1
|
Zeng X, Fan X, Yu H, Cai S, Zhou L, Wu H, Zhang Z, Quan S, Li S, Wang X, Xue B, Liu L, Qiao S, Zeng X. Nervonic acid triggered ovarian inflammation by inducing mitochondrial oxidative stress to activate NLRP3/ IL-1β pathway. J Adv Res 2024:S2090-1232(24)00371-0. [PMID: 39181200 DOI: 10.1016/j.jare.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Metabolic syndrome is a serious public health concern across the globe. However, the typical metabolites and mechanisms underlying the decreased fertility related to metabolic syndrome is still elusive. OBJECTIVES The aim of the present study was to explore the typical metabolites and mechanisms underlying the decreased fertility related with metabolic syndrome. METHODS Utilizing metabolomics, a comparative analysis was conducted on fatty acid compositions in various tissues of sows with high and low reproductive performance. Additionally, serum fatty acid compositions in a metabolic syndrome model (obese mice) induced by a high-fat diet (HFD) were investigated to elucidate the lipid metabolites associated with metabolic syndrome. Furthermore, the impact of nervonic acid (NA) on ovarian function was examined using rodent animal models (rats and mice). Through biological techniques such as transcriptomics, CUT&Tag, and analysis of post-translational protein modifications, the molecular mechanisms underlying NA mediated ovarian inflammation were further elucidated based on models utilizing ovarian granulosa cells from pigs, humans, and mice. Finally, validation was performed on ovaries from patients diagnosed with polycystic ovary syndrome. RESULTS In vitro, targeted serum lipidomic analysis revealed that sows with low embryo survival rates exhibited abnormal lipid metabolism characterized by abnormal accumulation of NA in the liver, ovary, and adipose tissue. Additionally, elevated NA levels trigger ovarian inflammation to cause ovarian dysfunction in both sows and rats. Mechanistically, NA induce mitochondrial oxidative stress through inhibiting respiratory chain proteins CYTB and NDFUB8 to activate NLRP3 inflammasome, which triggers procaspase-1 into active caspase-1, and convert the cytokine precursors pro-IL-1β into biologically active IL-1β in ovarian granulosa cells. Notably, we evidenced that NA promotes IL-1β activities by increasing H3K9ac modification level of IL-1β promoter regions and regulating the expression of the transcription factor AP-1. Finally, we found that the decreased expression of CerS2 in ovaries and the increased level of chemokine CXCL14 may be the cause of abnormal NA accumulation. Surprisingly, individuals with polycystic ovary syndrome, obesity, non-alcoholic fatty liver or gestational diabetes mellitus exhibit a high level of serum NA. CONCLUSION Collectively, our current study suggests that NA is a typical metabolite of metabolic syndrome, which strongly influences the ovarian function and embryo survival and also provides that interfering with mitochondrial ROS production is a potential strong strategy for target solving abnormal NA accumulation.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China.
| |
Collapse
|
2
|
Photoaging Protective Effects of Ranunculus bulumei Methanol Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1761785. [PMID: 32328122 PMCID: PMC7157803 DOI: 10.1155/2020/1761785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/01/2022]
Abstract
Ultraviolet B (UVB) radiation is the main cause of photoaging processes including cellular senescence, skin drying, collagen degradation, melanogenesis, and inflammation. These responses occur because UVB induces a change in expression of aging-related genes through regulation of signal pathways such as that of mitogen-activated protein kinases- (MAPKs-) activator protein 1 (AP-1). Ranunculus bulumei, which is used as an herb in Indonesia, belongs to the Ranunculaceae family, which has been reported to perform various physiological effects including antioxidant and anti-inflammation. However, data on the pharmaceutical and cosmeceutical utility of Ranunculus bulumei have not been reported. Therefore, we evaluated the antiaging efficacy of RB-ME, a methanol extract of Ranunculus bulumei. Rb-ME attenuated MMP9 and COX-2 gene expression but enhanced SIRT1 and type-1 collagen in UVB-irradiated HaCaT cells. Rb-ME regulated these gene expressions through inhibition of p38 phosphorylation and inactivation of AP-1. In addition, mRNA expression of HAS-2 and -3, which are involved in skin hydration, was elevated in Rb-ME-treated HaCaT cells. Rb-ME also inhibited melanogenesis by suppression of tyrosinase, MITF, and TYRP-1 mRNA in B16F10 cells under α-MSH treatment. Taken together, these results indicate that Rb-ME has a protective effect on some UVB-induced skin photoaging events such as inflammation, collagen degradation, cellular senescence, skin drying, and melanin production through inhibition of the p38-AP-1 signal cascade, indicating that Rb-ME can be used as an active ingredient for antiaging cosmetics.
Collapse
|
3
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
4
|
Wynne JW, Todd S, Boyd V, Tachedjian M, Klein R, Shiell B, Dearnley M, McAuley AJ, Woon AP, Purcell AW, Marsh GA, Baker ML. Comparative Transcriptomics Highlights the Role of the Activator Protein 1 Transcription Factor in the Host Response to Ebolavirus. J Virol 2017; 91:e01174-17. [PMID: 28931675 PMCID: PMC5686711 DOI: 10.1128/jvi.01174-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023] Open
Abstract
Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Shawn Todd
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Victoria Boyd
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mary Tachedjian
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Brian Shiell
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Megan Dearnley
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Alexander J McAuley
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michelle L Baker
- CSIRO Health and Biosecurity/Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res 2017; 128:366-375. [PMID: 28951297 DOI: 10.1016/j.phrs.2017.09.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, 263 136, Uttarakhand, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, 54000, Pakistan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090, Vienna, Austria; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
6
|
Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res 2012; 67:60-7. [PMID: 23098819 DOI: 10.1016/j.phrs.2012.10.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/29/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (SIRT1), the mammalian Sir2 homologue, is a class III histone deacetylase shown to act on a wide range of histones and non-histone substrates. Numerous studies have demonstrated that SIRT1 regulates critical metabolic and physiological processes including senescence, stress resistance, metabolism and apoptosis. Recently, SIRT1 was also found to play an important role in modulating the development and progression of inflammation through deacetylating histones and critical transcription factor such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), thus leading to transcriptional repression of various inflammation-related genes. There is increasing evidence that reduction of SIRT1 levels is closely correlated with many inflammatory diseases while pharmacologic activation of SIRT1 would be a promising therapeutic strategy for inflammation-related diseases.
Collapse
Affiliation(s)
- Jun Xie
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
7
|
Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta 2012; 413:1163-70. [PMID: 22521751 DOI: 10.1016/j.cca.2012.03.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 12/17/2022]
Abstract
Cytokines are small cell signaling protein molecules which encompass a large and diverse family. They consist of immunomodulating agents such as interleukins and inteferons. Virtually all nucleated cells, especially endo/epithelial cells and macrophages are potent producers of IL-1, IL-6 and TNF-α. IL-1 family is a group of cytokines which play a central role in the regulation of immune and inflammatory responses. Type 2 diabetes (T2D) has been recognized as an immune mediated disease leading to impaired insulin signaling and selective destruction of insulin producing β-cells in which cytokines play an important role. Disturbance of anti-inflammatory response could be a critical component of the chronic inflammation resulting in T2D. IL-1 family of cytokines has important roles in endocrinology and in the regulation of responses associated with inflammatory stress. The IL-1 family consists of two pro-inflammatory cytokines, IL-1α and IL-1β, and a naturally occurring anti-inflammatory agent, the IL-1 receptor antagonist (IL-1Ra or IL-1RN). This review is an insight into the different types of cytokines belonging to IL-1 family, their modes of action and association with Type 2 diabetes.
Collapse
|
8
|
Riascos D, de Leon D, Baker-Nigh A, Nicholas A, Yukhananov R, Bu J, Wu CK, Geula C. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease. Acta Neuropathol 2011; 122:565-76. [PMID: 21874328 DOI: 10.1007/s00401-011-0865-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 01/22/2023]
Abstract
The reasons for the selective vulnerability of distinct neuronal populations in neurodegenerative disorders are unknown. The cholinergic neurons of the basal forebrain are vulnerable to pathology and loss early in Alzheimer's disease and in a number of other neurodegenerative disorders of the elderly. In the primate, including man, these neurons are rich in the calcium buffer calbindin-D(28K). Here, we confirm that these neurons undergo a substantial loss of calbindin in the course of normal aging and report a further loss of calbindin in Alzheimer's disease both at the level of RNA and protein. Significantly, cholinergic neurons that had lost their calbindin in the course of normal aging were those that selectively degenerated in Alzheimer's disease. Furthermore, calbindin-containing neurons were virtually resistant to the process of tangle formation, a hallmark of the disease. We conclude that the loss of calcium buffering capacity in these neurons and the resultant pathological increase in intracellular calcium are permissive to tangle formation and degeneration.
