1
|
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies (Basel) 2024; 13:27. [PMID: 38651407 PMCID: PMC11036271 DOI: 10.3390/antib13020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis.
Collapse
Affiliation(s)
- Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Dominguez-Sola D. Sending positive signals and good (calcium) vibes. J Exp Med 2024; 221:e20231821. [PMID: 38051276 PMCID: PMC10697794 DOI: 10.1084/jem.20231821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
In this issue of JEM, Yada et al. (https://doi.org/10.1084/jem.20222178) demonstrate that effective antibody affinity selection in germinal centers relies on the store-operated calcium entry (SOCE) component of the B cell receptor (BCR) signaling network. Therefore, active BCR signaling is as relevant to positive selection as the function of BCRs as endocytic receptors, answering a question that had puzzled experts for a while. These findings transform our understanding of the mechanisms supporting adaptive immune responses (to vaccines, for example) and have important implications for interpreting the genomics and pathogenesis of germinal center-derived B cell lymphomas.
Collapse
Affiliation(s)
- David Dominguez-Sola
- Departments of Oncological Sciences and Pathology, The Tisch Cancer Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Center for Advanced Blood Cancer Therapies and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Yabas M, Bostanci A, Aral S. ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation. Immunol Res 2023; 71:609-616. [PMID: 36753036 DOI: 10.1007/s12026-023-09364-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey.
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Ayten Bostanci
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Seda Aral
- Department of Biotechnology and Genetics, Institute of Natural Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
4
|
Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Adv 2021; 5:745-755. [PMID: 33560391 DOI: 10.1182/bloodadvances.2020002932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.
Collapse
|
5
|
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, Schueler N, Dragicevic T, Ostler D, Hansen-Wester I, Lifke V, Kaluza B, Kaluza K, van Schooten W, Buelow R, Tissot AC, Platzer J. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs 2020; 12:1846900. [PMID: 33228444 PMCID: PMC7780963 DOI: 10.1080/19420862.2020.1846900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents. Since it additionally frequently permits good binder generation against antigens that are only weakly immunogenic in other organisms, it is a highly interesting species for therapeutic antibody generation. We report here on the generation, utilization, and analysis of the first transgenic rabbit strain for human antibody production. Through the knockout of endogenous IgM genes and the introduction of human immunoglobulin sequences, this rabbit strain has been engineered to generate a highly diverse human IgG antibody repertoire. We further incorporated human CD79a/b and Bcl2 (B-cell lymphoma 2) genes, which enhance B-cell receptor expression and B-cell survival. Following immunization against the angiogenic factor BMP9 (Bone Morphogenetic Proteins 9), we were able to isolate a set of exquisitely affine and specific neutralizing antibodies from these rabbits. Sequence analysis of these binders revealed that both somatic hypermutation and gene conversion are fully operational in this strain, without compromising the very high degree of humanness. This powerful new transgenic strategy will allow further expansion of the use of endogenous immune mechanisms in drug development.
Collapse
Affiliation(s)
- Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Sonja Offner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharmaceutical Research and Early Development, Informatics, Roche Innovation Center Munich , Penzberg, Germany
| | - Irmgard Thorey
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Helmut Niersbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich , Penzberg, Germany
| | - Sebastian Breuer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Grit Zarnt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | - Basile Siewe
- THE JACKSON LABORATORY JMCRS, Sacramento, CA, USA
| | - Nicole Schueler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Tajana Dragicevic
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Dominique Ostler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Imke Hansen-Wester
- Supplier Quality Management, Global External Quality Roche Diagnostics GmbH , Penzberg, Germany
| | - Valeria Lifke
- Personalized Healthcare Solution, Immunoassay Development and System Integration, Roche Diagnostics GmbH , Penzberg, Germany
| | - Brigitte Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Klaus Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | | | - Alain C Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Josef Platzer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| |
Collapse
|
6
|
Verheijen M, Rane S, Pearson C, Yates AJ, Seddon B. Fate Mapping Quantifies the Dynamics of B Cell Development and Activation throughout Life. Cell Rep 2020; 33:108376. [PMID: 33207189 PMCID: PMC8622872 DOI: 10.1016/j.celrep.2020.108376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
Follicular mature (FM) and germinal center (GC) B cells underpin humoral immunity, but the dynamics of their generation and maintenance are not clearly defined. Here, we exploited a fate-mapping system in mice that tracks B cells as they develop into peripheral subsets, together with a cell division fate reporter mouse and mathematical models. We find that FM cells are kinetically homogeneous, recirculate freely, are continually replenished from transitional populations, and self-renew rarely. In contrast, GC B cell lineages persist for weeks with rapid turnover and site-specific dynamics. Those in the spleen derive from transitional cells and are kinetically homogeneous, while those in lymph nodes derive from FM B cells and comprise both transient and persistent clones. These differences likely derive from the nature of antigen exposure at the different sites. Our integrative approach also reveals how the host environment drives cell-extrinsic, age- related changes in B cell homeostasis. Verheijen and Rane et al. combine fate mapping and mathematical models to quantify the development and dynamics of follicular mature B cells and germinal center B cells in spleen and lymph nodes, and show how these processes vary across the mouse lifespan.
Collapse
Affiliation(s)
- Melissa Verheijen
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Sanket Rane
- Department of Pathology and Cell Biology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
7
|
Brennecke AM, Düber S, Roy B, Thomsen I, Garbe AI, Klawonn F, Pabst O, Kretschmer K, Weiss S. Induced B Cell Development in Adult Mice. Front Immunol 2018; 9:2483. [PMID: 30429851 PMCID: PMC6220648 DOI: 10.3389/fimmu.2018.02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022] Open
Abstract
We employed the B-Indu-Rag1 model in which the coding exon of recombination-activating gene 1 (Rag1) is inactivated by inversion. It is flanked by inverted loxP sites. Accordingly, B cell development is stopped at the pro/pre B-I cell precursor stage. A B cell-specific Cre recombinase fused to a mutated estrogen receptor allows the induction of RAG1 function and B cell development by application of Tamoxifen. Since Rag1 function is recovered in a non-self-renewing precursor cell, only single waves of development can be induced. Using this system, we could determine that B cells minimally require 5 days to undergo development from pro/preB-I cells to the large and 6 days to the small preB-II cell stage. First immature transitional (T) 1 and T2 B cells could be detected in the bone marrow at day 6 and day 7, respectively, while their appearance in the spleen took one additional day. We also tested a contribution of adult bone marrow to the pool of B-1 cells. Sublethally irradiated syngeneic WT mice were adoptively transferred with bone marrow of B-Indu-Rag1 mice and B cell development was induced after 6 weeks. A significant portion of donor derived B-1 cells could be detected in such adult mice. Finally, early VH gene usage was tested after induction of B cell development. During the earliest time points the VH genes proximal to D/J were found to be predominantly rearranged. At later time points, the large family of the most distal VH prevailed.
