1
|
Taylor LJ, Steed G, Pingarron‐Cardenas G, Wittern L, Hannah MA, Webb AAR. GIGANTEA Is Required for Robust Circadian Rhythms in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:4492-4504. [PMID: 40007327 PMCID: PMC12050397 DOI: 10.1111/pce.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
GIGANTEA (GI) is a plant-specific protein that functions in many physiological processes and signalling networks. In Arabidopsis, GI has a central role in circadian oscillators regulating the abundance of ZEITLUPE and TIMING OF CAB EXPRESSION 1 proteins and is essential for photoperiodic regulation of flowering. We have investigated how ortholgues of this component of Arabidopsis circadian oscillators contribute to circadian rhythms and yield traits, including heading (flowering) in wheat. We find that GI is a core component of wheat circadian oscillators that is necessary to maintain robust oscillations in chlorophyll fluorescence and circadian oscillator transcript abundance. The predicted lack of functional GI results in later flowering of wheat in both long days and short days in controlled environment conditions. Our results support and extend previous work, which suggests that the pathways by which photoperiodism regulates flowering are not fully conserved between Arabidopsis and wheat. Understanding the molecular basis for photoperiodism in wheat is important for breeders looking to manipulate flowering time and develop new elite, high-yielding cultivars.
Collapse
Affiliation(s)
- Laura J. Taylor
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gareth Steed
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Lukas Wittern
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Alex A. R. Webb
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Stable and dynamic gene expression patterns over diurnal and developmental timescales in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:1147-1162. [PMID: 40114416 PMCID: PMC11982781 DOI: 10.1111/nph.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Developmental processes are known to be circadian-regulated in plants. For instance, the circadian clock regulates genes involved in the photoperiodic flowering pathway and the initiation of leaf senescence. Furthermore, signals that entrain the circadian clock, such as energy availability, are known to vary in strength over plant development. However, diel oscillations of the Arabidopsis transcriptome have typically been measured in seedlings. We collected RNA sequencing (RNA-seq) data from Arabidopsis leaves over developmental and diel timescales, concurrently: every 4 h d-1, on three separate days after a synchronised vegetative-to-reproductive transition. Gene expression varied more over the developmental timescale than on the diel timescale, including genes related to a key energy sensor: the sucrose nonfermenting-1-related protein kinase complex. Moreover, regulatory targets of core clock genes displayed changes in rhythmicity and amplitude of expression over development. Cell-type-specific expression showed diel patterns that varied in amplitude, but not phase, over development. Some previously identified reverse transcription quantitative polymerase chain reaction housekeeping genes display undesirable levels of variation over both timescales. We identify which common reverse transcription quantitative polymerase chain reaction housekeeping genes are most stable across developmental and diel timescales. In summary, we establish the patterns of circadian transcriptional regulation over plant development, demonstrating how diel patterns of expression change over developmental timescales.
Collapse
Affiliation(s)
- Ethan J. Redmond
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - James Ronald
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Seth J. Davis
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Daphne Ezer
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| |
Collapse
|
3
|
Mariën B, Robinson KM, Jurca M, Michelson IH, Takata N, Kozarewa I, Pin PA, Ingvarsson PK, Moritz T, Ibáñez C, Nilsson O, Jansson S, Penfield S, Yu J, Eriksson ME. Nature's Master of Ceremony: The Populus Circadian Clock as Orchestratot of Tree Growth and Phenology. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:16. [PMID: 40206183 PMCID: PMC11976295 DOI: 10.1038/s44323-025-00034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Understanding the timely regulation of plant growth and phenology is crucial for assessing a terrestrial ecosystem's productivity and carbon budget. The circadian clock, a system of genetic oscillators, acts as 'Master of Ceremony' during plant physiological processes. The mechanism is particularly elusive in trees despite its relevance. The primary and secondary tree growth, leaf senescence, bud set, and bud burst timing were investigated in 68 constructs transformed into Populus hybrids and compared with untransformed or transformed controls grown in natural or controlled conditions. The results were analyzed using generalized additive models with ordered-factor-smooth interaction smoothers. This meta-analysis shows that several genetic components are associated with the clock. Especially core clock-regulated genes affected tree growth and phenology in both controlled and field conditions. Our results highlight the importance of field trials and the potential of using the clock to generate trees with improved characteristics for sustainable silviculture (e.g., reprogrammed to new photoperiodic regimes and increased growth).
Collapse
Affiliation(s)
- Bertold Mariën
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Kathryn M. Robinson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Manuela Jurca
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ingrid H. Michelson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki Japan
| | - Iwanka Kozarewa
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pierre A. Pin
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
- SECOBRA Research, Maule, France
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Thomas Moritz
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
- CBMR (Novo Nordisk Foundation Center for Basic Metabolic Research), University of Copenhagen, Copenhagen, Denmark
| | - Cristian Ibáñez
- Department of Agronomy, University of La Serena, Ovalle, Chile
| | - Ove Nilsson
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Stefan Jansson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Steve Penfield
- Department of Crop Genetics, John Innes Center, Norwich, UK
| | - Jun Yu
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Maria E. Eriksson
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Keller I, Neuhaus HE. Innovations and threats facing the storage of sugar in sugar beet. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102721. [PMID: 40157131 DOI: 10.1016/j.pbi.2025.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Sugar beet has great economic impact, particularly in the Northern Hemisphere. Classical breeding has increased the plants' taproot sugar contents to 20 %, but further improvements require the identification of factors limiting sucrose accumulation. Recent research uncovered key elements for sucrose storage, including the identification of the transporter pumping sucrose into taproot vacuoles and regulatory proteins controlling its activity. As with other crops, sugar beet breeding led to undesirable trait-offs, like increased frost sensitivity. However, studies of the plants' metabolic reprogramming upon cold temperatures suggest potential strategies for i) improving cold/frost tolerance and ii) stabilizing yield. In addition, a rapidly evolving bacterial infection has emerged, causing "Syndrome basses richesses". Our understanding of this disease is limited, so research is needed to prevent its spread and secure sugar beet production. Accordingly, managing the effects of environmental stresses on genetically optimized plants and minimizing disease threats is critical for maintaining and improving yield.
Collapse
Affiliation(s)
- Isabel Keller
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany.
