1
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Chen Y, Yang S, Zeng W, Zheng X, Wang P, Fu H, Yang F. Salicylic acid inducing the expression of maize anti-insect gene SPI: a potential control strategy for Ostrinia furnacalis. BMC PLANT BIOLOGY 2024; 24:152. [PMID: 38418954 PMCID: PMC10902998 DOI: 10.1186/s12870-024-04855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Due to being rooted in the ground, maize (Zea mays L.) is unable to actively escape the attacks of herbivorous insects such as the Asian corn borer (Ostrinia furnacalis). In contrast to the passive damage, plants have evolved defense mechanisms to protect themselves from herbivores. Salicylic acid, a widely present endogenous hormone in plants, has been found to play an important role in inducing plant resistance to insects. In this study, we screened and identified the insect resistance gene SPI, which is simultaneously induced by SA and O. furnacalis feeding, through preliminary transcriptome data analysis. The functional validation of SPI was carried out using bioinformatics, RT-qPCR, and heterologous expression protein feeding assays. RESULTS Both SA and O. furnacalis treatment increased the expression abundance of SA-synthesis pathway genes and SPI in three maize strains, and the upregulation of SPI was observed strongly at 6 hours post-treatment. The expression of SPI showed a temporal relationship with SA pathway genes, indicating that SPI is a downstream defense gene regulated by SA. Protein feeding assays using two different expression vectors demonstrated that the variation in SPI protein activity among different strains is mainly due to protein modifications. CONCLUSIONS Our research results indicate that SPI, as a downstream defense gene regulated by SA, is induced by SA and participates in maize's insect resistance. The differential expression levels of SPI gene and protein modifications among different maize strains are one of the reasons for the variation in insect resistance. This study provides new insights into ecological pest control in maize and valuable insights into plant responses to SA-induced insect resistance.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Siyuan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of economies and management, Beijing University of chemical technology, Beijing, 100029, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
4
|
Yajnik KN, Gupta SRR, Taneja M, Singh IK, Singh A. Deciphering mitogen activated protein kinase pathway activated during insect attack in Nicotiana attenuata. J Biomol Struct Dyn 2023; 42:11586-11602. [PMID: 37811559 DOI: 10.1080/07391102.2023.2263795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Plant yields are compromised due to abiotic and biotic stresses. A crucial biotic stress instigated by insect attack, is a major concern that limits crop production. To overcome the deleterious effect of herbivory, pesticides are used but long-term usage of pesticides can be harmful to the environment and human health. Understanding the plants' inherent defense mechanism by interpreting the interaction pattern of defense-related proteins and signalling components and manipulating them to strengthen defense status, is one of the alternative approaches of green biotechnology. During insect attack, host plants initiate innumerable signalling pathways to activate defense response; Mitogen Activated Protein Kinase (MAPK) Pathway is a crucial component of signalling pathway that regulate the expression of downstream defense-related genes. MAPK pathway has three components: MAPKKK, MAPKK and MAPK. Earlier studies have shown participation of SIPK and WIPK (MAPKs) as well as MEK2 (MAPKK) during insect infestation and its association with plant defense. However, information on the third component and elucidation of the complete MAPK pathway are still elusive. Therefore, this study aims to identify the unknown component and decipher MAPK pathway in Nicotiana attenuata involved in plant defense against herbivory by identifying herbivory-inducible MAPKKKs and and their interaction with known partners of the MAPK pathway by docking and MD simulation. The possible pathway was predicted to be MAPKKK Na12134/Na04522-MEK2-SIPK/WIPK. Further, validation of the above interaction by in vitro and in vivo methods is highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kalpesh Nath Yajnik
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shradheya R R Gupta
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Mansi Taneja
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Gattoni KM, Park SW, Lawrence KS. Evaluation of the mechanism of action of Bacillus spp. to manage Meloidogyne incognita with split root assay, RT-qPCR and qPCR. FRONTIERS IN PLANT SCIENCE 2023; 13:1079109. [PMID: 36743572 PMCID: PMC9895862 DOI: 10.3389/fpls.2022.1079109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
The goal of this research is to determine the mechanism of action of two Bacillus spp. that can manage Meloidogyne incognita population density in cotton. The overall objectives are 1) determine the efficacy and direct antagonistic capabilities of the Bacillus spp. and 2) determine the systemic capabilities of the Bacillus spp. The greenhouse in planta assay indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could manage M. incognita similarly to the chemical standard fluopyram. An in vitro assay determined that B. firmus I-1582 and its extracted metabolites were able to directly manage M. incognita second stage juveniles by increasing mortality rate above 75%. A split root assay, used to determine systemic capabilities of the bacteria, indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could indirectly decrease the nematode population density. Another species, B. mojavensis strain 2, also demonstrated systemic capabilities but was not a successful biological control agent because it supported a high population density in greenhouse in planta assay and in the split root assay. A RT-qPCR assay was used to confirm any systemic activity observed in the split root assay. At 24 hours both B. amyloliquefaciens QST713 and B. firmus I-1582 upregulated one gene involved in the initial stages of JA synthesis pathway but not another gene involved in the later stages of JA synthesis. These results point to a JA intermediate molecule, most likely OPDA, stimulated by the bacteria rather than JA in a short-term systemic response. After 1 week, the Bacillus spp. stimulated a SA-responsive defense related gene. The long-term systemic response to the Bacillus spp. indicates salicylic acid also plays a role in defense conferred by these bacteria. The final assay was a qPCR to determine the concentration of the bacteria on the cotton roots after 24 days. Bacillus amyloliquefaciens QST713 and B. firmus I-43 1582 were able to colonize the root successfully, with the concentration after 24 days not significantly differing from the concentration at inoculation. This study identifies two bacteria that work via systemic resistance and will help aid in implementing these species in an integrated management system.
Collapse
|
6
|
Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int J Mol Sci 2023; 24:ijms24010847. [PMID: 36614284 PMCID: PMC9821543 DOI: 10.3390/ijms24010847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.