Collapse
Affiliation(s)
| | - Sandra Düber
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Thomsen
- Medical School Hannover, Institute of Immunology, Hannover, Germany
| | - Annette I Garbe
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Osteoimmunology, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Pabst
- Medical School Hannover, Institute of Immunology, Hannover, Germany.,Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Karsten Kretschmer
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Medical School Hannover, Institute of Immunology, Hannover, Germany
| |
Collapse
|
8
|
He X, Kläsener K, Iype JM, Becker M, Maity PC, Cavallari M, Nielsen PJ, Yang J, Reth M. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells. EMBO J 2018; 37:e97980. [PMID: 29669863 PMCID: PMC5983214 DOI: 10.15252/embj.201797980] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 01/05/2023] Open
Abstract
Expression of the B-cell antigen receptor (BCR) is essential not only for the development but also for the maintenance of mature B cells. Similarly, many B-cell lymphomas, including Burkitt lymphoma (BL), require continuous BCR signaling for their tumor growth. This growth is driven by immunoreceptor tyrosine-based activation motif (ITAM) and PI3 kinase (PI3K) signaling. Here, we employ CRISPR/Cas9 to delete BCR and B-cell co-receptor genes in the human BL cell line Ramos. We find that Ramos B cells require the expression of the BCR signaling component Igβ (CD79b), and the co-receptor CD19, for their fitness and competitive growth in culture. Furthermore, we show that in the absence of any other BCR component, Igβ can be expressed on the B-cell surface, where it is found in close proximity to CD19 and signals in an ITAM-dependent manner. These data suggest that Igβ and CD19 are part of an alternative B-cell signaling module that use continuous ITAM/PI3K signaling to promote the survival of B lymphoma and normal B cells.
Collapse
Affiliation(s)
- Xiaocui He
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Kläsener
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joseena M Iype
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Becker
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Palash C Maity
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
9
|
Khass M, Blackburn T, Elgavish A, Burrows PD, Schroeder HW. In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Front Immunol 2018; 9:120. [PMID: 29472919 PMCID: PMC5810287 DOI: 10.3389/fimmu.2018.00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023] Open
Abstract
Sequential developmental checkpoints are used to “optimize” the B cell antigen receptor repertoire by minimizing production of autoreactive or useless immunoglobulins and enriching for potentially protective antibodies. The first and apparently most impactful checkpoint requires μHC to form a functional pre-B cell receptor (preBCR) by associating with surrogate light chain, which is composed of VpreB and λ5. Absence of any of the preBCR components causes a block in B cell development that is characterized by severe immature B cell lymphopenia. Previously, we showed that preBCR controls the amino acid content of the third complementary determining region of the H chain (CDR-H3) by using a VpreB amino acid motif (RDR) to select for tyrosine at CDR-H3 position 101 (Y101). In antibodies bound to antigen, Y101 is commonly in direct contact with the antigen, thus preBCR selection impacts the antigen binding characteristics of the repertoire. In this work, we sought to determine the forces that shape the peripheral B cell repertoire when it is denied preBCR selection. Using bromodeoxyuridine incorporation and evaluation of apoptosis, we found that in the absence of preBCR there is increased turnover of B cells due to increased apoptosis. CDR-H3 sequencing revealed that this is accompanied by adjustments to DH identity, DH reading frame, JH, and CDR-H3 amino acid content. These adjustments in the periphery led to wild-type levels of CDR-H3 Y101 content among transitional (T1), mature recirculating, and marginal zone B cells. However, peripheral selection proved incomplete, with failure to restore Y101 levels in follicular B cells and increased production of dsDNA-binding IgM antibodies.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Tessa Blackburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ada Elgavish
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Lindner SE, Lohmüller M, Kotkamp B, Schuler F, Knust Z, Villunger A, Herzog S. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep 2017; 18:1604-1617. [PMID: 28705801 PMCID: PMC5579393 DOI: 10.15252/embr.201643735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.
Collapse
Affiliation(s)
- Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bianka Kotkamp
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Zeynep Knust
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Havranek O, Xu J, Köhrer S, Wang Z, Becker L, Comer JM, Henderson J, Ma W, Man Chun Ma J, Westin JR, Ghosh D, Shinners N, Sun L, Yi AF, Karri AR, Burger JA, Zal T, Davis RE. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood 2017; 130:995-1006. [PMID: 28646116 PMCID: PMC5813722 DOI: 10.1182/blood-2016-10-747303] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
We used clustered regularly interspaced short palindromic repeats/Cas9-mediated genomic modification to investigate B-cell receptor (BCR) signaling in cell lines of diffuse large B-cell lymphoma (DLBCL). Three manipulations that altered BCR genes without affecting surface BCR levels showed that BCR signaling differs between the germinal center B-cell (GCB) subtype, which is insensitive to Bruton tyrosine kinase inhibition by ibrutinib, and the activated B-cell (ABC) subtype. Replacing antigen-binding BCR regions had no effect on BCR signaling in GCB-DLBCL lines, reflecting this subtype's exclusive use of tonic BCR signaling. Conversely, Y188F mutation in the immunoreceptor tyrosine-based activation motif of CD79A inhibited tonic BCR signaling in GCB-DLBCL lines but did not affect their calcium flux after BCR cross-linking or the proliferation of otherwise-unmodified ABC-DLBCL lines. CD79A-GFP fusion showed BCR clustering or diffuse distribution, respectively, in lines of ABC and GCB subtypes. Tonic BCR signaling acts principally to activate AKT, and forced activation of AKT rescued GCB-DLBCL lines from knockout (KO) of the BCR or 2 mediators of tonic BCR signaling, SYK and CD19. The magnitude and importance of tonic BCR signaling to proliferation and size of GCB-DLBCL lines, shown by the effect of BCR KO, was highly variable; in contrast, pan-AKT KO was uniformly toxic. This discrepancy was explained by finding that BCR KO-induced changes in AKT activity (measured by gene expression, CXCR4 level, and a fluorescent reporter) correlated with changes in proliferation and with baseline BCR surface density. PTEN protein expression and BCR surface density may influence clinical response to therapeutic inhibition of tonic BCR signaling in DLBCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - R Eric Davis
- Department of Lymphoma and Myeloma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Lim VY, Zehentmeier S, Fistonich C, Pereira JP. A Chemoattractant-Guided Walk Through Lymphopoiesis: From Hematopoietic Stem Cells to Mature B Lymphocytes. Adv Immunol 2017; 134:47-88. [PMID: 28413023 DOI: 10.1016/bs.ai.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes develop from hematopoietic stem cells (HSCs) in specialized bone marrow niches composed of rare mesenchymal lineage stem/progenitor cells (MSPCs) and sinusoidal endothelial cells. These niches are defined by function and location: MSPCs are mostly perisinusoidal cells that together with a small subset of sinusoidal endothelial cells express stem cell factor, interleukin-7 (IL-7), IL-15, and the highest amounts of CXCL12 in bone marrow. Though rare, MSPCs are morphologically heterogeneous, highly reticular, and form a vast cellular network in the bone marrow parenchyma capable of interacting with large numbers of hematopoietic cells. HSCs, downstream multipotent progenitor cells, and common lymphoid progenitor cells utilize CXCR4 to fine-tune access to critical short-range growth factors provided by MSPCs for their long-term maintenance and/or multilineage differentiation. In later stages, developing B lymphocytes use CXCR4 to navigate the bone marrow parenchyma, and predominantly cannabinoid receptor-2 for positioning within bone marrow sinusoids, prior to being released into peripheral blood circulation. In the final stages of differentiation, transitional B cells migrate to the spleen where they preferentially undergo further rounds of differentiation until selection into the mature B cell pool occurs. This bottleneck purges up to 97% of all developing B cells in a peripheral selection process that is heavily controlled not only by the intensity of BCR signaling and access to BAFF but also by the proper functioning of the B cell motility machinery.
