Langmuir-Blodgett (LB) and electrochemical techniques. The negatively charged DS can bind to phospholipids via calcium ions. To investigate the mechanism of the adsorption of DS on lipid monolayers, compression isotherms (pi-A) and capacitance-potential curves were measured, and a theoretical model was developed to interpret the capacitance data. The compression of lipid monolayers in the presence of DS led to a more condensed hybrid layer, removing the LE-LC phase transition of DPPC. Lower surface pressures improved the binding of DS on the lipid monolayers via calcium bridges due to the electrostatic attraction. Alternating current voltammetry and cyclic voltammetry were used to monitor the transfer of a cationic beta-blocker (metoprolol) across lipid monolayers in the absence and presence of the polyelectrolyte and to compare with the transfer of the standard probe, tetraethylammonium cation. Results showed a strong dependence on (i) the surface pressure, (ii) the applied potential, and, (iii) in the case of the hybrid layer, the charge of the phospholipid headgroup. Finally, results were also confirmed by attenuated total reflection Fourier transform infrared spectroscopy, performed after transferring lipid multilayers onto a solid substrate by the LB method.
Collapse
Affiliation(s)
- Hélder A Santos
- Department of Chemical Technology, Laboratory of Physical Chemistry and Electrochemistry, Helsinki University of Technology, P.O. Box 6100, FIN-02015 HUT, Finland
| | | | | | | | | |
Collapse
|
26
|
Bloch-Shilderman E, Kadar T, Levy A, Sahar R, Rabinovitz I, Gilat E. Subcellular alterations of protein kinase C isozymes in the rat brain after organophosphate poisoning. J Pharmacol Exp Ther 2005; 313:1082-9. [PMID: 15716382 DOI: 10.1124/jpet.105.083469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein kinase C (PKC) signaling pathway has been associated with modulation of N-metyl-D-aspartate receptor activity, motor behavior, learning, and memory, all of which are severely impaired in organophosphate (OP) intoxication. Nevertheless, the role of PKC in OP intoxication is largely unknown. The present study attempted to characterize alterations in the immunoreactivity levels of PKC isozymes expressed in different brain areas in the rat following exposure to the nerve agent sarin (1x LD(50)). Furthermore, possible neuroprotective effect of selective PKC regulating peptide after such insult was evaluated. The results indicated that a significant reduction in the immunoreactivity level of the conventional betaII-PKC and the atypical zeta-PKC was observed in frontal cortex up to 24 h postsarin and in the striatum up to 5 days postsarin exposure. This reduction was in contrast to the increase in the immuno-reactivity level of both isozymes seen in the hippocampus or thalamus. Treatment with the anticonvulsant midazolam (0.5 mg/kg) 10 min postsarin exposure markedly reduced zeta-PKC immunoreactivity level and betaII-PKC in the membrane fractions in the hippocampus. betaII-PKC peptide (380 ng/kg), known to inhibit PKC translocation and activation, attenuated sarin-induced neuropathology. These observations suggest a role for both conventional and atypical PKC isozymes in OP-induced neuropathy in the rat and further support their involvement in cell death.
Collapse
|
27
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
28
|
Levy J, Zhu Z, Dunbar JC. The effect of global brain ischemia in normal and diabetic animals: the influence of calcium channel blockers. Endocrine 2004; 25:91-5. [PMID: 15711020 DOI: 10.1385/endo:25:2:091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 01/21/2023]
Abstract
Diabetes with hypertension is characterized by increased cerebrovascular pathology and poorer outcomes following stroke. In this study we evaluated the effect of global brain ischemia on brain metabolic parameters in normal and diabetic rats treated with a dihydropyridine calcium antagonist, felodipine. Normal and diabetic rats were treated daily with felodipine (5 mg/kg) or saline. After 4 wk global ischemia was produced by occluding the carotid arteries for 1 h. In other groups the occlusion was removed and the animals were allowed to reperfuse for an additional 2 h. Following 1 h global ischemia, with or without reperfusion, the animals and controls were killed by decapitation. Cerebral water, lactate, ATP, and glutamate were measured. Glo-bal ischemia with or without reperfusion increased cerebral water and lactate, but decreased ATP. Treatment with felodipine decreased lactate, but increased water content. Ischemia in diabetics with or without reperfusion decreased water and lactate. Treated diabetics had higher ATP levels after reperfusion. Glutamate levels were increased in diabetics and were further increased by treatment. We conclude that the enhanced CNS damage following cerebral ischemia in diabetes is not correlated with ATP or lactate levels and may be mediated in part by increased glutamate. Calcium channel antagonist may augment this process.