Collapse
|
9
|
The role of functional single nucleotide polymorphisms of the human glucocorticoid receptor gene NR3C1 in Polish patients with bronchial asthma. Mol Biol Rep 2011; 39:4749-57. [PMID: 22015776 PMCID: PMC3294211 DOI: 10.1007/s11033-011-1267-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/14/2011] [Indexed: 10/31/2022]
Abstract
N363S and ER22/23EK polymorphisms observed within glucocorticoid receptor gene (NR3C1) may play an important role in the development of bronchial asthma. NR3C1 gene is associated with an altered sensitivity to GCs. The aim of the research project was to study the correlation between this NR3C1 gene polymorphisms and occurrence of asthma in the population of Polish asthmatics. Peripheral blood was obtained from 207 healthy volunteers and 221 asthma patients. Genotyping was carried out with PCR-RFLP method. In the groups of patients with uncontrolled moderate asthma and uncontrolled severe disease, the genotype distribution for the investigated polymorphisms was as follows: N363S-AA, AG, GG occurring with 0.881/0.073/0.046 frequency and ER22/23EK-GG, GA, AA occurring with 0.963/0.037/0.000 frequency. Chi-square analysis revealed a significantly different (P < 0.05) distribution between cases and controls for the N363S polymorphisms. The N363S polymorphism of NR3C1 gene is significantly associated with bronchial asthma, susceptibility to the development of moderate to severe form of uncontrolled bronchial asthma.
Collapse
|
10
|
Wei H, Frei B, Beckman JS, Zhang WJ. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am J Physiol Heart Circ Physiol 2011; 301:H712-20. [PMID: 21724870 DOI: 10.1152/ajpheart.01299.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an important role in vascular inflammation, and TTM may have value as an anti-inflammatory or anti-atherogenic agent.
Collapse
Affiliation(s)
- Hao Wei
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
11
|
JNK1 controls mast cell degranulation and IL-1{beta} production in inflammatory arthritis. Proc Natl Acad Sci U S A 2010; 107:22122-7. [PMID: 21135226 DOI: 10.1073/pnas.1016401107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease marked by bone and cartilage destruction. Current biologic therapies are beneficial in only a portion of patients; hence small molecules targeting key pathogenic signaling cascades represent alternative therapeutic strategies. Here we show that c-Jun N-terminal kinase (JNK) 1, but not JNK2, is critical for joint swelling and destruction in a serum transfer model of arthritis. The proinflammatory function of JNK1 requires bone marrow-derived cells, particularly mast cells. Without JNK1, mast cells fail to degranulate efficiently and release less IL-1β after stimulation via Fcγ receptors (FcγRs). Pharmacologic JNK inhibition effectively prevents arthritis onset and abrogates joint swelling in established disease. Hence, JNK1 controls mast cell degranulation and FcγR-triggered IL-1β production, in addition to regulating cytokine and matrix metalloproteinase biosynthesis, and is an attractive therapeutic target in inflammatory arthritis.
Collapse
|
12
|
Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, Divekar R, McBurney MW, Braley-Mullen H, Zaghouani H, Fang D. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 2010; 119:3048-58. [PMID: 19729833 DOI: 10.1172/jci38902] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/24/2009] [Indexed: 12/19/2022] Open
Abstract
Although many self-reactive T cells are eliminated by negative selection in the thymus, some of these cells escape into the periphery, where they must be controlled by additional mechanisms. However, the molecular mechanisms underlying peripheral T cell tolerance and its maintenance remain largely undefined. In this study, we report that sirtuin 1 (Sirt1), a type III histone deacetylase, negatively regulates T cell activation and plays a major role in clonal T cell anergy in mice. In vivo, we found that loss of Sirt1 function resulted in abnormally increased T cell activation and a breakdown of CD4+ T cell tolerance. Conversely, upregulation of Sirt1 expression led to T cell anergy, in which the activity of the transcription factor AP-1 was substantially diminished.Furthermore, Sirt1 interacted with and deacetylated c-Jun, yielding an inactive AP-1 factor. In addition, Sirt1-deficient mice were unable to maintain T cell tolerance and developed severe experimental allergic encephalomyelitis as well as spontaneous autoimmunity. These findings provide insight into the molecular mechanisms of T cell activation and anergy, and we suggest that activators of Sirt1 may be useful as therapeutic agents for the treatment and/or prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Jinping Zhang
- Department of Otolaryngology-Head and Neck Surgery,University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pham MH, Kondapalli N, Reckord CL, Foglesong PD. Interleukin-2 induces the activities of DNA topoisomerase I and DNA topoisomerase II in HuT 78 cells. Biochem Biophys Res Commun 2009; 390:577-80. [PMID: 19818738 PMCID: PMC2789651 DOI: 10.1016/j.bbrc.2009.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/21/2022]
Abstract
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.
Collapse
Affiliation(s)
- Minh-Hieu Pham
- Department of Biology, UPO #311, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209-6318
| | - Navya Kondapalli
- Department of Biology, UPO #311, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209-6318
| | - Calvin L. Reckord
- Biology Department, Rutgers University, 311 North Fifth Street, Camden, NJ 08102-1405
| | - P. David Foglesong
- Department of Biology, UPO #311, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209-6318
- Biology Department, Rutgers University, 311 North Fifth Street, Camden, NJ 08102-1405
| |
Collapse
|
14
|
Larsson LG, Anton R, Ivhed I, Öberg F, Pettersson U, Nilsson K. C-Junis Induced to High Continuous Expression During Differentiation of Hematopoietic Cells and is Regulated Independently from C-Fos. Leuk Lymphoma 2009; 4:193-204. [DOI: 10.3109/10428199109068065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Jie KE, Verhaar MC, Cramer MJM, van der Putten K, Gaillard CAJM, Doevendans PA, Koomans HA, Joles JA, Braam B. Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Renal Physiol 2006; 291:F932-44. [PMID: 16885153 DOI: 10.1152/ajprenal.00200.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have recently proposed severe cardiorenal syndrome (SCRS), in which cardiac and renal failure mutually amplify progressive failure of both organs. This frequent pathophysiological condition has an extremely poor prognosis. Interactions between inflammation, the renin-angiotensin system, the balance between the nitric oxide and reactive oxygen species and the sympathetic nervous system form the cardiorenal connectors and are cornerstones in the pathophysiology of SCRS. An absolute deficit of erythropoietin (Epo) and decreased sensitivity to Epo in this syndrome both contribute to the development of anemia, which is more pronounced than renal anemia in the absence of heart failure. Besides expression on erythroid progenitor cells, Epo receptors are present in the heart, kidney, and vascular system, in which activation results in antiapoptosis, proliferation, and possibly antioxidation and anti-inflammation. Interestingly, Epo can improve cardiac and renal function. We have therefore reviewed the literature with respect to Epo and the cardiorenal connectors. Indeed, there are indications that Epo can diminish inflammation, reduce renin-angiotensin system activity, and shift the nitric oxide and reactive oxygen species balance toward nitric oxide. Information about Epo and the sympathetic nervous system is scarce. This analysis underscores the relevance of a further understanding of clinical and cellular mechanisms underlying protective effects of Epo, because this will support better treatment of SCRS.
Collapse
Affiliation(s)
- Kim E Jie
- Dept. of Nephrology and Hypertension, F03.223, Univ. Medical Ctr. Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Harpster MH, Bandyopadhyay S, Thomas DP, Ivanov PS, Keele JA, Pineguina N, Gao B, Amarendran V, Gomelsky M, McCormick RJ, Stayton MM. Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm Genome 2006; 17:701-15. [PMID: 16845475 DOI: 10.1007/s00335-005-0120-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Accepted: 02/15/2006] [Indexed: 01/06/2023]
Abstract
We report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely, ischemic/infarcted tissue (IF), the surviving LV free wall (FW), and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis, and protein inhibitor of nitric oxide synthase (NOS) activity indicate that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L: -arginine. ARG1: was the single-most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.
Collapse
Affiliation(s)
- Mark H Harpster
- Department of Molecular Biology, University of Wyoming, Laramie, 82071, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wågsater D, Jatta K, Ocaya P, Dimberg J, Sirsjo A. Expression of IL-1beta, IL-1 receptor type I and IL-1 receptor antagonist in human aortic smooth muscle cells: effects of all-trans-retinoic acid. J Vasc Res 2006; 43:377-82. [PMID: 16804330 DOI: 10.1159/000094258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 05/03/2006] [Indexed: 11/19/2022] Open
Abstract
The proinflammatory cytokine interleukin (IL)-1beta and the IL-1 receptor antagonist are expressed by atherosclerotic plaques and may be linked to the development of atherosclerosis. Existing evidence shows that retinoids and their receptors are involved in inflammatory response and that they are found in atherosclerotic plaques. In all-trans-retinoic acid (atRA)-treated human aortic smooth muscle cells (AOSMC), significant increases in IL-1beta levels were observed, compared with untreated cells. Examination of IL-1 receptor antagonist and IL-1 receptor type I levels did not show any difference between atRA-treated and -untreated AOSMC. The results show that atRA-treated AOSMC express both the precursor (33 kDa) and the active form (17 kDa) of the IL-1beta protein. atRA-treated carotid lesions showed significantly elevated IL-1beta mRNA levels (2.9 +/- 2.33) compared with untreated lesions (2.0 +/- 1.77; p < 0.05). These results support the role of atRA as a regulator of inflammation such as in atherosclerosis.