Collapse
Affiliation(s)
- Vivian Y Lim
- Yale University School of Medicine, New Haven, CT, United States
| | | | - Chris Fistonich
- Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
13
|
Song J, Uyttersprot N, Classen S, Waisman A. The IgG1 B-cell receptor provides survival and proliferative signals analogue to the Igα but not the Igβ co-receptor. Eur J Immunol 2016; 46:1878-86. [PMID: 27218486 DOI: 10.1002/eji.201646396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
Abstract
The function of the IgM B-cell receptor (BCR) is dependent on intact signaling of the co-receptors Igα and Igβ, both of which contain a cytoplasmic tail bearing an immunoreceptor tyrosine-based activation motif. We have previously demonstrated that the cytoplasmic tail of the IgG1 BCR can partially compensate for the loss of the signaling moiety of Igα. Here, we show that unlike Igα, Igβ signaling is indispensable for the development and function of IgG1-expressing B cells. Deletion of the cytoplasmic signaling tail of Igβ compromised the survival and proliferation not only of IgM(+) B cells but also of IgG1-expressing B cells. In the absence of the signaling tail of Igβ, the transcription levels of the antiapoptotic gene bcl-xl and the cell-cycle gene ccnd2 were reduced, consistent with the observed defects in survival and proliferation. These results demonstrate functional differences between Igα and Igβ in the transduction of IgG1 BCR signal.
Collapse
Affiliation(s)
- Jian Song
- Institute for Molecular Medicine, University of Medical Centre of the Johannes, Gutenberg University of Mainz, Mainz, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | | | - Sabine Classen
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University of Medical Centre of the Johannes, Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
14
|
Levit-Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity PC, Rajewsky K, Reth M, Hobeika E. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2348-60. [PMID: 26843325 DOI: 10.4049/jimmunol.1501707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated.
Collapse
Affiliation(s)
- Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Martin Becker
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Wilhelm
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Palash Chandra Maity
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany;
| | - Elias Hobeika
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
15
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Müschen M. Rationale for targeting the pre-B-cell receptor signaling pathway in acute lymphoblastic leukemia. Blood 2015; 125:3688-93. [PMID: 25878119 PMCID: PMC4463734 DOI: 10.1182/blood-2015-01-567842] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of B-cell receptor (BCR) and pre-BCR signaling were successfully introduced into patient care for various subtypes of mature B-cell lymphoma (e.g., ibrutinib, idelalisib). Acute lymphoblastic leukemia (ALL) typically originates from pre-B cells that critically depend on survival signals emanating from a functional pre-BCR. However, whether patients with ALL benefit from treatment with (pre-) BCR inhibitors has not been explored. Recent data suggest that the pre-BCR functions as tumor suppressor in the majority of cases of human ALL. However, a distinct subset of human ALL is selectively sensitive to pre-BCR antagonists.
Collapse
Affiliation(s)
- Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Abstract
The genes encoding the variable (V) region of the B-cell antigen receptor (BCR) are assembled from V, D (diversity), and J (joining) elements through a RAG-mediated recombination process that relies on the recognition of recombination signal sequences (RSSs) flanking the individual elements. Secondary V(D)J rearrangement modifies the original Ig rearrangement if a nonproductive original joint is formed, as a response to inappropriate signaling from a self-reactive BCR, or as part of a stochastic mechanism to further diversify the Ig repertoire. VH replacement represents a RAG-mediated secondary rearrangement in which an upstream VH element recombines with a rearranged VHDHJH joint to generate a new BCR specificity. The rearrangement occurs between the cryptic RSS of the original VH element and the conventional RSS of the invading VH gene, leaving behind a footprint of up to five base pairs (bps) of the original VH gene that is often further obscured by exonuclease activity and N-nucleotide addition. We have previously demonstrated that VH replacement can efficiently rescue the development of B cells that have acquired two nonproductive heavy chain (IgH) rearrangements. Here we describe a novel knock-in mouse model in which the prerearranged IgH locus resembles an endogenously rearranged productive VHDHJH allele. Using this mouse model, we characterized the role of VH replacement in the diversification of the primary Ig repertoire through the modification of productive VHDHJH rearrangements. Our results indicate that VH replacement occurs before Ig light chain rearrangement and thus is not involved in the editing of self-reactive antibodies.
Collapse
|
18
|
den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162:103-12. [DOI: 10.1016/j.imlet.2014.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Szydłowski M, Jabłońska E, Juszczyński P. FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development. Int Rev Immunol 2014; 33:146-57. [PMID: 24552152 DOI: 10.3109/08830185.2014.885022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B-cell development and differentiation are controlled at multiple levels by the complex interplay of specific receptors and a variety of transcription factors. Several receptors involved in regulating this process, such as IL-7R, pre-B cell receptor (pre-BCR), and BCR, share the ability to trigger the signaling via the phosphoinositide 3-kinase (PI3K)-AKT pathway. FOXO1 transcription factor, a major PI3K-AKT downstream effector, regulates the expression of genes critical for progress through consecutive steps of B-cell differentiation. FOXO1 directs or fine-tunes multiple biological functions that are crucial for differentiating cells, including the cell cycle, apoptosis, oxidative stress response or DNA damage repair. Recent studies have highlighted the key role that FOXO1 plays in the maintenance of the hematopoietic stem cell pool, regulation of progenitor commitment, development of early B-cell precursors, induction of B-cell tolerance, peripheral B-cell homeostasis, and terminal differentiation. FOXO1 deficiency impairs B-cell development, due to decreased expression of its critical target genes, that include early B-cell factor (EBF1), IL-7 receptor, recombination activating genes (RAG1 and 2), activation-induced cytidine deaminase (AID), L-selectin, and BLNK. Taken together, FOXO1 is an important node in a dynamic network of transcription factors that orchestrate B-cell differentiation and specialization. Herein, we review molecular mechanisms of the PI3K-AKT-dependent signal transduction and their impact on early B-cell development, peripheral B-cell homeostasis, and terminal differentiation.