Collapse
Affiliation(s)
- Joseph Levy
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201-1928, USA
| | | | | |
Collapse
|
29
|
Rameau GA, Chiu LY, Ziff EB. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem 2004; 279:14307-14. [PMID: 14722119 DOI: 10.1074/jbc.m311103200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At glutamatergic synapses, the scaffolding protein PSD95 links the neuronal isoform of nitric-oxide synthase (nNOS) to the N-methyl-d-aspartate (NMDA) receptor. Phosphorylation of nNOS at serine 847 (Ser(847)) by the calcium-calmodulin protein kinase II (CaMKII) inhibits nNOS activity, possibly by blocking the binding of Ca(2+)-CaM. Here we show that the NMDA mediates a novel bidirectional regulation of Ser(847) phosphorylation. nNOS phosphorylated at Ser(847) colocalizes with the NMDA receptor at spines of cultured hippocampal neurons. Treatment of neurons with 5 microm glutamate stimulated CaMKII phosphorylation of nNOS at Ser(847), whereas excitotoxic concentrations of glutamate, 100 and 500 microm, induced Ser(847)-PO(4) dephosphorylation by protein phosphatase 1. Strong NMDA receptor stimulation was likely to activate nNOS under these conditions because protein nitration to form nitrotyrosine, a marker of nNOS activity, correlated in individual neurons with Ser(847)-PO(4) dephosphorylation. Of particular note, stimulation with low glutamate that increased phosphorylation of nNOS at Ser(847) could be reversed by subsequent high glutamate treatment which induced dephosphorylation. The reversibility of NMDA receptor-induced phosphorylation at Ser(847) by different doses of glutamate suggests two mechanisms with opposite effects: 1). a time-dependent negative feedback induced by physiological concentrations of glutamate that limits nNOS activation and precludes the overproduction of NO; and 2). a pathological stimulation by high concentrations of glutamate that leads to unregulated nNOS activation and production of toxic levels of NO. These mechanisms may share pathways, respectively, with NMDA receptor-induced forms of synaptic plasticity and excitotoxicity.
Collapse
Affiliation(s)
- Gerald A Rameau
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
30
|
Ran I, Miura RM, Puil E. Spermine modulates neuronal excitability and NMDA receptors in juvenile gerbil auditory thalamus. Hear Res 2003; 176:65-79. [PMID: 12583882 DOI: 10.1016/s0378-5955(02)00746-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medial geniculate body (MGB) neurons process synaptic inputs from auditory cortex. Corticothalamic stimulation evokes glutamatergic excitatory postsynaptic potentials (EPSPs) that vary markedly in amplitude and duration during development. The EPSP decay phase is prolonged during second postnatal week but then shortens, significantly, until adulthood. The EPSP prolongation depends on spermine interactions with a polyamine-sensitive site on receptors for N-methyl-D-aspartate (NMDA). We examined effects of spermine application on EPSPs, firing modes, and membrane properties in gerbil MGB neurons during the P14 period of highest polyamine sensitivity. Spermine slowed EPSP decay and promoted firing on EPSPs, without changing passive membrane properties. Spermine increased membrane rectification on depolarization, which is mediated by tetrodotoxin (TTX)-sensitive, persistent Na(+) conductance. As a result, spermine lowered threshold and increased tonic firing evoked with current injection by up to approximately 150%. These effects were concentration-dependent (ED(50)=100 microM), reversible, and eliminated by NMDA receptor antagonist, 2-amino-5-phosphonovalerate (APV). In contrast, spermine increased dV/dt of the low threshold Ca(2+) spike (LTS) and burst firing, evoked from hyperpolarized potentials. LTS enhancement was greater at -55 mV than at hyperpolarized potentials and did not result from persistent Na(+) conductance or glutamate receptor mechanisms. In summary, spermine increased excitability by modulating NMDA receptors in juvenile gerbil neurons.
Collapse
Affiliation(s)
- Israeli Ran
- Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
31
|
Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97:153-79. [PMID: 12559388 PMCID: PMC4203361 DOI: 10.1016/s0163-7258(02)00328-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The glutamate system is involved in many aspects of neuronal synaptic strength and function during development and throughout life. Synapse formation in early brain development, synapse maintenance, and synaptic plasticity are all influenced by the glutamate system. The number of neurons and the number of their connections are determined by the activity of the glutamate system and its receptors. Malfunctions of the glutamate system affect neuroplasticity and can cause neuronal toxicity. In schizophrenia, many glutamate-regulated processes seem to be perturbed. Abnormal neuronal development, abnormal synaptic plasticity, and neurodegeneration have been proposed to be causal or contributing factors in schizophrenia. Interestingly, it seems that the glutamate system is dysregulated and that N-methyl-D-aspartate receptors operate at reduced activity. Here we discuss how the molecular aspects of glutamate malfunction can explain some of the neuropathology observed in schizophrenia, and how the available treatment intervenes through the glutamate system.
