1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Yi L, Liu Y, Wan C, Li S, Zhou M, Qi F, Xie H, Wang X, Su Y, Du W, Feng X, Li Y, Liu BF, Chen P. Programmable Manually Powered Microfluidics for Rapid Point-of-Care Diagnosis of Urinary Tract Infection. Anal Chem 2025; 97:9480-9491. [PMID: 40268684 DOI: 10.1021/acs.analchem.5c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Point-of-care testing (POCT) for urinary tract infection (UTI) holds significant importance in the field of disease prevention and control, as well as the advancement of personalized precision medicine. However, conventional methods for detecting UTIs continue to face challenges such as time-consuming and labor-intensive detection processes, and reliance on specialized equipment and personnel rendering them unsuitable for point-of-care applications, especially in resource-limited areas. Here, we propose a novel flexible programmable manually powered microfluidic (FPM) for rapid point-of-care diagnosis of UTIs. For the first time, the proposed FPMs was achieved through a combined strategy of laser printing, cutting, and laminating, with the entire process completed in under 15 min at a cost of less than $0.5, which effectively circumvent the traditionally time-consuming and labor-intensive soft lithography techniques. By incorporating a modular structure-based design concept, we successfully developed various types of portable FPMs with functionalities including parallel pumping, simultaneous releasing, quantitative dispensing, sequential releasing, cyclic motion of multiple liquids and concentration gradient generating. As a proof-of-concept demonstration, we initially employed a high-throughput parallel dispensing design to analyze six urinary biochemical markers within 1 min, presenting potential applicability for future at-home testing. We then integrated a manually powered concentration gradient generator with spatial confinement signal enhancement to enable rapid phenotypic antimicrobial susceptibility testing (AST) within three to 5 h, while achieving clinical diagnostic accuracy rates of up to 95.56%. Therefore, our proposed FPMs eliminate the need for external pumps or actuators and could serve as an affordable hand-held POCT tool for UTI diagnosis. Moreover, in resource-poor areas, they have potential utility as robust POCT devices addressing diverse rapid detection needs.
Collapse
Affiliation(s)
- Longyu Yi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqi Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yixiao Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Venzac B. Light-based 3D printing and post-treatments of moulds for PDMS soft lithography. LAB ON A CHIP 2025; 25:2129-2147. [PMID: 40190179 DOI: 10.1039/d4lc00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Polydimethylsiloxane (PDMS) chips are still the workhorses of academic microfluidics. Their production requires the fabrication of moulds, commonly produced using clean-room technologies. Light-based 3D printing and in particular, vat photopolymerization, material jetting and two-photon polymerization are rising techniques for the fabrication of moulds for PDMS replication, thanks to their accessibility, fast prototyping time, and improving resolution. Here, we are first reviewing the possibility opened by 3D printing for soft lithography, with a focus on mould designs. Then, inhibition of PDMS curing by photosensitive resins will be discussed as the main technical hurdle of 3D printed moulds. Fortunately, mould post-treatments are efficient solutions to eliminate this curing inhibition, which we gathered in a large database of post-treatment protocols from the literature.
Collapse
|
4
|
Tanaka Y. Fabrication of ultra-thin glass sheets and their application to MEMS devices. ANAL SCI 2025:10.1007/s44211-025-00774-0. [PMID: 40286001 DOI: 10.1007/s44211-025-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The miniaturization of chemical and biochemical sensors using microfluidics has several benefits, including small sample consumption, space reduction, and short analysis time. Polymer is typically the most commonly used material for microfluidic chips owing to its simple fabrication process and low cost, but in this review, glass is focused on as a chip material, because glass is both chemically and physically stable. To fully exploit the advantages and overcome the disadvantages of glass, we have developed ultra-thin glass sheets a few micrometers thick and applied to devices such as valves, pumps, sensors, filters, ultra-thin chips, lenses, micro-object controllers, and electric power generators. In this review, these methods and devices are introduced along with some relevant technologies. Ultra-thin glass and related technologies have possibility to be applied not only for microfluidics but also for electronic components or devices such as advanced semiconductor packaging substrates, wearable devices, flexible displays, and solar batteries.
Collapse
Affiliation(s)
- Yo Tanaka
- Samsung Device Solutions R&D Japan (DSRJ), Samsung Japan Corporation, 2-7 Sugasawa-Cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0027, Japan.
| |
Collapse
|
5
|
Siddique AB, Weng JH, Yang DK, Chou CF, Swami NS. Controlled Nanoconfinement in a Microfluidic Modular Bead Array Device via Elastomeric Diaphragm Collapse for Enhancing Biomolecular Binding Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412474. [PMID: 40244082 DOI: 10.1002/smll.202412474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Nanoscale confinement strategies alleviate diffusional transport limitations to enhance target binding kinetics with receptors, motivating their utilization for screening and selecting receptors based on binding affinities with target molecules. Herein, a modular and multiplexed device for creating nanoconfinement is presented through the collapse of an elastomeric diaphragm onto microbead arrays immobilized with biomolecules, followed by repeated diaphragm withdrawal to promote bulk transport, thereby enhancing receptor binding kinetics. To repeatedly create controlled nanoconfinement over large spatial extents on the bead, the diaphragm is integrated on its top side with a strain sensor for modulating vertical displacement, while microfabricated nanoposts (≈500 nm depth) on its bottom side control the lateral extent. The modular platform enables facile assembly of beads, each immobilized with different targets into eight microwells for multiplexed screening of receptors, and facile disassembly for quantifying DNA-binding on each bead by downstream q-PCR. Nanoconfinement enhances biomolecular binding at 1 Hz diaphragm pressurization, as validated by rapid DNA immobilization (time constant of ≈6 min vs >60 min under no confinement) and through saturating the binding of target molecules with optimal aptamer candidates (88% site occupancy vs 5% under no confinement at 10 nm levels), thereby screening candidate receptors based on binding affinity parameters.