Collapse
Affiliation(s)
- Maciej Szydłowski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine , Warsaw , Poland
| | | | | |
Collapse
|
20
|
Activation of the B cell receptor leads to increased membrane proximity of the Igα cytoplasmic domain. PLoS One 2013; 8:e79148. [PMID: 24244439 PMCID: PMC3823606 DOI: 10.1371/journal.pone.0079148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023] Open
Abstract
Binding of antigen to the B cell receptor (BCR) induces conformational changes in BCR's cytoplasmic domains that are concomitant with phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs). Recently, reversible folding of the CD3ε and ξ chain ITAMs into the plasma membrane has been suggested to regulate T cell receptor signaling. Here we show that the Igα and Igβ cytoplasmic domains of the BCR do not associate with plasma membrane in resting B cells. However, antigen binding and ITAM phosphorylation specifically increased membrane proximity of Igα, but not Igβ. Thus, BCR activation is accompanied by asymmetric conformational changes, possibly promoting the binding of Igα and Igβ to differently localized signaling complexes.
Collapse
|
21
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Uhde M, Kuehl S, Richardt U, Fleischer B, Osterloh A. Differential regulation of marginal zone and follicular B cell responses by CD83. Int Immunol 2013; 25:507-20. [PMID: 23728778 DOI: 10.1093/intimm/dxt021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Transgenic over-expression of CD83 on B cells leads to a reduced response to BCR engagement but to an enhanced secretion of IL-10 upon LPS stimulation. In this study, we analyzed the differential influence of CD83 on the stimulation of different B cell subsets via the BCR or TLR4. Neither wild type nor CD83 transgenic (CD83tg) B cells produced any IL-10 in response to BCR stimulation. BCR engagement led to reduced activation of LYN, SYK and ERK1/2 resulting in reduced numbers of proliferating cells in all CD83tg B cell subsets. Moreover, CD83tg follicular (FO) but not marginal zone (MZ) or transitional (TN) B cells showed significantly enhanced cell death. In contrast, LPS stimulation led to normal frequencies of proliferating CD83tg FO, MZ and TN B cells although TLR4 engagement did not rescue FO B cells from apoptosis. Furthermore, LPS stimulation led to high IL-10 production derived from CD83tg MZ B cells that reacted to LPS stimulation with enhanced ERK1/2 activation. Finally, we show that CD83 co-localizes with the BCR complex as well as with the LPS receptor complex suggesting that CD83 interacts with components of both signaling complexes. Taken together, the results of this study show that CD83 already inhibits the initiation of BCR signaling leading to insufficient activation signals in all B cells and reduced survival especially of FO B cells. On the other hand, CD83 supports TLR4-mediated IL-10 release exclusively in MZ B cells. Thus, CD83 differentially modulates FO and MZ B cell responses.
Collapse
Affiliation(s)
- Melanie Uhde
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | | | | | | | | |
Collapse
|
23
|
Miyazaki D, Mihara S, Inata K, Sasaki SI, Tominaga T, Yakura K, Ishida W, Fukushima A, Inoue Y. Pharmacologic Inhibition of IκB Kinase Activates Immediate Hypersensitivity Reactions in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:96-107. [DOI: 10.1016/j.ajpath.2013.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/24/2013] [Accepted: 04/01/2013] [Indexed: 11/26/2022]
|
24
|
Rowland SL, Tuttle K, Torres RM, Pelanda R. Antigen and cytokine receptor signals guide the development of the naïve mature B cell repertoire. Immunol Res 2013; 55:231-40. [PMID: 22941591 DOI: 10.1007/s12026-012-8366-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immature B cells are generated daily in the bone marrow tissue. More than half of the newly generated immature B cells are autoreactive and bind a self-antigen, while the others are nonautoreactive. A selection process has evolved on the one hand to thwart development of autoreactive immature B cells and, on the other hand, to promote further differentiation of nonautoreactive immature B cells into transitional and mature B cells. These negative and positive selection events are carefully regulated by signals that emanate from the antigen receptor, whether antigen-mediated or tonic, and are influenced by signals that are generated by receptors that bind cytokines, chemokines, and other factors produced in the bone marrow tissue. These signals, therefore, are the predominant driving forces for the generation of a B cell population that is capable of protecting the body from infections while maintaining self-tolerance. Here, we review recent findings from our group and others that describe how tonic antigen receptor signaling and bone marrow cytokines regulate the selection of immature B cells.
Collapse
Affiliation(s)
- Sarah L Rowland
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | |
Collapse
|
25
|
Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D, Doench JG, Bogusz AM, Habermann TM, Dogan A, Witzig TE, Kutok JL, Rodig SJ, Golub T, Shipp MA. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23:826-38. [PMID: 23764004 PMCID: PMC3700321 DOI: 10.1016/j.ccr.2013.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/23/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
B cell receptor (BCR) signaling pathway components represent promising treatment targets in diffuse large B cell lymphoma (DLBCL) and additional B cell tumors. BCR signaling activates spleen tyrosine kinase (SYK) and downstream pathways including PI3K/AKT and NF-κB. In previous studies, chemical SYK blockade selectively decreased BCR signaling and induced apoptosis of BCR-dependent DLBCLs. Herein, we characterize distinct SYK/PI3K-dependent survival pathways in DLBCLs with high or low baseline NF-κB activity including selective repression of the pro-apoptotic HRK protein in NF-κB-low tumors. We also define SYK/PI3K-dependent cholesterol biosynthesis as a feed-forward mechanism of maintaining the integrity of BCRs in lipid rafts in DLBCLs with low or high NF-κB. In addition, SYK amplification and PTEN deletion are identified as selective genetic alterations in primary "BCR"-type DLBCLs.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Stefano Monti
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | | | - Jing Ouyang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, MA
| | - John G. Doench
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Agata M. Bogusz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Ahmet Dogan
- Department of Pathology, Mayo Clinic, Rochester, MN
| | | | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Todd Golub
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- Corresponding author: Margaret A. Shipp, MD, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; phone: 617-632-3874; fax: 617-632-4734;
| |
Collapse
|
26
|
Abstract
Key Points
IgA and IgM human plasma cells express a functional BCR on their cell surface and can therefore respond to antigenic stimulation.