Collapse
Affiliation(s)
- Dick Wågsater
- Division of Biomedicine, Department of Clinical Medicine, University of Orebro, Orebro, Sweden
| | | | | | | | | |
Collapse
|
18
|
De Kloet ER, Derijk R. Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann N Y Acad Sci 2005; 1032:14-34. [PMID: 15677393 DOI: 10.1196/annals.1314.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Optimal regulation of the stress response is a prerequisite for adaptation, homeostasis, and health. There are two modes of operation in the stress response. First, an immediate response mode mediated by corticotrophin-releasing hormone-1 (CRH-1) receptors that organizes the behavioral, sympathetic, and hypothalamic-pituitary-adrenal (HPA) response to a stressor. Second, a slower mode, which facilitates behavioral adaptation, promotes recovery, and reestablishes homeostasis. Corticosteroid hormones are implicated in both stress system modes. On the one hand, cortisol and corticosterone determine the threshold or sensitivity of the fast responding mode, whereas the very same hormones in high concentrations facilitate termination of the stress response. In the brain, these actions exerted by the corticosteroid hormones are mediated by two distinct nuclear receptor types, that is, mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). Whereas MRs maintain neuronal homeostasis and limit the disturbance by stress, GRs help to recover after the challenge and to store the experience for coping with future encounters. Imbalance in MR/GR-mediated actions compromises homeostatic processes in these neurons, which is thought to underlie maladaptive behavior and HPA dysregulation that may lead to aberrant metabolism, impaired immune function, and altered cardiovascular control. The balance in MR/GR-mediated actions depends on bioavailability of corticosteroids, access to the receptors, the stoichiometry of co-regulators, and other proteins as well as genetic factors, among which single nucleotide polymorphisms (SNPs) of the GRs are extensively documented. Stress can bias the receptor signaling pathways, changing "good" corticosteroid actions into "bad" ones.
Collapse
Affiliation(s)
- E Ronald De Kloet
- Division of Medical Pharmacology, LACDR/LUMC, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
19
|
Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 2005; 83:170-9. [PMID: 15776286 DOI: 10.1007/s00109-004-0612-6] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 10/22/2004] [Indexed: 02/06/2023]
Abstract
Recently a close relationship between the immune and skeletal systems or the interdisciplinary field called osteoimmunology has attracted much attention due to the observations that bone destruction is caused by an abnormal activation of the immune system in rheumatoid arthritis, and that mice lacking immunomodulatory molecules often exhibit an unexpected bone phenotype. Osteoclasts are cells of monocyte/macrophage origin that degrade the bone matrix. They are among the key players in the control of bone metabolism in health and disease. Receptor activator of NF-kappaB ligand (RANKL), a tumor necrosis factor (TNF) family cytokine, induces the differentiation of osteoclasts in the presence of macrophage-colony stimulating factor. RANKL activates TRAF6, c-Fos, and calcium signaling pathways, all of which are indispensable for the induction and activation of nuclear factor of activated T cells (NFAT) c1, the master transcription factor for osteoclastogenesis. The autoamplification of NFATc1 gene results in the efficient induction of osteoclast-specific genes. An AP-1 transcription factor complex containing c-Fos plays a crucial role in these processes, although results in conditional knockout mice show that Jun family members have a redundant role. The immunoreceptor tyrosine-based activation motif (ITAM) is an important signaling component for a number of receptors in the immune system including T-cell, B-cell, NK-cell, and Fc receptors, but its contribution to the skeletal system remains unclarified. In search for the calcium-mobilizing mechanism during osteoclastogenesis we determined that multiple immunoglobulinlike receptors associated with ITAM-harboring adaptors, Fc receptor common gamma chain (FcRgamma), and DNAX-activating protein (DAP) 12, are essential for osteoclastogenesis. In osteoclast precursor cells FcRgamma-associated receptors include osteoclast-associated receptor and paired immunoglobulinlike receptor A, while triggering receptor expressed in myeloid cells 2 and signal-regulatory protein beta1 preferentially associate with DAP12. In cooperation with RANKL these receptors activate phospholipase Cgamma and calcium signaling essential for the induction of NFATc1 through ITAM phosphorylation. Thus we have established the importance of the ITAM-mediated costimulatory signals in RANKL-induced osteoclast differentiation, which is analogous to the role of costimulatory signals in the immune system. Here we summarize recent advances in the study of signaling mechanism of osteoclast differentiation in the context of osteoimmunology.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Cellular Physiological Chemistry, COE Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Graduate School, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
20
|
Florin L, Hummerich L, Dittrich BT, Kokocinski F, Wrobel G, Gack S, Schorpp-Kistner M, Werner S, Hahn M, Lichter P, Szabowski A, Angel P. Identification of novel AP-1 target genes in fibroblasts regulated during cutaneous wound healing. Oncogene 2004; 23:7005-17. [PMID: 15273721 DOI: 10.1038/sj.onc.1207938] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal-epithelial interactions are increasingly considered to be of vital importance for epithelial homeostasis and regeneration. In skin, the transcription factor AP-1 was shown to be critically involved in the communication between keratinocytes and dermal fibroblasts. After skin injury, the release of IL-1 from keratinocytes induces the activity of the AP-1 subunits c-Jun and JunB in fibroblasts leading to a global change in gene expression. To identify AP-1 target genes in fibroblasts, which are involved in the process of cutaneous repair, we performed gene expression profiling of wild-type, c-jun- and junB-deficient fibroblasts in response to IL-1, mimicking the initial phase of wound healing. Using a 15K cDNA collection, over 1000 genes were found to be Jun-dependent and additional 300 clones showed IL-1 responsiveness. Combinatorial evaluation allowed for the dissection of the specific contribution of either AP-1 subunit to gene regulation. Besides previously identified genes that are involved in cutaneous repair, we have identified novel genes regulated during wound healing in vivo and showed their expression by fibroblasts on wound sections. The identification of novel Jun target genes should provide a basis for understanding the molecular mechanisms underlying mesenchymal-epithelial interactions and the critical contribution of AP-1 to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Lore Florin
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cloutier A, Ear T, Borissevitch O, Larivée P, McDonald PP. Inflammatory cytokine expression is independent of the c-Jun N-terminal kinase/AP-1 signaling cascade in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 171:3751-61. [PMID: 14500675 DOI: 10.4049/jimmunol.171.7.3751] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the last decade, the ability of neutrophils to generate proinflammatory cytokines has become firmly established. Because neutrophils typically infiltrate inflammatory sites in large numbers, they could significantly contribute to the cytokine environment and even represent a substantial source of cytokines in chronic inflammatory disorders in which they predominate over other cell types. To date, however, most studies have focused on identifying which mediators are produced by neutrophils, as opposed to elucidating the molecular bases underlying this process. We previously showed that most stimuli of cytokine production in neutrophils also activate NF-kappaB in these cells. In this report, we turned our attention to another transcription factor that plays a central role in inflammation, AP-1. Among Jun/Fos proteins, only JunD and c-Fos are abundantly expressed in neutrophils, and they are mainly cytoplasmic. Both the cellular levels and distribution of the Jun/Fos proteins remain unaffected by various neutrophil stimuli, including those that are known to increase the corresponding mRNA transcripts. Similarly, c-Jun N-terminal kinase (JNK) 1 is overwhelmingly cytoplasmic in neutrophils and does not translocate to the nucleus upon cell activation. Although JNK is not activatable under most circumstances, specific conditions do allow its phosphorylation in response to TNF. However, no experimental condition (even those leading to JNK activation) resulted in the induction of genuine AP-1 complexes in neutrophils. Accordingly, the potent JNK inhibitor, SP 600125, failed to inhibit inflammatory cytokine gene expression in neutrophils. Collectively, our findings strongly suggest that the JNK/AP-1 signaling pathway has little or no impact on the generation of inflammatory mediators in neutrophils.