Collapse
Affiliation(s)
- Christine Konradi
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
32
|
Hurtado J, Borges S, Wilson M. Na(+)-Ca(2+) exchanger controls the gain of the Ca(2+) amplifier in the dendrites of amacrine cells. J Neurophysiol 2002; 88:2765-77. [PMID: 12424311 DOI: 10.1152/jn.00130.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that disabling forward-mode Na(+)-Ca(2+) exchange in amacrine cells greatly prolongs the depolarization-induced release of transmitter. To investigate the mechanism for this, we imaged [Ca(2+)](i) in segments of dendrites during depolarization. Removal of [Na(+)](o) produced no immediate effect on resting [Ca(2+)](i) but did prolong [Ca(2+)](i) transients induced by brief depolarization in both voltage-clamped and unclamped cells. In some cells, depolarization gave rise to stable patterns of higher and lower [Ca(2+)] over micrometer-length scales that collapsed once [Na(+)](o) was restored. Prolongation of [Ca(2+)](i) transients by removal of [Na(+)](o) is not due to reverse mode operation of Na(+)-Ca(2+) exchange but is instead a consequence of Ca(2+) release from endoplasmic reticulum (ER) stores over which Na(+)-Ca(2+) exchange normally exercises control. Even in normal [Na(+)](o), hotspots for [Ca(2+)] could be seen following depolarization, that are attributable to local Ca(2+)-induced Ca(2+) release. Hotspots were seen to be labile, probably reflecting the state of local stores or their Ca(2+) release channels. When ER stores were emptied of Ca(2+) by thapsigargin, [Ca(2+)] transients in dendrites were greatly reduced and unaffected by the removal of [Na(+)](o) implying that even when Na(+)-Ca(2+) exchange is working normally, the majority of the [Ca(2+)](i) increase by depolarization is due to internal release rather than influx across the plasma membrane. Na(+)-Ca(2+) exchange has an important role in controlling [Ca(2+)] dynamics in amacrine cell dendrites chiefly by moderating the positive feedback of the Ca(2+) amplifier.
Collapse
Affiliation(s)
- Jose Hurtado
- Section of Neurobiology, Physiology and Behavior, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
33
|
Artola A, Singer W. The Involvement of N-Methyl-D-Aspartate Receptors in Induction and Maintenance of Long-Term Potentiation in Rat Visual Cortex. Eur J Neurosci 2002; 2:254-269. [PMID: 12106052 DOI: 10.1111/j.1460-9568.1990.tb00417.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyramidal neurons from layers II and III of rat visual cortex slices were studied with intracellular recordings. The involvement of N-methyl-D-aspartate (NMDA) receptors was investigated: (1) in the synaptic response to white matter stimulation; (2) in the induction of long-term potentiation (LTP); and (3) in the maintenance of LTP. Bath application of 25 microM of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, caused a slight (< 10%) reduction of the amplitude of the synaptic response elicited by white matter stimulation. The APV-sensitive excitatory postsynaptic potential (EPSP) had a longer peak latency and duration than the APV-resistant EPSP. Bath application of 10 microM of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, revealed a CNQX-resistant EPSP in response to white matter stimulation which was APV-sensitive. The time course of the CNQX-resistant EPSP was similar to that of the APV-sensitive EPSP and its onset latency was similar to that of the synaptic response in normal medium. Bath application of the GABA-A antagonist bicuculline (0.1 to 0.5 microM) led to a progressive enhancement of the amplitude of the APV-sensitive EPSP. At bicuculline concentrations above 0.3 microM the amplitude of this EPSP increased with membrane depolarization as was the case for the CNQX-resistant EPSP implying that the NMDA receptors were located on the recorded neuron. The susceptibility of the cells to undergo LTP was tested at various concentrations of bicuculline. The effectiveness of bicuculline treatment was quantified by comparing the amplitudes of the synaptic response to just subthreshold stimuli at two post-stimulus delays: (i) at 22 ms, which corresponds to the time to peak of both the initial inhibitory postsynaptic potential and the APV-sensitive EPSP; and (ii) at 8 - 11 ms post-stimulus, which corresponds to the peak of the postsynaptic potential (PSP) in normal medium. Bath application of APV, 20 min after the conditioning tetanus, allowed the authors to measure the amplitude of the APV-sensitive EPSP in the potentiated response. In normal medium, the ratio of the late over the early PSP amplitude was 33.6 +/- 4.1% and tetanic stimulation failed to induce LTP. The conditions remained the same at bicuculline concentrations of 0.1 to 0.2 microM. At higher concentrations of bicuculline the amplitude ratio of late versus early PSP increased and tetanic stimulation induced LTP. In cells, in which bicuculline had caused small ratio increases, only the APV-sensitive EPSP underwent LTP. In cells in which bicuculline had caused large ratio changes, both the APV-resistant and the APV-sensitive EPSP showed LTP. Together with the previous finding that blockade of NMDA receptors prevents LTP (Artola and Singer, 1987) these results suggest that there is a threshold for LTP induction, which is only reached if NMDA receptor-gated channels are sufficiently activated. The data indicate further that the NMDA receptor-mediated EPSP is itself susceptible to LTP whereby its LTP threshold is lower than that of the APV-resistant EPSP. Given the different LTP thresholds of the APV-resistant and APV-sensitive EPSPs, the possibility is raised that their potentiation depends on different mechanisms.
