1
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
2
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Luna-Hernández A, García-Juárez M, Palafox-Moreno J, Téllez-Angulo B, Domínguez-Ordóñez R, Pfaus JG, González-Flores O. Participation of the nitric oxide pathway in lordosis induced by apelin-13 in female rats. Horm Behav 2023; 156:105449. [PMID: 37922678 DOI: 10.1016/j.yhbeh.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
The present study investigated the participation of the nitric oxide pathway in facilitating lordosis behavior induced by intrahypothalamic administration of apelin-13 in ovariectomized rats primed with estradiol benzoate (EB). The experiments involved the administration of a nitric oxide synthase inhibitor (L-NAME) or a nitric oxide-dependent, soluble guanylyl cyclase inhibitor (ODQ), and an inhibitor of protein kinase G (KT5823) to the ventromedial hypothalamus (VMH) of EB-primed rats 30 min before infusion of apelin-13 (0.75 μg/μl). This dose of apelin-13 consistently induces lordosis behavior at 30 min, 120 min, and 240 min following infusion. Results showed that injections of either L-NAME or KT5823 significantly reduced the lordosis induced by apelin at 120 and 240 min. However, VMH infusion of ODQ 30 min before apelin-13 infusion reduced but did not significantly inhibit, the lordosis elicited by this peptide at the same time points. We conclude that the nitric oxide pathway in the VMH plays an important role in lordosis induced by apelin-13 in EB-primed rats.
Collapse
Affiliation(s)
- Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Jonathan Palafox-Moreno
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Berenice Téllez-Angulo
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Raymundo Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic; Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| |
Collapse
|
4
|
Transcription factor gene Pea3 regulates erectile function during copulation in mice. PLoS One 2022; 17:e0276069. [PMID: 36301850 PMCID: PMC9612450 DOI: 10.1371/journal.pone.0276069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Male mice with homozygous loss of function mutations of the transcription factor gene Pea3 (Pea3 null) are infertile due to their inability to inseminate females, however the specific deficits in male sexual behaviors that drive this phenotype are unknown. Here, the copulatory behavior of male mice (Pea3 null and control) with hormonally primed ovariectomized females was monitored via high-speed and high-resolution digital videography to assess for differences in female-directed social behaviors, gross sexual behaviors (mounting, thrusting), and erectile and ejaculatory function. Pea3 null male mice exhibit greatly reduced erectile function, with 44% of males displaying no visible erections during copulation, and 0% achieving sustained erections. As such, Pea3 null males are incapable of intromission and copulatory plug deposition, despite displaying largely normal female-directed social behaviors, mounting behaviors, and ejaculatory grasping behavior. Additionally, the organization and timing of thrusting behaviors is impaired in Pea3 null males. Our results show that the transcription factor gene Pea3 regulates the ability to achieve and maintain erections during copulation in mice.
Collapse
|
5
|
Domínguez-Ordoñez R, Garcia-Juárez M, Tapia-Hernández S, Luna-Hernández A, Galindo-Madrid ME, Tecamachaltzi-Silvarán MB, Hoffman KL, Pfaus JG, González-Flores O. Oxytocin induces lordosis behavior in female rats through the prostaglandin E2/GnRH signaling system. Horm Behav 2021; 136:105081. [PMID: 34710777 DOI: 10.1016/j.yhbeh.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Intracerebroventricular (icv) administration of oxytocin (OT) induces robust lordosis behavior (lordosis quotient and lordosis intensity) in estrogen-primed rats. The present study explored the hypothesis that the OT-Prostaglandin E2-GnRH pathway (a pathway produced in astrocytes) is involved in the facilitation of lordosis behavior by icv infusion of OT (2 μg). In Experiment 1, we tested the involvement of the OT receptor (OTR) by infusion of the OTR antagonist, atosiban (ATO). OT-induced lordosis was significantly reduced at both 30 and 120 min by prior infusion of ATO. In Experiment 2, we studied the effects of aspirin (COX2 inhibitor) and ONO-AE3-208 (ONO; EP4 prostaglandin receptor antagonist) on OT-induced lordosis. Infusions of both compounds diminished OT-induced lordosis at both 120 and 240 min. In Experiment 3, the involvement of the GnRH-1 receptor inhibitor antide on OT-induced lordosis was evaluated. Antide significantly inhibited OT-induced lordosis at all times tested. These data indicate that the OT/PGE2/GnRH pathway is involved in the expression of OT-induced lordosis behavior, an effect that may be occurring directly in hypothalamic astrocytes.
Collapse
Affiliation(s)
- Raymundo Domínguez-Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Sandra Tapia-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - Miriam Eli Galindo-Madrid
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic; Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| |
Collapse
|
6
|
Saengmearnuparp T, Lojanapiwat B, Chattipakorn N, Chattipakorn S. The connection of 5-alpha reductase inhibitors to the development of depression. Biomed Pharmacother 2021; 143:112100. [PMID: 34479019 DOI: 10.1016/j.biopha.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent literature connects 5-alpha reductase inhibitors (5-ARIs) with neuropsychiatric adverse effects. Several clinical studies have indicated that former 5-ARIs users had a higher incidence of depressive symptoms and neuropsychiatric side effects than non-users. However, the underlying mechanisms involved in the depression in former 5-ARIs patients, a condition known as "post finasteride syndrome (PFS)", are not thoroughly understood. This review aims to summarize and discuss the association between 5-ARIs and depression as well as possible mechanisms. We used PubMed search terms including "depression", "depressive symptoms", "MDD", "anxiety", or "suicidal idea", and "5-alpha reductase inhibitors", "finasteride", "dutasteride", "5-ARIs". All relevant articles from in vivo and clinical studies from 2002 to 2021 were carefully reviewed. Any contradictory findings were included and debated. The potential mechanisms that link 5-ARIs and depression include alteration in neuroactive steroids, dopaminergic dysfunction, reduced hippocampal neurogenesis, increased neuroinflammation, alteration of the HPA axis, and epigenetic modifications. From this review, we hope to provide information for future studies based on animal experiments, and potential therapeutic strategies for depressive patients with PFS.
Collapse
Affiliation(s)
| | - Bannakij Lojanapiwat
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent Mr of 32,000), now also known as phosphoprotein phosphatase 1 regulatory subunit 1B (PPP1R1B), is a potent inhibitor of protein phosphatase 1 (PP1, also known as PPP1) when phosphorylated at Thr34 by cAMP-dependent protein kinase (PKA). DARPP-32 exhibits a remarkable regional distribution in brain, roughly similar to that of dopamine innervation. Its discovery was a culmination of the long-standing effort of Paul Greengard to understand the mechanisms through which neurotransmitters such as dopamine exert their effects on target neurons. DARPP-32 is particularly enriched in striatal projection neurons where it is regulated by numerous signals through which it integrates and amplifies responses to many stimuli. Molecular studies of DARPP-32 have revealed that its regulation and function are more complex than anticipated. It is phosphorylated on multiple sites by several protein kinases that modulate DARPP-32 properties. Primarily, when phosphorylated at Thr34 DARPP-32 is a potent inhibitor of PP1, whereas when phosphorylated at Thr75 by Cdk5 it inhibits PKA. Phosphorylation at serine residues by CK1 and CK2 modulates its intracellular localization and its sensitivity to kinases or phosphatases. Modeling studies provide evidence that the signaling pathways including DARPP-32 are endowed of strong robustness and bistable properties favoring switch-like responses. Thus DARPP-32 combined with a set of other distinct signaling molecules enriched in striatal projection neurons plays a key role in the characteristic properties and physiological function of these neurons.