Collapse
|
7
|
Li X, Zhang J, Lin S, Xing Y, Zhang X, Ye M, Chang Y, Guo H, Sun X. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. PLANT, CELL & ENVIRONMENT 2022; 45:496-511. [PMID: 34719788 DOI: 10.1111/pce.14216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is an economically important, perennial woody plant rich in catechins. Although catechins have been reported to play an important role in plant defences against microbes, their roles in the defence of tea plants against herbivores remain unknown. In this study, we allowed the larvae of Ectropis grisescens, a leaf-feeding pest, to feed on the plants, and alternatively, we wounded the plants and then treated them with E. grisescens oral secretions (WOS). Both approaches triggered jasmonic acid-, ethylene- and auxin-mediated signalling pathways; as a result, plants accumulated three catechin compounds: (+)-catechin, epicatechin and epigallocatechin. Not only was the mass of E. grisescens larvae fed on plants previously infested with E. grisescens or treated with WOS significantly lower than that of larvae fed on controls, but also artificial diet supplemented with epicatechin, (+)-catechin or epigallocatechin gallate reduced larval growth rates. In addition, the exogenous application of jasmonic acid, ethylene or auxin induced the biosynthesis of the three catechins, which, in turn, enhanced the resistance of tea plants to E. grisescens, leading to the coordination of the three signalling pathways. Our results suggest that the three catechins play an important role in the defences of tea plants against E. grisescens.
Collapse
Affiliation(s)
- Xiwang Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Songbo Lin
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuxian Xing
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yali Chang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huawei Guo
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaoling Sun
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
8
|
Xu Y, Shang K, Wang C, Yu Z, Zhao X, Song Y, Meng F, Zhu C. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. PLANT CELL REPORTS 2022; 41:249-261. [PMID: 34697685 DOI: 10.1007/s00299-021-02808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, People's Republic of China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xuechen Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
10
|
Kataria R, Duhan N, Kaundal R. Computational Systems Biology of Alfalfa - Bacterial Blight Host-Pathogen Interactions: Uncovering the Complex Molecular Networks for Developing Durable Disease Resistant Crop. FRONTIERS IN PLANT SCIENCE 2021; 12:807354. [PMID: 35251063 PMCID: PMC8891223 DOI: 10.3389/fpls.2021.807354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Medicago sativa (also known as alfalfa), a forage legume, is widely cultivated due to its high yield and high-value hay crop production. Infectious diseases are a major threat to the crops, owing to huge economic losses to the agriculture industry, worldwide. The protein-protein interactions (PPIs) between the pathogens and their hosts play a critical role in understanding the molecular basis of pathogenesis. Pseudomonas syringae pv. syringae ALF3 suppresses the plant's innate immune response by secreting type III effector proteins into the host cell, causing bacterial stem blight in alfalfa. The alfalfa-P. syringae system has little information available for PPIs. Thus, to understand the infection mechanism, we elucidated the genome-scale host-pathogen interactions (HPIs) between alfalfa and P. syringae using two computational approaches: interolog-based and domain-based method. A total of ∼14 M putative PPIs were predicted between 50,629 alfalfa proteins and 2,932 P. syringae proteins by combining these approaches. Additionally, ∼0.7 M consensus PPIs were also predicted. The functional analysis revealed that P. syringae proteins are highly involved in nucleotide binding activity (GO:0000166), intracellular organelle (GO:0043229), and translation (GO:0006412) while alfalfa proteins are involved in cellular response to chemical stimulus (GO:0070887), oxidoreductase activity (GO:0016614), and Golgi apparatus (GO:0005794). According to subcellular localization predictions, most of the pathogen proteins targeted host proteins within the cytoplasm and nucleus. In addition, we discovered a slew of new virulence effectors in the predicted HPIs. The current research describes an integrated approach for deciphering genome-scale host-pathogen PPIs between alfalfa and P. syringae, allowing the researchers to better understand the pathogen's infection mechanism and develop pathogen-resistant lines.
Collapse
Affiliation(s)
- Raghav Kataria
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Naveen Duhan
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated Biosystems, Utah State University, Logan, UT, United States
- Department of Computer Science, College of Science, Utah State University, Logan, UT, United States
- *Correspondence: Rakesh Kaundal, ;
| |
Collapse
|
11
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
12
|
Kiba A, Nakano M, Hosokawa M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5027-5038. [PMID: 32412590 PMCID: PMC7410187 DOI: 10.1093/jxb/eraa233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 7549–1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| | - Miki Hosokawa
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
13
|
Avni A, Golan Y, Shirron N, Shamai Y, Golumbic Y, Danin-Poleg Y, Gepstein S. From Survival to Productivity Mode: Cytokinins Allow Avoiding the Avoidance Strategy Under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:879. [PMID: 32714345 PMCID: PMC7343901 DOI: 10.3389/fpls.2020.00879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Growth retardation and stress-induced premature plant senescence are accompanied by a severe yield reduction and raise a major agro-economic concern. To improve biomass and yield in agricultural crops under mild stress conditions, the survival must be changed to productivity mode. Our previous successful attempts to delay premature senescence and growth inhibition under abiotic stress conditions by autoregulation of cytokinins (CKs) levels constitute a generic technology toward the development of highly productive plants. Since this technology is based on the induction of CKs synthesis during the age-dependent senescence phase by a senescence-specific promoter (SARK), which is not necessarily regulated by abiotic stress conditions, we developed autoregulating transgenic plants expressing the IPT gene specifically under abiotic stress conditions. The Arabidopsis promoter of the stress-induced metallothionein gene (AtMT) was isolated, fused to the IPT gene and transformed into tobacco plants. The MT:IPT transgenic tobacco plants displayed comparable elevated biomass productivity and maintained growth under drought conditions. To decipher the role and the molecular mechanisms of CKs in reverting the survival transcriptional program to a sustainable plant growth program, we performed gene expression analysis of candidate stress-related genes and found unexpectedly clear downregulation in the CK-overproducing plants. We also investigated kinase activity after applying exogenous CKs to tobacco cell suspensions that were grown in salinity stress. In-gel kinase activity analysis demonstrated CK-dependent deactivation of several stress-related kinases including two of the MAPK components, SIPK and WIPK and the NtOSAK, a member of SnRK2 kinase family, a key component of the ABA signaling cascade. A comprehensive phosphoproteomics analysis of tobacco cells, treated with exogenous CKs under salinity-stress conditions indicated that >50% of the identified phosphoproteins involved in stress responses were dephosphorylated by CKs. We hypothesize that upregulation of CK levels under stress conditions desensitize stress signaling cues through deactivation of kinases that are normally activated under stress conditions. CK-dependent desensitization of environmental stimuli is suggested to attenuate various pathways of the avoidance syndrome including the characteristic growth arrest and the premature senescence while allowing normal growth and metabolic maintenance.