Collapse
Affiliation(s)
- A. Artola
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-6000 Frankfurt/M, FRG
| | | |
Collapse
|
34
|
Dutar P, Potier B, Lamour Y, Emson PC, Senut MC. Loss of Calbindin-28K Immunoreactivity in Hippocampal Slices from Aged Rats: a Role for Calcium? Eur J Neurosci 2002; 3:839-849. [PMID: 12106450 DOI: 10.1111/j.1460-9568.1991.tb00095.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Calbindin-28K (CaBP) is a calcium-binding protein widely distributed in the brain. This protein appears to be involved in the sequestration and the translocation of intracellular free calcium. In this study, we have examined the distribution pattern of the structures immunoreactive for CaBP in the hippocampal formation from slices of young (4 months) and aged (24 - 27 months) rats previously submitted to electrophysiological measurements. We demonstrated a marked loss in the number of pyramidal cells immunoreactive for CaBP in aged rats as compared to young rats. A consistent decrease in the staining intensity was also revealed by optical density measurements. Some experiments have suggested that calcium homeostasis is modified in hippocampal neurons of aged rats. The loss of CaBP-like immunoreactivity (CaBP-LI) labelling could result from an increase in intracellular calcium concentrations. To support this hypothesis, we showed that in young rats (i) the CaBP-LI was enhanced in pyramidal neurons when the slice was preincubated in a calcium-free medium, and (ii) CaBP-LI was strongly decreased when the slice was preincubated in a high-calcium medium (5 mM) and when the entry of calcium into the cell was increased by a short application of an excitatory amino acid in the medium. Our results suggest that the loss of CaBP-LI in the hippocampus of aged rats could be due to an increase in intracellular calcium concentration. Preliminary observations of hippocampal slices at different times after induction of long-term potentiation (LTP) failed to show significant changes in CaBP immunoreactivity, suggesting that this calcium-binding protein is not directly involved in LTP processes.
Collapse
Affiliation(s)
- P. Dutar
- Laboratoire de Physiopharmacologie du Système Nerveux, INSERM U 161, 2, rue d'Alésia, 75014 Paris, France
| | | | | | | | | |
Collapse
|
35
|
Abstract
Commonly used inbred murine strains differ substantially in their vulnerability to excitotoxic insults. We investigated whether differences in dendritic Ca(2+) signaling could underlie the differential vulnerability of C57BL/6 (resistant to kainate excitotoxicity) and C57BL/10 strains (vulnerable). A striking difference was found in fine dendrite Ca(2+) responses after kainate exposure. Ca(2+) signals in distal dendrites were large in C57BL/10 neurons, and, if a threshold concentration of approximately 1.5 microm was reached, a region of sustained high Ca(2+) was established in the distal dendritic tree. This region then served as an initiation site for a degenerative cascade, producing high Ca(2+) levels that slowly spread to involve the entire neuron and led to cell death. Dendritic Ca(2+) signals in C57BL/6 neurons were much smaller and did not trigger these propagating secondary responses. Strain differences in dendritic Ca(2+) signaling were also evident after tetanic stimulation of Schaffer collaterals. Ca(2+) responses were much larger and peaked earlier in distal dendrites of C57BL/10 compared with those in C57BL/6. Neurons from both strains had similar membrane properties and responded to kainate with intense action potential firing. Degenerative Ca(2+) responses were seen in both strains if soma Ca(2+) could be sustained above 1.5 microm. The early phases of secondary Ca(2+) responses were attributable to Ca(2+) influx and were abolished rapidly by buffered zero Ca(2+) saline. Taken together, these data indicate that the substantial difference in Ca(2+) signals in fine distal dendrites and in the initiation of spreading secondary responses may underlie the selective vulnerability of these neurons to excitotoxic insults.
Collapse
|
36
|
Limbrick DD, Pal S, DeLorenzo RJ. Hippocampal neurons exhibit both persistent Ca2+ influx and impairment of Ca2+ sequestration/extrusion mechanisms following excitotoxic glutamate exposure. Brain Res 2001; 894:56-67. [PMID: 11245815 DOI: 10.1016/s0006-8993(00)03303-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure of neurons to glutamate is an essential element of neuronal function, producing transient elevations in free intracellular calcium ([Ca2+]i) that are required for normal physiological processes. However, prolonged elevations in [Ca2+]i have been observed following glutamate excitotoxicity and have been implicated in the pathophysiology of delayed neuronal cell death. In the current study, we utilized indo-1 and fura-2ff Ca2+ imaging techniques to determine if glutamate-induced prolonged elevations in [Ca2+]i were due to persistent influx of extracellular Ca2+ or from impairment of neuronal Ca2+ extrusion/sequestration mechanisms. By experimentally removing Ca2+ from the extracellular solution following glutamate exposure, influx of Ca2+ into the neurons was severely attenuated. We observed that brief glutamate exposures (<5 min, 50 microM glutamate) resulted in a Ca2+ influx that continued after the removal of glutamate. The Ca2+ influx was reversible, and the cell was able to effectively restore [Ca2+]i to resting levels. Longer, excitotoxic glutamate exposures (> or = 5 min) generated a Ca2+ influx that continued for the duration of the recording period (>1 h). This persistent Ca2+ influx was not primarily mediated through traditionally recognized Ca2+ channels such as glutamate receptor-operated channels or voltage-gated Ca2+ channels. In addition to the persistent Ca2+ influx, longer glutamate exposures also produced a lasting disruption of Ca2+ extrusion/sequestration mechanisms, impairing the ability of the neuron to restore resting [Ca2+]i. These data suggest that glutamate-induced protracted [Ca2+]i elevations result from at least two independent, simultaneously occurring alterations in neuronal Ca2+ physiology, including a persistent Ca2+ influx and damage to Ca2+ regulation mechanisms.