| |
Collapse
|
5
|
Cai K, Li X, Liu D, Bao S, Shi C, Zhu S, Xu K, Sun X, Li X. Function diversification of CONSTANS-like genes in Pyrus and regulatory mechanisms in response to different light quality. BMC PLANT BIOLOGY 2025; 25:303. [PMID: 40059159 PMCID: PMC11892235 DOI: 10.1186/s12870-025-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Pear (Pyrus L.) is a significant commercial fruit globally, with diverse species exhibiting variations in their flowering periods due to environmental factors. CONSTANS-like (COL) genes, known from previous studies in Arabidopsis, are key regulators of flowering time by sensing photoperiod. However, the evolutionary history and functions of COL genes in different pear species remain unclear. In this study, we identified a total of 79 COL genes in different pear species, including 12 COL genes in Pyrus bretschneideri 'DangshanSuli', 9 in Pyrus ussuriensis × hybrid 'Zhongai 1', 11 in Pyrus communis 'Bartlett', 13 in Pyrus betulifolia, 18 in Pyrus pyrifolia 'Cuiguan', 16 in Pyrus pyrifolia 'Nijisseiki'. Analysis of gene structure, phylogenetic tree, and multiple sequences provided valuable insights into the fundamental understanding of COL genes in pear. The impact of selection pressure on the PbrCOLs in Chinese white pear was assessed using Ka/Ks, revealing that the evolution rate of PbrCOLs was influenced by purification selection factors. The study also revealed different tissue-specific expression patterns of PbrCOLs under varying light quality. Real-time quantitative PCR revealed that under natural light conditions, the expression patterns of PbrCOL2, PbrCOL3, and PbrCOL4 are similar to previous studies on CONSTANS gene in Arabidopsis, with increased expression levels during the day and decreased levels at night. However, PbrCOL1, PbrCOL6, and PbrCOL9 exhibit different expression patterns, with decreased expression levels both during the day and at night. After red light treatment, high expression of PbrCOL3 and PbrCOL4 was observed at night, while the expression patterns of the other four genes did not show significant changes. Following blue light treatment, the expression peaks of PbrCOL1 and PbrCOL6 occurred during the night, showing opposite expression patterns compared to the study in Arabidopsis. The overexpression of PbrCOL3 significantly increase the chlorophyll content in pear seedlings, and its expression significantly affected the expression of other key flowering-related genes. Also, overexpression of PbrCOL3 resulted in a late-flowering phenotype in Arabidopsis. These findings indicate diverse responsive mechanisms and functions of PbrCOL genes on flowering time in pear. In conclusion, this study established a foundation for a deeper understanding of the specific roles of PbrCOLs in regulating the reproductive development of pear, particularly in the context of the photoperiodic flowering process.
Collapse
Affiliation(s)
- Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xinyi Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Dongrui Liu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Sihan Bao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Cong Shi
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Patnaik A, Mishra P, Dash A, Panigrahy M, Panigrahi KCS. Evolution of light-dependent functions of GIGANTEA. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:819-835. [PMID: 39499031 DOI: 10.1093/jxb/erae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Priyanka Mishra
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Anish Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Odisha 751003, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
7
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
8
|
Mehta D, Scandola S, Kennedy C, Lummer C, Gallo MCR, Grubb LE, Tan M, Scarpella E, Uhrig RG. Twilight length alters growth and flowering time in Arabidopsis via LHY/ CCA1. SCIENCE ADVANCES 2024; 10:eadl3199. [PMID: 38941453 PMCID: PMC11212724 DOI: 10.1126/sciadv.adl3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Leuven Plant Institute, KU Leuven, B-3001 Leuven, Belgium
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Lauren E. Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
9
|
Li H, Xue M, Zhang H, Zhao F, Li X, Yu S, Jiang D. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100833. [PMID: 38327058 PMCID: PMC11121753 DOI: 10.1016/j.xplc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Li C, Lin H, Debernardi JM, Zhang C, Dubcovsky J. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:519-533. [PMID: 38184778 DOI: 10.1111/tpj.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| |
Collapse
|
11
|
Singh A, Ramakrishna G, Singh NK, Abdin MZ, Gaikwad K. Genomic insight into variations associated with flowering-time and early-maturity in pigeonpea mutant TAT-10 and its wild type parent T21. Int J Biol Macromol 2024; 257:128559. [PMID: 38061506 DOI: 10.1016/j.ijbiomac.2023.128559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important grain legume crop with a broad range of 90 to 300 days for maturity. To identify the genomic variations associated with the early maturity, we conducted whole-genome resequencing of an early-maturing pigeonpea mutant TAT-10 and its wild type parent T21. A total of 135.67 and 146.34 million sequencing reads were generated for T21 and TAT-10, respectively. From this resequencing data, 1,397,178 and 1,419,904 SNPs, 276,741 and 292,347 InDels, and 87,583 and 92,903 SVs were identified in T21 and TAT-10, respectively. We identified 203 genes in the pigeonpea genome that are homologs of flowering-related genes in Arabidopsis and found 791 genomic variations unique to TAT-10 linked to 94 flowering-related genes. We identified three candidate genes for early maturity in TAT-10; Suppressor of FRI 4 (SUF4), Early Flowering In Short Days (EFS), and Probable Lysine-Specific Demethylase ELF6. The variations in ELF6 were predicted to be possibly damaging and the expression profiles of EFS and ELF6 also supported their probable role during early flowering in TAT-10. The present study has generated information on genomic variations associated with candidate genes for early maturity, which can be further studied and exploited for developing the early-maturing pigeonpea cultivars.
Collapse
Affiliation(s)
- Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | | | | | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
12
|
Liu L, Xie Y, Yahaya BS, Wu F. GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms. Genes (Basel) 2024; 15:94. [PMID: 38254983 PMCID: PMC10815842 DOI: 10.3390/genes15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, GI influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism). GI has also been implicated to play a pivotal role in response to stresses such as freezing, thermomorphogenic stresses, salinity, drought, and osmotic stresses. Positioned at the hub of complex genetic networks, GI interacts with hormonal signaling pathways like abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), and brassinosteroids (BRs) at multiple regulatory levels. This intricate interplay enables GI to balance stress responses, promoting growth and flowering, and optimize plant productivity. This review delves into the multifaceted roles of GI, supported by genetic and molecular evidence, and recent insights into the dynamic interplay between flowering and stress responses, which enhance plants' adaptability to environmental challenges.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China;
| | - Yuxin Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
13
|
Grant NP, Toy JJ, Funnell-Harris DL, Sattler SE. Deleterious mutations predicted in the sorghum (Sorghum bicolor) Maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing. Sci Rep 2023; 13:16638. [PMID: 37789045 PMCID: PMC10547693 DOI: 10.1038/s41598-023-42306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
In sorghum [Sorghum bicolor (L.) Moench] the Maturity (Ma1, Ma2, Ma3, Ma4, Ma5, Ma6) and Dwarf (Dw1, Dw2, Dw3, Dw4) loci, encode genes controlling flowering time and plant height, respectively, which are critical for designing sorghum ideotypes for a maturity timeframe and a harvest method. Publicly available whole-genome resequencing data from 860 sorghum accessions was analyzed in silico to identify genomic variants at 8 of these loci (Ma1, Ma2, Ma3, Ma5, Ma6, Dw1, Dw2, Dw3) to identify novel loss of function alleles and previously characterized ones in sorghum germplasm. From ~ 33 million SNPs and ~ 4.4 million InDels, 1445 gene variants were identified within these 8 genes then evaluated for predicted effect on the corresponding encoded proteins, which included newly identified mutations (4 nonsense, 15 frameshift, 28 missense). Likewise, most accessions analyzed contained predicted loss of function alleles (425 ma1, 22 ma2, 40 ma3, 74 ma5, 414 ma6, 289 dw1, 268 dw2 and 45 dw3) at multiple loci, but 146 and 463 accessions had no predicted ma or dw mutant alleles, respectively. The ma and dw alleles within these sorghum accessions represent a valuable source for manipulating flowering time and plant height to develop the full range of sorghum types: grain, sweet and forage/biomass.