Collapse
Affiliation(s)
- Avishai Avni
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Golan
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Natali Shirron
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yeela Shamai
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yaela Golumbic
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yael Danin-Poleg
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shimon Gepstein
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- Kinneret Academic College, Sea of Galilee, Israel
| |
Collapse
|
14
|
Matsui H, Iwakawa H, Hyon GS, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H. Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort-Fungus Interactions. PLANT & CELL PHYSIOLOGY 2020; 61:265-275. [PMID: 31560390 DOI: 10.1093/pcp/pcz187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 05/16/2023]
Abstract
The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.
Collapse
Affiliation(s)
- Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gang-Su Hyon
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Izumi Yotsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano, 399-4598 Japan
| | - Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Rainer Franzen
- Central Microscopy, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
15
|
Lin Y, Li W, Zhang Y, Xia C, Liu Y, Wang C, Xu R, Zhang L. Identification of Genes/Proteins Related to Submergence Tolerance by Transcriptome and Proteome Analyses in Soybean. Sci Rep 2019; 9:14688. [PMID: 31604973 PMCID: PMC6789146 DOI: 10.1038/s41598-019-50757-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Flooding can lead to yield reduction of soybean. Therefore, identification of flooding tolerance genes has great significance in production practice. In this study, Qihuang 34, a highly-resistant variety to flooding stress, was selected for submergence treatments. Transcriptome and proteome analyses were conducted, by which twenty-two up-regulated differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with five KEGG pathways were isolated. The number of the DEGs/DEPs enriched in glycolysis/gluconeogenesis was the highest. Four of these genes were confirmed by RT-qPCR, suggesting that glycolysis/gluconeogenesis may be activated to generate energy for plant survival under anaerobic conditions. Thirty-eight down-regulated DEGs/DEPs associated with six KEGG pathways were identified under submergence stress. Eight DEGs/DEPs enriched in phenylpropanoid biosynthesis were assigned to peroxidase, which catalyzes the conversion of coumaryl alcohol to hydroxy-phenyl lignin in the final step of lignin biosynthesis. Three of these genes were confirmed by RT-qPCR. The decreased expression of these genes led to the inhibition of lignin biosynthesis, which may be the cause of plant softening under submergence stress for a long period of time. This study revealed a number of up-/down-regulated pathways and the corresponding DEGs/DEPs, by which, a better understanding of the mechanisms of submergence tolerance in soybean may be achieved.
Collapse
Affiliation(s)
- Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changjian Xia
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
16
|
Lin HH, King YC, Li YC, Lin CC, Chen YC, Lin JS, Jeng ST. The p38-like MAP kinase modulated H 2O 2 accumulation in wounding signaling pathways of sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:305-313. [PMID: 30824008 DOI: 10.1016/j.plantsci.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
In sweet potato (Ipomoea batatas cv Tainung 57), MAPK cascades are involved in the regulation of Ipomoelin (IPO) expression upon wounding. p38 MAPK plays an important role in plant's responses to various environmental stresses. However, the role of p38-like MAPK in wounding response is still unknown. In this study, the levels of phosphorylated-p38-like MAPK (pp38-like MAPK) in sweet potato were noticeably reduced after wounding. In addition, SB203580 (SB), a specific inhibitor blocking p38 MAPK phosphorylation, considerably decreased the accumulation of pp38-like MAPK. Expression of a wound-inducible gene IPO was elevated by SB. Moreover, it stimulated hydrogen peroxide (H2O2) production rather than cytosolic Ca2+ elevation in sweet potato leaves. However, NADPH oxidase (NOX) inhibitor diphenyleneiodonium could not inhibit IPO induction stimulated by SB. These results indicated a p38-like MAPK mechanism was involved in the regulation of IPO expression through NOX-independent H2O2 generation. In addition, the presence of the protein phosphatase inhibitor okadaic acid or the MEK1/ERK inhibitor PD98059 repressed the H2O2- or SB-induced IPO expression, demonstrating phosphatase(s) and MEK1/ERK functioning in the downstream of H2O2 and pp38-like MAPK in the signal transduction pathway stimulating IPO. Conclusively, wounding decreased the amount of pp38-like MAPK, stimulated H2O2 production, and then induced IPO expression.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Department of life sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
17
|
Thulasi Devendrakumar K, Li X, Zhang Y. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci 2018; 75:2981-2989. [PMID: 29789867 PMCID: PMC11105241 DOI: 10.1007/s00018-018-2839-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/29/2022]
Abstract
In plants, mitogen-activated protein kinase (MAPK) cascades are involved in regulating many biological processes including immunity. They relay signals from membrane-residing immune receptors to downstream components for defense activation. Arabidopsis MPK3/6 and MPK4 are activated in two parallel MAPK cascades during PAMP-triggered immunity. MPK3/6 have been implicated in the activation of various immune responses and their inactivation leads to compromised defense against pathogens. On the other hand, the MEKK1-MKK1/2-MPK4 cascade plays critical roles in basal resistance. Disruption of this MAPK cascade results in constitutive defense responses mediated by the NB-LRR protein SUMM2. Interestingly, SUMM2 guards the MEKK1-MKK1/2-MPK4 cascade activity indirectly through monitoring the phosphorylation status of CRCK3, which is a substrate of MPK4. From the pathogens' side, a number of effectors are shown to target various components of MAPK cascades in plants. Inactivation of MPK4 by the Pseudomonas effector HopAI1 triggers SUMM2-mediated immunity. Together, these findings suggest intricate interplays between PAMP-triggered immunity and effector-triggered immunity via MAPK signaling.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
18
|
Kishi-Kaboshi M, Seo S, Takahashi A, Hirochika H. The MAMP-Responsive MYB Transcription Factors MYB30, MYB55 and MYB110 Activate the HCAA Synthesis Pathway and Enhance Immunity in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:903-915. [PMID: 29562362 DOI: 10.1093/pcp/pcy062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 05/28/2023]
Abstract