Collapse
|
8
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
9
|
Sexual experience with a known male modulates c-Fos expression in response to mating and male pheromone exposure in female mice. Physiol Behav 2020; 222:112906. [PMID: 32445810 DOI: 10.1016/j.physbeh.2020.112906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/25/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
Sexually naïve female mice are not sexually receptive in their first mating opportunity. Four to five sexual encounters are needed to display high sexual receptivity as assessed by the lordosis reflex. The neuronal changes induced by sexual experience are not well understood. In this study, we evaluated if repeated sexual stimulation with the same male was associated with an increase in the neuronal activity evaluated by c-Fos expression in brain structures associated with the control of sexual behavior such as the accessory olfactory bulb (AOB), ventromedial hypothalamus (VMH), and the medial preoptic area (MPOA). Ovariectomized female mice were randomly distributed into three groups: sexually naïve (SN), with no prior sexual stimulation; sexually inexperienced (SI), with one prior mating session; and sexually experienced (SE), with six prior mating sessions. Females were primed with estradiol benzoate and progesterone once a week for 7 weeks. Neuronal activation in response to mating or soiled bedding was evaluated in the 7th week. Each group was subdivided into three subgroups: clean (exposure to clean bedding), male bedding (exposure to sawdust soiled with secretions from a male), or mating. Each female mated with her assigned male; in the exposure subgroup, soiled bedding was obtained from the male with whom she mated. Neuronal activity data showed that SE females had a higher c-Fos response in the VMH when they mated in comparison to females exposed to clean bedding. SI females that mated had a decrease c-Fos expression in the glomerular cell layer of the AOB, compared to females exposed to male bedding. The mitral cell layer showed a higher c-Fos response in SI females that mated in comparison to those exposed to male bedding. Comparisons between groups presented with the same stimulus indicate that SI females exposed to male bedding showed a decrease in c-Fos response in the mitral cell layer in comparison to SE and SN females. Correlation analysis demonstrated that the lordosis quotient from the last mating test correlated positively with the number of c-Fos-positive cells in the mitral cell layer in SE and SI groups. A similar correlation was found in the MPOA in SI females. Prior mating in female mice is required to increase sexual receptivity. Changes in the neuronal activity in the AOB and VMH may be involved in the neuronal plasticity induced by repeated sexual stimulation.
Collapse
|
10
|
Scheggi S, De Montis MG, Gambarana C. DARPP-32 in the orchestration of responses to positive natural stimuli. J Neurochem 2018; 147:439-453. [PMID: 30043390 DOI: 10.1111/jnc.14558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023]
Abstract
Dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa, DARPP-32) is an integrator of multiple neuronal signals and plays a crucial role particularly in mediating the dopaminergic component of the systems involved in the evaluation of stimuli and the ensuing elaboration of complex behavioral responses (e.g., responses to reinforcers and stressors). Dopamine neurons can fire tonically or phasically in distinct timescales and in specific brain regions to code different behaviorally relevant information. Dopamine signaling is mediated mainly through the regulation of adenylyl cyclase activity, stimulated by D1-like or inhibited by D2-like receptors, respectively, that modulates cAMP-dependent protein kinase (PKA) function. The activity of DARPP-32 is finely regulated by its phosphorylation at multiple sites. Phosphorylation at the threonine (Thr) 34 residue by PKA converts DARPP-32 into an inhibitor of protein phosphatase 1, while the phosphorylation at the Thr75 residue turns it into an inhibitor of PKA. Thus, DARPP-32 is critically implicated in regulating striatal output in response to the convergent pathways that influence signaling of the cAMP/PKA pathway. This review summarizes some of the landmark and recent studies of DARPP-32-mediated signaling in the attempt to clarify the role played by DARPP-32 in the response to rewarding natural stimuli. Particularly, the review deals with data derived from rodents studies and discusses the involvement of the cAMP/PKA/DARPP-32 pathway in: 1) appetitive food-sustained motivated behaviors, 2) motivated behaviors sustained by social reward, 3) sexual behavior, and 4) responses to environmental enrichment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
11
|
Fanni S, Scheggi S, Rossi F, Tronci E, Traccis F, Stancampiano R, De Montis MG, Devoto P, Gambarana C, Bortolato M, Frau R, Carta M. 5alpha-reductase inhibitors dampen L-DOPA-induced dyskinesia via normalization of dopamine D1-receptor signaling pathway and D1-D3 receptor interaction. Neurobiol Dis 2018; 121:120-130. [PMID: 30261284 DOI: 10.1016/j.nbd.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Although 1-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay therapy for treating Parkinson's disease (PD), its long-term administration is accompanied by the development of motor complications, particularly L-DOPA induced dyskinesia (LID), that dramatically affects patients' quality of life. LID has consistently been related to an excessive dopamine receptor transmission, particularly at the down-stream signaling of the striatal D1 receptors (D1R), resulting in an exaggerated stimulation of cAMP-dependent protein kinase and extracellular signal-regulated kinase (ERK) pathway. We previously reported that pharmacological blockade of 5alpha-reductase (5AR), the rate-limiting enzyme in neurosteroids synthesis, attenuates the severity of a broad set of behavioral alterations induced by D1R and D3R activation, without inducing extrapyramidal symptoms. In line with this evidence, in a recent study, we found that inhibition of 5AR by finasteride (FIN) produced a significant reduction of dyskinesia induced by L-DOPA and direct dopaminergic agonists in 6-OHDA-lesioned rats. In the attempt to further investigate the effect of 5AR inhibitors on dyskinesia and shed light on the mechanism of action, in the present study we compared the effect of FIN and dutasteride (DUTA), a potent dual 5AR inhibitor, on the development of LID, on the therapeutic efficacy of L-DOPA, on the molecular alterations downstream to the D1R, as well as on D1R-D3R interaction. The results indicated that both FIN and DUTA administration significantly reduced development and expression of LID; however, DUTA appeared more effective than FIN at a lower dose and produced its antidyskinetic effect without impacting the ability of L-DOPA to increase motor activation, or ameliorate forelimb use in parkinsonian rats. Moreover, this study demonstrates for the first time that 5AR inhibitors are able to prevent key events in the appearance of dyskinesia, such as L-DOPA-induced upregulation of striatal D1R-related cAMP/PKA/ERK signaling pathways and D1R-D3R coimmunoprecipitation, an index of heteromer formation. These findings are relevant as they confirm the 5AR enzyme as a potential therapeutic target for treatment of dyskinesia in PD, suggesting the first ever evidence that neurosteroidogenesis may affect functional interaction between dopamine D1R and D3R.
Collapse
Affiliation(s)
- Silvia Fanni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Francesca Rossi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Roberto Stancampiano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Maria Graziella De Montis
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 4, 53100 Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; Tourette Syndrome Center, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; Sleep Medicine Center, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato, CA, Italy.
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy.
| |
Collapse
|
12
|
Micevych PE, Sinchak K. Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Horm Behav 2018; 104:4-14. [PMID: 29753716 PMCID: PMC6240501 DOI: 10.1016/j.yhbeh.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Paul E Micevych
- Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, United States
| | - Kevin Sinchak
- Dept of Biological Sciences, California State University, Long Beach, United States.