Collapse
Affiliation(s)
- Abdullah-Bin Siddique
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904-4743, USA
| | - Jui-Hong Weng
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Deng-Kai Yang
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
- Research Center for Applied Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904-4743, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| |
Collapse
|
6
|
Lee J, Menon NV, Truong HD, Lim CT. Dynamics of Spatial Organization of Bacterial Communities in a Tunable Flow Gut Microbiome-on-a-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410258. [PMID: 40201941 DOI: 10.1002/smll.202410258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Indexed: 04/10/2025]
Abstract
The human intestine, a biomechanically active organ, generates cyclic mechanical forces crucial for maintaining its health and functions. Yet, the physiological impact of these forces on gut microbiota dynamics remains largely unexplored. In this study, we investigate how cyclic intestinal motility influences the dynamics of gut microbial communities within a 3D gut-like structure (µGut). To enable the study, a tunable flow Gut Microbiome-on-a-Chip (tfGMoC) is developed that recapitulates the cyclic expansion and compression of intestinal motility while allowing high-magnification imaging of microbial communities within a 3D stratified, biomimetic gut epithelium. Using deep learning-based microbial analysis, it is found that hydrodynamic forces organize microbial communities by promoting distinct spatial exploration behaviors in microorganisms with varying motility characteristics. Empirical evidence demonstrates the impact of gut motility forces in maintaining a balanced gut microbial composition, enhancing both the diversity and stability of the community - key factors for a healthy microbiome. This study, leveraging the new tfGMoC platform, uncovers previously unknown effects of intestinal motility on modulating gut microbial behaviors and community organizations. This will be critical for a deeper understanding of host-microbiome interactions in the emerging field of microbiome therapeutics.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | | | - Hung Dong Truong
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
7
|
Dhwaj A, Roy N, Prabhakar A, Verma D. 3D printing of calcium doped Isomalt via custom-made Extruder: Facile approach for creating blood vascular like networks within tissue mimicking hydrogel matrix. Methods 2025; 239:72-84. [PMID: 40185316 DOI: 10.1016/j.ymeth.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
3D printing domain has witnessed rapid advancements with immense applications in various fields ranging from aerospace to 3D printed organs. This study describes a facile biofabrication approach for creating an Artificial blood vascular network inside the Hydrogel matrix by using Isomalt sugar (Sugar Alcohol) as a sacrificial component inside a composite-Hydrogel matrix. Conventional 3D-printers have extruder and hot-end assembly, whereas Bioprinters use pneumatic-piston, and piezoelectric-driven extrusion mechanisms. In this study, we describe the design and operation of a custom-made miniature precision lead screw-based syringe-pump extruder mechanism with integrated temperature-controlled heat-block. We are currently using this integrated setup for melt Isomalt-based 3D printing, which can be easily mounted over the Z-axis and is driven using a geared stepper motor with high torque, providing controlled extrusion of highly viscous polymers where sugar structures are used as sacrificial materials for making Artificial blood vascular like networks in the microfluidics domain within the composite Hydrogel matrix. Computational studies using COMSOL Multiphysics were performed to predict the diffusion pattern of the DMEM culture medium to estimate the rate of mass flow through a porous media. Furthermore, Cell based testing is performed using Human Adipose Derived Mesenchymal Stem Cells (HAD-MSC's) which were cultured over the vascular Hydrogel matrix perfused with culture media with defined flowrates to mimic the natural function of the Nutrient and gaseous exchange inside human tissues. The proposed can be used to produce equivalent Tissue models which could be potentially used in On-chip drug testing platforms, drug discovery and regenerative medicine domains.
Collapse
Affiliation(s)
- Amar Dhwaj
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India
| | - Nimisha Roy
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India
| | - Amit Prabhakar
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India.
| | - Deepti Verma
- Allahabad University, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
8
|
Sun Y, Yu N, Zhang J, Yang B. Advances in Microfluidic Single-Cell RNA Sequencing and Spatial Transcriptomics. MICROMACHINES 2025; 16:426. [PMID: 40283301 PMCID: PMC12029715 DOI: 10.3390/mi16040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 04/29/2025]
Abstract
The development of micro- and nano-fabrication technologies has greatly advanced single-cell and spatial omics technologies. With the advantages of integration and compartmentalization, microfluidic chips are capable of generating high-throughput parallel reaction systems for single-cell screening and analysis. As omics technologies improve, microfluidic chips can now integrate promising transcriptomics technologies, providing new insights from molecular characterization for tissue gene expression profiles and further revealing the static and even dynamic processes of tissues in homeostasis and disease. Here, we survey the current landscape of microfluidic methods in the field of single-cell and spatial multi-omics, as well as assessing their relative advantages and limitations. We highlight how microfluidics has been adapted and improved to provide new insights into multi-omics over the past decade. Last, we emphasize the contributions of microfluidic-based omics methods in development, neuroscience, and disease mechanisms, as well as further revealing some perspectives for technological advances in translational and clinical medicine.
Collapse
Affiliation(s)
- Yueqiu Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Nianzuo Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Lin R, Guo W, Chen Y, Li H, Luo Z, Fan Z, Tu J, Ling P, Liu R. Liquid Bridge Cutting Valves for Microfluidic Passive Distribution and Sequential Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411708. [PMID: 40059515 DOI: 10.1002/smll.202411708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Indexed: 04/25/2025]
Abstract
In bioanalysis, precisely isolating liquid reactions in distinct systems or at different temporal sequences is vital for ensuring accurate results devoid of crosstalk. However, passive liquid isolation is unattainable through existing microfluidic valves. Here, liquid bridge cutting valves (LBCVs) are introduced to automatically segregate liquids by establishing airlocks, offering an innovative microfluidic structure for liquid distribution. The principle of liquid bridge breakup is studied and applied to the design of LBCVs. Additionally, monolithic chips connecting units with LBCVs in different topologies facilitate sequential sampling and reactions, achieving the detection of sweat glucose and lactate in wearable applications, as well as cortisol ELISA on the chips. As a missing puzzle piece of microfluidic elements in liquid separation, LBCVs can be seamlessly integrated with maturing microfluidic structures, creating a lab-on-a-chip device to enable complex fluid manipulation for individual healthcare monitoring and clinical scenarios.
Collapse
Affiliation(s)
- Rongzan Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen Guo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuqiu Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haojie Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyang Luo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zixiao Fan
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinying Tu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Peng Ling
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
11
|
Joesaar A, Holub M, Lutze L, Emanuele M, Kerssemakers J, Pabst M, Dekker C. A microfluidic platform for extraction and analysis of bacterial genomic DNA. LAB ON A CHIP 2025; 25:1767-1775. [PMID: 40026014 PMCID: PMC11873781 DOI: 10.1039/d4lc00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Bacterial cells organize their genomes into a compact hierarchical structure called the nucleoid. Studying the nucleoid in cells faces challenges because of the cellular complexity while in vitro assays have difficulty in handling the fragile megabase-scale DNA biopolymers that make up bacterial genomes. Here, we introduce a method that overcomes these limitations as we develop and use a microfluidic device for the sequential extraction, purification, and analysis of bacterial nucleoids in individual microchambers. Our approach avoids any transfer or pipetting of the fragile megabase-size genomes and thereby prevents their fragmentation. We show how the microfluidic system can be used to extract and analyze single chromosomes from B. subtilis cells. Upon on-chip lysis, the bacterial genome expands in size and DNA-binding proteins are flushed away. Subsequently, exogeneous proteins can be added to the trapped DNA via diffusion. We envision that integrated microfluidic platforms will become an essential tool for the bottom-up assembly of complex biomolecular systems such as artificial chromosomes.