Collapse
|
27
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Li H, Li C. The CD79α (HM47/A9) antibody is effective in distinguishing between primary hepatocellular carcinoma and primary intrahepatic cholangiocarcinoma. Oncol Lett 2013; 5:1195-1198. [PMID: 23599762 PMCID: PMC3629145 DOI: 10.3892/ol.2013.1163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two major forms of primary liver cancer. The aim of this study was to investigate CD79α (HM47/A9) antibody expression patterns in normal liver, HCC and ICC samples. HM47/A9 expression was examined in tissues surrounding liver cancer in adults, 8-week embryos and 20-week embryos. In total, 82 cases of HCC, 31 cases of ICC and 11 cases of combined HCC and cholangiocarcinoma (cHCC-CC) were reviewed. HM47/A9 expression was observed as early as 8-week embryo liver tissue and exhibited focal granular cytoplasmic positivity, which was maintained throughout life. All 82 HCC cases demonstrated cytoplasmic granular positivity for HM47/A9, while no ICC cases were immunostained with HM47/A9. No CC components in cHCC-CC expressed the HM47/A9 antibody. A high number of HCC components in cHCC-CC showed positive staining for HM47/A9 [10/11 (90.9%)]. Our results suggest that HM47/A9 may be employed effectively to differentiate HCC from ICC.
Collapse
Affiliation(s)
- Hao Li
- Department of Pathology, People's Liberation Army 152 Hospital, Pingdingshan, Henan 467000, P.R. China
| | | |
Collapse
|
29
|
van Zelm MC, Berkowska MA, van der Burg M, van Dongen JJM. Real-time quantitative (RQ-)PCR approach to quantify the contribution of proliferation to B lymphocyte homeostasis. Methods Mol Biol 2013; 979:133-45. [PMID: 23397393 DOI: 10.1007/978-1-62703-290-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T-cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are relatively stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative polymerase chain reaction (RQ-PCR)-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring kappa-deleting rearrangements in the IGK light chain loci in man and mouse. The approach is useful to study the contribution of proliferation to B-cell homeostasis in health and disease.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Zhang Z, Zhou L, Yang X, Wang Y, Zhang P, Hou L, Hu X, Xing Y, Liu Y, Li W, Han H. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS One 2012; 7:e38894. [PMID: 22719978 PMCID: PMC3374804 DOI: 10.1371/journal.pone.0038894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Both the B cell antigen receptor (BCR) signaling and Notch signaling pathway play important roles in marginal zone (MZ) B cell development; however, if and how these two signaling pathways engage in crosstalk with each other remain unclear. In the present study, IgH transgenic mice (TgV(H)3B4) were crossed with mice with Notch downstream transcription factor RBP-J floxed alleles (RBP-J(f/f)) and Mx-Cre transgene. Subsequently, MZ B cell development was analyzed in 3B4/Cre/RBP-J(f/f) mice that expressed the transgenic 3B4 IgH and exhibited a deficiency in Notch signaling in B cells upon poly (I:C) injection. We observed that MZ B cell numbers were severely reduced, but still detectable in 3B4/Cre/RBP-J(f/f) mice, in contrast to increased numbers of MZ B cells in TgV(H)3B4 mice and almost no MZ B cells in Cre/RBP-J(f/f) mice. The majority of the MZ B cells in the 3B4/Cre/RBP-J(f/f) mice had the same antigen specificity with that of 3B4 antibody, indicating that a particular BCR specificity might direct MZ B cell development in the absence of Notch signaling. The number of MZ B precursor (MZP) cells was reduced sharply in 3B4/Cre/RBP-J(f/f) mice, and the number of transitional stage 1 and transitional stage 2 cells did not change that much, indicating that the interaction between BCR and Notch signaling likely occurred during the T2-MZP stage. Based on the transgenic mouse model, our data indicate that MZ B cells with certain BCR specificity can develop in a Notch-RBP-J independent manner.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lanhua Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Dermatology, Affiliated Hospital of Institute of Aviation Medicine, Air Force, Beijing, China
| | - Xinwei Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yaochun Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lihong Hou
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Xinbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| | - Hua Han
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| |
Collapse
|
31
|
Berkowska MA, van der Burg M, van Dongen JJM, van Zelm MC. Checkpoints of B cell differentiation: visualizing Ig-centric processes. Ann N Y Acad Sci 2012; 1246:11-25. [PMID: 22236426 DOI: 10.1111/j.1749-6632.2011.06278.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The generation of antibody responses and B cell memory can only take place following multiple steps of differentiation. Key molecular processes during precursor B cell differentiation in bone marrow generate unique antibodies. These antibodies are further optimized via molecular modifications during immune responses in peripheral lymphoid organs. Multiple checkpoints ensure proper differentiation of precursor and mature B lymphocytes. Many of these checkpoints have been found disrupted in patients with a primary immunodeficiency. Based on studies in these patients and in mouse models, new insights have been generated in B cell differentiation and antibody responses. Still, in many patients with impaired antibody formation, it remains unclear how B cells are affected. In this perspective, we present 11 critical processes in B cell differentiation. We discuss how defects in these processes can result in impaired checkpoint selection and how they can be visualized in healthy subjects and patients with immunodeficiency or other immunological disease.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
32
|
Meyer-Bahlburg A, Rawlings DJ. Differential impact of Toll-like receptor signaling on distinct B cell subpopulations. Front Biosci (Landmark Ed) 2012; 17:1499-516. [PMID: 22201817 DOI: 10.2741/4000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B cells exhibit a range of functional responses following TLR engagement including immunoglobulin and cytokine production, proliferation, antigen presentation and migration. However, B cell intrinsic TLR responses appear to be precisely programmed based upon the developmental stage of the cell. B cell subpopulations classified as innate immune cells including marginal zone and B-1 B cells exhibit robust responses to TLR stimulation. In contrast, activation of other B cell subsets is constrained via a variety of developmentally regulated events. In this review we provide an overview of TLR responses in murine and human B cells and specifically highlight patterns of TLR expression and developmentally regulated functional responses.