Collapse
Affiliation(s)
- Nathan P Grant
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John J Toy
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Deanna L Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Scott E Sattler
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
14
|
Mao J, Mo Z, Yuan G, Xiang H, Visser RGF, Bai Y, Liu H, Wang Q, van der Linden CG. The CBL-CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation. PLANT, CELL & ENVIRONMENT 2023; 46:3012-3022. [PMID: 35822392 DOI: 10.1111/pce.14396] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved to deal with different stresses during plant growth, relying on complex interactions or crosstalk between multiple signalling pathways in plant cells. In this sophisticated regulatory network, Ca2+ transients in the cytosol ([Ca2+ ]cyt ) act as major physiological signals to initiate appropriate responses. The CALCINEURIN B-LIKE PROTEIN (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) network relays physiological signals characterised by [Ca2+ ]cyt transients during plant development and in response to environmental changes. Many studies are aimed at elucidating the role of the CBL-CIPK network in plant growth and stress responses. This review discusses the involvement of the CBL-CIPK pathways in two levels of crosstalk between plant development and stress adaptation: direct crosstalk through interaction with regulatory proteins, and indirect crosstalk through adaptation of correlated physiological processes that affect both plant development and stress responses. This review thus provides novel insights into the physiological roles of the CBL-CIPK network in plant growth and stress adaptation.
Collapse
Affiliation(s)
- Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Zhijie Mo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Haiying Xiang
- Department of Biological Breeding, Yunnan Academy of Tobacco Science, Kunming, China
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | | |
Collapse
|
15
|
Du J, Zhu X, He K, Kui M, Zhang J, Han X, Fu Q, Jiang Y, Hu Y. CONSTANS interacts with and antagonizes ABF transcription factors during salt stress under long-day conditions. PLANT PHYSIOLOGY 2023; 193:1675-1694. [PMID: 37379562 DOI: 10.1093/plphys/kiad370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure. Here, we show that the expression of CO responds to salinity treatment. CO negatively mediated salinity tolerance under long-day (LD) conditions. Seedlings from co-mutants were more tolerant to salinity stress, whereas overexpression of CO resulted in plants with reduced tolerance to salinity stress. Further genetic analyses revealed the negative involvement of GIGANTEA (GI) in salinity tolerance requires a functional CO. Mechanistic analysis demonstrated that CO physically interacts with 4 critical basic leucine zipper (bZIP) transcription factors; ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), ABF2, ABF3, and ABF4. Disrupting these ABFs made plants hypersensitive to salinity stress, demonstrating that ABFs enhance salinity tolerance. Moreover, ABF mutations largely rescued the salinity-tolerant phenotype of co-mutants. CO suppresses the expression of several salinity-responsive genes and influences the transcriptional regulation function of ABF3. Collectively, our results show that the LD-induced CO works antagonistically with ABFs to modulate salinity responses, thus revealing how CO negatively regulates plant adaptation to salinity stress.
Collapse
Affiliation(s)
- Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiang Zhu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
16
|
Zheng R, Meng X, Hu Q, Yang B, Cui G, Li Y, Zhang S, Zhang Y, Ma X, Song X, Liang S, Li Y, Li J, Yu H, Luan W. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1343-1360. [PMID: 36719169 PMCID: PMC10281609 DOI: 10.1111/pbi.14020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Bo Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Guicai Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yingying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yu Zhang
- Institute for Advance StudiesWuhan UniversityWuhanChina
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| |
Collapse
|
17
|
Shim Y, Seong G, Choi Y, Lim C, Baek SA, Park YJ, Kim JK, An G, Kang K, Paek NC. Suppression of cuticular wax biosynthesis mediated by rice LOV KELCH REPEAT PROTEIN 2 supports a negative role in drought stress tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1504-1520. [PMID: 36683564 DOI: 10.1111/pce.14549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gayeong Seong
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-A Baek
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhang C, Dong Y, Ren Y, Wang S, Yang M. Conjoint Analysis of Genome-Wide lncRNA and mRNA Expression during the Salicylic Acid Response in Populus × euramericana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1377. [PMID: 36987064 PMCID: PMC10058947 DOI: 10.3390/plants12061377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. To explore the molecular mechanism of the response of poplar to salicylic acid (SA), the changes in protective enzymes, which are closely related to plant resistance induced by exogenous SA, were studied, and the expression of mRNA and lncRNA were determined by high-throughput RNA sequencing. The results showed that the activities of phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), in the leaves of Populus × euramericana, were significantly increased by exogenous SA application. High-throughput RNA sequencing showed that 26,366 genes and 5690 lncRNAs were detected under the different treatment conditions: SA and H2O application. Among these, 606 genes and 49 lncRNAs were differentially expressed. According to target prediction, lncRNAs and target genes involved in light response, stress response, plant disease resistance, and growth and development, were differentially expressed in SA-treated leaves. Interaction analysis showed that lncRNA-mRNA interactions, following exogenous SA, were involved in the response of poplar leaves to the external environment. Our study provides a comprehensive view of Populus × euramericana lncRNAs and offers insights into the potential functions and regulatory interactions of SA-responsive lncRNAs, thus forming the foundation for future functional analysis of SA-responsive lncRNAs in Populus × euramericana.
Collapse
Affiliation(s)
- Chao Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| |
Collapse
|
19
|
Patnaik A, Kumar A, Behera A, Mishra G, Dehery SK, Panigrahy M, Das AB, Panigrahi KCS. GIGANTEA supresses wilt disease resistance by down-regulating the jasmonate signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1091644. [PMID: 36968378 PMCID: PMC10034405 DOI: 10.3389/fpls.2023.1091644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
GIGANTEA (GI) is a plant-specific nuclear protein that plays a pleiotropic role in the growth and development of plants. GI's involvement in circadian clock function, flowering time regulation, and various types of abiotic stress tolerance has been well documented in recent years. Here, the role of GI in response to Fusarium oxysporum (F. oxysporum) infection is investigated at the molecular level comparing Col-0 WT with the gi-100 mutant in Arabidopsis thaliana. Disease progression, photosynthetic parameters, and comparative anatomy confirmed that the spread and damage caused by pathogen infection were less severe in gi-100 than in Col-0 WT plants. F. oxysporum infection induces a remarkable accumulation of GI protein. Our report showed that it is not involved in flowering time regulation during F. oxysporum infection. Estimation of defense hormone after infection showed that jasmonic acid (JA) level is higher and salicylic acid (SA) level is lower in gi-100 compared to Col-0 WT. Here, we show that the relative transcript expression of CORONATINE INSENSITIVE1 (COI1) and PLANT DEFENSIN1.2 (PDF1.2) as a marker of the JA pathway is significantly higher while ISOCHORISMATE SYNTHASE1 (ICS1) and NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), the markers of the SA pathway, are downregulated in the gi-100 mutants compared to Col-0 plants. The present study convincingly suggests that the GI module promotes susceptibility to F. oxysporum infection by inducing the SA pathway and inhibiting JA signaling in A. thaliana.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Aman Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Anshuman Behera
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Gayatri Mishra
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
| | - Subrat Kumar Dehery
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Anath Bandhu Das
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Kishore C. S. Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
20
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
21
|
Carrillo L, Baroja-Fernández E, Renau-Morata B, Muñoz FJ, Canales J, Ciordia S, Yang L, Sánchez-López ÁM, Nebauer SG, Ceballos MG, Vicente-Carbajosa J, Molina RV, Pozueta-Romero J, Medina J. Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1010669. [PMID: 36937996 PMCID: PMC10014720 DOI: 10.3389/fpls.2023.1010669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. METHODS In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. RESULTS In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. DISCUSSION The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants.