| |
Collapse
|
13
|
Frau R, Savoia P, Fanni S, Fiorentini C, Fidalgo C, Tronci E, Stancampiano R, Meloni M, Cannas A, Marrosu F, Bortolato M, Devoto P, Missale C, Carta M. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2017; 291:1-7. [DOI: 10.1016/j.expneurol.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 02/09/2023]
|
14
|
Frau R, Mosher LJ, Bini V, Pillolla G, Pes R, Saba P, Fanni S, Devoto P, Bortolato M. The neurosteroidogenic enzyme 5α-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology 2016; 63:59-67. [PMID: 26415119 PMCID: PMC4695380 DOI: 10.1016/j.psyneuen.2015.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
Neurosteroids exert diverse modulatory actions on dopamine neurotransmission and signaling. We previously documented that the enzyme 5α-reductase, which catalyzes the main rate-limiting step in neurosteroid synthesis, is required for the behavioral responses of Sprague-Dawley rats to non-selective dopaminergic agonists, such as the D1-D2 receptor agonist apomorphine. Specifically, systemic and intra-accumbal administrations of the 5α-reductase inhibitor finasteride countered apomorphine-induced deficits of sensorimotor gating, as measured by the prepulse inhibition (PPI) of the startle reflex; the classes of dopamine receptors involved in these effects, however, remain unknown. Prior rodent studies have revealed that the contributions of dopamine receptors to PPI regulation vary depending on the genetic background; thus, we analyzed the effect of finasteride on the PPI deficits induced by selective dopamine receptor agonists in Long-Evans (a strain exhibiting PPI deficits in response to both D1 and D2 receptor agonists) and Sprague-Dawley rats (which display PPI reductions following treatment with D2, and D3, but not D1 receptor agonists). In Long-Evans rats, finasteride opposed the PPI deficits induced by activation of D1, but not D2 receptors; conversely, in Sprague-Dawley rats, finasteride prevented the reductions in %PPI and accumbal dopamine extracellular levels caused by selective stimulation of D3, but not D2 receptors; however, the effects on %PPI were not confirmed by analyses on absolute PPI values. Our findings suggest that 5α-reductase modulates the effects of D1, but not D2 receptor agonists on sensorimotor gating. These data may help elucidate the role of neurosteroids in neuropsychiatric disorders featuring PPI deficits, including schizophrenia and Tourette syndrome.
Collapse
MESH Headings
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism
- 5-alpha Reductase Inhibitors/pharmacology
- Animals
- Dopamine Agonists/pharmacology
- Finasteride/pharmacology
- Male
- Microdialysis
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Prepulse Inhibition/drug effects
- Prepulse Inhibition/physiology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/drug effects
- Receptors, Dopamine D3/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Sensory Gating/drug effects
- Sensory Gating/physiology
Collapse
Affiliation(s)
- Roberto Frau
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA
| | - Valentina Bini
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Romina Pes
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Pierluigi Saba
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Silvia Fanni
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Paola Devoto
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
15
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Kim BS, Lee J, Bang M, Seo BA, Khalid A, Jung MW, Jeon D. Differential regulation of observational fear and neural oscillations by serotonin and dopamine in the mouse anterior cingulate cortex. Psychopharmacology (Berl) 2014; 231:4371-81. [PMID: 24752658 DOI: 10.1007/s00213-014-3581-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/06/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE The aberrant regulation of serotonin (5-HT) and dopamine (DA) in the brain has been implicated in neuropsychiatric disorders associated with marked impairments in empathy, such as schizophrenia and autism. Many psychiatric drugs bind to both types of receptors, and the anterior cingulate cortex (ACC) is known to be centrally involved with empathy. However, the relationship between the 5-HT/DA system in the ACC and empathic behavior is not yet well known. OBJECTIVES We investigated the role of 5-HT/DA in empathy-like behavior and in the regulation of ACC neural activity. METHODS An observational fear learning task was conducted following microinjections of 5-HT, DA, 5-HT and DA, methysergide (5-HT receptor antagonist), SCH-23390 (DA D1 receptor antagonist), or haloperidol (DA D2 receptor antagonist) into the mouse ACC. The ACC neural activity influenced by 5-HT and DA was electrophysiologically characterized in vitro and in vivo. RESULTS The microinjection of haloperidol, but not methysergide or SCH-23390, decreased the fear response of observing mice. The administration of 5-HT and 5-HT and DA together, but not DA alone, reduced the freezing response of observing mice. 5-HT enhanced delta-band activity and reduced alpha- and gamma-band activities in the ACC, whereas DA reduced only alpha-band activity. Based on entropy, reduced complexity of ACC neural activity was observed with 5-HT treatment. CONCLUSIONS The current results demonstrated that DA D2 receptors in the ACC are required for observational fear learning, whereas increased 5-HT levels disrupt observational fear and alter the regularity of ACC neural oscillations.
Collapse
Affiliation(s)
- Byung Sun Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Huang V, Hemmings HC, Crews D. Sociosexual investigation in sexually experienced, hormonally manipulated male leopard geckos: relation with phosphorylated DARPP-32 in dopaminergic pathways. ACTA ACUST UNITED AC 2014; 321:595-602. [PMID: 25351686 DOI: 10.1002/jez.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/18/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
Abstract
Dopaminergic activity is both associated with sociosexual exposure and modulated by sexual experience and hormonal state across vertebrate taxa. Mature leopard geckos, a reptile with temperature-dependent sex determination, have dopaminoceptive nuclei that are influenced by their embryonic environment and sensitive to adult hormonal manipulation. In this study, we exposed hormonally manipulated male leopard geckos from different incubation temperatures to conspecifics and measured their sociosexual investigation, as well as phosphorylated DARPP-32 at Threonine 34 (pDARPP-32) immunoreactivity as a marker for D1 dopamine receptor activity in the nucleus accumbens, striatum, and preoptic area. Social investigation time by males of different incubation temperatures was modulated in opposite directions by exogenous androgen treatment. Males exposed to novel stimuli spent a greater proportion of time investigating females of different incubation temperatures. The time spent investigating females was positively correlated to pDARPP-32 immunoreactivity in the preoptic area. This is the first study quantifying pDARPP-32 in a lizard species, and suggests the protein as a potential marker to measure differences in the dopaminergic pathway in a social setting with consideration of embryonic environment and hormonal state.
Collapse
Affiliation(s)
- Victoria Huang
- Section of Integrative Biology C-0990, University of Texas at Austin, Austin, Texas
| | | | | |
Collapse
|
18
|
Allopregnanolone's attenuation of the lordosis-inhibiting effects of restraint is blocked by the antiprogestin, CDB-4124. Pharmacol Biochem Behav 2014; 122:16-9. [PMID: 24650591 DOI: 10.1016/j.pbb.2014.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/23/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
A brief restraint experience reduces lordosis behavior in ovariectomized females that have been hormonally primed with estradiol benzoate. The addition of progesterone to the priming prevents the lordosis inhibition. Based on prior studies with an inhibitor of progesterone metabolism, we have implicated the intracellular progesterone receptor, rather than progesterone metabolites, as responsible for this protection. However, the progesterone metabolite, allopregnanolone (3α-hydroxy-5α-pregnan-20-one), also prevents lordosis inhibition after restraint. In a prior study, we reported that the progestin receptor antagonist, RU486 (11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), attenuated the effect of allopregnanolone. Because RU486 can also block the glucocorticoid receptor, in the current studies, we evaluated the effect of the progestin receptor antagonist, CDB-4124 (17α-acetoxy-21-methoxy-11β-[4-N,N-dimethyaminopheny]-19-norpregna-4,9-dione-3,20-dione), which is relatively devoid of antiglucocorticoid activity. Ovariectomized, Fischer rats were injected with 10 μg estradiol benzoate. Two days later, rats received either 60 mg/kg CDB-4124 or 20% DMSO/propylene glycol vehicle 1 h before injection with 4 mg/kg allopregnanolone. After a pretest to confirm sexual receptivity, rats were restrained for 5min and immediately tested for sexual behavior. Lordosis behavior was reduced by the restraint and attenuated by allopregnanolone. Pretreatment with CDB-4124 reduced allopregnanolone's effect. These findings support prior suggestions that allopreganolone reduces the response to restraint by mechanisms that require activation of the intracellular progesterone receptor.