Collapse
Affiliation(s)
- Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, D-30625 Germany.
| | | |
Collapse
|
33
|
14-3-3sigma regulates B-cell homeostasis through stabilization of FOXO1. Proc Natl Acad Sci U S A 2011; 108:1555-60. [PMID: 21205887 DOI: 10.1073/pnas.1017729108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
14-3-3σ regulates cytokinesis and cell cycle arrest induced by DNA damage but its role in the immune system is unknown. Using gene-targeted 14-3-3σ-deficient (i.e., KO) mice, we studied the role of 14-3-3σ in B-cell functions. Total numbers of B cells were reduced by spontaneous apoptosis of peripheral B cells. Upon B-cell antigen receptor engagement in vitro, KO B cells did not proliferate properly or up-regulate CD86. In response to T cell-independent antigens, KO B cells showed poor secretion of antigen-specific IgM. This deficit led to increased lethality of KO mice after vesicular stomatitis virus infection. KO B cells showed elevated total FOXO transcriptional activity but also increased FOXO1 degradation. Coimmunoprecipitation revealed that endogenous 14-3-3σ protein formed a complex with FOXO1 protein. Our results suggest that 14-3-3σ maintains FOXO1 at a consistent level critical for normal B-cell antigen receptor signaling and B-cell survival.
Collapse
|
34
|
Abstract
Development, survival, and activation of B lymphocytes are controlled by signals emanating from the B-cell antigen receptor (BCR). The BCR has an autonomous signaling function also known as tonic signaling that allows for long-term survival of B cells in the immune system. Upon binding of antigen to the BCR, the tonic signal is amplified and diversified, leading to alteration in gene expression and B-cell activation. The spleen tyrosine kinase (Syk) intimately cooperates with the signaling subunits of the BCR and plays a central role in the amplification and diversification of BCR signals. In this review, we discuss the molecular mechanisms by which Syk activity is inhibited and activated at the BCR. Importantly, Syk acts not only as a kinase that phosphorylates downstream substrates but also as an adapter that can bind to a diverse set of signaling proteins. Depending on its interactions and localization, Syk can signal opposing cell fate decisions such as proliferation or differentiation of B cells.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Centre for Biological Signaling Studies (Bioss) and Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max-Planck Institute for Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
35
|
Sadri N, Lu JY, Badura ML, Schneider RJ. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol 2010; 11:1. [PMID: 20064252 PMCID: PMC2824733 DOI: 10.1186/1471-2172-11-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 01/11/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The adenosine/uridine-rich element (ARE)-binding protein AUF1 functions to regulate the inflammatory response through the targeted degradation of cytokine and other mRNAs that contain specific AREs in their 3' noncoding region (3' NCR). To investigate the role of AUF1 in the immune system, we characterized the lymphoid compartments of AUF1-deficient mice. RESULTS Mice lacking AUF1 exhibit an altered proportion and size of splenic B cell subsets. We show prominent apoptosis in splenic B cell follicles and reduced expression of Bcl-2, A1, and Bcl-XL correlate with increased turnover and significant reduction in the number and proportion of splenic FO B cells in AUF1-deficient mice. In addition, AUF1-deficient mice exhibit a sharp decrease in splenic size and lymphocyte cellularity. Bone marrow transfer studies demonstrate that AUF1 deficiency induces cell-autonomous defects in mature B cell subsets but not in the overall number of splenocytes. Reconstitution of irradiated adult AUF1-deficient mice with wild-type bone marrow restores the proportion of FO and marginal zone (MZ) B cells, but does not rescue the decrease in the number of splenocytes. Functionally, AUF1-deficient mice mount an attenuated response to T cell-independent (TI) antigen, which correlates with impaired MZ B cell function. CONCLUSION These data indicate that AUF1 is important in the maintenance of splenic FO B cells and adequate humoral immune responses.
Collapse
Affiliation(s)
- Navid Sadri
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
36
|
Cancro MP. Signalling crosstalk in B cells: managing worth and need. Nat Rev Immunol 2009; 9:657-61. [PMID: 19704418 DOI: 10.1038/nri2621] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The B cell receptor (BCR) and the receptor for B cell-activating factor (BAFFR) have complementary roles in B cells: BCR signals provide a cell-intrinsic measure of suitability for negative or positive selection, whereas BAFFR responds to homeostatic demands based on a cell-extrinsic measure of the size of the mature B cell pool. Because continuous signals from both receptors are required for B cell survival, it is probable that there are mechanisms to integrate the selective and homeostatic signals from these receptors. In this Opinion article, I describe recent evidence to indicate that crosstalk between the downstream biochemical pathways of these receptors mediates this interdependence, such that BCR signals generate a limiting substrate for BAFFR signal propagation.
Collapse
Affiliation(s)
- Michael P Cancro
- 284 John Morgan Building, University of Pennsylvania School of Medicine, 36th and Hamilton Walk, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
37
|
Hagman J. Conveying the Message: Identification of Ig-α and Ig-β as Components of the B Cell Receptor Complex. THE JOURNAL OF IMMUNOLOGY 2009; 183:1503-4. [DOI: 10.4049/jimmunol.0990055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Xing Y, Li W, Lin Y, Fu M, Li CX, Zhang P, Liang L, Wang G, Gao TW, Han H, Liu YF. The influence of BCR density on the differentiation of natural poly-reactive B cells begins at an early stage of B cell development. Mol Immunol 2009; 46:1120-8. [DOI: 10.1016/j.molimm.2008.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 12/16/2022]
|
39
|
Montero E, Valdes M, Avellanet J, Lopez A, Perez R, Lage A. Chemotherapy induced transient B-cell depletion boosts antibody-forming cells expansion driven by an epidermal growth factor-based cancer vaccine. Vaccine 2009; 27:2230-9. [PMID: 19428837 DOI: 10.1016/j.vaccine.2009.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/31/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Cancer vaccines efficacy may improve inducing a rapid and persistent immune response, early at diagnosis along with standard therapies. EGF chemically conjugated to the carrier protein P64k from Neisseria meningitidis in montanide ISA 51 adjuvant is under evaluation, aiming to stimulate a B-cell response. High-dose cyclophosphamide and doxorubicin after priming enhanced the long-term frequency of EGF-specific antibody-forming cells (AFC) of IgM and IgG isotypes, but not the P64k response. Resulting combination, limitedly operational in Btk deficient xid mice, suggests that preferential B-cell lymphocyte space promoted by cyclophosphamide facilitates remaining EGF-specific AFC undergo homeostatic proliferation driven by boosting, amplifying the response.