Collapse
Affiliation(s)
- Alexandre Cloutier
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
22
|
Geula C, Nagykery N, Wu CK, Bu J. Loss of calbindin-D28K from aging human cholinergic basal forebrain: relation to plaques and tangles. J Neuropathol Exp Neurol 2003; 62:605-16. [PMID: 12834105 DOI: 10.1093/jnen/62.6.605] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reports from our laboratory have indicated a substantial and specific loss of the calcium binding protein calbindin-D28K (CB) from the human basal forebrain cholinergic neurons (BFCN) in the course of normal aging. In the present set of experiments we determined the relationship between the age-related loss of CB and the presence and density of plaques and tangles in the brains of normal elderly. In 23 cases ranging in age from 20 to 93 years of age we observed plaques and tangles in the BFCN region and the cerebral cortex in a subset of cases. Plaques were seen in the basal forebrain in very few cases above 65 years. Plaque density in the basal forebrain and cortex displayed a significant negative correlation with the proportion of the BFCN, which contained CB immunoreactivity. However, the brains of 2 elderly cases that displayed a substantial loss of CB from the BFCN did not contain any plaques. Tangles were observed in the BFCN as early as 26 years of age. Only tangles in the entorhinal cortex showed a significant negative correlation with the loss of CB from the BFCN. It is likely that loss of CB from the BFCN and formation of plaques and tangles are part of general age-related processes that occur in parallel rather than being causally related.
Collapse
Affiliation(s)
- Changiz Geula
- Laboratory for Neurodegenerative and Aging Research, Section of Gerontology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
23
|
Ares MPS, Stollenwerk M, Olsson A, Kallin B, Jovinge S, Nilsson J. Decreased inducibility of TNF expression in lipid-loaded macrophages. BMC Immunol 2002; 3:13. [PMID: 12366867 PMCID: PMC130030 DOI: 10.1186/1471-2172-3-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Accepted: 10/06/2002] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. RESULTS In macrophages incubated with acetylated low density lipoprotein (ac-LDL) for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1beta, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-kappaB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARgamma. In contrast, oxidized LDL stimulated AP-1 and PPARgamma but inhibited NF-kappaB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. CONCLUSIONS Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.
Collapse
Affiliation(s)
- Mikko PS Ares
- Lund University, Wallenberg-laboratory, University Hospital MAS, S-20502 Malmö, Sweden
| | - Maria Stollenwerk
- Lund University, Wallenberg-laboratory, University Hospital MAS, S-20502 Malmö, Sweden
| | - Anneli Olsson
- Center for Molecular Medicine, Karolinska Hospital, Karolinska Institutet, Stockholm, S-171 76, Sweden
| | - Bengt Kallin
- Nya Apodemus AB, Stockholm University, WGI, Arrenius Laboratory F3, S-106 91 Stockholm, Sweden
| | - Stefan Jovinge
- Lund University, Wallenberg-laboratory, University Hospital MAS, S-20502 Malmö, Sweden
| | - Jan Nilsson
- Lund University, Wallenberg-laboratory, University Hospital MAS, S-20502 Malmö, Sweden
| |
Collapse
|
24
|
Elsas LJ, Webb AL, Langley SD. Characterization of a carbohydrate response element regulating the gene for human galactose-1-phosphate uridyltransferase. Mol Genet Metab 2002; 76:287-96. [PMID: 12208133 DOI: 10.1016/s1096-7192(02)00106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human galactose-1-phosphate uridyltransferase (hGALT) is a central enzyme in the conserved pathway by which galactose is converted to energy, UDP-galactose and UDP-glucose. A natural mutation that deleted -119 to -116 bp (delGTCA) of the promoter decreased hGALT mRNA and enzyme activity and prompted analysis of hGALT gene regulation. Regulatory domains were identified by inspection and confirmed in a reporter system. Previous studies by others were confirmed that HepG2 cells grown in D-glucose increased hGALT enzyme activity and mRNA by 30%. We extended these observations by sequencing the promoter region and identifying a potential carbohydrate response element (ChoRE). The response to glucose rose to 190% when a plasmid construct containing a luciferase reporter and only the -165 bp region as a promoter was transfected into HepG2 and NIH:OVCAR-3. By contrast, fibroblasts transfected with the identical construct failed to respond to glucose. Within the -165 bp region there were two enhancer (E-box) motifs that encompassed the delGTCA mutation. The deletion diminished the positive regulatory response, but an additional GTCA repeat unexpectedly increased the response. Using this postulated ChoRE as a probe in electrophoretic mobility shift assays, multiple nuclear proteins bound and one was identified as a member of the basic/helix-loop-helix/leucine zipper enhancer-binding (b/HLH/LZ) family. Increased binding of proteins correlated with increased hGALT expression when the spacing between E-box motifs was enlarged but the carbohydrate response was dampened. When the 3(')E-box was mutated, b/HLH/LZ binding and gene expression were abolished. We conclude that the hGALT promoter region contains a ChoRE in which the spacing between and the sequence of its E-box motifs are critical. One nuclear protein of the b/HLH/LZ family is necessary, but not sufficient for the carbohydrate response.
Collapse
Affiliation(s)
- Louis J Elsas
- Department of Pediatrics, Division of Medical Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
25
|
Abstract
Following exposure to stress, cortisol is secreted from the adrenal cortex under the control of the hypothalamic-pituitary-adrenal axis (HPA-axis). Central in the regulation of the HPA-axis is a two tied corticosteroid-receptor system, comprised of high and low affinity receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), respectively. In addition, these corticosteroid receptors mediate the effects of cortisol during stress on both central and peripheral targets. Cortisol modulates gene-expression of corticosteroid-responsive genes, with the effect lasting from hours to days. Mutations in the GR-gene are being associated with corticosteroid resistance and haematological malignancies, although these mutations are relatively rare and probably not a common cause of these diseases. However, several GR-gene variants and single nucleotide polymorphisms (SNP) in the GR-gene have been identified which are relatively common in the human population. The GRbeta-variant, for example, has been proposed to influence corticosteroid-sensitivity and most evidence has been derived from the immune system and in particular asthma. With respect to polymorphisms, a BclI restriction fragment polymorphism and a Asp363Ser have been described, which not only influence the regulation of the HPA-axis, but are also associated with changes in metabolism and cardiovascular control. These associations of a GR-gene polymorphism with metabolism and cardivascular control, and also with the regulation of the HPA-axis, indicates an important underlying role of cortisol in the etiology of these complex disorders. Therefore, we propose that a common underlying defect in these complex disorders is a disregulation of the HPA-axis, especially during stress. The clinical implication is that the regulation of the HPA-axis should be envisioned as a primary target of new drugs for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- R H DeRijk
- Department of Psychiatry, Rijngeestgroep LUMC, Psychiatric Hospital, Endegeesterstraatweg 5, 2342 AJ, Oesgstsgeest, The Netherlands.
| | | | | |
Collapse
|
26
|
Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH. Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. J Transl Med 2002; 82:79-85. [PMID: 11796828 DOI: 10.1038/labinvest.3780397] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A single intratracheal dose of porcine pancreatic elastase, which is cleared from the lung by 24 hours, was administered to wild-type, IL-1beta type 1 receptor-deficient, double TNF-alpha (type 1 and type 2) receptor-deficient, and combined TNF-alpha (type 1 receptor) plus IL-1beta receptor-deficient mice. The mean linear intercept (Lm) of saline-treated mice was 32(3) microm [mean(SE)]. For wild-type elastase-treated mice, Lm was 81(6) microm at 21 days versus 52(5) microm at 5 days after treatment, indicating that alveolar wall remodeling occurs long after the elastase injury. At 21 days, Lm values were 67(10), 62(3), and 39(5) microm in elastase-treated mice deficient in the IL-1beta receptor, double TNF-alpha receptors, and combined receptors, respectively. The level of apoptosis assessed by a terminal deoxynucleotidyl transferase-catalyzed in situ nick end-labeling assay was increased at 5 days after elastase treatment and was markedly and similarly attenuated in the IL-1beta, the double TNF-alpha, and the combined receptor-deficient mice. Our results indicate that inflammatory mediators exacerbate elastase-induced emphysema. We estimate that in the combined TNF-alpha + IL-1beta receptor-deficient mice, inflammation accounts for about 80% of the emphysema that develops after elastase treatment; decreased apoptosis of lung cells likely contributes to decreased severity of emphysema.
Collapse
Affiliation(s)
- Edgar C Lucey
- The Pulmonary Center, Boston University School of Medicine, 80 East Concord Street, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
27
|
Kawasaki H, Komai K, Ouyang Z, Murata M, Hikasa M, Ohgiri M, Shiozawa S. c-Fos/activator protein-1 transactivates wee1 kinase at G(1)/S to inhibit premature mitosis in antigen-specific Th1 cells. EMBO J 2001; 20:4618-27. [PMID: 11500387 PMCID: PMC125577 DOI: 10.1093/emboj/20.16.4618] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
M-phase promoting factor is a complex of cdc2 and cyclin B that is regulated positively by cdc25 phosphatase and negatively by wee1 kinase. We isolated the wee1 gene promoter and found that it contains one AP-1 binding motif and is directly activated by the immediate early gene product c-Fos at cellular G(1)/S phase. In antigen-specific Th1 cells stimulated by antigen, transactivation of the c-fos and wee1 kinase genes occurred sequentially at G(1)/S, and the substrate of wee1 kinase, cdc2-Tyr15, was subsequently phosphorylated at late G(1)/S. Under prolonged expression of the c-fos gene, however, the amount of wee1 kinase was increased and its target cdc2 molecule was constitutively phosphorylated on its tyrosine residue, where Th1 cells went into aberrant mitosis. Thus, an immediate early gene product, c-Fos/AP-1, directly transactivates the wee1 kinase gene at G(1)/S. The transient increase in c-fos and wee1 kinase genes is likely to be responsible for preventing premature mitosis while the cells remain in the G(1)/S phase of the cell cycle.