Phenylpropanoids, including diverse compounds, such as monolignols and hydroxycinnamic acids (HCAAs), are essential for land plants to protect them against abiotic stresses, and create physical and chemical barriers to pathogen infection. However, the control of production of these compounds in response to pathogens has been poorly understood. Previously we showed that a MAMP- (microbe-associated molecular pattern) responsive MAPK (mitogen-activated protein kinase) cascade (MKK4-MPK3/MPK6) comprehensively induced the expression of cinnamate/monolignol synthesis genes in rice cells. Here, we identified three MYB proteins, MYB30, MYB55 and MYB110, which are transcriptionally induced by MAMP treatment, MAPK activation and pathogen inoculation. Induced expression of these MYB genes systematically and specifically induced a large part of the genes encoding enzymes in the cinnamate/monolignol pathway. Furthermore, induced expression of the MYB genes caused accumulation of ferulic acid, one of the HCAAs, and enhanced resistance to both fungal and bacterial pathogens in planta. In conclusion, MYB30, MYB55 and MYB110 are involved in the signal pathway between MAMP perception and cinnamate/monolignol synthesis, and have important roles for plant immunity.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shigemi Seo
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akira Takahashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
19
|
Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, Nakagami H, Takahashi A, Arai R, Katou S. Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Biosci Rep 2018; 38:BSR20171457. [PMID: 29436485 PMCID: PMC5843753 DOI: 10.1042/bsr20171457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022] Open
Abstract
Isochorismate synthase (ICS) converts chorismate into isochorismate, a precursor of primary and secondary metabolites including salicylic acid (SA). SA plays important roles in responses to stress conditions in plants. Many studies have suggested that the function of plant ICSs is regulated at the transcriptional level. In Arabidopsis thaliana, the expression of AtICS1 is induced by stress conditions in parallel with SA synthesis, and AtICS1 is required for SA synthesis. In contrast, the expression of NtICS is not induced when SA synthesis is activated in tobacco, and it is unlikely to be involved in SA synthesis. Studies on the biochemical properties of plant ICSs are limited, compared with those on transcriptional regulation. We analyzed the biochemical properties of four plant ICSs: AtICS1, NtICS, NbICS from Nicotiana benthamiana, and OsICS from rice. Multiple sequence alignment analysis revealed that their primary structures were well conserved, and predicted key residues for ICS activity were almost completely conserved. However, AtICS1 showed much higher activity than the other ICSs when expressed in Escherichia coli and N. benthamiana leaves. Moreover, the levels of AtICS1 protein expression in N. benthamiana leaves were higher than the other ICSs. Construction and analysis of chimeras between AtICS1 and OsICS revealed that the putative chloroplast transit peptides (TPs) significantly affected the levels of protein accumulation in N. benthamiana leaves. Chimeric and point-mutation analyses revealed that Thr531, Ser537, and Ile550 of AtICS1 are essential for its high activity. These distinct biochemical properties of plant ICSs may suggest different roles in their respective plant species.
Collapse
Affiliation(s)
- Shohei Yokoo
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Seiya Inoue
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Nana Suzuki
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Naho Amakawa
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa 230-0045, Japan
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa 230-0045, Japan
- Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Akira Takahashi
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8602, Japan
| | - Ryoichi Arai
- Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| |
Collapse
|
20
|
Kiba A, Nakano M, Ohnishi K, Hikichi Y. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:212-218. [PMID: 29475087 DOI: 10.1016/j.plaphy.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
We previously revealed that the SEC14 phospholipid transfer protein from Nicotiana benthamiana (NbSEC14) has a role in plant immune responses against phytopathogenic bacteria in a hypersensitive response-independent manner. To characterize the role of NbSEC14 on plant immunity, we analyzed the relationship between NbSEC14 and pathogen-associated molecular pattern-triggered immunity (PTI). NbSEC14-silenced plants exhibited down-regulated expression of PTI marker genes (NbAcre31 and NbPti5) after being inoculated with Pseudomonas syringae pv. tabaci. Additionally, we observed accelerated bacterial growth and inhibited expression of PTI marker genes in NbSEC14-silenced plants infected with the hrp-deficient P. syringae pv. tabaci mutant. We used Pseudomonas fluorescens and flg22 as PTI inducers to further examine the association between NbSEC14 and the induction of PTI. The expression of PTI marker genes was compromised in NbSEC14-silenced plants infiltrated with P. fluorescens and flg22. Meanwhile, a cell death-based PTI assay indicated NbSEC14 was required for PTI. Furthermore, callose deposition and disease resistance induced by flg22 were compromised in NbSEC14-silenced plants. These results suggest that NbSEC14 may help regulate the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan; Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
21
|
Jablonická V, Ziegler J, Vatehová Z, Lišková D, Heilmann I, Obložinský M, Heilmann M. Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:1-8. [PMID: 29433083 DOI: 10.1016/j.jplph.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are important secondary plant metabolites and include medicinally relevant drugs, such as morphine or codeine. As the de novo synthesis of BIA backbones is (still) unfeasible, to date the opium poppy plant Papaver somniferum L. represents the main source of BIAs. The formation of BIAs is induced in poppy plants by stress conditions, such as wounding or salt treatment; however, the details about regulatory processes controlling BIA formation in opium poppy are not well studied. Environmental stresses, such as wounding or salinization, are transduced in plants by phospholipid-based signaling pathways, which involve different classes of phospholipases. Here we investigate whether pharmacological inhibition of phospholipase A2 (PLA2, inhibited by aristolochic acid (AA)) or phospholipase D (PLD; inhibited by 5-fluoro-2-indolyl des-chlorohalopemide (FIPI)) in poppy plants influences wound-induced BIA accumulation and the expression of key biosynthetic genes. We show that inhibition of PLA2 results in increased morphinan biosynthesis concomitant with reduced production of BIAs of the papaverine branch, whereas inhibition of PLD results in increased production of BIAs of the noscapine branch. The data suggest that phospholipid-dependent signaling pathways contribute to the activation of morphine biosynthesis at the expense of the production of other BIAs in poppy plants. A better understanding of the effectors and the principles of regulation of alkaloid biosynthesis might be the basis for the future genetic modification of opium poppy to optimize BIA production.