Collapse
Affiliation(s)
- Enrique Montero
- Experimental Immunotherapy Department, Center of Molecular Immunology, 216 Street & 15, Playa, Havana 11600, Cuba.
| | | | | | | | | | | |
Collapse
|
40
|
Köhler F, Hug E, Eschbach C, Meixlsperger S, Hobeika E, Kofer J, Wardemann H, Jumaa H. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 2008; 29:912-21. [PMID: 19084434 DOI: 10.1016/j.immuni.2008.10.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 07/10/2008] [Accepted: 10/15/2008] [Indexed: 01/03/2023]
Abstract
The majority of early immature B cells express autoreactive B cell receptors (BCRs) that are, according to the current view, negatively selected to avoid the production of self-reactive antibodies. Here, we show that polyreactive BCRs, which recognize multiple self-antigens, induced autonomous signaling and selective expansion of B cell precursors in a manner comparable to the pre-BCR. We found that the pre-BCR was capable of recognizing multiple self-antigens and that a signaling-deficient pre-BCR lacking the non-Ig region of the surrogate-light-chain component lambda5 was rescued by the complementarity-determining region 3 derived from heavy chains of polyreactive receptors. Importantly, bone marrow B cells from mice carrying Ig transgenes for an autoreactive BCR showed increased cell-cycle activity, which could not be detected in cells lacking the transgenic BCR. Together, the pre-BCR has evolved to ensure self-recognition because autoreactivity is required for positive selection of B cell precursors.
Collapse
Affiliation(s)
- Fabian Köhler
- Department of Molecular Immunology, Faculty of Biology and Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-University and Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The bone marrow perisinusoidal niche for recirculating B cells and the positive selection of bone marrow-derived B lymphocytes. Immunol Cell Biol 2008; 87:16-9. [PMID: 19030017 DOI: 10.1038/icb.2008.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A unique 'second' niche for follicular B cells has been described in the extravascular compartment of the bone marrow surrounding vascular sinusoids. The occupancy of this niche by B cells presumably evolved to facilitate humoral immune responses to blood-borne pathogens. B cells appear to be sustained in this niche by bone marrow dendritic cells and are lost from this compartment in certain mutant mice. We discuss here what is known regarding the mechanisms of entry and egress of B cells from the perisinusoidal niche and also consider the function of the bone marrow as a secondary lymphoid organ. Although immature B cells can mature into follicular B cells in this niche as well as in the spleen, the lineage commitment event that accompanies positive selection of B cells occurs only in the spleen.
Collapse
|
42
|
Abstract
B cell receptor signaling participates in the genesis of lymphoma and influences the characteristics of the tumor cells.
Collapse
Affiliation(s)
- Enrico Arpaia
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Zhang XK, Moussa O, LaRue A, Bradshaw S, Molano I, Spyropoulos DD, Gilkeson GS, Watson DK. The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1644-54. [PMID: 18641300 PMCID: PMC2504761 DOI: 10.4049/jimmunol.181.3.1644] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fli-1 belongs to the Ets transcription factor family and is expressed primarily in hematopoietic cells, including most cells active in immunity. To assess the role of Fli-1 in lymphocyte development in vivo, we generated mice that express a truncated Fli-1 protein, lacking the C-terminal transcriptional activation domain (Fli-1(DeltaCTA)). Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice had significantly fewer splenic follicular B cells, and an increased number of transitional and marginal zone B cells, compared with wild-type controls. Bone marrow reconstitution studies demonstrated that this phenotype is the result of lymphocyte intrinsic effects. Expression of Igalpha and other genes implicated in B cell development, including Pax-5, E2A, and Egr-1, are reduced, while Id1 and Id2 are increased in Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice. Proliferation of B cells from Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice was diminished, although intracellular Ca(2+) flux in B cells from Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice was similar to that of wild-type controls after anti-IgM stimulation. Immune responses and in vitro class switch recombination were also altered in Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice. Thus, Fli-1 modulates B cell development both centrally and peripherally, resulting in a significant impact on the in vivo immune response.
Collapse
Affiliation(s)
- Xian K Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
A unique type of combinatorial protein libraries has been constructed. These libraries are based on the pre-B cell receptor (pre-BCR). The pre-BCR is a protein that is produced during normal development of the antibody repertoire. Unlike that of canonical antibodies, the pre-BCR subunit is a trimer that is composed of an antibody heavy chain paired with two surrogate light chain (SLC) components. Combinatorial libraries based on these pre-BCR proteins in which diverse heavy chains are paired with a fixed SLC were expressed in mammalian, Escherichia coli, and phagemid systems. These libraries contain members that have nanomolar affinity for antigen. We term this type of antigen-binding protein a "surrobody" to distinguish it from the canonical antibody molecule.
Collapse
|
45
|
Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, Hardy RR, Hippen KL, Farrar MA, Behrens TW. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. THE JOURNAL OF IMMUNOLOGY 2008; 180:4728-41. [PMID: 18354197 DOI: 10.4049/jimmunol.180.7.4728] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.
Collapse
Affiliation(s)
- Brian R Schram
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood 2008; 111:1497-503. [DOI: 10.1182/blood-2007-08-109769] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Despite the importance of phosphoinositide 3-kinase (PI3K) in B-cell development, its activation mechanism still remains elusive. In this study, we show that deletion of both BCAP and CD19 leads to an almost complete block of BCR-mediated Akt activation and to severe defects in generation of immature and mature B cells. The YXXM motifs in BCAP and CD19 are crucial for regulating B-cell development in that mutation of these motifs abrogated their ability to induce BCR-mediated Akt activation as well as to promote B-cell development. Furthermore, the developmental defect in CD19−/−BCAP−/− B cells was partly relieved by introducing a constitutively active form of PI3K or PDK1. Together, our data suggest that BCAP and CD19 have complementary roles in BCR-mediated PI3K activation, thereby, at least in part, contributing to B-cell development.
Collapse
|
47
|
Crowley JE, Scholz JL, Quinn WJ, Stadanlick JE, Treml JF, Treml LS, Hao Y, Goenka R, O’Neill PJ, Matthews AH, Parsons RF, Cancro MP. Homeostatic control of B lymphocyte subsets. Immunol Res 2008; 42:75-83. [PMID: 18668213 PMCID: PMC2662706 DOI: 10.1007/s12026-008-8036-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lymphocyte homeostasis poses a multi-faceted biological puzzle, because steady pre-immune populations must be maintained at an acceptable steady state to yield effective protection, despite stringent selective events during their generation. In addition, activated, memory and both short- and long-term effectors must be governed by independent homeostatic mechanisms. Finally, advancing age is accompanied by substantial changes that impact the dynamics and behavior of these pools, leading to cumulative homeostatic perturbations and compensation. Our laboratory has focused on the over-arching role of BLyS family ligands and receptors in these processes. These studies have led to a conceptual framework within which distinct homeostatic niches are specified by BLyS receptor signatures, which define the BLyS family ligands that can afford survival. The cues for establishing these receptor signatures, as well as the downstream survival mechanisms involved, are integrated with cell extrinsic inputs via cross talk among downstream mediators. A refined understanding of these relationships should yield insight into the selection and maintenance of B cell subsets, as well as an appreciation of how homeostatic mechanisms may contribute to immunosenescence.