Collapse
Affiliation(s)
- Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Begoña Renau-Morata
- Departamento de Biología Vegetal, Universitat de València. Vicent Andrés Estellés, Burjassot, Spain
| | - Francisco J. Muñoz
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sergio Ciordia
- Unidad Proteomica (CNB), Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Lu Yang
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | | | - Sergio G. Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Mar G. Ceballos
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Rosa V. Molina
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, Málaga, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| |
Collapse
|
22
|
Huang LJ, Wang Y, Lin Z, Jiang D, Luo Y, Li N. The role of corepressor HOS15-mediated epigenetic regulation of flowering. FRONTIERS IN PLANT SCIENCE 2023; 13:1101912. [PMID: 36704168 PMCID: PMC9871556 DOI: 10.3389/fpls.2022.1101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Regulation of gene expression underpins gene function and is essential for regulation of physiological roles. Epigenetic modifications regulate gene transcription by physically facilitating relaxation or condensation of target loci in chromatin. Transcriptional corepressors are involved in chromatin remodeling and regulate gene expression by establishing repressive complexes. Genetic and biochemical studies reveal that a member of the Groucho/Thymidine uptake 1 (Gro/Tup1) corepressor family, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), is recruited via the evening complex (EC) to the GIGANTEA (GI) promoter to repress gene expression, and modulating flowering time. Therefore, HOS15 connects photoperiodic pathway and epigenetic mechanism to control flowering time in plants. In addition, growing body of evidence support a diverse roles of the epigenetic regulator HOS15 in fine-tuning plant development and growth by integrating intrinsic genetic components and various environmental signals.
Collapse
Affiliation(s)
- Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yukun Wang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Dong Jiang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yong Luo
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
23
|
Park HJ, Gámez-Arjona FM, Lindahl M, Aman R, Villalta I, Cha JY, Carranco R, Lim CJ, García E, Bressan RA, Lee SY, Valverde F, Sánchez-Rodríguez C, Pardo JM, Kim WY, Quintero FJ, Yun DJ. S-acylated and nucleus-localized SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 stabilizes GIGANTEA to regulate Arabidopsis flowering time under salt stress. THE PLANT CELL 2023; 35:298-317. [PMID: 36135824 PMCID: PMC9806564 DOI: 10.1093/plcell/koac289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/16/2022] [Indexed: 05/15/2023]
Abstract
The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.
Collapse
Affiliation(s)
| | | | - Marika Lindahl
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Rashid Aman
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, 37200 Tours, France
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Raul Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Federico Valverde
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | | | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Woe-Yeon Kim
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| | | | - Dae-Jin Yun
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| |
Collapse
|
24
|
Wang L, Li H, He M, Dong L, Huang Z, Chen L, Nan H, Kong F, Liu B, Zhao X. GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:188-202. [PMID: 36287141 DOI: 10.1111/jipb.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max L.) is a typical photoperiod-sensitive crop, such that photoperiod determines its flowering time, maturity, grain yield, and phenological adaptability. During evolution, the soybean genome has undergone two duplication events, resulting in about 75% of all genes being represented by multiple copies, which is associated with rampant gene redundancy. Among duplicated genes, the important soybean maturity gene E2 has two homologs, E2-Like a (E2La) and E2-Like b (E2Lb), which encode orthologs of Arabidopsis GIGANTEA (GI). Although E2 was cloned a decade ago, we still know very little about its contribution to flowering time and even less about the function of its homologs. Here, we generated single and double mutants in E2, E2La, and E2Lb by genome editing and determined that E2 plays major roles in the regulation of flowering time and yield, with the two E2 homologs depending on E2 function. At high latitude regions, e2 single mutants showed earlier flowering and high grain yield. Remarkably, in terms of genetic relationship, genes from the legume-specific transcription factor family E1 were epistatic to E2. We established that E2 and E2-like proteins form homodimers or heterodimers to regulate the transcription of E1 family genes, with the homodimer exerting a greater function than the heterodimers. In addition, we established that the H3 haplotype of E2 is the ancestral allele and is mainly restricted to low latitude regions, from which the loss-of-function alleles of the H1 and H2 haplotypes were derived. Furthermore, we demonstrated that the function of the H3 allele is stronger than that of the H1 haplotype in the regulation of flowering time, which has not been shown before. Our findings provide excellent allelic combinations for classical breeding and targeted gene disruption or editing.
Collapse
Affiliation(s)
- Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Milan He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | | | - Zerong Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Nan
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
25
|
Singh A. GIGANTEA regulates PAD4 transcription to promote pathogen defense against Hyaloperonospora arabidopsidis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2022; 17:2058719. [PMID: 35379074 PMCID: PMC8986176 DOI: 10.1080/15592324.2022.2058719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved a network of complex signaling pathways that allow them to cope with the fluctuations of internal and external environmental cues. GIGANTEA (GI), a well-known, highly conserved plant nuclear protein, has been shown to regulate multiple biological functions in plants such as circadian rhythm, light signaling, cold tolerance, hormone signaling, and photoperiodic flowering. Recently, the role of GI in disease tolerance against different pathogens has come to light; however, a detailed mechanism to understand the role of GI in pathogen defense remains largely unexplained. Here, we report that GIGANTEA is upregulated upon infection with a virulent oomycete pathogen, Hyaloperonospora arabidopsidis (Hpa), in Arabidopsis thaliana accession Col-0. To investigate the role of GI in Arabidopsis defense, we examined the pathogen infection phenotype of gi mutant plants and found that gi-100 mutant was highly susceptible to Hpa Noco2 infection. Notably, the quantitative real-time PCR showed that PHYTOALEXIN DEFICIENT4 (PAD4) and several PAD4-regulated downstream genes were downregulated upon Noco2 infection in gi-100 mutant as compared to Col-0 plants. Furthermore, the chromatin immunoprecipitation results show that GI can directly bind to the intronic region of the PAD4 gene, which might explain the mechanism of GI function in regulating disease resistance in plants. Taken together, our results suggest that GI expression is induced upon Hpa pathogen infection and GI can regulate the expression of PAD4 to promote resistance against the oomycete pathogen Hyaloperonospora arabidopsidis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Anamika Singh
- School of Biological Sciences, National Institute of Science Education and Research (Niser) Bhubaneswar, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
26
|
Yan J, He J, Li J, Ren S, Wang Y, Zhou J, Tan X. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods. BMC PLANT BIOLOGY 2022; 22:435. [PMID: 36089577 PMCID: PMC9465947 DOI: 10.1186/s12870-022-03798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Camellia oleifera Abel. (C. oleifera) is an important traditional woody species in China that produces edible oil. However, the current literature lacks a proper understanding of C. oleifera's ability to adapt to different photoperiods. RESULTS Our results indicate that the photoperiod can significantly impact flowering time in C. oleifera. We grew a total of nine samples under the short day condition (SD), middle day condition (MD) and long day condition (LD). Transcriptome analysis yielded 66.94 Gb of high-quality clean reads, with an average of over 6.73 Gb of reads for per sample. Following assembly, a total of 120,080 transcripts were obtained and 94,979 unigenes annotated. A total of 3475 differentially expressed genes (DEGs) were identified between the SD_MD, SD_LD, and MD_LD gene sets. Moreover, WGCNA identified ten gene modules. Genes in pink module (92 genes) were positively correlated with SD, and negatively correlated with both MD and LD. Genes in the magenta module (42 genes) were positively correlated with MD and negatively correlated with both LD and SD. Finally, genes in the yellow module (1758 genes) were positively correlated with both SD and MD, but negatively correlated with LD. KEGG enrichment analysis revealed that genes in the pink, magenta, and yellow modules were involved in flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism and circadian rhythm pathways. Additionally, eight hub genes (GI, AP2, WRKY65, SCR, SHR, PHR1, ERF106, and SCL3) were obtained through network analysis. The hub genes had high connectivity with other photoperiod-sensitive DEGs. The expression levels of hub genes were verified by qRT-PCR analysis. CONCLUSION An increase in light duration promotes earlier flowering of C. oleifera. Flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, and circadian rhythm pathways may function in the photoperiodic flowering pathway of C. oleifera. We also identified eight hub genes that may play a role in this pathway. Ultimately, this work contributes to our understanding of the photoperiodic flowering pathway of C. oleifera and further informs molecular breeding programs on the plant's photoperiodic sensitivity.