Collapse
Affiliation(s)
- Alex Joesaar
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Martin Holub
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Leander Lutze
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marco Emanuele
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Jacob Kerssemakers
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Martin Pabst
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Cees Dekker
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
12
|
Wang S, Guan X, Sun S. Microfluidic Biosensors: Enabling Advanced Disease Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:1936. [PMID: 40293099 PMCID: PMC11945667 DOI: 10.3390/s25061936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025]
Abstract
Microfluidic biosensors integrate microfluidic and biosensing technologies to achieve the miniaturization, integration, and automation of disease diagnosis, and show great potential for application in the fields of cancer liquid biopsy, pathogenic bacteria detection, and POCT. This paper reviews the recent advances related to microfluidic biosensors in the field of laboratory medicine, focusing on their applications in the above three areas. In cancer liquid biopsy, microfluidic biosensors facilitate the isolation, enrichment, and detection of tumor markers such as CTCs, ctDNA, miRNA, exosomes, and so on, providing support for early diagnosis, precise treatment, and prognostic assessment. In terms of pathogenic bacteria detection, microfluidic biosensors can achieve the rapid, highly sensitive, and highly specific detection of a variety of pathogenic bacteria, helping disease prevention and control as well as public health safety. Pertaining to the realm of POCT, microfluidic biosensors bring the convenient detection of a variety of diseases, such as tumors, infectious diseases, and chronic diseases, to primary health care. Future microfluidic biosensor research will focus on enhancing detection throughput, lowering costs, innovating new recognition elements and signal transduction methods, integrating artificial intelligence, and broadening applications to include home health care, drug discovery, food safety, and so on.
Collapse
Affiliation(s)
| | | | - Shuqing Sun
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (X.G.)
| |
Collapse
|
13
|
Zhang X, Smith J, Zhou AC, Duong JTT, Qi T, Chen S, Lin YJ, Gill A, Lo CH, Lin NYC, Wen J, Lu Y, Chiou PY. Large-scale acoustic single cell trapping and selective releasing. LAB ON A CHIP 2025; 25:1537-1551. [PMID: 39901861 DOI: 10.1039/d4lc00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Recent advancements in single-cell analysis have underscored the need for precise isolation and manipulation of individual cells. Traditional techniques for single-cell manipulation are often limited by the number of cells that can be parallel trapped and processed and usually require complex devices or instruments to operate. Here, we introduce an acoustic microfluidic platform that efficiently traps and selectively releases individual cells using spherical air cavities embedded in a polydimethylsiloxane (PDMS) substrate for large scale manipulation. Our device utilizes the principle of acoustic impedance mismatches to generate near-field acoustic potential gradients that create trapping sites for single cells. These single cell traps can be selectively disabled by illuminating a near-infrared laser pulse, allowing targeted release of trapped cells. This method ensures minimal impact on cell viability and proliferation, making it ideal for downstream single-cell analysis. Experimental results demonstrate our platform's capability to trap and release synthetic microparticles and biological cells with high efficiency and biocompatibility. Our device can handle a wide range of cell sizes (8-30 μm) across a large active manipulation area of 1 cm2 with 20 000 single-cell traps, providing a versatile and robust platform for single-cell applications. This acoustic microfluidic platform offers a cost-effective and practical method for large scale single-cell trapping and selective releasing with potential applications in genomics, proteomics, and other fields requiring precise single-cell manipulation.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Jacob Smith
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | | | | | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, USA
| | - Alexi Gill
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Chih-Hui Lo
- Department of Bioengineering, University of California at Los Angeles, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
- Department of Bioengineering, University of California at Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| |
Collapse
|
14
|
Ching T, van Steen ACI, Gray-Scherr D, Teo JL, Vasan A, Jeon J, Shah J, Patel A, Stoddard AE, Bays JL, Eyckmans J, Chen CS. TapeTech microfluidic connectors: adhesive tape-enabled solution for organ-on-a-chip system integration. LAB ON A CHIP 2025; 25:1474-1488. [PMID: 39907088 PMCID: PMC11795533 DOI: 10.1039/d4lc00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
A longstanding challenge in microfluidics has been the efficient delivery of fluids from macro-scale pumping systems into microfluidic devices, known as the "world-to-chip" problem. Thus far, the entire industry has accepted the use of imperfect, rigid tubing and connectors as the ecosystem within which to operate, which, while functional, are often cumbersome, labor-intensive, prone to errors, and ill-suited for high-throughput experimentation. In this paper, we introduce TapeTech microfluidics, a flexible and scalable solution designed to address the persistent "world-to-chip" problem in microfluidics, particularly in organ-on-a-chip (OoC) applications. TapeTech offers a streamlined alternative, utilizing adhesive tape and thin-film polymers to create adaptable, integrated multi-channel ribbon connectors that simplify fluidic integration with pumps and reservoirs. Key features of TapeTech include reduced pressure surges, easy priming, rapid setup, easy multiplexing, and broad compatibility with existing devices and components, which are essential for maintaining stable fluid dynamics and protecting sensitive cell cultures. Furthermore, TapeTech is designed to flex around the lids of Petri dishes, enhancing sterility and transportability by enabling easy transfer between incubators, biosafety cabinets (BSCs), and microscopes. The rapid design-to-prototype iteration enabled by TapeTech allows users to quickly develop connectors for a wide range of microfluidic devices. Importantly, we showcase the utility of TapeTech in OoC cultures requiring fluid flow. We also highlight other utilities, such as real-time microscopy and a well-plate medium exchanger. The accessibility of this technology should enable more laboratories to simplify design and setup of microfluidic experiments, and increase technology adoption.
Collapse
Affiliation(s)
- Terry Ching
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Abraham C I van Steen
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Delaney Gray-Scherr
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jessica L Teo
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Anish Vasan
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Joshua Jeon
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jessica Shah
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aayush Patel
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amy E Stoddard
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer L Bays
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeroen Eyckmans
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Boston University, Boston, MA 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
15
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025; 25:764-786. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Sulliger M, Ortega Arroyo J, Quidant R. Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets. Anal Chem 2025; 97:2736-2744. [PMID: 39879326 PMCID: PMC11822737 DOI: 10.1021/acs.analchem.4c04731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis. Here we present an integrated optofluidic platform that addresses this critical point by combining advanced hyperspectral imaging with self-referencing and measurement automation. With this approach our platform achieves high temporal and spectral resolution with shot-noise limited performance, allowing for the label-free interrogation of single droplet contents. To demonstrate the platform's capabilities, we first exploit its high temporal and spectral resolution to study rapid dynamic changes in the composition of a heterogeneous population of nanoparticles. Second, leveraging the platform's shot-noise limited performance and using a model DNA-AuNP sensor, we detect target DNA sequences down to 250 pM, thereby showcasing the platform's compatibility with demanding sensing applications. Finally, through measurement automation, we demonstrate multiplexed sample monitoring over hours. These findings show that our optofluidic platform not only helps to close the current gap in high-throughput droplet analysis, but also significantly advances the potential for content-rich characterization, ultimately enhancing the scope and effectiveness of high-throughput screening methods.