Collapse
Affiliation(s)
- Jenni E. Crowley
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Jean L. Scholz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - William J. Quinn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Jason E. Stadanlick
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - John F. Treml
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Laura S. Treml
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Yi Hao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Radhika Goenka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Patrick J. O’Neill
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Andrew H. Matthews
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Ronald F. Parsons
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA, e-mail:
| |
Collapse
|
48
|
Cozma D, Yu D, Hodawadekar S, Azvolinsky A, Grande S, Tobias JW, Metzgar MH, Paterson J, Erikson J, Marafioti T, Monroe JG, Atchison ML, Thomas-Tikhonenko A. B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling. J Clin Invest 2007; 117:2602-10. [PMID: 17717600 PMCID: PMC1950455 DOI: 10.1172/jci30842] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 05/29/2007] [Indexed: 01/16/2023] Open
Abstract
The presumed involvement of paired box gene 5 (PAX5) in B-lymphomagenesis is based largely on the discovery of Pax5-specific translocations and somatic hypermutations in non-Hodgkin lymphomas. Yet mechanistically, the contribution of Pax5 to neoplastic growth remains undeciphered. Here we used 2 Myc-induced mouse B lymphoma cell lines, Myc5-M5 and Myc5-M12, which spontaneously silence Pax5. Reconstitution of these cells with Pax5-tamoxifen receptor fusion protein (Pax5ER(TAM)) increased neoplastic growth in a hormone-dependent manner. Conversely, expression of dominant-negative Pax5 in murine lymphomas and Pax5 knockdown in human lymphomas negatively affected cell expansion. Expression profiling revealed that Pax5 was required to maintain mRNA levels of several crucial components of B cell receptor (BCR) signaling, including CD79a, a protein with the immunoreceptor tyrosine-based activation motif (ITAM). In contrast, expression of 2 known ITAM antagonists, CD22 and PIR-B, was suppressed. The key role of BCR/ITAM signaling in Pax5-dependent lymphomagenesis was corroborated in Syk, an ITAM-associated tyrosine kinase. Moreover, we observed consistent expression of phosphorylated BLNK, an activated BCR adaptor protein, in human B cell lymphomas. Thus, stimulation of neoplastic growth by Pax5 occurs through BCR and is sensitive to genetic and pharmacological inhibitors of this pathway.
Collapse
Affiliation(s)
- Diana Cozma
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Duonan Yu
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suchita Hodawadekar
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna Azvolinsky
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shannon Grande
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - John W. Tobias
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michele H. Metzgar
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jennifer Paterson
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jan Erikson
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Teresa Marafioti
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - John G. Monroe
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael L. Atchison
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrei Thomas-Tikhonenko
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
49
|
Cajiao I, Sargent R, Elstrom R, Cooke NE, Bagg A, Liebhaber SA. Igbeta(CD79b) mRNA expression in chronic lymphocytic leukaemia cells correlates with immunoglobulin heavy chain gene mutational status but does not serve as an independent predictor of clinical severity. Am J Hematol 2007; 82:712-20. [PMID: 17315213 DOI: 10.1002/ajh.20885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The etiology of chronic lymphocytic leukemia (CLL) is poorly understood and its course is highly variable. Somatic hypermutation (SHM) of the immunoglobulin heavy chain (IgV(H)) gene and ZAP70 protein expression have been reported as prognostic indicators. However, these assays are not widely available and their concordance is imperfect. Thus a need exists to identify additional molecular determinants of CLL. The Igbeta (CD79b) subunit of the B cell antigen receptor is essential for B lymphocyte function. Defects in Igbeta expression are implicated in CLL pathogenesis. We have analyzed Igbeta mRNA expression in CLL cells in 40 consecutive patient samples. About 75% of the samples showed the expected decrease of Igbeta surface staining. Igbeta mRNA levels covered a wider range, did not correlate with Igbeta surface staining, but clearly distinguished the normal and CLL lymphocyte populations. Remarkably, Igbeta mRNA levels correlated strongly with SHM; Igbeta mRNA levels in CLL cells were significantly higher in patients with an unmutated IgV(H) gene when compared with those in whom IgV(H) was hypermutated (P = 0.008). In contrast, no correlation was observed between Igbeta mRNA levels and ZAP70 expression. Multiple parameters abstracted from chart reviews were used to estimate severity of CLL in each case. While severity correlated strongly with ZAP70 staining, and to a lesser extent with SHM status, there was no correlation with Igbeta mRNA levels. These data establish a strong linkage between Igbeta mRNA expression and SHM in CLL and highlight the complex relationships between biochemical parameters and clinical status in this disease.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing/genetics
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Cell Line
- Cell Membrane/metabolism
- Exons/genetics
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunohistochemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Male
- Middle Aged
- Mutation/genetics
- RNA, Messenger/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Isabela Cajiao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ferrari S, Zuntini R, Lougaris V, Soresina A, Sourková V, Fiorini M, Martino S, Rossi P, Pietrogrande MC, Martire B, Spadaro G, Cardinale F, Cossu F, Pierani P, Quinti I, Rossi C, Plebani A. Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agammaglobulinemia. Genes Immun 2007; 8:325-33. [PMID: 17410177 DOI: 10.1038/sj.gene.6364391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 02/23/2007] [Indexed: 11/09/2022]
Abstract
Autosomal-recessive agammaglobulinemia is a rare and heterogeneous disorder, characterized by early-onset infections, profound hypogammaglobulinemia of all immunoglobulin isotypes and absence of circulating B lymphocytes. To investigate the molecular basis of the disease, 23 patients with early-onset disease and no mutations in Bruton tyrosine kinase, the gene responsible for X-linked agammaglobulinemia, were selected and analyzed by direct sequencing of candidate genes. Two novel mutations in the mu heavy chain (muHC) gene (IGHM) were identified in three patients belonging to two unrelated families. A fourth patient carries a previously described G>A nucleotide substitution at the -1 position of an alternative splice site in IGHM; here, we demonstrate that this mutation is indeed responsible for aberrant splicing. Comparison of bone marrow cytofluorimetric profiles in two patients carrying different mutations in the IGHM gene suggests a genotype-phenotype correlation with the stage at which B-cell development is blocked. Several new single nucleotide polymorphisms (SNPs) both in the muHC and in the lambda5-like/VpreB-coding genes were identified. Two unrelated patients carry compound heterozygous variations in the VpreB1 gene that may be involved in disease ethiology.
Collapse
Affiliation(s)
- S Ferrari
- Medical Genetics Unit and CRBa, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|