Collapse
Affiliation(s)
- Hiroki Kawasaki
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Koichiro Komai
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Zhufeng Ouyang
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Miki Murata
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Mari Hikasa
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Mami Ohgiri
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| | - Shunichi Shiozawa
- Division of Clinical Immunology, Faculty of Health Science, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 and Department of Rheumatology and Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, chuou-ku, Kobe 654-0017, Japan Corresponding author e-mail:
| |
Collapse
|
28
|
Abstract
A plethora of physiological and pathological stimuli induce and activate a group of DNA binding proteins that form AP-1 dimers. These proteins include the Jun, Fos and ATF subgroups of transcription factors. Recent studies using cells and mice deficient in individual AP-1 proteins have begun to shed light on their physiological functions in the control of cell proliferation, neoplastic transformation and apoptosis. Above all such studies have identified some of the target genes that mediate the effects of AP-1 proteins on cell proliferation and death. There is evidence that AP-1 proteins, mostly those that belong to the Jun group, control cell life and death through their ability to regulate the expression and function of cell cycle regulators such as Cyclin D1, p53, p21(cip1/waf1), p19(ARF) and p16. Amongst the Jun proteins, c-Jun is unique in its ability to positively regulate cell proliferation through the repression of tumor suppressor gene expression and function, and induction of cyclin D1 transcription. These actions are antagonized by JunB, which upregulates tumor suppressor genes and represses cyclin D1. An especially important target for AP-1 effects on cell life and death is the tumor suppressor p53, whose expression as well as transcriptional activity, are modulated by AP-1 proteins.
Collapse
Affiliation(s)
- E Shaulian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, CA 92093-0636, USA
| | | |
Collapse
|
29
|
Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001; 20:2413-23. [PMID: 11402337 DOI: 10.1038/sj.onc.1204380] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse skin has become the model of choice to study the regulation and function of AP-1 subunits in many physiological and pathological processes in vivo and in vitro. Genetically modified mice, in vitro reconstituted skin equivalents and epidermal cell lines were established, in which AP-1-regulated genetic programs of cell proliferation, differentiation and tumorigenesis can be analysed. Since the epidermis, as our interface with the environment, is subjected to radiation and injury, signal transduction pathways and critical AP-1 members regulating the mammalian stress response could be identified. Regulated expression of important components of the cytokine network, cell surface receptors and proteases, which orchestrate the process of wound healing has been found to rely on AP-1 activity. Here we review our current knowledge on the function of AP-1 subunits and AP-1 target genes in these fascinating fields of skin physiology and pathology.
Collapse
Affiliation(s)
- P Angel
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Elsas LJ, Lai K, Saunders CJ, Langley SD. Functional analysis of the human galactose-1-phosphate uridyltransferase promoter in Duarte and LA variant galactosemia. Mol Genet Metab 2001; 72:297-305. [PMID: 11286503 DOI: 10.1006/mgme.2001.3157] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human galactose-1-phosphate uridyltransferase (hGALT) is an evolutionarily conserved enzyme central to D-galactose metabolism. The impairment of hGALT causes galactosemia. One missense mutation, an aspartate to asparagine substitution at amino acid 314 (N314D), impairs 50% activity in the homozygous state in some patients but gives near normal activity in others. The former condition is called Duarte (D) and the latter, Los Angeles (LA). The D allele is linked to hGALT polymorphisms including a deletion 5'to the translation start site (-119 to -116delGTCA), g1391G --> A and g1105G --> C. The LA allele is linked to a g1721C --> T transition. To investigate possible mechanisms for differences in hGALT activity between the D and LA alleles, we sequenced 3951 nucleotides of genomic DNA 5' to the hGALT translation start site. Using a dual-luciferase reporter system to express deletion constructs of the hGALT promoter, we noted both positive and negative regulatory regions. Two putative positive regulatory domains overlap with the naturally occurring -119 to -116delGTCA linked to Duarte. One is an E-box motif (CACGTG) at -117 to -112 bp. The second is an AP-1 motif (TCAGTCAG) at -124 to -119 bp. The delGTCA mutation confers reduced luciferase activity to transfected cell lines derived from human ovarian and liver neoplasms. Additionally, human lymphoblasts derived from patients with the Duarte allele have reduced GALT mRNA. We conclude that the human GALT gene is regulated in the first -165 bp of its promoter region by positive regulators of GALT gene expression. The -119 to -116delGTCA reduces hGALT transcription resulting in reduced GALT activity in the Duarte allele.
Collapse
Affiliation(s)
- L J Elsas
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
31
|
Ma W, Xia C, Ling P, Qiu M, Luo Y, Tan TH, Liu M. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene 2001; 20:1703-14. [PMID: 11313918 DOI: 10.1038/sj.onc.1204224] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Revised: 12/21/2000] [Accepted: 01/04/2001] [Indexed: 11/09/2022]
Abstract
Immune cell-specific adaptor proteins create various combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, modulating the specificity and selectivity of intracellular signal transduction. Grap2 is a newly identified adaptor protein specifically expressed in lymphoid tissues. This protein shares 40--50% sequence homology in the SH3 and the SH2 domain with Grb2 and Grap. However, the Grap2 protein has a unique 120-amino acid glutamine- and proline-rich domain between the SH2 and C-terminal SH3 domains. The expression of Grap2 is highly restricted to lymphoid organs and T lymphocytes. In order to understand the role of this specific adaptor protein in immune cell signaling and activation, we searched for the Grap2 interacting protein in T lymphocytes. We found that Grap2 interacted with the hematopoietic progenitor kinase 1 (HPK1) in vitro and in Jurkat T cells. The interaction was mediated by the carboxyl-terminal SH3 domain of Grap2 with the second proline-rich motif of HPK1. Coexpression of Grap2 with HPK1 not only increased the kinase activity of HPK1 in the cell, but also had an additive effect on HPK1 mediated JNK activation. Furthermore, over expression of Grap2 and HPK1 induced significant transcriptional activation of c-Jun in the JNK signaling pathway and IL-2 gene reporter activity in stimulated Jurkat T cells. Therefore, our data suggest that the hematopoietic specific proteins Grap2 and HPK1 form a signaling complex to mediate the c-Jun NH(2)-terminal kinase (JNK) signaling pathway in T cells.
Collapse
Affiliation(s)
- W Ma
- Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cooper M, Fehniger T, Ponnappan A, Mehta V, Wewers M, Caligiuri M. Interleukin-1β costimulates interferon-γ production by human natural killer cells. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200103)31:3%3c792::aid-immu792%3e3.0.co;2-u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Cooper MA, Fehniger TA, Ponnappan A, Mehta V, Wewers MD, Caligiuri MA. Interleukin-1beta costimulates interferon-gamma production by human natural killer cells. Eur J Immunol 2001; 31:792-801. [PMID: 11241284 DOI: 10.1002/1521-4141(200103)31:3<792::aid-immu792>3.0.co;2-u] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural killer (NK) cells are an early source of immunoregulatory cytokines during the innate immune response to viruses, bacteria, and parasites. NK cells provide requisite IFN-gamma to monocytes for the elimination of obligate intracellular pathogens. IL-1beta is a pro-inflammatory cytokine produced by monocytes (i.e. a monokine) during the early immune response to infection, but its role in promoting human NK cell IFN-gamma production is unknown. The current study examines the ability of the monokine IL-1beta, plus IL-12, to costimulate IFN-gamma production by resting CD56(bright) and CD56(dim) human NK cell subsets. CD56(bright) NK cells stimulated with IL-1beta plus IL-12 produced abundant IFN-gamma protein, while little IFN-gamma was produced in identical cultures of CD56(dim) cells. In addition, upon activation with IL-1beta, CD56(bright) NK cells exhibited considerably greater phosphorylation of extracellular signal-regulated kinases p42/44 as compared to CD56(dim) NK cells. Quantitative PCR analysis showed brisk induction of IFN-gamma gene expression following costimulation with IL-1beta plus IL-12 in CD56(bright) NK cells, but intracellular flow cytometry revealed that only a fraction (42+/-2.3%) of CD56(bright) NK cells account for this high IFN-gamma production. These data suggest that the monokine IL-1beta is a potent costimulus of IFN-gamma production by a subset of NK cells following infectious insult.