Collapse
Affiliation(s)
- D D Limbrick
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0599, USA
| | | | | |
Collapse
|
37
|
Yang SS, Cragg GM, Newman DJ, Bader JP. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. JOURNAL OF NATURAL PRODUCTS 2001; 64:265-277. [PMID: 11430019 DOI: 10.1021/np0003995] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During the decade 1987-1996, the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI) provided infrastructure support for both intramural and extramural anti-HIV (human immunodeficiency virus) drug discovery research and development. This retrospective review describes some of the anti-HIV lead discovery and development that took place under DTP auspices or which was substantially facilitated by resources made available through the DTP. Examples highlighted include leads identified through the initial screening of pure natural product derived compounds and those derived from bioassay-guided fractionation of crude natural product extracts, and these are classified according to the mechanism of action targeting the critical steps within the replication cycle of HIV.
Collapse
Affiliation(s)
- S S Yang
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
38
|
Cormier RJ, Greenwood AC, Connor JA. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 2001; 85:399-406. [PMID: 11152740 DOI: 10.1152/jn.2001.85.1.399] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The magnitude of postsynaptic Ca(2+) transients is thought to affect activity-dependent synaptic plasticity associated with learning and memory. Large Ca(2+) transients have been implicated in the induction of long-term potentiation (LTP), while smaller Ca(2+) transients have been associated with long-term depression (LTD). However, a direct relationship has not been demonstrated between Ca(2+) measurements and direction of synaptic plasticity in the same cells, using one induction protocol. Here, we used glutamate iontophoresis to induce Ca(2+) transients in hippocampal CA1 neurons injected with the Ca(2+)-indicator fura-2. Test stimulation of one or two synaptic pathways before and after iontophoresis showed that the direction of synaptic plasticity correlated with glutamate-induced Ca(2+) levels above a threshold, below which no plasticity occurred (approximately 180 nM). Relatively low Ca(2+) levels (180-500 nM) typically led to LTD of synaptic transmission and higher levels (>500 nM) often led to LTP. Failure to show plasticity correlated with Ca(2+) levels in two distinct ranges: <180 nM and approximately 450-600 nM, while only LTD occurred between these ranges. Our data support a class of models in which failure of Ca(2+) transients to affect transmission may arise either from insufficient Ca(2+) to affect Ca(2+)-sensitive proteins regulating synaptic strength through opposing activities or from higher Ca(2+) levels that reset activities of such proteins without affecting the net balance of activities. Our estimates of the threshold Ca(2+) level for LTD (approximately 180 nM) and for the transition from LTD to LTP (approximately 540 nM) may assist in constraining the molecular details of such models.
Collapse
Affiliation(s)
- R J Cormier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | |
Collapse
|
39
|
Semenov DG, Samoilov MO, Zielonka P, Lazarewicz JW. Responses to reversible anoxia of intracellular free and bound Ca(2+) in rat cortical slices. Resuscitation 2000; 44:207-14. [PMID: 10825622 DOI: 10.1016/s0300-9572(00)00136-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe anoxia induces destabilisation of intracellular calcium homeostasis in neurones. The mechanism of this effect, and particularly the interrelationship between changes in intracellular concentration of free Ca(2+) ions and the content of the intracellular Ca(2+) stores, during and after anoxia, is not clear. We used a superfusion system of rat olfactory cortical slices for the fluorimetric estimation of changes in the intracellular concentration of free Ca(2+) ions and in the level of bound Ca(2+), utilising the fluorescent indicators Fura-2 and chlortetracycline, respectively. It was found that 10-min normoglycaemic anoxia results in simultaneous decrease in bound and increase in free Ca(2+) levels, whereas during 60-min reoxygenation, we detected an increase in both indices. The NMDA receptor antagonists MK-801 and APV attenuated changes in free Ca(2+) level during anoxia and reoxygenation and intensified anoxia-evoked decrease in bound Ca(2+) content, whereas a late post-anoxic increase in bound Ca(2+) was abolished. These data suggest that the influx of extracellular Ca(2+) to neurones via NMDA receptors, plays a critical role in the rise of intracellular free Ca(2+) concentration during and after anoxia. Biphasic changes in bound Ca(2+) content during anoxia and reoxygenation may reflect an anoxia-induced release of Ca(2+) from intracellular stores, followed later by a neuronal calcium overload and refilling of intracellular Ca(2+) binding sites.
Collapse
Affiliation(s)
- D G Semenov
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, 199034, St. Petersburg, Russia
| | | | | | | |
Collapse
|
40
|
Connor JA, Cormier RJ. Cumulative effects of glutamate microstimulation on Ca(2+) responses of CA1 hippocampal pyramidal neurons in slice. J Neurophysiol 2000; 83:90-8. [PMID: 10634856 DOI: 10.1152/jn.2000.83.1.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate stimulation of hippocampal CA1 neurons in slice was delivered via iontophoresis from a microelectrode. Five pulses (approximately 5 muA, 10 s duration, repeated at 1 min intervals) were applied with the electrode tip positioned in the stratum radiatum near the dendrites of a neuron filled with the Ca(2+) indicator fura-2. A single stimulus set produced Ca(2+) elevations that ranged from several hundred nM to several microM and that, in all but a few neurons, recovered within 1 min of stimulus termination. Subsequent identical stimulation produced Ca(2+) elevations that outlasted the local glutamate elevations by several minutes as judged by response recoveries in neighboring cells or in other parts of the same neuron. These long responses ultimately recovered but persisted for up to 10 min and were most prominent in the mid and distal dendrites. Recovery was not observed for responses that spread to the soma. The elevated Ca(2+) levels were accompanied by membrane depolarization but did not appear to depend on the depolarization. High-resolution images demonstrated responsive areas that involved only a few mu(m) of dendrite. Our results confirm the previous general findings from isolated and cell culture neurons that glutamate stimulation, if carried beyond a certain range, results in long-lasting Ca(2+) elevation. The response characterized here in mature in situ neurons was significantly different in terms of time course and reversibility. We suggest that the extended Ca(2+) elevations might serve not only as a trigger for delayed neuron death but, where more spatially restricted, as a signal for local remodeling in dendrites.