Collapse
Affiliation(s)
- Marc Sulliger
- Nanophotonic Systems Laboratory, Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
17
|
McIntyre D, Arguijo D, Kawata K, Densmore D. Component library creation and pixel array generation with micromilled droplet microfluidics. MICROSYSTEMS & NANOENGINEERING 2025; 11:6. [PMID: 39809750 PMCID: PMC11733136 DOI: 10.1038/s41378-024-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/19/2024] [Indexed: 01/16/2025]
Abstract
Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor. Here, we present the first complete droplet-based component library using low-cost rapid prototyping and electrode integration. This fabrication method for droplet microfluidic devices costs less than $12 per device and a full design-build-test cycle can be completed within a day. Discrete microfluidic components for droplet generation, re-injection, picoinjection, anchoring, fluorescence sensing, and sorting were built and characterized. These devices are biocompatible, low-cost, and high-throughput. To show its ability to perform multistep workflows, these components were used to assemble droplet "pixel" arrays, where droplets were generated, sensed, sorted, and anchored onto a grid to produce images.
Collapse
Affiliation(s)
- David McIntyre
- Biomedical Engineering Department, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Diana Arguijo
- Biomedical Engineering Department, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Kaede Kawata
- Biological Design Center, Boston University, Boston, MA, USA
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, MA, USA.
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
19
|
Li M, Dong S. A Robust Normally Closed Pneumatic Valve for Integrated Microfluidic Flow Control. MICROMACHINES 2024; 16:34. [PMID: 39858690 PMCID: PMC11767356 DOI: 10.3390/mi16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
Accurate fluid management in microfluidic-based point-of-care testing (POCT) devices is critical. Fluids must be gated and directed in precise sequences to facilitate desired biochemical reactions and signal detection. Pneumatic valves are widely utilized for fluid gating due to their flexibility and simplicity. However, the development of reliable normally closed pneumatic valves remains challenging, despite their increasing demand in advanced POCT applications to prevent uncontrolled fluid flow. Existing normally closed valves often suffer from poor reliability and lack precise control over fluid opening pressure, due to the uncontrolled stretching of the elastomer during assembly. In this study, we propose and develop a robust method for normally closed valves. By precisely controlling the pre-stretching of the elastomer, we achieve reliable valve closure and accurate control of the opening pressure. A robust normally closed valve was designed and fabricated, and its pneumatic opening pressure was systematically studied. Experimental validations were conducted to demonstrate the reliability and effectiveness of the proposed design.
Collapse
Affiliation(s)
- Minggan Li
- Zepto Life Technology Inc., 1000 Westgate Drive, St. Paul, MN 55114, USA
| | | |
Collapse
|
20
|
Ning R, Acree B, Wu M, Gao Y. Microfluidic Monodispersed Microbubble Generation for Production of Cavitation Nuclei. MICROMACHINES 2024; 15:1531. [PMID: 39770284 PMCID: PMC11678649 DOI: 10.3390/mi15121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Microbubbles, acting as cavitation nuclei, undergo cycles of expansion, contraction, and collapse. This collapse generates shockwaves, alters local shear forces, and increases local temperature. Cavitation causes severe changes in pressure and temperature, resulting in surface erosion. Shockwaves strip material from surfaces, forming pits and cracks. Prolonged cavitation reduces the mechanical strength and fatigue life of materials, potentially leading to failure. Controlling bubble size and generating monodispersed bubbles is crucial for accurately modeling cavitation phenomena. In this work, we generate monodispersed microbubbles with controllable size using a novel and low-cost microfluidic method. We created an innovative T-junction structure that controls the two-phase flow for tiny, monodispersed bubble generation. Monodisperse microbubbles with diameters below one-fifth of the channel width (W = 100 µm) are produced due to the controlled pressure gradient. This microstructure, fabricated by a CNC milling technique, produces 20 μm bubbles without requiring high-resolution equipment and cleanroom environments. Bubble size is controlled with gas and liquid pressure ratio and microgeometry. This microbubble generation method provides a controllable and reproducible way for cavitation research.
Collapse
Affiliation(s)
| | | | | | - Yuan Gao
- Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA; (R.N.); (B.A.); (M.W.)
| |
Collapse
|
21
|
Picella S, van Riet CM, Overvelde JTB. Pneumatic coding blocks enable programmability of electronics-free fluidic soft robots. SCIENCE ADVANCES 2024; 10:eadr2433. [PMID: 39705364 DOI: 10.1126/sciadv.adr2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Decision-making based on environmental cues is a crucial feature of autonomous systems. Embodying this feature in soft robots poses nontrivial challenges on both hardware and software that can undermine the simplicity and autonomy of such devices. Existing pneumatic electronics-free soft robots have so far mostly been approached by using system fluidic circuit architectures analogous to digital electronics. Instead, here we design dedicated pneumatic coding blocks equivalent to If, If...break, and For software control statements, which are based on the analog nature of nonlinear mechanical components. We demonstrate that we can combine these coding blocks into programs to implement sequences and to control an electronics-free autonomous soft gripper that switches between behaviors based on interactions with the environment. As such, our strategy provides an alternative approach to designing complex behavior in soft robotics that is more reminiscent of how functionalities are also encoded in the body of living systems.
Collapse
Affiliation(s)
- Sergio Picella
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Catharina M van Riet
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Johannes T B Overvelde
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
22
|
Yan X, Tan D, Yu L, Li D, Wang Z, Huang W, Wu H. An integrated microfluidic device for sorting of tumor organoids using image recognition. LAB ON A CHIP 2024; 25:41-48. [PMID: 39629737 DOI: 10.1039/d4lc00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Tumor organoids present a challenge in drug screening due to their considerable heterogeneity in morphology and size. To address this issue, we proposed a portable microfluidic device that employs image processing algorithms for specific target organoid recognition and microvalve-controlled deflection for sorting and collection. This morphology-activated organoid sorting system offers numerous advantages, such as automated classification, portability, low cost, label-free sample preparation, and gentle handling of organoids. We conducted classification experiments using polystyrene beads, F9 tumoroids and patient-derived tumor organoids, achieving organoid separation efficiency exceeding 88%, purity surpassing 91%, viability exceeding 97% and classification throughput of 800 per hour, thereby meeting the demands of clinical organoid medicine.