Collapse
Affiliation(s)
- M A Cooper
- Department of Internal Medicine, Division of Hematology/Oncology, The Ohio State University, Columbus, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke 2001; 32:544-52. [PMID: 11157195 DOI: 10.1161/01.str.32.2.544] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Background and Purpose-Chemokines have been shown to play an important role in leukocyte and monocyte/macrophage infiltration into ischemic regions. The purpose of this study is to identify whether overexpression of the active human transforming growth factor-ss1 (ahTGF-ss1) can downregulate expression of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha), and intercellular adhesion molecule-1 (ICAM-1) and reduce ischemic brain injury. METHODS -Overexpression of transforming growth factor-ss1 (TGF-ss1) was achieved through adenoviral gene transfer. Five days after adenoviral transduction, the mouse underwent 30 minutes of middle cerebral artery occlusion followed by 1 to 7 days of reperfusion. TGF-ss1, MCP-1, MIP-1alpha, and ICAM-1 were detected by enzyme-linked immunosorbent assay and immunohistochemistry. Infarct areas and volumes were measured by cresyl violet staining. RESULTS -MCP-1 and MIP-1alpha expression is increased after middle cerebral artery occlusion, and double-labeled immunostaining revealed that MCP-1 is colocalized with neurons and astrocytes. Viral-mediated TGF-ss1 overexpression was significantly greater at measured time points, with a peak at 7 to 9 days. The expression of MCP-1 and MIP-1alpha, but not ICAM-1, was reduced in the mice overexpressing ahTGF-ss1 (P:<0.05). Furthermore, infarct volume was significantly reduced in the mice overexpressing ahTGF-ss1 (P:<0.05). CONCLUSIONS -This study demonstrates that MCP-1 and MIP-1alpha expressed in the ischemic region may play an important role in attracting inflammatory cells. The reduction of MCP-1 and MIP-1alpha, but not ICAM-1, in the mice overexpressing ahTGF-ss1 suggests that the neuroprotective effect of TGF-ss1 may result from the inhibition of chemokines during cerebral ischemia and reperfusion.
Collapse
Affiliation(s)
- L Pang
- Department of Surgery, Medical School, University of Michigan, Ann Arbor, MI 48109-0532, USA
| | | | | | | | | | | |
Collapse
|
35
|
Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, Angel P. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 2000; 103:745-55. [PMID: 11114331 DOI: 10.1016/s0092-8674(00)00178-1] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interactions between mesenchymal and epithelial cells are responsible for organogenesis and tissue homeostasis. This mutual cross-talk involves cell surface proteins and soluble factors, which are mostly the result of regulated transcription. To elucidate dimer-specific functions of the AP-1 family of transcription factors, we reconstituted skin by combining primary human keratinocytes and mouse wild-type, c-jun(-/-), and junB(-/-) fibroblasts. We have discovered an antagonistic function of these AP-1 subunits in the fibroblast-mediated paracrine control of keratinocyte proliferation and differentiation, and traced this effect to the IL-1-dependent regulation of KGF and GM-CSF. These data suggest that the relative activation state of these AP-1 subunits in a non-cell-autonomous, transregulatory fashion directs regeneration of the epidermis and maintenance of tissue homeostasis in skin.
Collapse
Affiliation(s)
- A Szabowski
- Division of Signal Transduction and Growth Control Deutsches Krebsforschungszentrum Im Neuenheimer Feld 280 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
STUDY OBJECTIVES To review the concept of proinflammatory cytokines. DESIGN Review of published literature. SETTING Academic (university hospital). RESULTS Cytokines are regulators of host responses to infection, immune responses, inflammation, and trauma. Some cytokines act to make disease worse (proinflammatory), whereas others serve to reduce inflammation and promote healing (anti-inflammatory). Attention also has focused on blocking cytokines, which are harmful to the host, particularly during overwhelming infection. Interleukin (IL)-1 and tumor necrosis factor (TNF) are proinflammatory cytokines, and when they are administered to humans, they produce fever, inflammation, tissue destruction, and, in some cases, shock and death. Reducing the biological activities of IL-1 and TNF is accomplished by several different, but highly specific, strategies, which involve neutralizing antibodies, soluble receptors, receptor antagonist, and inhibitors of proteases that convert inactive precursors to active, mature molecules. Blocking IL-1 or TNF has been highly successful in patients with rheumatoid arthritis, inflammatory bowel disease, or graft-vs-host disease but distinctly has not been successful in humans with sepsis. Agents such as TNF-neutralizing antibodies, soluble TNF receptors, and IL-1 receptor antagonist have been infused into > 10,000 patients in double-blind, placebo-controlled trials. Although there has been a highly consistent small increase (2 to 3%) in 28-day survival rates with anticytokine therapy, the effect has not been statistically significant. CONCLUSIONS Anticytokine therapy should be able to "rescue" the patient whose condition continues to deteriorate in the face of considerable support efforts. Unfortunately, it remains difficult to identify those patients who would benefit from anticytokine therapy for septic shock.
Collapse
Affiliation(s)
- C A Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver 80262, USA
| |
Collapse
|
37
|
Arima M, Plitt J, Stellato C, Bickel C, Motojima S, Makino S, Fukuda T, Schleimer RP. Expression of interleukin-16 by human epithelial cells. Inhibition by dexamethasone. Am J Respir Cell Mol Biol 1999; 21:684-92. [PMID: 10572065 DOI: 10.1165/ajrcmb.21.6.3671] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Production of chemoattractants by bronchial epithelial cells may contribute to the local accumulation of inflammatory cells in patients with bronchial asthma and other pulmonary diseases. Recently, interleukin (IL)-16 (lymphocyte chemoattractant factor) was reported to be a potent chemotactic stimulus for CD4(+) T lymphocytes and eosinophils, the types of leukocyte found in the proximity of bronchial epithelium in asthmatic individuals. To test the possibility that bronchial epithelial cells produce IL-16, we analyzed RNA and culture supernatants from the human bronchial epithelial cell line BEAS-2B, using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. BEAS-2B constitutively expressed IL-16 messenger RNA (mRNA) and protein; IL-16 expression was significantly upregulated in a concentration-dependent manner within 24 h by stimulation with histamine, IL-1beta, or tumor necrosis factor (TNF)-alpha whereas interferon-gamma did not significantly increase IL-16. Findings in BEAS-2B cells were confirmed in primary bronchial epithelial cells. Using TA cloning, IL-16 was cloned from BEAS-2B airway epithelial cells. Sequence analysis confirmed its near identity with lymphocyte-derived IL-16. The combination of IL-1beta and TNF-alpha had an additive effect on IL-16 expression. This combination of cytokines also had a priming effect on histamine-induced IL-16 mRNA expression, which was observed within 24 h and which increased to at least 48 h after stimulation. The IL-16 expression induced by histamine and combined cytokines was significantly inhibited by pretreatment with the protein synthesis inhibitor cycloheximide (10 microg/ml). Pretreatment with dexamethasone also significantly suppressed the expression of IL-16, in a concentration-dependent manner. Sputum samples from asthmatic subjects were found to have higher levels of IL-16 than were samples from subjects with other pulmonary inflammatory diseases. These findings suggest that bronchial epithelial cells have the capacity to produce IL-16 after stimulation with histamine, IL-1beta, and TNF-alpha, and raise the possibility that epithelium-derived IL-16 may play a role in recruitment of eosinophils and CD4(+) T lymphocytes in the airways. Downregulation of IL-16 expression by dexamethasone suggests that glucocorticoids may inhibit airway inflammation partly by suppressing the synthesis of inflammatory cytokines including IL-16.
Collapse
Affiliation(s)
- M Arima
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hsu JY, Hsu MY, Sorger T, Herlyn M, Levine EM. Heparin/endothelial cell growth supplement regulates matrix gene expression and prolongs life span of vascular smooth muscle cells through modulation of interleukin-1. In Vitro Cell Dev Biol Anim 1999; 35:647-54. [PMID: 10614876 DOI: 10.1007/s11626-999-0105-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vascular smooth muscle cells produce and respond to interleukin-1, a cytokine which modifies inflammation-associated vascular activities including the synthesis of extracellular matrix proteins. We have established vascular smooth muscle cells culture conditions in which heparin, in the presence of endothelial cell growth supplement, promotes cell proliferation and inhibits interleukin-1 and matrix protein expression. To test whether interleukin-1 mediates growth and matrix modulation by heparin/endothelial cell growth supplement, vascular smooth muscle cells were transfected with an Epstein-Barr virus-derived expression vector designed to express interleukin-1 antisense transcripts. RNase protection and ELISA assays demonstrated a complete block of interleukin-1 transcription and protein synthesis. Northern blot analysis also showed that interleukin-1 antisense decreased the expression of matrix genes such as type I collagen, fibronectin, and decorin similar to downregulation after heparin/endothelial cell growth supplement treatment. In contrast, the expression of versican was not affected, indicating a selective suppression of matrix proteins. In addition, interleukin-1 antisense significantly prolonged the life span of vascular smooth muscle cells in culture. Our data suggest that heparin/endothelial cell growth supplement induces matrix remodeling and controls growth and senescence of vascular smooth muscle cells through down-regulation of interleukin-1.