Collapse
Affiliation(s)
- J A Connor
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
41
|
Abstract
Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
42
|
Kamal A, Ramakers GM, Urban IJ, De Graan PN, Gispen WH. Chemical LTD in the CA1 field of the hippocampus from young and mature rats. Eur J Neurosci 1999; 11:3512-6. [PMID: 10564359 DOI: 10.1046/j.1460-9568.1999.00769.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Within the hippocampal formation, two forms of long-lasting synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), can be induced which require the activation of NMDA receptors. Interestingly, it has been shown that both LTP and LTD are reduced in adult animals. Recently, a new chemical protocol has been described which elicits LTD in the CA1 field of the hippocampus. Application of 20 microM NMDA for 3 min results in a stable and long-lasting decrease in the evoked synaptic responses. We used this protocol to induce LTD in hippocampal slices from young and adult rats and show that this form of LTD is AP5-sensitive and can be blocked by the protein phosphatase inhibitor cyclosporin A in slices from adult animals. In contrast to electrical LTD (induced by prolonged low frequency stimulation), the extent of chemical LTD was not different between the young and adult rats. These findings indicate that the intracellular signal transduction cascades involved in long-lasting synaptic depression are still intact in adult animals.
Collapse
Affiliation(s)
- A Kamal
- Department of Medical Pharmacology, Rudolf Magnus Institute of Neurosciences, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Pozzo-Miller LD, Pivovarova NB, Connor JA, Reese TS, Andrews SB. Correlated measurements of free and total intracellular calcium concentration in central nervous system neurons. Microsc Res Tech 1999; 46:370-9. [PMID: 10504214 DOI: 10.1002/(sici)1097-0029(19990915)46:6<370::aid-jemt5>3.0.co;2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient changes in the intracellular concentration of free calcium ([Ca2+])i) act as a trigger or modulator for a large number of important neuronal processes. Such transients can originate from voltage- or ligand-gated fluxes of Ca2+ into the cytoplasm from the extracellular space, or by ligand- or Ca2+(-)gated release from intracellular stores. Characterizing the sources and spatio-temporal patterns of [Ca2+]i transients is critical for understanding the role of different neuronal compartments in dendritic integration and synaptic plasticity. Optical imaging of fluorescent indicators sensitive to free Ca2+ is especially suited to studying such phenomena because this approach offers simultaneous monitoring of large regions of the dendritic tree in individual living central nervous system neurons. In contrast, energy-dispersive X-ray (EDX) microanalysis provides quantitative information on the amount and location of intracellular total, i.e., free plus bound, calcium (Ca) within specific subcellular dendritic compartments as a function of the activity state of the neuron. When optical measurements of [Ca2+]i transients and parallel EDX measurements of Ca content are used in tandem, and correlated simultaneously with electrophysiological measurements of neuronal activity, the combined information provides a relatively general picture of spatio-temporal neuronal total Ca fluctuations. To illustrate the kinds of information available with this approach, we review here results from our ongoing work aimed at evaluating the role of various Ca uptake, release, sequestration, and extrusion mechanisms in the generation and termination of [Ca2+]i transients in dendrites of pyramidal neurons in hippocampal slices during and after synaptic activity. Our observations support the long-standing speculation that the dendritic endoplasmic reticulum acts not only as an intracellular Ca2+ source that can be mobilized by a signal cascade originating at activated synapses, but also as a major intracellular Ca sink involved in active clearance mechanisms after voltage- and ligand-gated Ca2+ influx.
Collapse
Affiliation(s)
- L D Pozzo-Miller
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
44
|
Kostrzewa RM. Selective neurotoxins, chemical tools to probe the mind: the first thirty years and beyond. Neurotox Res 1999; 1:3-25. [PMID: 12835111 DOI: 10.1007/bf03033336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For centuries, starting with the advent of the microscope, cytotoxins have been known to non-selectively destroy nerves and other tissue cells. However, neurotoxins restricted in effect to one kind of neuron are an invention of the 20th century. One might reasonably trace the origins of this field to 1960 when the Nobel Laureates, R. Levi- Montalcini and S Cohen, showed that an antibody to nerve growth factor effectively prevented development of sympathetic nerves in the absence of overt changes in dorsal root ganglia and other neural and non-neural tissues. The year 1967 marks discovery of 6-hydroxydopamine, the first of dozens of chemically-selective neurotoxins. As stated by the physiologist W.B. Cannon, neural function can be deduced by denoting absence-deficits. A wealth of knowledge in neuroscience has been realized through use of neurotoxins. In the 21st century we foresee neurotoxins for virtually all neurochemically-identifiable or receptor-specific neurons, acting at/via functional proteins or characteristic DNA sites. These tools will provide us with a better means to probe the mind and thereby lead to a fuller understanding of the intricate roles of identifiable neuronal systems in integrative neuroscience.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine and Neuroscience Consortium of Northeast Tennessee, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, USA.