Collapse
Affiliation(s)
- Xingyang Yan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Deng Tan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danyu Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhenghao Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Weiren Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
23
|
Ma Y, Sun X, Cai Z, Tu M, Wang Y, Ouyang Q, Yan X, Jing G, Yang G. Transformation gap from research findings to large-scale commercialized products in microfluidic field. Mater Today Bio 2024; 29:101373. [PMID: 39687794 PMCID: PMC11647665 DOI: 10.1016/j.mtbio.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The field of microfluidics has experienced rapid growth in the last several decades, yet it isn't considered to be a large industry comparable to semiconductor and consumer electronics. In this review, we analyzed the entire process of the transformation from research findings to commercialized products in microfluidics, as well as the significant gap during the whole developing process between microchip fabrication in R&D and large-scale production in the industry. We elaborated in detail on various materials in the microfluidics industry, including silicon, glass, PDMS, and thermoplastics, discussing their characteristics, production processes, and existing products. Despite challenges hindering the large-scale commercialization of microfluidic chips, ongoing advancements and applications are expected to integrate microfluidic technology into everyday life, transforming it into a commercially viable field with substantial potential and promising prospects.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Xiaoyi Sun
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Ziwei Cai
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Mengjing Tu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Gaoshan Jing
- Institute of Microelectronics, Chinese Academy of Sciences (CAS), Beijing, 100029, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
24
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024; 15:3828-3847. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
25
|
Mazhar N, Islam MS, Raza MZ, Mahin SMKH, Islam MR, Chowdhury MEH, Al-Ali A, Agouni A, Yalcin HC. Comparative Analysis of In Vitro Pumps Used in Cardiovascular Investigations: Focus on Flow Generation Principles and Characteristics of Generated Flows. Bioengineering (Basel) 2024; 11:1116. [PMID: 39593776 PMCID: PMC11591817 DOI: 10.3390/bioengineering11111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
A comprehensive analysis of in vitro pumps used in cardiovascular research is provided in this review, with a focus on the characteristics of generated flows and principles of flow generations. The cardiovascular system, vital for nutrient circulation and waste removal, generates complex hemodynamics critical for endothelial cell function. Cardiovascular diseases (CVDs) could be caused by the disturbances in these flows, including aneurysms, atherosclerosis, and heart defects. In vitro systems simulate hemodynamic conditions on cultured cells in the laboratory to study and evaluate these diseases to advance therapies. Pumps used in these systems can be classified into contact and non-contact types. Contact pumps, such as piston and gear pumps, can generate higher flow rates, but they have a higher risk of contamination due to the direct interaction of pump with the fluid. Non-contact pumps, such as peristaltic and lab-on-disk centrifugal pumps, minimize contamination risks, but they are limited to lower flow rates. Advanced pumps including piezoelectric and I-Cor diagonal pumps are focused on improving the accuracy of flow replication and long-term stability. The operational principles, advantages, and some disadvantages of these pump categories are evaluated in this review, while providing insights for optimizing in vitro cardiovascular models and advancing therapeutic strategies against CVDs. The outcomes of the review elaborate the importance of selecting an appropriate pump system, to accurately replicate cardiovascular flow patterns.
Collapse
Affiliation(s)
- Noaman Mazhar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - Munshi Sajidul Islam
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - Muhammad Zohaib Raza
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - SM. Khaled Hossain Mahin
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Mohammed Riazul Islam
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Abdulla Al-Ali
- Computer Science and Engineering Department, Qatar University, Doha 2713, Qatar;
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
26
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
27
|
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife JC. Recent Advancements in Nanophotonics for Optofluidics. ADVANCES IN PHYSICS: X 2024; 9:2416178. [PMID: 39554474 PMCID: PMC11563312 DOI: 10.1080/23746149.2024.2416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing. Regarding nanoparticle manipulation, we delve into mechanisms based on optical nanotweezers using nanolocalized light fields and light-based hybrid effects with dramatically improved performance and capabilities. In the context of sensing, we emphasize those works that used optofluidics to aggregate molecules or particles to promote sensing and detection. Additionally, we highlight emerging research directions, encompassing both fundamental principles and practical applications in the field.
Collapse
Affiliation(s)
- Sen Yang
- Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Chuchuan Hong
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
28
|
Shin S, Yun HG, Chung H, Cho H, Choi S. Automation of 3D digital rolling circle amplification using a 3D-printed liquid handler. Biosens Bioelectron 2024; 261:116503. [PMID: 38905856 DOI: 10.1016/j.bios.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Automation of liquid handling is indispensable to improve throughput and reproducibility in biochemical assays. However, the incorporation of automated systems into laboratory workflows is often hindered by the high cost and complexity associated with building robotic liquid handlers. Here, we report a 3D-printed liquid handler based on a fluidic manifold, thereby obviating the need for complex robotic mechanisms. The fluidic manifold, termed a dispensing and aspirating (DA) device, comprises parallelized multi-pipette structures connected by distribution and aspiration channels, enabling the precise supply and removal of reagents, respectively. Leveraging the versatility of 3D printing, the DA device can be custom-designed and printed to fit specific applications. As a proof-of-principle, we engineered a 3D-printed liquid handler dedicated for 3D digital rolling circle amplification (4DRCA), an advanced biochemical assay involving multiple sample preparation steps such as antibody incubation, cell fixation, nucleic acid amplification, probe hybridization, and extensive washing. We demonstrate the efficacy of the 3D-printed liquid handler to automate the preparation of clinical samples for the simultaneous, in situ analysis of oncogenic protein and transcript markers in B-cell acute lymphoblastic leukemia cells using 4DRCA. This approach provides an effective and accessible solution for liquid handling automation, offering high throughput and reproducibility in biochemical assays.
Collapse
Affiliation(s)
- Suyeon Shin
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Healthcare Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
29
|
Shan B, Liu C, Guo Y, Wang Y, Guo W, Zhang Y, Wang D. A Multi-Layer Stacked Microfluidic Tactile Display With High Spatial Resolution. IEEE TRANSACTIONS ON HAPTICS 2024; 17:546-556. [PMID: 38393841 DOI: 10.1109/toh.2024.3367708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Pneumatic tactile displays dynamically customize surface morphological features with reconfigurable arrays of independently addressable actuators. However, their ability to render detailed tactile patterns or fine textures is limited by the low spatial resolution. For pneumatic tactile displays, the high-density integration of pneumatic actuators within a small space (fingertip) poses a significant challenge in terms of pneumatic circuit wiring. In contrast to the structure with a single-layer layout of pipes, we propose a multi-layered stacked microfluidic pipe structure that allows for a higher density of actuators and retains their independent actuation capabilities. Based on the proposed structure, we developed a soft microfluidic tactile display with a spatial resolution of 1.25 mm. The device consists of a 5 × 5 array of independently addressable microactuators, driven by pneumatic pressure, each of which enables independent actuation of the surface film and continuous control of the height. At a relative pressure of 1000 mbar, the actuator produced a perceptible out-of-plane deformation of 0.145 mm and a force of 17.7 mN. User studies showed that subjects can easily distinguish eight tactile patterns with 96% accuracy.