Collapse
Affiliation(s)
- Veronika Jablonická
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str.3, D-06120 Halle (Saale), Germany; Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Zuzana Vatehová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Desana Lišková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str.3, D-06120 Halle (Saale), Germany
| | - Marek Obložinský
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str.3, D-06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:8-16. [PMID: 29177423 PMCID: PMC6012717 DOI: 10.1093/pcp/pcx181] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/16/2017] [Indexed: 05/18/2023]
Abstract
The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity.
Collapse
Affiliation(s)
- Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibarakim, Japan
- Corresponding author: E-mail, ; Fax, +81-29-853-6110
| | - Shinpei Katou
- Institute of Agriculture, Academic Assembly, Shinshu University, 8304, Minamiminowa, Nagano, Japan
| | - Yumiko Takebayashi
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi-ku, Yokohama, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi-ku, Yokohama, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibarakim, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
24
|
Cacas J, Pré M, Pizot M, Cissoko M, Diedhiou I, Jalloul A, Doumas P, Nicole M, Champion A. GhERF-IIb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. MOLECULAR PLANT PATHOLOGY 2017; 18:825-836. [PMID: 27291786 PMCID: PMC6638235 DOI: 10.1111/mpp.12445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/29/2023]
Abstract
The phytohormone jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates, regulate many developmental processes, but are also involved in the response to numerous abiotic/biotic stresses. Thus far, powerful reverse genetic strategies employing perception, signalling or biosynthesis mutants have broadly contributed to our understanding of the role of JA in the plant stress response and development, as has the chemical gain-of-function approach based on exogenous application of the hormone. However, there is currently no method that allows for tightly controlled JA production in planta. By investigating the control of the JA synthesis pathway in bacteria-infected cotton (Gossypium hirsutum L.) plants, we identified a transcription factor (TF), named GhERF-IIb3, which acts as a positive regulator of the JA pathway. Expression of this well-conserved TF in cotton leaves was sufficient to produce in situ JA accumulation at physiological concentrations associated with an enhanced cotton defence response to bacterial infection.
Collapse
Affiliation(s)
- Jean‐Luc Cacas
- Institut Jean‐Pierre Bourgin, UMR1318 INRA‐AgroParisTech Centre INRA de Versailles‐GrignonRoute de St. Cyr78026Versailles CedexFrance
| | - Martial Pré
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Maxime Pizot
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Maimouna Cissoko
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| | - Issa Diedhiou
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| | - Aida Jalloul
- Department of Plant Protection, Faculty of AgronomyUniversity of DamascusDamascusBox 113Syria
| | - Patrick Doumas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Biochimie et Physiologie Moléculaire des PlantesMontpellier34060France
| | - Michel Nicole
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Antony Champion
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| |
Collapse
|
25
|
Gu SH, Chen CH. Injury-induced rapid activation of MAPK signaling in dechorionated eggs and larvae of the silkworm Bombyx mori. INSECT SCIENCE 2017; 24:248-258. [PMID: 26619971 DOI: 10.1111/1744-7917.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Previous study showed that diapause in Bombyx mori eggs can be terminated by dechorionation and that activation in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) in dechorionated cultured eggs is involved in diapause termination. In the present study, the possible mechanism underlying activation of ERK upon dechorionation was further investigated. Results showed that mechanical injury of diapause eggs without medium incubation also resulted in rapid increase in the phospho-ERK levels and that injury increased the phospho-ERK levels at different stages of both diapause eggs and eggs in which diapause initiation was prevented by HCl. Effects of anaerobiosis on dechorionation-stimulated phospho-ERK levels showed that the mechanical injury itself but not the dramatic increase in oxygen uptake upon injury is involved in a rapid activation of ERK. Chemical anaerobiosis on dechorionation-stimulated phospho-ERK levels and the in vivo effect of anaerobiosis showed that the supply of oxygen also plays a role in ERK signaling. In addition, injury induced the phosphorylation of c-jun N-terminal kinases (JNKs) and p38 kinase, components of two parallel MAPK pathways. A kinase assay showed a dramatic increase in JNK kinase activity in egg lysates upon injury. When newly hatched first instar larvae were injured, an increase in the phospho-ERK levels similar to that in dechorionated eggs was observed. From the results, we hypothesize that the injury-induced rapid activation of MAPK signaling, which serves as a natural signal for embryonic development, is related to diapause termination in dechorionated eggs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, China
| | | |
Collapse
|
26
|
Rawat S, Ali S, Mittra B, Grover A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. ACTA ACUST UNITED AC 2017; 13:72-79. [PMID: 28352565 PMCID: PMC5361129 DOI: 10.1016/j.btre.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
Abstract
Expression of chitinase gene was studied by RT-PCR in response to Alternaria brassicae. Chitinase gene is induced by Alternaria, wounding and by JA and not by SA. It shows the tissue specificity of the gene. Pathogen-inducible 2.5 kb chitinase class IV promoter was isolated from B. juncea by Genome Walking. Induction pattern of chitinase gene is also reflected in promoter validation studied in transgenic Arabidopsis leaf. This will help in using this promoter discretely in developing fungus resistant transgenic plants.
Chitinases are the hydrolytic enzymes which belong to the pathogenesis-related (PR) protein family and play an important role not only in plant defense but also in various abiotic stresses. However, only a limited number of chitinase genes have been characterised in B. juncea. In this study, we have characterised B. juncea class IV chitinase gene (accession no EF586206) in response to fungal infection, salicylic acid (SA), jasmonic acid (JA) treatments and wounding. Gene expression studies revealed that the transcript levels of Bjchitinase (BjChp) gene increases significantly both in local and distal tissues after Alternaria infection. Bjchitinase gene was also induced by jasmonic acid and wounding but moderately by salicylic acid. A 2.5 kb class IV chitinase promoter of this gene was isolated from B. juncea by Genome walking (accession no KF055403.1). In-silico analysis of this promoter revealed a number of conserved cis-regulatory elements related to defense, wounding and signalling molecules like SA, and JA. For validation, chitinase promoter was fused to the GUS gene, and the resultant construct was then introduced into Arabidopsis plants. Histochemical analysis of T2 transgenic Arabidopsis plants showed that higher GUS activity in leaves after fungal infection, wounding and JA treatment but weakly by SA. GUS activity was seen in meristematic tissues, young leaves, seeds and siliques. Finally investigation has led to the identification of a pathogen-inducible, developmentally regulated and organ-specific promoter. Present study revealed that Bjchitinase (BjChp) promoter is induced during biotic and environmental stress and it can be used in developing finely tuned transgenics.