Collapse
|
19
|
García-Juárez M, Beyer C, Gómora-Arrati P, Domínguez-Ordoñez R, Lima-Hernández FJ, Eguibar JR, Galicia-Aguas YL, Etgen AM, González-Flores O. Lordosis facilitation by leptin in ovariectomized, estrogen-primed rats requires simultaneous or sequential activation of several protein kinase pathways. Pharmacol Biochem Behav 2013; 110:13-8. [DOI: 10.1016/j.pbb.2013.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/12/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
20
|
Frau R, Pillolla G, Bini V, Tambaro S, Devoto P, Bortolato M. Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice. Psychoneuroendocrinology 2013; 38:542-51. [PMID: 22877998 PMCID: PMC3540184 DOI: 10.1016/j.psyneuen.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
Abstract
Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
- Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Valentina Bini
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
| | - Paola Devoto
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
- Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Ave, Los Angeles, CA 90089, Phone: 323-442-3225, Fax: 323-442-3229,
| |
Collapse
|
21
|
Uphouse L, Adams S, Miryala CSJ, Hassell J, Hiegel C. RU486 blocks effects of allopregnanolone on the response to restraint stress. Pharmacol Biochem Behav 2012; 103:568-72. [PMID: 23046854 DOI: 10.1016/j.pbb.2012.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/30/2012] [Indexed: 11/28/2022]
Abstract
These experiments were designed to provide information about the potential involvement of progesterone receptors in the ability of allopregnanolone (3α-hydroxy-5α-pregnan-20-one) to reduce the lordosis-inhibiting effects of restraint stress. Ovariectomized Fischer rats were hormonally primed with 10 μg estradiol benzoate and 4 mg/kg allopregnanolone or vehicle. One hour before allopregnanolone, rats were injected with the progesterone receptor antagonist, RU486 (11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), or vehicle. Four hours after allopregnanolone or vehicle, sexual behavior was examined before and after a 5-min restraint stress. Lordosis behavior of rats primed only with estradiol benzoate declined after the 5 min of restraint while allopregnanolone prevented this decline. RU486 attenuated the ability of allopregnanolone to prevent the restraint-induced decline in lordosis behavior. These findings are consistent with earlier suggestions that progesterone receptors are involved in allopregnanolone's ability to reduce the effects of restraint stress.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, United States.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Steroid hormones modulate a wide array of physiological processes including development, metabolism, and reproduction in various species. It is generally believed that these biological effects are predominantly mediated by their binding to specific intracellular receptors resulting in conformational change, dimerization, and recruitment of coregulators for transcription-dependent genomic actions (classical mechanism). In addition, to their cognate ligands, intracellular steroid receptors can also be activated in a "ligand-independent" manner by other factors including neurotransmitters. Recent studies indicate that rapid, nonclassical steroid effects involve extranuclear steroid receptors located at the membrane, which interact with cytoplasmic kinase signaling molecules and G-proteins. The current review deals with various mechanisms that function together in an integrated manner to promote hormone-dependent actions on the central and sympathetic nervous systems.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
23
|
Mani SK, Oyola MG. Progesterone signaling mechanisms in brain and behavior. Front Endocrinol (Lausanne) 2012; 3:7. [PMID: 22649404 PMCID: PMC3355960 DOI: 10.3389/fendo.2012.00007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
Steroid hormone, progesterone, modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and behavior. These neuronal effects are mediated primarily by intracellular progestin receptors (PRs) in the steroid-sensitive neurons, resulting in transcription-dependent genomic actions (classical mechanism). In addition to progesterone, intracellular PRs can also be activated in a "ligand-independent" manner by neurotransmitters, peptide growth factors, cyclic nucleotides, and neurosteroids. Recent studies indicate that rapid, non-classical progesterone actions involving cytoplasmic kinase signaling and/or extranuclear PRs can result in both transcription-independent and transcription-dependent actions. Cross-talk between extranuclear and classical intracellular signaling pathways promotes progesterone-dependent behavior in mammals. This review focuses on the mechanisms by which progesterone-initiated signaling mechanisms converge with PRs in the brain to modulate reproductive behavior in female rodents.
Collapse
Affiliation(s)
- Shaila K Mani
- Center on Addiction, Learning and Memory, Department of Neuroscience, Baylor College of Medicine Houston, TX, USA.
| | | |
Collapse
|
24
|
Mani SK, Blaustein JD. Neural progestin receptors and female sexual behavior. Neuroendocrinology 2012; 96:152-61. [PMID: 22538437 PMCID: PMC3498483 DOI: 10.1159/000338668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/02/2012] [Indexed: 01/06/2023]
Abstract
The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in integration of reproduction and reproductive behaviors in female mammals. Although it is widely recognized that P's effects on female sex behavior are mediated by the classical neural progestin receptors (PRs) functioning as 'ligand-dependent' transcription factors to regulate genes and genomic networks, additional mechanisms of PR activation also contribute to the behavioral response. Cellular and molecular evidence indicates that PRs can be activated in a ligand-independent manner by neurotransmitters, growth factors, cyclic nucleotides, progestin metabolites and mating stimuli. The rapid responses of P may be mediated by a variety of PR types, including membrane-associated PRs or extranuclear PRs. Furthermore, these rapid nonclassical P actions involving cytoplasmic kinase signaling and/or extranuclear PRs also converge with classical PR-mediated transcription-dependent pathways to regulate reproductive behaviors. In this review, we summarize some of the history of the study of the role of PRs in reproductive behaviors and update the status of PR-mediated mechanisms involved in the facilitation of female sex behavior. We present an integrative model of PR activation via crosstalk and convergence of multiple signaling pathways.
Collapse
Affiliation(s)
- Shaila K Mani
- Department of Molecular and Cellular Biology, Department of Neuroscience, Center on Addiction, Learning and Memory, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
25
|
Girault JA. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:33-62. [PMID: 22340713 DOI: 10.1016/b978-0-12-396456-4.00006-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The striatum is a deep region of the forebrain involved in action selection, control of movement, and motivation. It receives a convergent excitatory glutamate input from the cerebral cortex and the thalamus, controlled by dopamine (DA) released in response to unexpected rewards and other salient stimuli. Striatal function and its dysfunction in drug addiction or Parkinson's disease depend on the interplay between these neurotransmitters. Signaling cascades in striatal medium-sized spiny neurons (MSNs) involve multiple kinases, phosphatases, and phosphoproteins, some of which are highly enriched in these neurons. They control the properties of ion channels and the plasticity of MSNs, in part through their effects on gene transcription. This chapter summarizes signaling in MSNs and focuses on the regulation of multiple protein phosphatases through DA and glutamate receptors and the role of ERK. It is hypothesized that these pathways are particularly adapted to the specific computing properties of MSNs and the function of the basal ganglia circuits in which they participate.
Collapse
|
26
|
Yger M, Girault JA. DARPP-32, Jack of All Trades… Master of Which? Front Behav Neurosci 2011; 5:56. [PMID: 21927600 PMCID: PMC3168893 DOI: 10.3389/fnbeh.2011.00056] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/16/2011] [Indexed: 02/03/2023] Open
Abstract
DARPP-32 (PPP1R1B) was discovered as a substrate of cAMP-dependent protein kinase (PKA) enriched in dopamine-innervated brain areas. It is one of three related, PKA-regulated inhibitors of protein phosphatase-1 (PP1). These inhibitors seem to have appeared in early vertebrate ancestors, possibly Gnathostomes. DARPP-32 has additional important biochemical properties including inhibition of PKA when phosphorylated by Cdk5 and regulation by casein kinases 1 and 2. It is highly enriched in specific neuronal populations, especially striatal medium-size spiny neurons. As PP1 inhibitor DARPP-32 amplifies and/or mediates many actions of PKA at the plasma membrane and in the cytoplasm, with a broad spectrum of potential targets and functions. DARPP-32 also undergoes a continuous and tightly regulated cytonuclear shuttling. This trafficking is controlled by phosphorylation of Ser-97, which is necessary for nuclear export. When phosphorylated on Thr-34 and dephosphorylated on Ser-97, DARPP-32 can inhibit PP1 in the nucleus and modulate signaling pathways involved in the regulation of chromatin response. Recent work with multiple transgenic and knockout mutant mice has allowed the dissection of DARPP-32 function in striato-nigral and striato-pallidal neurons. It is implicated in the action of therapeutic and abused psychoactive drugs, in prefrontal cortex function, and in sexual behavior. However, the contribution of DARPP-32 in human behavior remains poorly understood. Post-mortem studies in humans suggest possible alterations of DARPP-32 levels in schizophrenia and bipolar disorder. Genetic studies have revealed a polymorphism with possible association with psychological and psychopathological traits. In addition, a short isoform of DARPP-32, t-DARPP, plays a role in cancer, indicating additional signaling properties. Thus, DARPP-32 is a non-essential but tightly regulated signaling hub molecule which may improve the general performance of the neuronal circuits in which it is expressed.