Collapse
Affiliation(s)
- J Y Hsu
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | | | | | |
Collapse
|
39
|
Matthews JS, O'Neill LA. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine 1999; 11:643-55. [PMID: 10479400 DOI: 10.1006/cyto.1998.0478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1 (IL-1) activates p42/p44 and p38 mitogen-activated protein kinases (MAP kinases) in target cells. Here we have used two specific inhibitors, PD98059 which inhibits MAP kinase kinase (MEK), and SB203580 which inhibits p38 MAP kinase to explore the involvement of these kinases in the induction of IL-2 by IL-1 in the murine thymoma cell line EL4.NOB-1. Both kinase inhibitors suppressed IL-1-stimulated IL-2 production. PD98059 blocked IL-2 mRNA accumulation and the induction of a reporter gene linked to the IL-2 promoter. In contrast, SB203580 only marginally inhibited IL-2 promoter-linked reporter gene expression and had no inhibitory effect on IL-2 mRNA levels. Neither PD98059 nor SB203580 had an inhibitory effect on NFkappaB-driven reporter gene expression in response to IL-1. Surprisingly, higher concentrations of SB203580 (30 microM) potentiated the IL-1 responses. PD98059 also inhibited induction of IL-2 by phorbol 12-myristate 13-acetate (PMA), and AP1-linked reporter gene expression in response to PMA but not IL-1. These results indicate that p42/p44 MAP kinase is involved in the regulation of IL-2 gene transcription by IL-1, whilst p38 MAP kinase has a post-transcriptional target. Additional IL-1 signalling pathways can clearly compensate for the lack of p38 MAP kinase which result in potentiation of the IL-1 responses observed at high-dose SB203580.
Collapse
Affiliation(s)
- J S Matthews
- Department of Biochemistry, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
40
|
Akagi Y, Liu W, Xie K, Zebrowski B, Shaheen RM, Ellis LM. Regulation of vascular endothelial growth factor expression in human colon cancer by interleukin-1beta. Br J Cancer 1999; 80:1506-11. [PMID: 10408390 PMCID: PMC2363101 DOI: 10.1038/sj.bjc.6690553] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Expression of vascular endothelial growth factor (VEGF), an important angiogenic factor in colon cancer, is tightly regulated by factors in the microenvironment. However, specific factors indigenous to the organ microenvironment of colon cancer growth that regulate VEGF expression in human colon cancer are not well defined. We investigated interleukin-1beta (IL-1beta) induction of VEGF expression in colon cancer cells and the mechanism by which this occurs. HT29 human colon cancer cells were treated with IL-1beta for various periods. Induction of VEGF mRNA by IL-1beta peaked at 24 h (> fivefold) and returned to baseline by 48 h. SW620 human colon cancer cells also reached a peak induction of VEGF mRNA 24 h after treatment with IL-1beta. VEGF was induced at a dose range between 1 and 20 ng ml(-1) of IL-1beta. IL-1beta induction of VEGF was also confirmed at the protein level. To examine the mechanism for VEGF induction by IL-1beta, we transiently transfected VEGF promoter-reporter constructs into HT29 cells. IL-1beta increased the activity of the VEGF promoter-reporter construct. Pretreatment of HT29 cells with dactinomycin abrogated the induction of VEGF mRNA by IL-1beta. The half-life of VEGF mRNA was not prolonged by treatment with IL-1beta. These findings suggest that IL-1beta regulates VEGF expression in human colon cancer cells by increasing transcription of the VEGF gene.
Collapse
Affiliation(s)
- Y Akagi
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Zhu Y, Liao HL, Lin JH, Verna L, Stemerman MB. Low-density lipoprotein augments interleukin-1-induced vascular adhesion molecule expression in human endothelial cells. Atherosclerosis 1999; 144:357-65. [PMID: 10407496 DOI: 10.1016/s0021-9150(99)00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the effect of low density lipoproteins (LDL) on the ability of the vascular endothelium to respond to vascular cell adhesion molecule 1 (VCAM-1) activation by a cytokine was investigated. After a 4-day pre-exposure to 240 mg/dl of LDL, human umbilical vein endothelial cells (HUVECs) were hyperresponsive to minute amounts of interleukin 1 alpha (IL-1 alpha) as demonstrated by an augmentation of VCAM-1 gene expression. Furthermore, in response to LDL exposure, endothelial recruitment of monocytes induced by minute amounts of IL-1 alpha was increased. This enhancing effect was blocked by an anti-VCAM antibody. The increased response appears not to be due to changes in IL-1 binding affinity or induction of endogenous IL-1 alpha. Transient transfection of HUVECs with a reporter driven by the VCAM promoter showed that LDL increased cellular response to IL-1 alpha by 46%. LDL itself does not increase NF-kappa B binding in endothelial cells (ECs). However, after a 2-day LDL incubation, NF-kappa B binding could be induced by over 63% with a very low dose of IL-1 alpha. IL-1 alpha at this dose (which activates NF-kappa B, but not AP-1) also enhanced LDL-activated AP-1 binding. This cross-enhanced effect may be an important intracellular signaling mechanism for EC activation. The results from this study provide new clues to understanding the mechanisms governing combined risk factors for atherosclerosis.
Collapse
Affiliation(s)
- Y Zhu
- Division of Biomedical Sciences, University of California, Riverside 92521, USA.
| | | | | | | | | |
Collapse
|
42
|
Fitzgerald KA, O’Neill LAJ. Characterization of CD44 Induction by IL-1: A Critical Role for Egr-1. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The adhesion molecule CD44 is a multifunctional, ubiquitously expressed glycoprotein that participates in the process of leukocyte recruitment to sites of inflammation and to their migration through lymphatic tissues. In this study, we have investigated the effect of the proinflammatory cytokine IL-1α on CD44 gene expression in the human immortalized endothelial cell line ECV304. Immunoblotting of cell extracts showed constitutive expression of a 85-kDa protein corresponding to the standard form of CD44, which was potently up-regulated following IL-1α treatment. Furthermore, IL-1α induced expression of v3- and v6-containing isoforms of CD44, which migrated at 110 and 140–180 kDa, respectively. The effect of IL-1α on CD44 standard, v3- and v6-containing isoforms was dose and time dependent and was inhibited in the presence of IL-1 receptor antagonist. To elucidate the molecular mechanisms regulating CD44 expression in response to IL-1α, we investigated the effect of IL-1α on CD44 mRNA expression. Reverse-transcriptase PCR and Northern analysis demonstrated an increase in CD44 mRNA expression indicating a transcriptional mechanism of control by IL-1α. Furthermore, IL-1α increased expression of a reporter gene under the control of the CD44 promoter (up to −1.75 kb). The effect of IL-1α was critically dependent on the site spanning −151 to −701 of the promoter. This effect required the presence of an Egr-1 motif at position −301 within the CD44 promoter since mutation of this site abolished responsiveness. IL-1α also induced Egr-1 expression in these cells. These studies therefore identify Egr-1 as a critical transcription factor involved in CD44 induction by IL-1α.
Collapse
Affiliation(s)
| | - Luke A. J. O’Neill
- Department of Biochemistry and Biotechnology Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
43
|
Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM, Tan TH. Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase. Mol Cell Biol 1999; 19:1359-68. [PMID: 9891069 PMCID: PMC116064 DOI: 10.1128/mcb.19.2.1359] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1998] [Accepted: 10/28/1998] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is an upstream activator of c-Jun N-terminal kinase (JNK). In order to further characterize the HPK1-mediated JNK signaling cascade, we searched for HPK1-interacting proteins that could regulate HPK1. We found that HPK1 interacted with Crk and CrkL adaptor proteins in vitro and in vivo and that the proline-rich motifs within HPK1 were involved in the differential interaction of HPK1 with the Crk proteins and Grb2. Crk and CrkL not only activated HPK1 but also synergized with HPK1 in the activation of JNK. The HPK1 mutant (HPK1-PR), which encodes the proline-rich region alone, blocked JNK activation by Crk and CrkL. Dominant-negative mutants of HPK1 downstream effectors, including MEKK1, TAK1, and SEK1, also inhibited Crk-induced JNK activation. These results suggest that the Crk proteins serve as upstream regulators of HPK1. We further observed that the HPK1 mutant HPK1-KD(M46), which encodes the kinase domain with a point mutation at lysine-46, and HPK1-PR blocked interleukin-2 (IL-2) induction in Jurkat T cells, suggesting that HPK1 signaling plays a critical role in IL-2 induction. Interestingly, HPK1 phosphorylated Crk and CrkL, mainly on serine and threonine residues in vitro. Taken together, our findings demonstrate the functional interaction of HPK1 with Crk and CrkL, reveal the downstream pathways of Crk- and CrkL-induced JNK activation, and highlight a potential role of HPK1 in T-cell activation.