Collapse
Affiliation(s)
- Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bhabatosh Mittra
- Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
27
|
Wu P, Wang W, Li Y, Hou X. Divergent evolutionary patterns of the MAPK cascade genes in Brassica rapa and plant phylogenetics. HORTICULTURE RESEARCH 2017; 4:17079. [PMID: 29285397 PMCID: PMC5744264 DOI: 10.1038/hortres.2017.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade signal transduction modules play crucial roles in regulating many biological processes in plants. These cascades are composed of three classes of hierarchically organized protein kinases, MAPKKKs, MAPKKs and MAPKs. Here, we analyzed gene retention, phylogenetic, evolution and expression patterns of MAPK cascade genes in Brassica rapa. We further found that the MAPK branches, classes III and IV, appeared after the split of bryophytes and green algae after analyzing the MAPK cascade genes in 8 species, and their rapid expansion led to the great size of the families of MAPKs. In contrast, the ancestral class I subfamily of MAPKK gene families have been highly conserved from algae to angiosperms. For the MAPKKK family, the MEKK and Raf subfamily share a common evolutionary origin, and Raf plays a major role in the expansion of the MAPKKK gene family. The cis-elements and interaction network analyses showed the important function of MAPK cascade genes in development and stress responses in B. rapa. This study provides a solid foundation for molecular evolution analyses of MAPK cascade genes.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| |
Collapse
|
28
|
Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding. PLoS Genet 2016; 12:e1006397. [PMID: 27780204 PMCID: PMC5079590 DOI: 10.1371/journal.pgen.1006397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Kuo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
30
|
Adachi H, Ishihama N, Nakano T, Yoshioka M, Yoshioka H. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea. PLANT SIGNALING & BEHAVIOR 2016; 11:e1183085. [PMID: 27191816 PMCID: PMC4973789 DOI: 10.1080/15592324.2016.1183085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 05/03/2023]
Abstract
MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.
Collapse
Affiliation(s)
- Hiroaki Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Takaaki Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
31
|
Kamatham S, Neela KB, Pasupulati AK, Pallu R, Singh SS, Gudipalli P. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis. PHYTOCHEMISTRY 2016; 126:11-22. [PMID: 26988727 DOI: 10.1016/j.phytochem.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants.
Collapse
Affiliation(s)
- Samuel Kamatham
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Kishore Babu Neela
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | | | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
32
|
Yanagawa Y, Yoda H, Osaki K, Amano Y, Aono M, Seo S, Kuchitsu K, Mitsuhara I. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3471-9. [PMID: 27126796 PMCID: PMC4892734 DOI: 10.1093/jxb/erw173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKK(EE)), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Yoda
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kohei Osaki
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuta Amano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mitsuko Aono
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shigemi Seo
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan Imaging Frontier Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
33
|
Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:234-248. [PMID: 26996980 DOI: 10.1111/tpj.13171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Sporamin is a tuberous storage protein with trypsin inhibitory activity in sweet potato (Ipomoea batatas Lam.), which accounts for 85% of the soluble protein in tubers. It is constitutively expressed in tuberous roots but is expressed in leaves only after wounding. Thus far, its wound-inducible signal transduction mechanisms remain unclear. In the present work, a 53-bp DNA region, sporamin wound-response cis-element (SWRE), was identified in the sporamin promoter and was determined to be responsible for the wounding response. Using yeast one-hybrid screening, a NAC domain protein, IbNAC1, that specifically bound to the 5'-TACAATATC-3' sequence in SWRE was isolated from a cDNA library from wounded leaves. IbNAC1 was constitutively expressed in root tissues and was induced earlier than sporamin following the wounding of leaves. Transgenic sweet potato plants overexpressing IbNAC1 had greatly increased sporamin expression, increased trypsin inhibitory activity, and elevated resistance against Spodoptera litura. We further demonstrated that IbNAC1 has multiple biological functions in the jasmonic acid (JA) response, including the inhibition of root formation, accumulation of anthocyanin, regulation of aging processes, reduction of abiotic tolerance, and overproduction of reactive oxygen species (ROS). Thus, IbNAC1 is a core transcription factor that reprograms the transcriptional response to wounding via the JA-mediated pathway in sweet potato.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - I Winnie Lin
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xuanyang Chen
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yin-Hao Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shiao-Chi Chang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hseuh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
34
|
Singh SK, Wu Y, Ghosh JS, Pattanaik S, Fisher C, Wang Y, Lawson D, Yuan L. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals. Sci Rep 2015; 5:18148. [PMID: 26670135 PMCID: PMC4680964 DOI: 10.1038/srep18148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022] Open
Abstract
Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro(®) (FP), and contact, Off-Shoot-T(®). Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system.
Collapse
Affiliation(s)
- Sanjay K. Singh
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Yongmei Wu
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Jayadri S. Ghosh
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Colin Fisher
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A.
| | - Ying Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Darlene Lawson
- R J Reynolds, Inc. 950 Reynolds Blvd, Winston-Salem, NC 27102, U.S.A.
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A.
| |
Collapse
|
35
|
Sagor GHM, Chawla P, Kim DW, Berberich T, Kojima S, Niitsu M, Kusano T. The polyamine spermine induces the unfolded protein response via the MAPK cascade in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:687. [PMID: 26442007 PMCID: PMC4565113 DOI: 10.3389/fpls.2015.00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 05/19/2023]
Abstract
In Arabidopsis three basic region leucine zipper (bZIP) transcription factor genes, bZIP17, bZIP28, and bZIP60, play crucial roles in the unfolded protein response (UPR). Previously we found that bZIP60 is one of the spermine-induced genes. Consequently we further investigated the response of all the three bZIP genes to spermine. Expression of bZIP17, bZIP28, and bZIP60, and also their target genes was activated by spermine application as well as in plants with elevated endogenous spermine levels. Furthermore, spermine activated the splicing of the bZIP60 transcript mediated by the ribonuclease activity of inositol-requiring enzyme 1 and also recruited bZIP17 and bZIP60 proteins from endoplasmic reticulum to nucleus. We therefore propose that spermine is a novel UPR inducer. Moreover, induction of UPR by spermine required calcium-influx to the cytoplasm and the genes for mitogen-activated protein kinase kinase 9 (MKK9), mitogen-activated protein kinase 3 (MPK3) and MPK6. The result indicates that spermine-induced UPR is mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Pratima Chawla
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Dong W. Kim
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Thomas Berberich
- Biodiversity and Climate Research Center, Laboratory CenterFrankfurt am Main, Germany
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendai, Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai UniversitySakado, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| |
Collapse
|
36
|
Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:790-9. [PMID: 25775271 DOI: 10.1094/mpmi-01-15-0020-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.