Collapse
Affiliation(s)
- Marion Yger
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
27
|
Walaas SI, Hemmings HC, Greengard P, Nairn AC. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 2011; 5:50. [PMID: 21904525 PMCID: PMC3162284 DOI: 10.3389/fnana.2011.00050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/23/2011] [Indexed: 11/17/2022] Open
Abstract
Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.
Collapse
Affiliation(s)
- Sven Ivar Walaas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
28
|
Miryala CSJ, Hassell J, Adams S, Hiegel C, Uzor N, Uphouse L. Mechanisms responsible for progesterone's protection against lordosis-inhibiting effects of restraint II. Role of progesterone metabolites. Horm Behav 2011; 60:226-32. [PMID: 21621542 PMCID: PMC3130304 DOI: 10.1016/j.yhbeh.2011.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
When ovariectomized Fischer female rats are hormonally primed with 10 μg estradiol benzoate, a 5 min restraint experience rapidly inhibits lordosis behavior. Addition of progesterone to the hormonal priming prevents this restraint-induced inhibition. In prior work, we reported evidence that progesterone receptors (PR) may contribute to this protective effect of progesterone. In the current manuscript, we provide evidence that progesterone metabolites may also contribute to progesterone's ability to reduce the effects of restraint. Ovariectomized female rats were hormonally primed with 10 μg estradiol benzoate followed 2 days later with 4.0 mg/kg of the progesterone metabolite, allopregnanolone. Allopregnanolone, administered either 4 h or 2 h before the restraint experience, was as effective as progesterone in reducing the lordosis-inhibitory effects of restraint. In the second experiment, progesterone metabolism was blocked with 50 mg/kg of the 5α-reductase inhibitor, finasteride. Surprisingly, finasteride did not prevent progesterone from reducing the effects of restraint. In a third experiment, we tested the possibility that allopregnanolone acted through metabolism to dihydroprogesterone. Rats were treated with allopregnanolone or with allopregnanolone plus the 3α-hydroxysteroid dehydrogenase inhibitor, indomethacin. Indomethacin did not prevent allopregnanolone from reducing the effects of restraint. Mechanisms are discussed whereby cross-talk between PR-mediated and metabolite-mediated events may converge in producing progesterone's attenuation of the effect of restraint.
Collapse
|
29
|
O’Connell LA, Ding JH, Ryan MJ, Hofmann HA. Neural distribution of the nuclear progesterone receptor in the túngara frog, Physalaemus pustulosus. J Chem Neuroanat 2011; 41:137-47. [DOI: 10.1016/j.jchemneu.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
|
30
|
O’Connell LA, Matthews BJ, Patel SB, O’Connell JD, Crews D. Molecular characterization and brain distribution of the progesterone receptor in whiptail lizards. Gen Comp Endocrinol 2011; 171:64-74. [PMID: 21185292 PMCID: PMC3041865 DOI: 10.1016/j.ygcen.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Progesterone and its nuclear receptor are critical in modulating reproductive physiology and behavior in female and male vertebrates. Whiptail lizards (genus Cnemidophorus) are an excellent model system in which to study the evolution of sexual behavior, as both the ancestral and descendent species exist. Male-typical sexual behavior is mediated by progesterone in both the ancestral species and the descendant all-female species, although the molecular characterization and distribution of the progesterone receptor protein throughout the reptilian brain is not well understood. To better understand the gene targets and ligand binding properties of the progesterone receptor in whiptails, we cloned the promoter and coding sequence of the progesterone receptor and analyzed the predicted protein structure. We next determined the distribution of the progesterone receptor protein and mRNA throughout the brain of Cnemidophorus inornatus and Cnemidophorus uniparens by immunohistochemistry and in situ hybridization. We found the progesterone receptor to be present in many brain regions known to regulate social behavior and processing of stimulus salience across many vertebrates, including the ventral tegmental area, amygdala, nucleus accumbens and several hypothalamic nuclei. Additionally, we quantified immunoreactive cells in the preoptic area and ventromedial hypothalamus in females of both species and males of the ancestral species. We found differences between both species and across ovarian states. Our results significantly extend our understanding of progesterone modulation in the reptilian brain and support the important role of the nuclear progesterone receptor in modulating sexual behavior in reptiles and across vertebrates.
Collapse
Affiliation(s)
- Lauren A. O’Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Bryan J. Matthews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Sagar B. Patel
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jeremy D. O’Connell
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- All correspondence and requests for reprints should to addressed to: David Crews, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, Phone: 512-471-1113,
| |
Collapse
|
31
|
Stolzenberg DS, Numan M. Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats. Neurosci Biobehav Rev 2011; 35:826-47. [DOI: 10.1016/j.neubiorev.2010.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 12/25/2022]
|
32
|
Drerup JM, Hayashi K, Cui H, Mettlach GL, Long MA, Marvin M, Sun X, Goldberg MS, Lutter M, Bibb JA. Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 2010; 68:1163-71. [PMID: 20832057 PMCID: PMC2997929 DOI: 10.1016/j.biopsych.2010.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) may result from delayed establishment of corticolimbic circuitry or perturbed dopamine (DA) neurotransmission. Despite the widespread use of stimulants to treat ADHD, little is known regarding their long-term effects on neurotransmitter levels and metabolism. Cyclin-dependent kinase 5 (Cdk5) regulates DA signaling through control of synthesis, postsynaptic responses, and vesicle release. Mice lacking the Cdk5-activating cofactor p35 are deficient in cortical lamination, suggesting altered motor/reward circuitry. METHODS We employed mice lacking p35 to study the effect of altered circuitry in vivo. Positron emission tomography measured glucose metabolism in the cerebral cortex using 2-deoxy-2-[¹⁸F] fluoro-d-glucose as the radiotracer. Retrograde dye tracing and tyrosine hydroxylase immunostains assessed the effect of p35 knockout on the medial prefrontal cortex (PFC), especially in relation to mesolimbic circuit formation. We defined the influence of Cdk5/p35 activity on catecholaminergic neurotransmission and motor activity via examination of locomotor responses to psychostimulants, monoamine neurotransmitter levels, and DA signal transduction. RESULTS Here, we report that mice deficient in p35 display increased glucose uptake in the cerebral cortex, basal hyperactivity, and paradoxical decreased locomotion in response to chronic injection of cocaine or methylphenidate. Knockout mice also exhibited an increased susceptibility to changes in PFC neurotransmitter content after chronic methylphenidate exposure and altered basal DAergic activity in acute striatal and PFC slices. CONCLUSIONS Our findings suggest that dysregulation of Cdk5/p35 activity during development may contribute to ADHD pathology, as indicated by the behavioral phenotype, improperly established mesolimbic circuitry, and aberrations in striatal and PFC catecholaminergic signaling in p35 knockout mice.