| |
Collapse
|
45
|
L-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci 1999. [PMID: 10414964 DOI: 10.1523/jneurosci.19-15-06348.1999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The second messenger pathways linking receptor activation at the membrane to changes in the nucleus are just beginning to be unraveled in neurons. The work presented here attempts to identify in striatal neurons the pathways that mediate cAMP response element-binding protein (CREB) phosphorylation and gene expression in response to NMDA receptor activation. We investigated the phosphorylation of the transcription factor CREB, the expression of the immediate early gene c-fos, and the induction of a transfected reporter gene under the transcriptional control of CREB after stimulation of ionotropic glutamate receptors. We found that neither AMPA/kainate receptors nor NMDA receptors were able to stimulate independently a second messenger pathway that led to CREB phosphorylation or c-fos gene expression. Instead, we saw a consecutive pathway from AMPA/kainate receptors to NMDA receptors and from NMDA receptors to L-type Ca(2+) channels. AMPA/kainate receptors were involved in relieving the Mg(2+) block of NMDA receptors, and NMDA receptors triggered the opening of L-type Ca(2+) channels. The second messenger pathway that activates CREB phosphorylation and c-fos gene expression is likely activated by Ca(2+) entry through L-type Ca(2+) channels. We conclude that in primary striatal neurons glutamate-mediated signal transduction is dependent on functional L-type Ca(2+) channels.
Collapse
|
46
|
McNamara RK, Wees EA, Lenox RH. Differential subcellular redistribution of protein kinase C isozymes in the rat hippocampus induced by kainic acid. J Neurochem 1999; 72:1735-43. [PMID: 10098884 DOI: 10.1046/j.1471-4159.1999.721735.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase C (PKC) consists of a family of Ca2+/phospholipid-dependent isozymes that has been implicated in the delayed neurotoxic effects of glutamate in vitro. In the present study, we assessed the effect of the glutamate analogue kainic acid (KA) on the subcellular expression of PKC isozymes in the hippocampus (HPC) in the period preceding (0.5, 1.5, 12, and 24 h) and during (120 h) hippocampal necrosis using western blot analysis and PKC isozyme-specific antibodies. Before subcellular fractionation (cytosol + membrane), hippocampi were microdissected into "HPC" (fields CA1-CA3) and "dentate gyrus" (DG; granule cells + hilus) regions. Four general patterns of alterations in PKC isozyme expression/distribution were observed following KA treatment. The first pattern was a relative stability in expression following KA treatment and was most apparent for cytosol PKCalpha (HPC + DG) and membrane (HPC) and cytosol (DG) PKCbetaII. The second pattern, observed with PKCgamma and PKCepsilon, was characterized by an initial increase in expression in both membrane and cytosolic fractions before seizure activity (0.5 h) followed by a gradual decrease until significant reductions are observed by 120 h. The third pattern, exhibited by PKCdelta, involved an apparent translocation, increasing in the membrane and decreasing in the cytosol, followed by down-regulation in both fractions and subsequent recovery. The fourth pattern was observed with PKCzeta only and entailed a significant reduction in expression before and during limbic motor seizures followed by a dramatic fivefold increase in the membrane fraction during the period of hippocampal necrosis (120 h). Although these patterns did not segregate according to conventional PKC isozyme classifications, they do indicate dynamic isozyme-specific regulation by KA. The subcellular redistribution of PKC isozymes may contribute to the histopathological sequelae produced by KA in the hippocampus and may model the pathogenesis associated with diseases involving glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- R K McNamara
- Department of Psychiatry, University of Pennsylvania School of Medicine, Abramson Research Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
47
|
Reynolds IJ. Intracellular calcium and magnesium: critical determinants of excitotoxicity? PROGRESS IN BRAIN RESEARCH 1999; 116:225-43. [PMID: 9932380 DOI: 10.1016/s0079-6123(08)60440-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- I J Reynolds
- Department of Pharmacology, University of Pittsburgh, PA 15261-0001, USA
| |
Collapse
|
48
|
Hayashi T, Su TP, Kagaya A, Nishida A, Shimizu M, Yamawaki S. Neuroleptics with differential affinities at dopamine D2 receptors and sigma receptors affect differently the N-methyl-D-aspartate-induced increase in intracellular calcium concentration: involvement of protein kinase. Synapse 1999; 31:20-8. [PMID: 10025680 DOI: 10.1002/(sici)1098-2396(199901)31:1<20::aid-syn4>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examined the effect of chronic antipsychotic treatment on the NMDA-elicited changes in intracellular free Ca2+ concentration ([Ca2+]i) in the primary culture of rat frontal cortical neurons. Antipsychotics used in the study were chosen for their differential affinities at dopamine D2 receptors and sigma receptors. The potential involvement of protein kinases in this action of antipsychotics were also examined. Chronic treatment of cells with antipsychotics (sulpiride, clozapine, and