Collapse
Affiliation(s)
| | | | - José Antonio Monreal
- 2 Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Gail M Preston
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Helen Fones
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Blanca Vioque
- 4 Departamento de Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Avda. Padre García Tejero, 4, 41012, Sevilla, Spain
| | | | | |
Collapse
|
37
|
Hettenhausen C, Schuman MC, Wu J. MAPK signaling: a key element in plant defense response to insects. INSECT SCIENCE 2015; 22:157-64. [PMID: 24753304 PMCID: PMC5295641 DOI: 10.1111/1744-7917.12128] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Insects have long been the most abundant herbivores, and plants have evolved sophisticated mechanisms to defend against their attack. In particular, plants can perceive specific patterns of tissue damage associated with insect herbivory. Some plant species can perceive certain elicitors in insect oral secretions (OS) that enter wounds during feeding, and rapidly activate a series of intertwined signaling pathways to orchestrate the biosynthesis of various defensive metabolites. Mitogen-activated protein kinases (MAPKs), common to all eukaryotes, are involved in the orchestration of many cellular processes, including development and stress responses. In plants, at least two MAPKs, salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), are rapidly activated by wounding or insect OS; importantly, genetic studies using transgenic or mutant plants impaired in MAPK signaling indicated that MAPKs play critical roles in regulating the herbivory-induced dynamics of phytohormones, such as jasmonic acid, ethylene and salicylic acid, and MAPKs are also required for transcriptional activation of herbivore defense-related genes and accumulation of defensive metabolites. In this review, we summarize recent developments in understanding the functions of MAPKs in plant resistance to insect herbivores.
Collapse
|
38
|
Extracellular esterases of phylloplane yeast Pseudozyma antarctica induce defect on cuticle layer structure and water-holding ability of plant leaves. Appl Microbiol Biotechnol 2015; 99:6405-15. [DOI: 10.1007/s00253-015-6523-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
|
39
|
Křenek P, Smékalová V. Quantification of stress-induced mitogen-activated protein kinase expressional dynamic using reverse transcription quantitative real-time PCR. Methods Mol Biol 2015; 1171:13-25. [PMID: 24908116 DOI: 10.1007/978-1-4939-0922-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is generally accepted that signal transduction in plant mitogen-activated protein kinase signaling cascades is regulated via rapid posttranslational modifications, there are also several compelling examples of swift stress induced transcriptional activation of plant MAP kinase genes. A possible function of these fast and transient events is to compensate for protein losses caused by degradation of phosphorylated MAP kinases within stimulated pathways. Nevertheless, there is still need for additional evidence to precisely describe the regulatory role of plant MAP kinase transcriptional dynamics, especially in the context of whole stress stimulated pathways including also other signaling molecules and transcription factors. During the last two decades a reverse transcription quantitative real-time PCR became a golden choice for the accurate and fast quantification of the gene expression and gene expression dynamic. In here, we provide a robust, cost-effective SYBR Green-based RT-qPCR protocol that is suitable for the quantification of stress induced plant MAP kinase transcriptional dynamics in various plant species.
Collapse
Affiliation(s)
- Pavel Křenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 783 71, Olomouc, Czech Republic,
| | | |
Collapse
|
40
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Soybean mitogen-activated protein kinase GMK2 is activated with GMK1 in Bradyrhizobium-Soybean interactions. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Ohtsu M, Shibata Y, Ojika M, Tamura K, Hara-Nishimura I, Mori H, Kawakita K, Takemoto D. Nucleoporin 75 is involved in the ethylene-mediated production of phytoalexin for the resistance of Nicotiana benthamiana to Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1318-30. [PMID: 25122483 DOI: 10.1094/mpmi-06-14-0181-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mature Nicotiana benthamiana shows stable resistance to the oomycete pathogen Phytophthora infestans. Induction of phytoalexin (capsidiol) production is essential for the resistance, which is upregulated via a mitogen-activated protein kinase (MAPK) cascade (NbMEK2-WIPK/SIPK) followed by ethylene signaling. In this study, NbNup75 (encodes a nuclear pore protein Nucleoporin75) was identified as an essential gene for resistance of N. benthamiana to P. infestans. In NbNup75-silenced plants, initial events of elicitor-induced responses such as phosphorylation of MAPK and expression of defense-related genes were not affected, whereas induction of later defense responses such as capsidiol production and cell death induction was suppressed or delayed. Ethylene production induced by either INF1 or NbMEK2 was reduced in NbNup75-silenced plants, whereas the expression of NbEAS (a gene for capsidiol biosynthesis) induced by ethylene was not affected, indicating that Nup75 is required for the induction of ethylene production but not for ethylene signaling. Given that nuclear accumulation of polyA RNA was increased in NbNup75-silenced plants, efficient export of mRNA from nuclei via nuclear pores would be important for the timely upregulation of defense responses. Collectively, Nup75 is involved in the induction of a later stage of defense responses, including the ethylene-mediated production of phytoalexin for the resistance of N. benthamiana to P. infestans.
Collapse
|
43
|
Hettenhausen C, Heinrich M, Baldwin IT, Wu J. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC PLANT BIOLOGY 2014; 14:326. [PMID: 25430398 PMCID: PMC4263023 DOI: 10.1186/s12870-014-0326-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/06/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. RESULTS Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. CONCLUSIONS Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.