Collapse
Affiliation(s)
- Justin M. Drerup
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
,Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Huxing Cui
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gabriel L. Mettlach
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael A. Long
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marian Marvin
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Xiankai Sun
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Matthew S. Goldberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Michael Lutter
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
O'Connell LA, Matthews BJ, Ryan MJ, Hofmann HA. Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:211-25. [PMID: 21099197 DOI: 10.1159/000321715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
Dopamine is an evolutionarily ancient neurotransmitter that plays an essential role in mediating behavior. In vertebrates, dopamine is central to the mesolimbic reward system, a neural network concerned with the valuation of stimulus salience, and to the nigrostriatal motor system and hypothalamic nuclei involved in the regulation of locomotion and social behavior. In amphibians, dopaminergic neurons have been mapped out in several species, yet the distribution of dopaminoreceptive cells is unknown. The túngara frog, Physalaemus pustulosus, is an excellent model system for the study of neural mechanisms by which valuations of stimuli salience and social decisions are made, especially in the context of mate choice. In order to better understand where dopamine acts to regulate social decisions in this species, we have determined the distribution of putative dopaminergic cells (using tyrosine hydroxylase immunohistochemistry) and cells receptive to dopaminergic signaling (using DARPP-32 immunohistochemistry) throughout the brain of P. pustulosus. The distribution of dopaminergic cells was comparable to other anurans. DARPP-32 immunoreactivity was identified in key brain regions known to modulate social behavior in other vertebrates including the proposed anuran homologues of the mammalian amygdalar complex, nucleus accumbens, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Due to its widespread distribution, DARPP-32 likely also plays many roles in non-limbic brain regions that mediate non-social information processing. These results significantly extend our understanding of the distribution of the dopaminergic system in the anuran brain and beyond.
Collapse
|
34
|
González-Flores O, Beyer C, Gómora-Arrati P, García-Juárez M, Lima-Hernández FJ, Soto-Sánchez A, Etgen AM. A role for Src kinase in progestin facilitation of estrous behavior in estradiol-primed female rats. Horm Behav 2010; 58:223-9. [PMID: 20307541 DOI: 10.1016/j.yhbeh.2010.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/09/2010] [Accepted: 03/13/2010] [Indexed: 11/21/2022]
Abstract
This study tested the hypothesis that the Src/Raf/MAPK signaling pathway is involved in the facilitation of the lordosis and proceptive behaviors induced by progesterone (P) and its ring A-reduced metabolites in ovariectomized, estradiol-primed rats. Intraventricular (icv) infusion of PP2 (7.5, 15 and 30 microg), a Src kinase inhibitor, significantly depressed P-dependent estrous behavior (lordosis and proceptivity) in estradiol-primed rats. Icv infusion of 30 microg of PP2 also significantly attenuated estrous behavior induced by the ring A-reduced P metabolites 5 alpha-dihydroprogesterone (5 alpha-DHP) and 5 alpha-pregnan-3alpha-ol-20-one (allopregnanolone). PP2 did not inhibit estrous behavior induced by administration of high doses of estradiol alone to ovariectomized rats. We also assessed if the ventromedial hypothalamus (VMH) is one of the neural sites at which progestins activate Src signaling to facilitate estrous behavior. Bilateral administration of 15 microg of PP2 into the VMH inhibited the stimulation of both lordosis and proceptive behaviors elicited by subcutaneous P administration to estradiol-primed rats. These results suggest that progestins act through Src/Raf/MAPK signaling to initiate estrous behaviors in estrogen-primed rats. This event is one component of the cellular pathways leading to the display of estrous behaviors induced by P and its ring A-reduced metabolites in female rats.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV. Apdo. 62, Tlaxcala, México.
| | | | | | | | | | | | | |
Collapse
|
35
|
Activation of progestin receptors in female reproductive behavior: Interactions with neurotransmitters. Front Neuroendocrinol 2010; 31:157-71. [PMID: 20116396 PMCID: PMC2849835 DOI: 10.1016/j.yfrne.2010.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 01/22/2023]
Abstract
The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and reproductive behavior in female mammals. A wide body of evidence indicates that these neural effects of P are predominantly mediated via their intracellular progestin receptors (PRs) functioning as "ligand-dependent" transcription factors in the steroid-sensitive neurons regulating genes and genomic networks. In addition to P, intracellular PRs can be activated by neurotransmitters, growth factors and cyclic nucleotides in a ligand-independent manner via crosstalk and convergence of pathways. Furthermore, recent studies indicate that rapid signaling events associated with membrane PRs and/or extra-nuclear, cytoplasmic PRs converge with classical PR activated pathways in neuroendocrine regulation of female reproductive behavior. The molecular mechanisms, by which multiple signaling pathways converge on PRs to modulate PR-dependent female reproductive behavior, are discussed in this review.
Collapse
|
36
|
Holder MK, Hadjimarkou MM, Zup SL, Blutstein T, Benham RS, McCarthy MM, Mong JA. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus. Psychoneuroendocrinology 2010; 35:197-208. [PMID: 19589643 PMCID: PMC2815004 DOI: 10.1016/j.psyneuen.2009.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/29/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors.
Collapse
Affiliation(s)
- Mary K Holder
- Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA.
| | - Maria M. Hadjimarkou
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| | - Susan L. Zup
- Department of Physiology, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| | - Tamara Blutstein
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| | - Rebecca S. Benham
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201.,Department of Physiology, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| | - Jessica A. Mong
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201.,Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, School of Medicine Baltimore, Maryland, 21201
| |
Collapse
|
37
|
|
38
|
Balasubramanian B, Mani SK. Dopamine agonist signalling in the hypothalamus of female rats is independent of calcium-dependent kinases. J Neuroendocrinol 2009; 21:954-60. [PMID: 19732294 PMCID: PMC3655436 DOI: 10.1111/j.1365-2826.2009.01917.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that dopamine agonist, SKF38396 (SKF), can substitute for progesterone in the facilitation of female reproductive behaviour in oestradiol benzoate-primed female rats and mice. We also reported that both progesterone- and SKF-initiated signalling were mediated by the cAMP-dependent protein kinase A signal transduction cascade. As the rapid effects of progesterone are also mediated by calcium-dependent kinases, calcium- and calmodulin-dependent kinase (CaMKII) and protein kinase (PKC), we sought to determine whether SKF-initiated signalling also recruited calcium as a second messenger. We measured the changes in the activation of CaMKII and PKC in the ventromedial nucleus (VMN) of the hypothalamus and preoptic area (POA) of the rat brain, which are the two regions implicated in the regulation of female reproductive behaviour in rodents. We measured the basal activities representing the activation of the kinases by in vivo treatments, as well as the total kinase activities assayed in the presence of exogenous cofactors in vitro. We report that, in contrast to progesterone-initiated signalling, there was no recruitment of calcium by SKF in the hypothalamus, as shown by the absence of changes in CaMKII activities in the VMN and POA. Furthermore, SKF-treatment resulted in a rapid increase in calcium-independent basal PKC activity in the VMN but not the POA. These rapid changes were not the result of changes in PKC protein levels or phosphorylation status. These data indicate that progesterone- and SKF-recruit distinct signalling molecules within the same regions of the brain to activate region-specific signal transduction pathways.