Collapse
Affiliation(s)
- Jindong Yan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Jiacheng He
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Jian'an Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China.
| | - Shuangshuang Ren
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Ying Wang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China.
| |
Collapse
|
27
|
Cha JY, Kim J, Jeong SY, Shin GI, Ji MG, Hwang JW, Khaleda L, Liao X, Ahn G, Park HJ, Kim DY, Pardo JM, Lee SY, Yun DJ, Somers DE, Kim WY. The Na +/H + antiporter SALT OVERLY SENSITIVE 1 regulates salt compensation of circadian rhythms by stabilizing GIGANTEA in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2207275119. [PMID: 35939685 PMCID: PMC9388102 DOI: 10.1073/pnas.2207275119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022] Open
Abstract
The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Laila Khaleda
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Xueji Liao
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeongik Ahn
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee-Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jose M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - David E. Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
28
|
Cuitun‐Coronado D, Rees H, Colmer J, Hall A, de Barros Dantas LL, Dodd AN. Circadian and diel regulation of photosynthesis in the bryophyte Marchantia polymorpha. PLANT, CELL & ENVIRONMENT 2022; 45:2381-2394. [PMID: 35611455 PMCID: PMC9546472 DOI: 10.1111/pce.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.
Collapse
Affiliation(s)
- David Cuitun‐Coronado
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | | | | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| |
Collapse
|
29
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
30
|
Structural analysis of the regulation of blue-light receptors by GIGANTEA. Cell Rep 2022; 39:110700. [PMID: 35443175 DOI: 10.1016/j.celrep.2022.110700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
In Arabidopsis, GIGANTEA (GI), together with the blue-light receptors ZTL, LKP2, and FKF1, regulates degradation of the core clock protein TOC1 and the flowering repressor CDFs, thereby controlling circadian oscillation and flowering. Despite the significance of GI in diverse plant physiology, its molecular function is not much understood because of technical problems in protein preparation and a lack of structural information. Here, we report the purification of the GI monomer and the crystal structure of the GI/LKP2 complex. The crystal structure reveals that residues 1-813 of GI possess an elongated rigid structure formed by stacking hydrophobic α-helices and that the LOV domain of LKP2 binds to the middle region of the GI (residues 563-789). Interaction analysis further shows that LOV homodimers are converted to monomers by GI binding. Our results provide structural insights into the regulation of the circadian clock and photoperiodic flowering by GI and ZTL/LKP2/FKF1.
Collapse
|
31
|
Cai Z, Zhang Y, Tang W, Chen X, Lin C, Liu Y, Ye Y, Wu W, Duan Y. LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:853042. [PMID: 35401642 PMCID: PMC8993510 DOI: 10.3389/fpls.2022.853042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The evening complex (EC) plays a critical role in photoperiod flowering in Arabidopsis. Nevertheless, the underlying functions of individual components and coordinate regulation mechanism of EC genes in rice flowering remain to be elucidated. Here, we characterized the critical role of LUX ARRHYTHMO (LUX) in photoperiod perception and coordinating vegetative growth and flowering in rice. Non-functional alleles of OsLUX extremely extended vegetative phase, leading to photoperiod-insensitive late flowering and great increase of grain yield. OsLUX displayed an obvious diurnal rhythm expression with the peak at dusk and promoted rice flowering via coordinating the expression of genes associated with the circadian clock and the output integrators of photoperiodic flowering. OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering. In addition, OsELF4a was also essential for promoting rice flowering. Unlike OsLUX, loss OsELF4a displayed a marginal influence under short-day (SD) condition, but markedly delayed flowering time under long-day (LD) condition. These results suggest that rice EC genes share the function of promoting flowering. This is agreement with the orthologs of SD plant, but opposite to the counterparts of LD species. Taken together, rice EC genes display similar but not identical function in photoperiodic flowering, probably through regulating gene expression cooperative and independent. These findings facilitate our understanding of photoperiodic flowering in plants, especially the SD crops.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yudan Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuequn Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenchen Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
In Silico Characterization and Expression Analysis of GIGANTEA Genes in Potato. Biochem Genet 2022; 60:2137-2154. [PMID: 35277794 PMCID: PMC9617960 DOI: 10.1007/s10528-022-10214-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
GIGANTEA (GI) genes are ubiquitous in the plant kingdom and are involved in diverse processes from flowering during stress responses to tuberization; the latter occurs in potato (Solanum tuberosum L.). GI genes have a diurnal cycle of expression; however, no details on the regulation of GI gene expression in potato have been reported thus far. The aim of our work was the analysis of the GI promoter sequence and studying GI expression in different organs and under abiotic stress conditions in potato. Two GI genes homologous to Arabidopsis GI located on chromosomes 4 and 12 (StGI.04 and StGI.12) were identified in the genome-sequenced potato S. phureja. The GI promoter regions of the commercial potato cultivar ‘Désirée’ were cloned and found to be almost identical to the S. phureja GI promoter sequence. More than ten TF families binding to the GI promoters were predicted. EVENING ELEMENT and ABSCISIC ACID RESPONSE ELEMENT LIKE elements related to circadian regulation and a binding site for POTATO HOMEOBOX 20 presumably involved in tuber initiation were detected in both GI promoters. However, the locations of these elements and several other cis-acting regulatory elements as well as the organ-specific expression and responses of the genes to abiotic stresses and abscisic acid were different. Thus, we presume that the function of StGI.04 and StGI.12 are at least partially different. This study lays foundation for further investigation of the roles of GI genes in potato.