Collapse
Affiliation(s)
| | - Maria Heinrich
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Jianqiang Wu
- />Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| |
Collapse
|
44
|
Xu J, Yang KY, Yoo SJ, Liu Y, Ren D, Zhang S. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco. PLANT, CELL & ENVIRONMENT 2014; 37:1614-25. [PMID: 24392654 DOI: 10.1111/pce.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | | | | | | | | | | |
Collapse
|
45
|
Chujo T, Miyamoto K, Ogawa S, Masuda Y, Shimizu T, Kishi-Kaboshi M, Takahashi A, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLoS One 2014; 9:e98737. [PMID: 24892523 PMCID: PMC4043820 DOI: 10.1371/journal.pone.0098737] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/07/2014] [Indexed: 12/05/2022] Open
Abstract
WRKY transcription factors and mitogen-activated protein kinase (MAPK) cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster). When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD) showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Miyamoto
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Satoshi Ogawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuka Masuda
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Shimizu
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuko Kishi-Kaboshi
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akira Takahashi
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Eiichi Minami
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
46
|
Melvin P, Prabhu SA, Anup CP, Shailasree S, Shetty HS, Kini KR. Involvement of mitogen-activated protein kinase signalling in pearl millet-downy mildew interaction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:29-37. [PMID: 24268161 DOI: 10.1016/j.plantsci.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 05/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade-mediated signalling is essential in the establishment of resistance towards pathogens. The present study compared MAPK activities in a compatible and incompatible interaction between pearl millet [Pennisetum glaucum (L.) R. Br.] and downy mildew pathogen Sclerospora graminicola. Differential expression was observed with rapid and increased activation of MAPKs, PgMPK1 (48kDa) and PgMPK2 (44kDa), in the incompatible interaction; with a weak activity of only PgMPK1 in the compatible interaction. Immunoblot analysis showed PgMPK1 and PgMPK2 to be orthologs of salicylic acid-induced protein kinase and wound-induced protein kinase, respectively. Immunocytochemical analysis revealed pathogen-induced accumulation and nuclear localisation of PgMPKs only in the incompatible interaction with highest signals in the vascular tissues. Maximum PgMPKs activation correlated with the activation of several defence-related enzymes. In addition, inhibition of MAPK-activation by kinase cascade inhibitors correlated with the suppression of defence-related enzyme activities and pathogen-induced H2O2 accumulation. Treatment of pearl millet seedlings with abiotic and biotic elicitors led to a strong early induction of only PgMPK1. β-Amino butyric acid and H2O2 were found to be best activators of PgMPK1. These results suggest that in pearl millet MAPK signalling is involved in mediating several defence mechanisms in response to pathogen infection.
Collapse
Affiliation(s)
- Prasad Melvin
- Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India
| | | | | | | | | | | |
Collapse
|
47
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
48
|
Medina-Castellanos E, Esquivel-Naranjo EU, Heil M, Herrera-Estrella A. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. FRONTIERS IN PLANT SCIENCE 2014; 5:659. [PMID: 25484887 PMCID: PMC4240048 DOI: 10.3389/fpls.2014.00659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca(2+) that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca(2+), and ROS. Indeed, application of exogenous ATP and Ca(2+) triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca(2+) is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.
Collapse
Affiliation(s)
| | | | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-IrapuatoIrapuato, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-IrapuatoIrapuato, México
- *Correspondence: Alfredo Herrera-Estrella, Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, México e-mail:
| |
Collapse
|
49
|
de Oliveira MLP, de Lima Silva CC, Abe VY, Costa MGC, Cernadas RA, Benedetti CE. Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1190-9. [PMID: 23777433 DOI: 10.1094/mpmi-04-13-0122-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinases (MAPK) play crucial roles in plant immunity. We previously identified a citrus MAPK (CsMAPK1) as a differentially expressed protein in response to infection by Xanthomonas aurantifolii, a bacterium that causes citrus canker in Mexican lime but a hypersensitive reaction in sweet oranges. Here, we confirm that, in sweet orange, CsMAPK1 is rapidly and preferentially induced by X. aurantifolii relative to Xanthomonas citri. To investigate the role of CsMAPK1 in citrus canker resistance, we expressed CsMAPK1 in citrus plants under the control of the PR5 gene promoter, which is induced by Xanthomonas infection and wounding. Increased expression of CsMAPK1 correlated with a reduction in canker symptoms and a decrease in bacterial growth. Canker lesions in plants with higher CsMAPK1 levels were smaller and showed fewer signs of epidermal rupture. Transgenic plants also revealed higher transcript levels of defense-related genes and a significant accumulation of hydrogen peroxide in response to wounding or X. citri infection. Accordingly, nontransgenic sweet orange leaves accumulate both CsMAPK1 and hydrogen peroxide in response to X. aurantifolii but not X. citri infection. These data, thus, indicate that CsMAPK1 functions in the citrus canker defense response by inducing defense gene expression and reactive oxygen species accumulation during infection.
Collapse
|
50
|
Sagor GHM, Liu T, Takahashi H, Niitsu M, Berberich T, Kusano T. Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. PLANT CELL REPORTS 2013; 32:1477-88. [PMID: 23700086 DOI: 10.1007/s00299-013-1459-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Our work suggests that long chain polyamines and their derivatives are potential chemicals to control viral pathogens for crop production. Previously we showed that two tetraamines, spermine (Spm) and thermospermine (T-Spm), induce the expression of a subset of defense-related genes and repress proliferation of Cucumber mosaic virus (CMV) in Arabidopsis. Here we tested whether the longer uncommon polyamines (LUPAs) such as caldopentamine, caldohexamine, homocaldopentamine and homocaldohexamine have such the activity. LUPAs had higher gene induction activity than Spm and T-Spm. Interestingly the genes induced by LUPAs could be classified into two groups: the one group was most responsive to caldohexamine while the other one was most responsive to homocaldopentamine. In both the cases, the inducing activity was dose-dependent. LUPAs caused local cell death and repressed CMV multiplication more efficiently as compared to Spm. LUPAs inhibited the viral multiplication of not only avirulent CMV but also of virulent CMV in a dose-dependent manner. Furthermore, LUPAs can activate the systemic acquired resistance against CMV more efficiently as compared to Spm. When Arabidopsis leaves were incubated with LUPAs, the putative polyamine oxidase (PAO)-mediated catabolites were detected even though the conversion rate was very low. In addition, we found that LUPAs induced the expression of three NADPH oxidase genes (rbohC, rbohE and rbohH) among ten isoforms. Taken together, we propose that LUPAs activate two alternative reactive oxygen species evoked pathways, a PAO-mediated one and an NADPH-oxidase-mediated one, which lead to induce defense-related genes and restrict CMV multiplication.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|