chlorpromazine) which are known to be potent dopamine D2 receptor ligands, whereas possessing low or no appreciable affinity for sigma receptors, caused a dose-dependent potentiation of the NMDA-induced increase in [Ca2+]i. On the contrary, haloperidol, which is as potent a sigma receptor ligand as a dopamine D2 receptor ligand, did not affect the NMDA-elicited increase in [Ca2+]i. Sulpiride increased the maximum effect afforded by different concentrations of NMDA and shifted the dose-response curve of NMDA to the left (EC50 value from 12.5 microM to 1.39 microM). Consistent with sulpiride's affinity at dopamine D2 receptors, this action of sulpiride was stereoselective: S(-)-sulpiride was active whereas R(+)-sulpiride was inactive. Treatment of cells with dopamine (3 microM) tends to decrease the NMDA-induced increase in [Ca2+]i. Sulpiride at 1 microM totally abolished this action of dopamine and restored its potentiating action on the NMDA-induced increase in [Ca2+]i. Haloperidol, a potent dopamine D2 and sigma receptor ligand, did not affect the sulpiride's potentiating action on the NMDA-induced responses. On the other hand, chronic treatment of cells with a sigma receptor agonist, DTG, at a concentration producing no effect of its own (10 nM), led to an enhancement of the potentiating effect of sulpiride on NMDA-induced increase in [Ca2+]i. This action of DTG was abolished by haloperidol. Further, chronic, but not acute, treatment of cells with either a protein kinase inhibitor H-7 or a cAMP-dependent protein kinase (PKA) inhibitor H-89 abolished this effect of sulpiride on the NMDA-induced [Ca2+]i changes. These results indicate that the action of NMDA in the primary cortical neurons are regulated differently by ligands with differential affinities at dopamine D2 and sigma receptors. The results with protein kinase inhibitors indicate that the potentiation of NMDA responses by sulpiride involves intracellular biochemical events.
Collapse
Affiliation(s)
- T Hayashi
- Cellular Pathobiology Unit, Molecular Neuropsychiatry Section, NIH/NIDA, Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
49
|
Connor JA, Razani-Boroujerdi S, Greenwood AC, Cormier RJ, Petrozzino JJ, Lin RC. Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J Neurophysiol 1999; 81:299-306. [PMID: 9914290 DOI: 10.1152/jn.1999.81.1.299] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An initial overload of intracellular Ca2+ plays a critical role in the delayed death of hippocampal CA1 neurons that die a few days after transient ischemia. Without direct evidence, the prevailing hypothesis has been that Ca2+ overload may recur until cell death. Here, we report the first measurements of intracellular Ca2+ in living CA1 neurons within brain slices prepared 1, 2, and 3 days after transient (5 min) ischemia. With no sign of ongoing Ca2+ overload, voltage-dependent Ca2+ transients were actually reduced after 2-3 days of reperfusion. Resting Ca2+ levels and recovery rate after loading were similar to neurons receiving no ischemic insult. The tetrodotoxin-insensitive Ca spike, normally generated by these neurons, was absent at 2 days postischemia, as was a large fraction of Ca2+-dependent spike train adaptation. These surprising findings may lead to a new perspective on delayed neuronal death and intervention.
Collapse
Affiliation(s)
- J A Connor
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hyrc KL, Bownik JM, Goldberg MP. Neuronal free calcium measurement using BTC/AM, a low affinity calcium indicator. Cell Calcium 1998; 24:165-75. [PMID: 9883271 DOI: 10.1016/s0143-4160(98)90126-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BTC is a low affinity calcium indicator (Kd approximately 7-26 microM) featuring many desirable properties for cellular calcium imaging, including long excitation wavelengths (400/485 nm), low sensitivity to Mg2+, and accuracy of ratiometric measurement [Iatridou H., Foukaraki E., Kuhn M.A., Marcus E.M., Haugland R.P., Katerinopoulos H.E. The development of a new family of intracellular calcium probes. Cell Calcium 1994; 15: 190-198]. To assess the usefulness of this indicator in cultured neurons, we examined properties of BTC and its acetoxymethyl ester, BTC/AM. BTC/AM had substantial calcium-independent fluorescence at all excitation wavelengths. BTC/AM was readily loaded into neurons and was rapidly hydrolysed. There was little dye compartmentalization, as assessed by digitonin lysis, Co2+ quenching of BTC fluorescence and by confocal microscopy. Despite adequate loading, BTC gradually became unresponsive to [Ca2+]i when cultures were examined under routine imaging conditions. This effect was a function of the cumulative fluorescence illumination and could be minimized by attenuating light intensity or duration. Ratio imaging after exposure of neuronal cultures to 1-50 microM ionomycin revealed distinct sensitivity ranges for BTC and Fura-2. BTC reported graded neuronal [Ca2+]i responses to glutamate receptor stimulation with N-methyl-D-aspartate in the range 10-50 microM, whereas Fura-2 did not distinguish between these stimuli. Under appropriate loading and illumination conditions, bath-loaded BTC/AM may be well suited for measurement of moderate to high calcium concentrations in cultured neurons.
Collapse
Affiliation(s)
- K L Hyrc
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|