Collapse
|
30
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
31
|
Wang QL, Cho EH, Li J, Huang HC, Kin S, Piao Y, Xu L, Tang K, Kuiry S, He Z, Yu D, Cheng B, Wu CC, Choi C, Shin K, Ho TY, Kim CJC. Democratizing digital microfluidics by a cloud-based design and manufacturing platform. LAB ON A CHIP 2024; 24:4536-4548. [PMID: 39221473 DOI: 10.1039/d4lc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Akin to the impact that digital microelectronics had on electronic devices for information technology, digital microfluidics (DMF) was anticipated to transform fluidic devices for lab-on-a-chip (LoC) applications. However, despite a wealth of research and publications, electrowetting-on-dielectric (EWOD) DMF has not achieved the anticipated wide adoption, and commercialization has been painfully slow. By identifying the technological and resource hurdles in developing DMF chip and control systems as the culprit, we envision democratizing DMF by building a standardized design and manufacturing platform. To achieve this vision, we introduce a proof-of-concept cloud platform that empowers any user to design, obtain, and operate DMF chips (https://edroplets.org). For chip design, we establish a web-based EWOD chip design platform with layout rules and automated wire routing. For chip manufacturing, we build a web-based EWOD chip manufacturing platform and fabricate four types of EWOD chips (i.e., glass, paper, PCB, and TFT) to demonstrate the foundry service workflow. For chip control, we introduce a compact EWOD control system along with web-based operating software. Although industrial fabrication services are beyond the scope of this work, we hope this perspective will inspire academic and commercial stakeholders to join the initiative toward a DMF ecosystem for the masses.
Collapse
Affiliation(s)
- Qining Leo Wang
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Eric Hyunsung Cho
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Jia Li
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Hsin-Chuan Huang
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sarath Kin
- Department of Chemistry, and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Yuhao Piao
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Lin Xu
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Kenneth Tang
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Shounak Kuiry
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Zifan He
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Danning Yu
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Brian Cheng
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Chang-Chi Wu
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Connor Choi
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Kwanwoo Shin
- Department of Chemistry, and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Tsung-Yi Ho
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang-Jin Cj Kim
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
32
|
Childers K, Freed IM, Hupert ML, Shaw B, Larsen N, Herring P, Norton JH, Shiri F, Vun J, August KJ, Witek MA, Soper SA. Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer. LAB ON A CHIP 2024; 24:4422-4439. [PMID: 39171671 PMCID: PMC11339931 DOI: 10.1039/d4lc00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following in situ UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells via immunophenotyping with ALL-specific markers.
Collapse
Affiliation(s)
- Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Ian M Freed
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | - Benjamin Shaw
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Noah Larsen
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Engineering Physics, The University of Kansas, Lawrence, KS 66045, USA
| | - Paul Herring
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Jeanne H Norton
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farhad Shiri
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Judy Vun
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Keith J August
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
33
|
Baban NS, Zhou J, Elkhoury K, Bhattacharjee S, Vijayavenkataraman S, Gupta N, Song YA, Chakrabarty K, Karri R. BioTrojans: viscoelastic microvalve-based attacks in flow-based microfluidic biochips and their countermeasures. Sci Rep 2024; 14:19806. [PMID: 39191836 PMCID: PMC11350023 DOI: 10.1038/s41598-024-70703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Flow-based microfluidic biochips (FMBs) are widely used in biomedical research and diagnostics. However, their security against potential material-level cyber-physical attacks remains inadequately explored, posing a significant future challenge. One of the main components, polydimethylsiloxane (PDMS) microvalves, is pivotal to FMBs' functionality. However, their fabrication, which involves thermal curing, makes them susceptible to chemical tampering-induced material degradation attacks. Here, we demonstrate one such material-based attack termed "BioTrojans," which are chemically tampered and optically stealthy microvalves that can be ruptured through low-frequency actuations. To chemically tamper with the microvalves, we altered the associated PDMS curing ratio. Attack demonstrations showed that BioTrojan valves with 30:1 and 50:1 curing ratios ruptured quickly under 2 Hz frequency actuations, while authentic microvalves with a 10:1 ratio remained intact even after being actuated at the same frequency for 2 days (345,600 cycles). Dynamic mechanical analyzer (DMA) results and associated finite element analysis revealed that a BioTrojan valve stores three orders of magnitude more mechanical energy than the authentic one, making it highly susceptible to low-frequency-induced ruptures. To counter BioTrojan attacks, we propose a security-by-design approach using smooth peripheral fillets to reduce stress concentration by over 50% and a spectral authentication method using fluorescent microvalves capable of effectively detecting BioTrojans.
Collapse
Affiliation(s)
- Navajit Singh Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jiarui Zhou
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sukanta Bhattacharjee
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Krishnendu Chakrabarty
- School of Electrical, Computer and Energy Engineering, Arizona State University, Arizona, USA
| | - Ramesh Karri
- Department of Electrical and Computer Engineering, New York University, New York, USA
| |
Collapse
|
34
|
Moran AM, Vo VT, McDonald KJ, Sultania P, Langenbrunner E, Chong JHV, Naik A, Kinnicutt L, Li J, Ranzani T. An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots. COMMUNICATIONS ENGINEERING 2024; 3:117. [PMID: 39179768 PMCID: PMC11344064 DOI: 10.1038/s44172-024-00251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to -100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks.