Collapse
Affiliation(s)
- P Ling
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lallemand D, Ham J, Garbay S, Bakiri L, Traincard F, Jeannequin O, Pfarr CM, Yaniv M. Stress-activated protein kinases are negatively regulated by cell density. EMBO J 1998; 17:5615-26. [PMID: 9755162 PMCID: PMC1170890 DOI: 10.1093/emboj/17.19.5615] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stimulation by UV irradiation, TNFalpha, as well as PDGF or EGF activates the JNK/SAPK signalling pathway in mouse fibroblasts. This results in the phosphorylation of the N-terminal domain of c-Jun, increasing its transactivation potency. Using an antibody that specifically recognizes c-Jun phosphorylated at Ser63, we show that culture confluency drastically inhibited c-Jun N-terminal phosphorylation due to the inhibition of the JNK/SAPK pathway. Transfection experiments demonstrate that the inhibition occurs at the same level as, or upstream of, the small G-proteins cdc42 and Rac1. In contrast, the classical MAPK pathway was insensitive to confluency. The inhibition of JNK/SAPK activation depended on the integrity of the actin microfilament network. These results were confirmed and extended in monolayer wounding experiments. After PDGF, EGF or UV stimulation, c-Jun was predominantly phosphorylated in cells bordering the wound, which are the cells that move to occupy the wounded area. Thus, modulation of the stress-dependent signal cascade by confluency will restrict c-Jun N-terminal phosphorylation in response to mitogenic or chemotactic agents to cells that border a wounded area.
Collapse
Affiliation(s)
- D Lallemand
- Unité des Virus Oncogènes, Unité associée 1644 du Centre National de la Recherche Scientifique, Paris Cedex 15 France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sunder-Plassmann R, Reinherz EL. A p56lck-independent pathway of CD2 signaling involves Jun kinase. J Biol Chem 1998; 273:24249-57. [PMID: 9727049 DOI: 10.1074/jbc.273.37.24249] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p56 Src family non-receptor tyrosine kinase has been shown to be critical for T lymphocyte differentiation and activation. Hence in the absence of p56, T cell receptor triggered activation does not occur. We now provide evidence for a CD2-based signaling pathway which, in contrast to that of the T cell receptor, is independent of p56. CD2-mediated interleukin-2 production occurs via activation of Jun kinase in cell lines lacking p56. Jun kinase then facilitates the binding of c-Jun/c-Fos heterodimers to the AP-1 consensus site and the subsequent transcriptional activity of the interleukin-2 promoter. These data elucidate differences between TCR and CD2 signaling pathways in the same T cells.
Collapse
Affiliation(s)
- R Sunder-Plassmann
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Loddick SA, Liu C, Takao T, Hashimoto K, De Souza EB. Interleukin-1 receptors: cloning studies and role in central nervous system disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:306-19. [PMID: 9651547 DOI: 10.1016/s0165-0173(97)00037-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S A Loddick
- Neurocrine Biosciences, Inc., San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
47
|
Mantovani A, Muzio M, Ghezzi P, Colotta C, Introna M. Regulation of inhibitory pathways of the interleukin-1 system. Ann N Y Acad Sci 1998; 840:338-51. [PMID: 9629261 DOI: 10.1111/j.1749-6632.1998.tb09573.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The IL-1 system includes two agonists, converting enzymes, antagonists, and two receptors (R). New elements and functions in the system will be discussed, including (a) cloning of a new isoform of the receptor antagonist; (b) further analysis of the type II IL-1-binding molecule as a decoy R. The modulation of IL-1R by chemotactic signals was recently investigated. It was found that chemoattractants cause rapid release of the type II decoy R from myelomonocytic cells with a t1/2 of 30 sec. Induction of decoy R release represents an early event in the multistep process of recruitment. It may serve to block the systemic action of IL-1 leaking from sites of inflammation, while preserving responsiveness in situ. We recently cloned the first long pentraxin, PTX3 (human and mouse, cDNA and genomic) as an IL-1-inducible gene. The structural and functional features of this molecule as well as initial evidence of involvement in human pathology will be discussed.
Collapse
Affiliation(s)
- A Mantovani
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | |
Collapse
|
48
|
Pantoni L, Sarti C, Inzitari D. Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives. Arterioscler Thromb Vasc Biol 1998; 18:503-13. [PMID: 9555854 DOI: 10.1161/01.atv.18.4.503] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possibility of reopening an occluded cerebral artery by means of thrombolysis has renewed interest in a number of the several mechanisms that are active during acute cerebral ischemia. Over recent years, it has become apparent that leukocytes play a central role not only during the healing stage of brain infarction but also during the early phases of cerebral ischemia, when it is postulated that these cells produce harmful effects, particularly in the presence of reperfusion. This review is based on the critical analysis of more than 150 publications dealing with the role of leukocytes and some inflammatory mediators (cytokines, chemokines, and adhesion molecules) in cerebral ischemia. Animal studies indicate that leukocyte involvement is promoted by a variety of inflammatory molecules produced immediately after the onset of cerebral ischemia. Considerable experimental evidence suggests that these mediators play a key role in the progression from ischemia to irreversible injury (ie, cellular death and necrosis). However, the precise role of each molecule alone remains to be further elucidated as well as in relation to the complex network existing among different mediators. Progress in our understanding of the inflammatory mechanisms operating in cerebral ischemia has enabled the testing of new compounds with promising results in animals; in contrast, one recent controlled trial of an anti-leukocyte molecule in acute stroke patients showed negative results. This discrepancy may derive in part from our incomplete understanding of the complexity of the inflammatory mechanisms involved in cerebral ischemia. Our analysis suggests that until sufficient knowledge of the underlying disease mechanisms is acquired, more care should be taken when testing new and potentially efficacious drugs in stroke patients.
Collapse
Affiliation(s)
- L Pantoni
- Department of Neurological and Psychiatric Sciences, University of Florence, Italy.
| | | | | |
Collapse
|
49
|
Lo YY, Conquer JA, Grinstein S, Cruz TF. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem 1998; 69:19-29. [PMID: 9513043 DOI: 10.1002/(sici)1097-4644(19980401)69:1<19::aid-jcb3>3.0.co;2-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-1 beta (IL-1) is implicated in cartilage destruction in arthritis through promotion of matrix metalloproteinase production. Upregulation of collagenase gene expression by IL-1 is known to require the transactivators Fos and Jun. Recently, reactive oxygen species (ROS) have been suggested to act as intracellular signaling molecules mediating the biological effects of cytokines. Here, we demonstrated ROS production by IL-1-stimulated bovine chondrocytes and that neutralizing ROS activity by the potent antioxidant, N-acetylcysteine, or inhibiting endogenous ROS production by diphenyleneiodonium (DPI), significantly attenuated IL-1-induced c-fos and collagenase gene expression. The inhibitory effect of DPI implicates enzymes such as NADPH oxidase in the endogenous production of ROS. Chondrocytes were also found to produce nitric oxide (NO) upon IL-1 stimulation. That NO may mediate part of the inducing effects of IL-1 was supported by the observation that L-NG-monomethylarginine, a NO synthase inhibitor, partially inhibited IL-1-regulated collagenase expression. Moreover, treatment of chondrocytes with the NO-producing agent, S-nitroso-N-acetylpenicillamine, was sufficient to induce collagenase mRNA levels. In summary, our results suggest that ROS released in response to IL-1 may function as second messengers transducing extracellular stimuli to their targets in the nucleus, leading to augmentation of gene expression.
Collapse
Affiliation(s)
- Y Y Lo
- Department of Cellular and Molecular Pathology, University of Toronto, Canada
| | | | | | | |
Collapse
|
50
|
Gokulan K, Rao DN. Bioactive fragment of human IL-1beta [163-171] modulates the immune response to synthetic peptides of HIV. Microbiol Immunol 1998; 41:965-74. [PMID: 9492182 DOI: 10.1111/j.1348-0421.1997.tb01956.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of T helper cells specific for viral antigens is critical for antibody production and the generation of cytotoxic T cells during retroviral infection. In this study, we examined the effect of linking HIV peptides with a bioactive fragment of human interleukin-1beta (IL-1beta) (163-171) on the induction of immune response to the peptides. A panel of highly purified synthetic peptides representing defined regions of gp41, Gag and gp120 were used as antigens. Mouse spleen cells primed with the peptide conjugates produced greater proliferation on in vitro stimulation than spleen cells primed with peptide alone. In addition, antibody production as assessed by ELISA was observed after immunization with conjugated peptides but not with peptide alone, indicating B-cell activation. We also found that a high level of IgG2a antibody production correlated with a high level of IFN-gamma production. These findings favor the notion that IL-1beta plays an important role in immune responses. These observations support the formulation and design of synthetic vaccines against HIV using synthetic HIV peptides conjugated with immunomodulators. Such an approach may provide an effective vaccination against other infectious agents.
Collapse
Affiliation(s)
- K Gokulan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | | |
Collapse
|