Collapse
Affiliation(s)
- B Balasubramanian
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
39
|
Infusions of anti-sense oligonucleotides for DARPP-32 to the ventral tegmental area reduce effects of progesterone- and a dopamine type 1-like receptor agonist to facilitate lordosis. Behav Brain Res 2009; 206:286-92. [PMID: 19782104 DOI: 10.1016/j.bbr.2009.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/14/2009] [Accepted: 09/19/2009] [Indexed: 11/22/2022]
Abstract
Manipulating dopamine and/or adenosine 3',5' monophosphate regulated phosphoprotein of 32 kDa (DARPP-32) can influence sexual behavior of rodents. The ventral tegmental area (VTA) is an important brain site for progestogens to facilitate sexual behavior of rodents. We hypothesized that, in the VTA, dopamine type 1-like receptor (D1)-mediated increases in progesterone (P4)-facilitated lordosis involve DARPP-32. To investigate this, ovariectomized hamsters and rats, primed with estradiol (E2; 10 microg), received infusions to the VTA of saline vehicle or sense or anti-sense oligonucleotides targeted against DARPP-32 (4 nM). Subjects were then administered P4 via subcutaneous injection (hamsters: 200 microg; rats: 0 or 100 microg). Hamsters and rats were pre-tested for lordosis 3.5 h post-P4 injections, and then infused with the D1 agonist SKF38393 (100 ng) or vehicle to the VTA, and re-tested for sexual behavior 30 min later. Anti-sense oligonucleotides targeted against DARPP-32, but not infusions of sense oligonucleotides, to the VTA blocked the ability of systemic P4 to enhance receptive behavior of hamsters and rats. Similarly, SKF38393-mediated increases in P4-facilitated sexual behaviors were blocked by DARPP-32 anti-sense oligonucleotides to the VTA. The same pattern of effects was not observed in rats that were primed with E2-alone. Together, these findings suggest that, in the midbrain VTA, P4's actions to facilitate sexual behavior of female rodents, involving D1 receptors, may require DARPP-32.
Collapse
|
40
|
Abstract
Ovarian steroid hormones, oestradiol and progesterone, modulate neuroendocrine functions in the central nervous system, resulting in alterations in physiology and behaviour. The classical model of steroid hormone action assumes that these neural effects are predominantly mediated via their intracellular receptors functioning as 'ligand-dependent' transcription factors in the steroid-sensitive neurones regulating genes and genomic networks with profound behavioural consequences. Studies from our laboratory demonstrate that, in addition to their cognate ligands, intracellular steroid receptors can be activated in a 'ligand-independent' manner by the neurotransmitter dopamine, which alters the dynamic equilibrium between neuronal phosphatases and kinases. A high degree of cross-talk between membrane-initiated signalling pathways and the classical intracellular signalling pathways mediates hormone-dependent behaviour in mammals. The molecular mechanisms, by which a multitude of signals converge with steroid receptors to delineate a genomic level of cross-talk in brain and behaviour are discussed.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
González-Flores O, Gómora-Arrati P, Garcia-Juárez M, Gómez-Camarillo MA, Lima-Hernández FJ, Beyer C, Etgen AM. Nitric oxide and ERK/MAPK mediation of estrous behavior induced by GnRH, PGE2 and db-cAMP in rats. Physiol Behav 2009; 96:606-12. [PMID: 19162055 DOI: 10.1016/j.physbeh.2008.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 01/27/2023]
Abstract
We tested the hypothesis that GnRH, PGE2 and db-cAMP act via the nitric oxide (NO)-cGMP and MAPK pathways to facilitate estrous behavior (lordosis and proceptivity) in estradiol-primed female rats. Estradiol-primed rats received intracerebroventricular (icv) infusions of pharmacological antagonists of NO synthase (L-NAME), NO-dependent soluble guanylyl cyclase (ODQ), protein kinase G (KT5823), or the ERK1/2 inhibitor PD98059 15 min before icv administration of 50 ng of GnRH, 1 microg of PGE2 or 1 microg of db-cAMP. Icv infusions of GnRH, PGE2 and db-cAMP enhanced estrous behavior at 1 and 2 h after drug administration. Both L-NAME and ODQ blocked the estrous behavior induced by GnRH, PGE2 and db-cAMP at some of the times tested. The protein kinase G inhibitor KT5823 reduced PGE2 and db-cAMP facilitation of estrous behavior but did not affect the behavioral response to GnRH. In contrast, PD98059 blocked the estrous behavior induced by all three compounds. These data support the hypothesis that the NO-cGMP and ERK/MAPK pathways are involved in the lordosis and proceptive behaviors induced by GnRH, PGE2 and db-cAMP. However, cGMP mediation of GnRH-facilitated estrous behavior is independent of protein kinase G.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Apdo. Postal 62, Tlaxcala 90000, Mexico
| | | | | | | | | | | | | |
Collapse
|
42
|
González-Flores O, Etgen AM, Komisaruk BK, Gómora-Arrati P, Macias-Jimenez A, Lima-Hernández FJ, Garcia-Juárez M, Beyer C. Antagonists of the protein kinase A and mitogen-activated protein kinase systems and of the progestin receptor block the ability of vaginocervical/flank-perineal stimulation to induce female rat sexual behaviour. J Neuroendocrinol 2008; 20:1361-7. [PMID: 19094083 DOI: 10.1111/j.1365-2826.2008.01794.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brief vaginocervical stimulation using a glass rod (VCS) combined with manual flank-perineal stimulation (FS) rapidly (within 5 min) induced both receptive and proceptive behavioural responses to males in ovariectomised, oestrogen-primed rats. This receptive-proceptive response to males, resulting from a single brief (5-s duration) instance of manual VCS + FS, declined markedly within 4 h. However, the decline was prevented if the females were mounted by males immediately after the manual VCS + FS and 2 h later. We tested the participation of the cAMP-dependent protein kinase A system and the mitogen-activated protein kinase (MAPK) system in the response to VCS + FS by infusing either 100 ng of Rp-adenosine 3',5'-cyclic monophosphorothiate triethylamonium salt (a protein kinase A blocker) or 3.3 microg of PD98059 (a MAPK blocker) i.c.v. 15 min prior to VCS + FS. Both inhibitors blocked the ability of VCS + FS to induce the proceptive-receptive responses to males at all testing intervals. In experiment 2, systemic administration of 5 mg of RU486 1 h before VCS + FS also blocked the ability of VCS + FS to induce the proceptive-receptive responses to males. The present findings suggest that both VCS + FS and mating stimuli provided by males release neurotransmitters and neuromodulators that trigger the protein kinase A and the MAPK signalling systems, which interact with the progestin receptor to rapidly (within 5 min) induce proceptive-receptive behaviour in females.
Collapse
Affiliation(s)
- O González-Flores
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK. Nonclassical mechanisms of progesterone action in the brain: I. Protein kinase C activation in the hypothalamus of female rats. Endocrinology 2008; 149:5509-17. [PMID: 18617608 PMCID: PMC2584599 DOI: 10.1210/en.2008-0712] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The modulation of gene regulation by progesterone (P) and its classical intracellular regulation by progestin receptors in the brain, resulting in alterations in physiology and behavior has been well studied. The mechanisms mediating the short latency effects of P are less well understood. Recent studies have revealed rapid nonclassical signaling action of P involving the activation of intracellular signaling pathways. We explored the involvement of protein kinase C (PKC) in P-induced rapid signaling in the ventromedial nucleus of the hypothalamus (VMN) and preoptic area (POA) of the rat brain. Both the Ca2+-independent (basal) PKC activity representing the activation of PKC by the in vivo treatments and the Ca+2-dependent (total) PKC activity assayed in the presence of exogenous cofactors in vitro were determined. A comparison of the two activities demonstrated the strength and temporal status of PKC regulation by steroid hormones in vivo. P treatment resulted in a rapid increase in basal PKC activity in the VMN but not the POA. Estradiol benzoate priming augmented P-initiated increase in PKC basal activity in both the VMN and POA. These increases were inhibited by intracerebroventricular administration of a PKC inhibitor administered 30 min prior to P. The total PKC activity remained unchanged demonstrating maximal PKC activation within 30 min in the VMN. In contrast, P regulation in the POA significantly attenuated total PKC activity +/- estradiol benzoate priming. These rapid changes in P-initiated PKC activity were not due to changes in PKC protein levels or phosphorylation status.