Collapse
Affiliation(s)
- Anna Maria Moran
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Vi T Vo
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Kevin J McDonald
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Pranav Sultania
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Eva Langenbrunner
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | | | - Amartya Naik
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Lorenzo Kinnicutt
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jingshuo Li
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Materials Science and Engineering Division, Boston University, Boston, MA, USA.
| |
Collapse
|
35
|
Saito M, Arai F, Yamanishi Y, Sakuma S. Spatiotemporally controlled microvortices provide advanced microfluidic components. Proc Natl Acad Sci U S A 2024; 121:e2306182121. [PMID: 39102543 PMCID: PMC11331141 DOI: 10.1073/pnas.2306182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
Microvortices are emerging components that impart functionality to microchannels by exploiting inertia effects such as high shear stress, effective fluid diffusion, and large pressure loss. Exploring the dynamic generation of vortices further expands the scope of microfluidic applications, including cell stimulation, fluid mixing, and transport. Despite the crucial role of vortices' development within sub-millisecond timescales, previous studies in microfluidics did not explore the modulation of the Reynolds number (Re) in the range of several hundred. In this study, we modulated high-speed flows (54 < [Formula: see text] < 456) within sub-millisecond timescales using a piezo-driven on-chip membrane pump. By applying this method to microchannels with asymmetric geometries, we successfully controlled the spatiotemporal development of vortices, adjusting their behavior in response to oscillatory flow directions. These different vortices induced different pressure losses, imparting the microchannels with direction-dependent flow resistance, mimicking a diode-like behavior. Through precise control of vortex development, we managed to regulate this direction-dependent resistance, enabling the rectification of oscillatory flow resembling a diode and the ability to switch its rectification direction. This component facilitated bidirectional flow control without the need for mechanical valves. Moreover, we demonstrated its application in microfluidic cell pipetting, enabling the isolation of single cells. Consequently, based on modulating high-speed flow, our approach offers precise control over the spatiotemporal development of vortices in microstructures, thereby introducing innovative microfluidic functionalities.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku113-8656, Japan
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Shinya Sakuma
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| |
Collapse
|
36
|
Feng Y, Che B, Fu J, Sun Y, Ma W, Tian J, Dai L, Jing G, Zhao W, Sun D, Zhang C. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening. ACS Biomater Sci Eng 2024; 10:5399-5408. [PMID: 39031055 DOI: 10.1021/acsbiomaterials.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Live cell assays provide real-time data of cellular responses. In combination with microfluidics, applications such as automated and high-throughput drug screening on live cells can be accomplished in small devices. However, their application in point-of-care testing (POCT) is limited by the requirement for bulky equipment to maintain optimal cell culture conditions. In this study, we propose a POCT device that allows on-site cell culture and high-throughput drug screening on live cells. We first observe that cell viabilities are substantially affected by liquid evaporation within the microfluidic device, which is intrinsic to the polydimethylsiloxane (PDMS) material due to its hydrophobic nature and nanopatterned surface. The unwanted PDMS-liquid-air interface in the cell culture environment can be eliminated by maintaining a persistent humidity of 95-100% or submerging the whole microfluidic device under water. Our results demonstrate that in the POCT device equipped with a water tank, both primary cells and cell lines can be maintained for up to 1 week without the need for external cell culture equipment. Moreover, this device is powered by a standard alkali battery and can automatically screen over 5000 combinatorial drug conditions for regulating neural stem cell differentiation. By monitoring dynamic variations in fluorescent markers, we determine the optimal doses of platelet-derived growth factor and epidermal growth factor to suppress proinflammatory S100A9-induced neuronal toxicities. Overall, this study presents an opportunity to transform lab-on-a-chip technology from a laboratory-based approach to actual point-of-care devices capable of performing complex experimental procedures on-site and offers significant advancements in the fields of personalized medicine and rapid clinical diagnostics.
Collapse
Affiliation(s)
- Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Bingchen Che
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Yu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
| | - Wenju Ma
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Guangyin Jing
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| |
Collapse
|
37
|
Supakar T, Space D, Meija S, Tan RY, Alston JR, Josephs EA. Programmed Internal Reconfigurations in a 3D-Printed Mechanical Metamaterial Enable Fluidic Control for a Vertically Stacked Valve Array. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315419. [PMID: 39431220 PMCID: PMC11486493 DOI: 10.1002/adfm.202315419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/22/2024]
Abstract
Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab-on-chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi-planar structures. Incorporating mechanical metamaterials that exhibit spatially adjustable mechanical properties into microfluidic systems provides an opportunity to address these challenges. Here, we have performed systematic computational and experimental characterization of a modified re-entrant honeycomb structure to generate a modular metamaterial for an active device that allows us to directly regulate flow through integrated, multiplexed fluidic channels "one-at-a-time," in a manner that is highly scalable. We present a design algorithm so that this architecture can be extended to arbitrary geometries, and we expect that by incorporation of mechanical metamaterial designs into 3D printed fluidic systems, which themselves are readily expandable to any complex geometries, will enable new biotechnological and biomedical applications of 3D printed devices.
Collapse
Affiliation(s)
- Tinku Supakar
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401
| | - David Space
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401
| | - Sophy Meija
- Department of Biology, College of Arts and Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA 27412
| | - Rou Yu Tan
- The Early College at Guilford, Greensboro, NC, USA 27410
| | - Jeffrey R Alston
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA 27401
| | - Eric A Josephs
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401; Department of Biology, College of Arts and Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA 27412
| |
Collapse
|
38
|
Shebindu A, Kaveti D, Umutoni L, Kirk G, Burton MD, Jones CN. A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation. MICROSYSTEMS & NANOENGINEERING 2024; 10:106. [PMID: 39101003 PMCID: PMC11294448 DOI: 10.1038/s41378-024-00733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 08/06/2024]
Abstract
Neuroinflammation is characterized by the elevation of cytokines and adenosine triphosphate (ATP), which in turn activates microglia. These immunoregulatory molecules typically form gradients in vivo, which significantly influence microglial behaviors such as increasing calcium signaling, migration, phagocytosis, and cytokine secretion. Quantifying microglial calcium signaling in the context of inflammation holds the potential for developing precise therapeutic strategies for neurological diseases. However, the current calcium imaging systems are technically challenging to operate, necessitate large volumes of expensive reagents and cells, and model immunoregulatory molecules as uniform concentrations, failing to accurately replicate the in vivo microenvironment. In this study, we introduce a novel calcium monitoring micro-total analysis system (CAM-μTAS) designed to quantify calcium dynamics in microglia (BV2 cells) within defined cytokine gradients. Leveraging programmable pneumatically actuated lifting gate microvalve arrays and a Quake valve, CAM-μTAS delivers cytokine gradients to microglia, mimicking neuroinflammation. Our device automates sample handling and cell culture, enabling rapid media changes in just 1.5 s, thus streamlining the experimental workflow. By analyzing BV2 calcium transient latency to peak, we demonstrate location-dependent microglial activation patterns based on cytokine and ATP gradients, offering insights contrasting those of non-gradient-based perfusion systems. By harnessing advancements in microsystem technology to quantify calcium dynamics, we can construct simplified human models of neurological disorders, unravel the intricate mechanisms of cell-cell signaling, and conduct robust evaluations of novel therapeutics.