Collapse
|
33
|
Zhu Z, Quint M, Anwer MU. Arabidopsis EARLY FLOWERING 3 controls temperature responsiveness of the circadian clock independently of the evening complex. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1049-1061. [PMID: 34698833 DOI: 10.1093/jxb/erab473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Daily changes in light and temperature are major entrainment cues that enable the circadian clock to generate internal biological rhythms that are synchronized with the external environment. With the average global temperature predicted to keep increasing, the intricate light-temperature coordination that is necessary for clock functionality is expected to be seriously affected. Hence, understanding how temperature signals are perceived by the circadian clock has become an important issue. In Arabidopsis, the clock component EARLY FLOWERING 3 (ELF3) not only serves as a light Zeitnehmer, but also functions as a thermosensor participating in thermomorphogenesis. However, the role of ELF3 in temperature entrainment of the circadian clock is not fully understood. Here, we report that ELF3 is essential for delivering temperature input to the clock. We demonstrate that in the absence of ELF3, the oscillator is unable to respond to temperature changes, resulting in an impaired gating of thermoresponses. Consequently, clock-controlled physiological processes such as rhythmic growth and cotyledon movement were disturbed. Genetic analyses suggest that the evening complex is not required for ELF3-controlled thermoresponsiveness. Together, our results reveal that ELF3 is an essential Zeitnehmer for temperature sensing of the oscillator, and thereby for coordinating the rhythmic control of thermoresponsive physiological outputs.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Muhammad Usman Anwer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| |
Collapse
|
34
|
Transcriptomic Insight into Underground Floral Differentiation in Erythronium japonicum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4447472. [PMID: 35087909 PMCID: PMC8789427 DOI: 10.1155/2022/4447472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Erythronium japonicum Decne (Liliaceae) flowers in early spring after overwintering. Its sexual reproduction process includes an underground development process of floral organs, but the underlying molecular mechanisms are obscure. The present study is aimed at exploring the transcriptional changes and key genes involved at underground floral developmental stages, including flower primordium differentiation, perianth differentiation, stamen differentiation, and pistil differentiation in E. japonicum. Multistage high-quality transcriptomic data resulted in identifying putative candidate genes for underground floral differentiation in E. japonicum. A total of 174,408 unigenes were identified, 28,508 of which were differentially expressed genes (DEGs) at different floral developmental stages, while only 44 genes were identified with conserved regulation between different stages. Further annotation of DEGs resulted in the identification of 270 DEGs specific to floral differentiation. In addition, ELF3, PHD, cullin 1, SE14, ZSWIM3, GIGNATEA, and SERPIN B were identified as potential candidate genes involved in the regulation of floral differentiation. Besides, we explored transcription factors with differential regulation at different developmental stages and identified bHLH, FAR1, mTERF, MYB-related, NAC, Tify, and WRKY TFs for their potential involvement in the underground floral differentiation process. Together, these results laid the foundation for future molecular works to improve our understanding of the underground floral differentiation process and its genetic regulation in E. japonicum.
Collapse
|
35
|
Singh G, Singh V, Singh V. Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Comput Struct Biotechnol J 2022; 20:598-607. [PMID: 35116135 PMCID: PMC8790616 DOI: 10.1016/j.csbj.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is among the most valuable commercial crops being a non-alcoholic beverage having antioxidant properties. Like in other plants, circadian oscillator in tea modulates several biological processes according to earth's revolution dependent variations in environmental cues like light and temperature. In the present study, we report genome wide identification and characterization of circadian oscillator (CO) proteins in tea. We first mined the genes (24, in total) involved in circadian rhythm pathway in the 56 plant species having available genomic information and then built their hidden Markov models (HMMs). Using these HMMs, 24 proteins were identified in tea and were further assessed for their functional annotation. Expression analysis of all these 24 CO proteins was then performed in 3 abiotic (A) and 3 biotic conditions (B) stress conditions and co-expressed as well as differentially expressed genes in the selected 6 stress conditions were elaborated. A methodology to identify the differentially expressed genes in specific types of stresses (A or B) is proposed and novel markers among CO proteins are presented. By mapping the identified CO proteins against the recently reported genome wide interologous protein-protein interaction network of tea (TeaGPIN), an interaction sub-network of tea CO proteins (TeaCO-PIN) is developed and analysed. Out of 24 CO proteins, structures of 4 proteins could be successfully predicted and validated using consensus of three structure prediction algorithms and their stability was further assessed using molecular dynamic simulations at 100 ns. Phylogenetic analysis of these proteins is performed to examine their molecular evolution.
Collapse
Affiliation(s)
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
36
|
Tang W, Wang X, Kou M, Yan H, Gao R, Li C, Song W, Zhang Y, Wang X, Liu Y, Li Z, Li Q. The sweetpotato GIGANTEA gene promoter is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:143-154. [PMID: 34628175 DOI: 10.1016/j.plaphy.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
GIGANTEA (GI) is known to play significant roles in various molecular pathways. Nevertheless, the underlying mechanism of the transcriptional regulation of GI remains obscure in sweetpotato. In the present study, a 1518-bp promoter sequence was obtained from the Ipomoea batatas GIGANTEA (IbGI) gene, and several potential cis-elements responsive to light, phytohormones and abiotic stresses were identified by in silico analysis. In order to functionally validate the IbGI promoter, the 5' deletion analysis of the promoter was performed by cloning the full-length promoter (D0) and its four deletion fragments, D1 (1235 bp), D2 (896 bp), D3 (549 bp) and D4 (286 bp), upstream of the β-glucuronidase (GUS) reporter gene. Then, these were stably transformed in Arabidopsis plants. All transgenic seedlings exhibited stable GUS activity in the condition of control, but with decreased activity in the condition of most treatments. Interestingly, merely D1 seedlings that contained an abscisic acid responsive cis-element (ABRE-element) had an extremely powerful GUS activity under the treatment of ABA, which implies that fragment spanning nucleotides of -1235 to -896 bp might be a crucial component for the responses of ABA. Eight different types of potential transcriptional regulators of IbGI were isolated by Y1H, including TGA2.2, SPLT1 and GADPH, suggesting the complex interaction mode of protein-DNA on the IbGI promoter. Taken together, these present results help to better understand the transcriptional regulation mechanism of the IbGI gene, and provides an insight into the IbGI promoter, which can be considered as an alternation for breeding transgenic plants.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xiaoxiao Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Hui Yan
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Chen Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Qiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China.
| |
Collapse
|
37
|
Gutiérrez-Larruscain D, Abeyawardana OAJ, Krüger M, Belz C, Juříček M, Štorchová H. Transcriptomic study of the night break in Chenopodium rubrum reveals possible upstream regulators of the floral activator CrFTL1. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153492. [PMID: 34385120 DOI: 10.1016/j.jplph.2021.153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Oushadee A J Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic; Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic.
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| |
Collapse
|
38
|
Han R, Lavelle D, Truco MJ, Michelmore R. Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3473-3487. [PMID: 34245320 PMCID: PMC8440299 DOI: 10.1007/s00122-021-03908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS, respectively, in Arabidopsis.
Collapse
Affiliation(s)
- Rongkui Han
- The Plant Biology Graduate Group, University of California, Davis, 95616, USA
- The Genome Center, University of California, Davis, 95616, USA
| | - Dean Lavelle
- The Genome Center, University of California, Davis, 95616, USA
| | | | - Richard Michelmore
- The Genome Center, University of California, Davis, 95616, USA.
- Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
39
|
Patil SI, Vyavahare SN, Krishna B, Sane PV. Studies on the expression patterns of the circadian rhythm regulated genes in mango. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2009-2025. [PMID: 34629775 PMCID: PMC8484393 DOI: 10.1007/s12298-021-01053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 05/29/2023]
Abstract
UNLABELLED Mango, an important fruit crop of the tropical and subtropical regions shows alternate bearing in most varieties causing a financial loss to the farmer. Genetic reasons for this undesirable trait have not been studied so far. In our attempts to investigate the genetic reasons for alternate bearing we have initiated studies on genes associated with the induction, repression and regulation of flowering in mango. We have previously identified and characterized FLOWERING LOCUS T (FT) genes that induce flowering and two TERMINAL FLOWER1 (TFL1) genes that repress flowering. In this communication, we have explored the association of GI-FKF1-CDF1-CO module with the regulation of flowering in mango. The role of this module in regulating flowering has been well documented in photoperiod sensitive plants. We have characterized these genes and their expressions during flowering in Ratna variety as also their diurnal fluctuations and tissue specific expressions. The data taken together suggest that GI-FKF1-CDF1-CO module may also be employed by mango in regulating its flowering. Further, we suggest that the temperature dependent flowering in mango is probably associated with the presence of temperature sensitive elements present in the promoter region of one of the GIGANTEA genes that have been shown to be closely associated with floral induction. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01053-8.
Collapse
Affiliation(s)
- Sumersing I. Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Irrigation Systems Ltd., Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Sayali N. Vyavahare
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Irrigation Systems Ltd., Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Irrigation Systems Ltd., Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Prafullachandra V. Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Irrigation Systems Ltd., Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| |
Collapse
|
40
|
Colicchio JM, Hamm LN, Verdonk HE, Kooyers NJ, Blackman BK. Adaptive and nonadaptive causes of heterogeneity in genetic differentiation across the Mimulus guttatus genome. Mol Ecol 2021; 30:6486-6507. [PMID: 34289200 DOI: 10.1111/mec.16087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Genetic diversity becomes structured among populations over time due to genetic drift and divergent selection. Although population structure is often treated as a uniform underlying factor, recent resequencing studies of wild populations have demonstrated that diversity in many regions of the genome may be structured quite dissimilar to the genome-wide pattern. Here, we explored the adaptive and nonadaptive causes of such genomic heterogeneity using population-level, whole genome resequencing data obtained from annual Mimulus guttatus individuals collected across a rugged environment landscape. We found substantial variation in how genetic differentiation is structured both within and between chromosomes, although, in contrast to other studies, known inversion polymorphisms appear to serve only minor roles in this heterogeneity. In addition, much of the genome can be clustered into eight among-population genetic differentiation patterns, but only two of these clusters are particularly consistent with patterns of isolation by distance. By performing genotype-environment association analysis, we also identified genomic intervals where local adaptation to specific climate factors has accentuated genetic differentiation among populations, and candidate genes in these windows indicate climate adaptation may proceed through changes affecting specialized metabolism, drought resistance, and development. Finally, by integrating our findings with previous studies, we show that multiple aspects of plant reproductive biology may be common targets of balancing selection and that variants historically involved in climate adaptation among populations have probably also fuelled rapid adaptation to microgeographic environmental variation within sites.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lauren N Hamm
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hannah E Verdonk
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nicholas J Kooyers
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Louisiana, Lafayette, Lafayette, Louisiana, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
42
|
Hong L, Niu F, Lin Y, Wang S, Chen L, Jiang L. MYB117 is a negative regulator of flowering time in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1901448. [PMID: 33779489 PMCID: PMC8078523 DOI: 10.1080/15592324.2021.1901448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant flowering is crucial for the onset and progression of reproduction processes. The control of flowering time is a sophisticated system with multiple known regulatory mechanisms in plants. Here, we show that MYB117 participates in the flowering time regulation in Arabidopsis as myb117 mutants exhibited early flowering phenotypes under long-day condition. Transcriptome analysis of myb117 mutants revealed 410 differentially expressed genes between wild type and myb117-1 mutants, where selective genes including the Flowering Locus T (FT) were further confirmed by qRT-PCR analysis. Further, in vivo dual-luciferase and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) assays showed that MYB117 directly binds to the promoter of FT to suppress its expression. Taken together, we have revealed the transcriptome profile of myb117 mutants and identified MYB117 as a negative regulator in controlling flowering time through regulating the expression of FT in Arabidopsis.
Collapse
Affiliation(s)
- Liu Hong
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fangfang Niu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CONTACT Fangfang Niu
| | - Youshun Lin
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuang Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518000, China
| | - Liyuan Chen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Nanshan District, 518055, China
- Liyuan Chen Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
43
|
Zhou L, Lu Y, Huang J, Sha Z, Mo W, Xue J, Ma S, Shi W, Yang Z, Gao J, Bian M. Arabidopsis CIB3 regulates photoperiodic flowering in an FKF1-dependent way. Biosci Biotechnol Biochem 2021; 85:765-774. [PMID: 33686404 DOI: 10.1093/bbb/zbaa120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023]
Abstract
Arabidopsis cryptochrome 2 (CRY2) and FLAVIN-BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) are blue light receptors mediating light regulation of growth and development, such as photoperiodic flowering. CRY2 interacts with a basic helix-loop-helix transcription factor CIB1 in response to blue light to activate the transcription of the flowering integrator gene FLOWERING LOCUS T (FT). CIB1, CIB2, CIB4, and CIB5 function redundantly to promote flowering in a CRY2-dependent way and form various heterodimers to bind to the noncanonical E-box sequence in the FT promoter. However, the function of CIB3 has not been described. We discovered that CIB3 promotes photoperiodic flowering independently of CRY2. Moreover, CIB3 does not interact with CRY2 but interacts with CIB1 and functions synergistically with CIB1 to promote the transcription of the GI gene. FKF1 is required for CIB3 to promote flowering and enhances the CIB1-CIB3 interaction in response to blue light.
Collapse
Affiliation(s)
- Lianxia Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yi Lu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhiwei Sha
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jiayi Xue
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.,Humen Foreign Language School, Dongguan, China
| | - Shuodan Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wuliang Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
44
|
Abdul‐Awal SM, Chen J, Xin Z, Harmon FG. A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time. PLANT DIRECT 2020; 4:e00281. [PMID: 33210074 PMCID: PMC7665845 DOI: 10.1002/pld3.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
GIGANTEA (GI) is a conserved plant-specific gene that modulates a range of environmental responses in multiple plant species, including playing a key role in photoperiodic regulation of flowering time. The C4 grass Sorghum bicolor is an important grain and subsistence crop, animal forage, and cellulosic biofuel feedstock that is tolerant of abiotic stresses and marginal soils. To understand sorghum flowering time regulatory networks, we characterized the sbgi-ems1 nonsense mutant allele of the sorghum GIGANTEA (SbGI) gene from a sequenced M4 EMS-mutagenized BTx623 population. sbgi-ems1 plants flowered later than wild type siblings under both long-day or short-day photoperiods. Delayed flowering in sbgi-ems1 plants accompanied an increase in node number, indicating an extended vegetative growth phase prior to flowering. sbgi-ems1 plants had reduced expression of floral activator genes SbCO and SbEHD1 and downstream FT-like florigen genes SbFT, SbCN8, and SbCN12. Therefore, SbGI plays a role in regulating SbCO and SbEHD1 expression that serves to accelerate flowering. SbGI protein physically interacts with the sorghum FLAVIN-BINDING, KELCH REPEAT, F-BOX1-like (SbFFL) protein, a conserved flowering-associated blue light photoreceptor, and the SbGI-SbFFL interaction is stimulated by blue light. This work demonstrates that SbGI is an activator of sorghum flowering time upstream of florigen genes under short- and long-day photoperiods, likely in association with the activity of the blue light photoreceptor SbFFL. SIGNIFICANCE STATEMENT This study elucidates molecular details of flowering time networks for the adaptable C4 cereal crop Sorghum bicolor, including demonstration of a role for blue light sensing in sorghum GIGANTEA activity. This work validates the utility of a large publicly available sequenced EMS-mutagenized sorghum population to determine gene function.