Collapse
Affiliation(s)
- Bhuvana Balasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK. Nonclassical mechanisms of progesterone action in the brain: II. Role of calmodulin-dependent protein kinase II in progesterone-mediated signaling in the hypothalamus of female rats. Endocrinology 2008; 149:5518-26. [PMID: 18617607 PMCID: PMC2584600 DOI: 10.1210/en.2008-0713] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to the activation of classical progestin receptor-dependent genomic pathway, progesterone (P) can activate nonclassical, membrane-initiated signaling pathways in the brain. We recently demonstrated rapid P activation of second-messenger kinases, protein kinase A, and protein kinase C in the ventromedial nucleus (VMN) and preoptic area (POA) of rat brain. To determine whether P can activate yet another Ca+2 dependent kinase, we examined the rapid P modulation of calcium and calmodulin-dependent protein kinase II (CaMKII) in the VMN and POA in female rats. A rapid P-initiated activation of CaMKII basal activity was observed in the VMN but not the POA at 30 min. Estradiol benzoate (EB) priming enhanced this CaMKII basal activity in both the VMN and POA. CaMKII protein levels and phosphorylation of Thr-286 moiety on CaMKII, however, remained unchanged with EB and/or P treatments, suggesting that the changes in the CaMKII kinase activity are due to rapid P modulation of the kinase activity and not its synthesis or autoactivation. Furthermore, intracerebroventricular (icv) administration of a CaMKII-specific inhibitor, KN-93, 30 min prior to the P infusion, in EB-primed, ovariectomized female rats inhibited CaMKII activation but not protein kinase A and protein kinase C activities. Interestingly, icv administration of KN-93 30 min prior to P infusion (icv) resulted in a reduction but not total inhibition of P-facilitated lordosis response in EB-primed female rats. These observations suggest a redundancy or, alternately, a hierarchy in the P-regulated activation of kinase signaling cascades in female reproductive behavior.
Collapse
Affiliation(s)
- Bhuvana Balasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O'Malley BW. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 2008; 31:835-49. [PMID: 18922467 DOI: 10.1016/j.molcel.2008.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/26/2022]
Abstract
SRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function, but the identity of such phosphatases remains unexplored. Herein, we report that, using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3's known phosphorylation sites, the phosphatases PDXP, PP1, and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings. PDXP and PP2A dephosphorylate SRC-3 and inhibit its ligand-dependent association with estrogen receptor. PP1 stabilizes SRC-3 protein by blocking its proteasome-dependent turnover through dephosphorylation of two previously unidentified phosphorylation sites (Ser101 and S102) required for activity. These two sites are located within a degron of SRC-3 and are primary determinants of SRC-3 turnover. Moreover, PP1 regulates the oncogenic cell proliferation and invasion functions of SRC-3 in breast cancer cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
46
|
Frye CA, Walf AA. Activity of protein kinase C is important for 3alpha,5alpha-THP's actions at dopamine type 1-like and/or GABAA receptors in the ventral tegmental area for lordosis of rats. Brain Res Bull 2008; 77:91-7. [PMID: 18675324 DOI: 10.1016/j.brainresbull.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/17/2022]
Abstract
In the ventral tegmental area, progestogens facilitate sexual receptivity of rodents via actions at dopamine type 1-like and/or gamma-aminobutyric acid type A receptors and activation of downstream signal transduction molecules. In the present study, we investigated whether effects of progesterone's metabolite, 3alpha,5alpha-THP, to enhance lordosis via actions at these receptors in the ventral tegmental area requires phospholipase C-dependent protein kinase C. The objective of this study was to test the hypothesis that: if progestogens' actions through dopamine type 1-like and/or gamma-aminobutyric acid type A receptors in the ventral tegmental area for lordosis require protein kinase C, then inhibiting protein kinase C in the ventral tegmental area should reduce 3alpha,5alpha-THP-facilitated lordosis and its enhancement by dopamine type 1-like or gamma-aminobutyric acid type A receptor agonists. Ovariectomized, estradiol (E(2); 10 microg s.c. at h 0)-primed rats were tested for their baseline lordosis responses and then received a series of three infusions to the ventral tegmental area: first, bisindolylmaleimide (75 nM/side) or vehicle; second, SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; third, 3alpha,5alpha-THP (100, 200 ng/side) or vehicle. Rats were pre-tested for lordosis and motor behavior and then tested for lordosis after each infusion and 10 and 60 min after the last infusion. Rats were tested for motor behavior following their last lordosis test. As has been previously demonstrated, 3alpha,5alpha-THP infusions to the ventral tegmental area increased lordosis and effects were further enhanced by infusions of SKF38393 and muscimol. Infusions of bisindolylmaleimide to the ventral tegmental area attenuated 3alpha,5alpha-THP-, SKF38393-, and/or muscimol-facilitated lordosis. Effects on lordosis were not solely due to changes in general motor behavior. Thus, 3alpha,5alpha-THP's actions in the ventral tegmental area through membrane receptors may require activity of protein kinase C.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
47
|
Abstract
Progesterone (P), the most biologically active progestin of ovarian origin, modulates numerous cellular functions in the central nervous system to coordinate physiology and reproduction. The neurobiological activity of P is mediated not by a single form of the progestin receptor (PR), but by two neural isoforms of PRs, PR-A and PR-B. Classical model of P action assumes that these neural effects are primarily mediated via their intracellular PRs, acting as transcriptional regulators, in steroid-sensitive neurons, modulating genes and genomic networks. Evidence has emerged, however, that activation of neural PRs is much more diverse; four distinct classes of molecules, neurotransmitters, peptide growth factors, cyclic nucleotides, and neurosteroids have been shown to activate the PRs via cross-talk and pathway convergence. In addition, rapid signaling events associated with membrane receptors and/or subpopulations of cytoplasmic PRs, via activation of protein kinase cascades, regulate PR gene expression in the cytoplasm independent of PR nuclear action. The increasing in vitro and in vivo evidence of differential transcriptional activities and coregulator interactions between PR-A and PR-B predict that these isoforms could have distinct roles in mediating additional and/or alternate signaling pathways within steroid-sensitive neurons. In this minireview, we evaluate the available data and discuss the possible roles of the isoforms in the regulation of neurobiological processes.
Collapse
Affiliation(s)
- Shaila Mani
- Department of Molecular and Cellular Biology, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| |
Collapse
|
48
|
Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol 2008; 29:169-81. [PMID: 18093638 PMCID: PMC2386261 DOI: 10.1016/j.yfrne.2007.10.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
Abstract
Previous work in the endocrine and neuroendocrine fields has viewed the androgen receptor (AR) as a transcription factor activated by testosterone or one of its many metabolites. The bound AR acts as transcription regulatory element by binding to specific DNA response elements in target gene promoters, causing activation or repression of transcription and subsequently protein synthesis. Over the past two decades evidence at the cellular and organismal level has accumulated to implicate rapid responses to androgens, dependent or independent of the AR. Androgen's rapid time course of action; its effects in the absence or inhibition of the cellular machinery necessary for transcription/translation; and in the absence of translocation to the nucleus suggest a method of androgen action not initially dependent on genomic mechanisms (i.e. non-genomic in nature). In the present paper, the non-genomic effects of androgens are reviewed, along with a discussion of the possible role non-genomic androgen actions have on animal physiology and behavior.
Collapse
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
49
|
Gammie SC, Edelmann MN, Mandel-Brehm C, D'Anna KL, Auger AP, Stevenson SA. Altered dopamine signaling in naturally occurring maternal neglect. PLoS One 2008; 3:e1974. [PMID: 18398484 PMCID: PMC2276864 DOI: 10.1371/journal.pone.0001974] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking. METHODOLOGY/PRINCIPAL FINDINGS The current study characterizes a population of mice (MaD1) which naturally exhibit maternal neglect (little or no care of offspring) at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI), ventral tegmental area (VTA), and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production) was significantly elevated in ZI and higher in VTA (although not significantly) in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams. CONCLUSIONS/SIGNIFICANCE These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally occurring neglect and that MaD1 mice are a useful model for understanding the basis of naturally occurring neglect.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | | | |
Collapse
|
50
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|