Collapse
Affiliation(s)
- S. M. Abdul‐Awal
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant & Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Biotechnology & Genetic Engineering DisciplineKhulna UniversityKhulnaBangladesh
| | - Junping Chen
- Plant Stress and Germplasm Development UnitUSDA‐ARSLubbockTXUSA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development UnitUSDA‐ARSLubbockTXUSA
| | - Frank G. Harmon
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant & Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
45
|
The Transcriptional Network in the Arabidopsis Circadian Clock System. Genes (Basel) 2020; 11:genes11111284. [PMID: 33138078 PMCID: PMC7692566 DOI: 10.3390/genes11111284] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The circadian clock is the biological timekeeping system that governs the approximately 24-h rhythms of genetic, metabolic, physiological and behavioral processes in most organisms. This oscillation allows organisms to anticipate and adapt to day–night changes in the environment. Molecular studies have indicated that a transcription–translation feedback loop (TTFL), consisting of transcriptional repressors and activators, is essential for clock function in Arabidopsis thaliana (Arabidopsis). Omics studies using next-generation sequencers have further revealed that transcription factors in the TTFL directly regulate key genes implicated in clock-output pathways. In this review, the target genes of the Arabidopsis clock-associated transcription factors are summarized. The Arabidopsis clock transcriptional network is partly conserved among angiosperms. In addition, the clock-dependent transcriptional network structure is discussed in the context of plant behaviors for adapting to day–night cycles.
Collapse
|
46
|
Brandoli C, Petri C, Egea-Cortines M, Weiss J. Gigantea: Uncovering New Functions in Flower Development. Genes (Basel) 2020; 11:genes11101142. [PMID: 32998354 PMCID: PMC7600796 DOI: 10.3390/genes11101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
GIGANTEA (GI) is a gene involved in multiple biological functions, which have been analysed and are partially conserved in a series of mono- and dicotyledonous plant species. The identified biological functions include control over the circadian rhythm, light signalling, cold tolerance, hormone signalling and photoperiodic flowering. The latter function is a central role of GI, as it involves a multitude of pathways, both dependent and independent of the gene CONSTANS(CO), as well as on the basis of interaction with miRNA. The complexity of the gene function of GI increases due to the existence of paralogs showing changes in genome structure as well as incidences of sub- and neofunctionalization. We present an updated report of the biological function of GI, integrating late insights into its role in floral initiation, flower development and volatile flower production.
Collapse
Affiliation(s)
- Claudio Brandoli
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
| | - Cesar Petri
- Instituto de Hortofruticultura Subtropical y Mediterránea-UMA-CSIC, Departamento de Fruticultura Subtropical y Mediterránea, 29750 Algarrobo-costa, Málaga, Spain;
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
- Correspondence: ; Tel.: +34-868-071-078
| |
Collapse
|
47
|
de Leone MJ, Hernando CE, Mora-García S, Yanovsky MJ. It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. Transcription 2020; 11:100-116. [PMID: 32936724 DOI: 10.1080/21541264.2020.1820300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Santiago Mora-García
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| |
Collapse
|
48
|
Philippou K, Davis AM, Davis SJ, Sánchez-Villarreal A. Chemical Perturbation of Chloroplast-Related Processes Affects Circadian Rhythms of Gene Expression in Arabidopsis: Salicylic Acid Application Can Entrain the Clock. Front Physiol 2020; 11:429. [PMID: 32625102 PMCID: PMC7314985 DOI: 10.3389/fphys.2020.00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
The plant circadian system reciprocally interacts with metabolic processes. To investigate entrainment features in metabolic–circadian interactions, we used a chemical approach to perturb metabolism and monitored the pace of nuclear-driven circadian oscillations. We found that chemicals that alter chloroplast-related functions modified the circadian rhythms. Both vitamin C and paraquat altered the circadian period in a light-quality-dependent manner, whereas rifampicin lengthened the circadian period under darkness. Salicylic acid (SA) increased oscillatory robustness and shortened the period. The latter was attenuated by sucrose addition and was also gated, taking place during the first 3 h of the subjective day. Furthermore, the effect of SA on period length was dependent on light quality and genotype. Period lengthening or shortening by these chemicals was correlated to their inferred impact on photosynthetic electron transport activity and the redox state of plastoquinone (PQ). Based on these data and on previous publications on circadian effects that alter the redox state of PQ, we propose that the photosynthetic electron transport and the redox state of PQ participate in circadian periodicity. Moreover, coupling between chloroplast-derived signals and nuclear oscillations, as observed in our chemical and genetic assays, produces traits that are predicted by previous models. SA signaling or a related process forms a rhythmic input loop to drive robust nuclear oscillations in the context predicted by the zeitnehmer model, which was previously developed for Neurospora. We further discuss the possibility that electron transport chains (ETCs) are part of this mechanism.
Collapse
Affiliation(s)
- Koumis Philippou
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Amanda M Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biology, University of York, York, United Kingdom
| | - Seth J Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biology, University of York, York, United Kingdom.,Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Alfredo Sánchez-Villarreal
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
49
|
Renau-Morata B, Carrillo L, Dominguez-Figueroa J, Vicente-Carbajosa J, Molina RV, Nebauer SG, Medina J. CDF transcription factors: plant regulators to deal with extreme environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3803-3815. [PMID: 32072179 DOI: 10.1093/jxb/eraa088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 05/23/2023]
Abstract
In terrestrial environments, water and nutrient availabilities and temperature conditions are highly variable, and especially in extreme environments limit survival, growth, and reproduction of plants. To sustain growth and maintain cell integrity under unfavourable environmental conditions, plants have developed a variety of biochemical and physiological mechanisms, orchestrated by a large set of stress-responsive genes and a complex network of transcription factors. Recently, cycling DOF factors (CDFs), a group of plant-specific transcription factors (TFs), were identified as components of the transcriptional regulatory networks involved in the control of abiotic stress responses. The majority of the members of this TF family are activated in response to a wide range of adverse environmental conditions in different plant species. CDFs regulate different aspects of plant growth and development such as photoperiodic flowering-time control and root and shoot growth. While most of the functional characterization of CDFs has been reported in Arabidopsis, recent data suggest that their diverse roles extend to other plant species. In this review, we integrate information related to structure and functions of CDFs in plants, with special emphasis on their role in plant responses to adverse environmental conditions.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jose Dominguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Rosa V Molina
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| |
Collapse
|
50
|
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2490-2504. [PMID: 32067033 PMCID: PMC7210760 DOI: 10.1093/jxb/eraa057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Many plants synchronize their life cycles in response to changing seasons and initiate flowering under favourable environmental conditions to ensure reproductive success. To confer a robust seasonal response, plants use diverse genetic programmes that integrate environmental and endogenous cues and converge on central floral regulatory hubs. Technological advances have allowed us to understand these complex processes more completely. Here, we review recent progress in our understanding of genetic and molecular mechanisms that control flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence: or
| | - René Richter
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
- Correspondence: or
| |
Collapse
|