Collapse
Affiliation(s)
- Adam Shebindu
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Durga Kaveti
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Linda Umutoni
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Gia Kirk
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Michael D. Burton
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Caroline N. Jones
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
39
|
Lambert CJ, Clarke E, Patel D, Laurentius LB, Gale BK, Sant HJ, Porter MD. Microfluidic platform for the enzymatic pretreatment of human serum for the detection of the tuberculosis biomarker mannose-capped lipoarabinomannan. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39037397 DOI: 10.1039/d4ay00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Tuberculosis (TB) represents a major public health threat, with millions of new cases reported worldwide each year. A major hurdle to curtailing the spread of this disease is the need for low-cost, point-of-care (PoC) diagnostics. Mannose-capped lipoarabinomannan, a significant component of the Mycobacterium tuberculosis bacillus, has been heavily studied as a biomarker for TB, but with little success due to its complexation with endogenous components of body fluids in a manner that sterically interferes with its detection by ELISA and other immunoassays. Recent work by our group and others has shown that complexation can be disrupted with protein-denaturing protocols. By way of followup, we recently described an enzymatic digestion (Proteinase K) sample pretreatment that enables quantitative recovery of ManLAM spiked into healthy human control serum. Herein, we report on the transfer of our benchtop sample pretreatment methodology to an automated microfluidic platform. We show that this platform can be configured to: (1) carry out the pretreatment process with very little user interaction and, (2) yield recoveries for ManLAm spiked into control serum which are statistically indistinguishable from those achieved by the benchtop process. Plans to integrate this device with a portable sample reader as a possible basis for a PoC TB diagnostic system and analyze patient samples are briefly discussed.
Collapse
Affiliation(s)
- Christopher J Lambert
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eamonn Clarke
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Dhruv Patel
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lars B Laurentius
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bruce K Gale
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Himanshu J Sant
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Marc D Porter
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
- Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
40
|
Sagot M, Derkenne T, Giunchi P, Davit Y, Nougayrède JP, Tregouet C, Raimbault V, Malaquin L, Venzac B. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy. LAB ON A CHIP 2024; 24:3508-3520. [PMID: 38934387 PMCID: PMC11235415 DOI: 10.1039/d4lc00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Stereolithography 3D printing, although an increasingly used fabrication method for microfluidic chips, has the main disadvantage of producing monolithic chips in a single material. We propose to incorporate during printing various objects using a "print-pause-print" strategy. Here, we demonstrate that this novel approach can be used to incorporate glass slides, hydrosoluble films, paper pads, steel balls, elastic or nanoporous membranes and silicon-based microdevices, in order to add microfluidic functionalities as diverse as valves, fluidic diodes, shallow chambers, imaging windows for bacteria tracking, storage of reagents, blue energy harvesting or filters for cell capture and culture.
Collapse
Affiliation(s)
- Matthieu Sagot
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
- Smartcatch, 1 Place Pierre Potier, 31100, Toulouse, France
| | - Timothée Derkenne
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Perrine Giunchi
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Corentin Tregouet
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Laurent Malaquin
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| | - Bastien Venzac
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| |
Collapse
|
41
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
42
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
43
|
Rupp BT, Cook CD, Purcell EA, Pop M, Radomski AE, Mesyngier N, Bailey RC, Nagrath S. CellMag-CARWash: A High Throughput Droplet Microfluidic Device for Live Cell Isolation and Single Cell Applications. Adv Biol (Weinh) 2024; 8:e2400066. [PMID: 38741244 DOI: 10.1002/adbi.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 05/16/2024]
Abstract
The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single-cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag-Coalesce-Attract-Resegment Wash (CellMag-CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of β-Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to β-Estradiol stimulation with a 1.8-fold increase relative to the control.
Collapse
Affiliation(s)
- Brittany T Rupp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claire D Cook
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emma A Purcell
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matei Pop
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abigail E Radomski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Mesyngier
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan C Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
44
|
Agarwal P, Berger S, Shemesh T, Zaidel-Bar R. Active nuclear positioning and actomyosin contractility maintain leader cell integrity during gonadogenesis. Curr Biol 2024; 34:2373-2386.e5. [PMID: 38776903 DOI: 10.1016/j.cub.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.
Collapse
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Tom Shemesh
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
45
|
Xie M, Zhan Z, Li Y, Zhao J, Zhang C, Wang Z, Wang Z. Functional microfluidics: theory, microfabrication, and applications. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2024; 6:032005. [DOI: 10.1088/2631-7990/ad2c5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers. Thus, quite a small (10−9–10−18 l) amount of liquid can be manipulated by such a precise system. In the past three decades, significant progress in materials science, microfabrication, and various applications has boosted the development of promising functional microfluidic devices. In this review, the recent progress on novel microfluidic devices with various functions and applications is presented. First, the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced. Then, materials and fabrication methods of functional microfluidic devices are summarized. Next, the recent significant advances in applications of microfluidic devices are highlighted, including heat sinks, clean water production, chemical reactions, sensors, biomedicine, capillaric circuits, wearable electronic devices, and microrobotics. Finally, perspectives on the challenges and future developments of functional microfluidic devices are presented. This review aims to inspire researchers from various fields—engineering, materials, chemistry, mathematics, physics, and more—to collaborate and drive forward the development and applications of functional microfluidic devices, specifically for achieving carbon neutrality.
Collapse
|
46
|
Omidfar K, Kashanian S. A mini review on recent progress of microfluidic systems for antibody development. J Diabetes Metab Disord 2024; 23:323-331. [PMID: 38932846 PMCID: PMC11196548 DOI: 10.1007/s40200-024-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/06/2024] [Indexed: 06/28/2024]
Abstract
Objectives Antibody is specific reagent that be utilized in various field of biomedical research. Monoclonal antibodies are mostly produced using two common techniques namely hybridoma and antibody engineering, which suffer from some limitations such as boring screening procedures, long production time, low efficacy and a degree of automation. To address these limitations, various microfluidics techniques have been developed for the antibody isolation and screening. Methods This study specifically investigates nearly recent reports published in peer-reviewed journals indexed in various databases including Web of Science, Scopus, PubMed, Google Scholar, and Science Direct. Results In this study, we identified a total of seventy papers from a pool of 130 articles. These papers focus on the application of three major groups of microfluidic platforms, namely valves, microwells, and droplets, in the development of antibodies using hybridoma method and phage display technology. We provide a summary of these applications and also discuss the key findings in this field. Additionally, we illustrate our discussion with several examples to enhance understanding. Conclusions Microfluidics has the potential to serve as a valuable tool in streamlining complex laboratory procedures involved in antibody discovery. However, it is important to note that microfluidics is limited to laboratory settings. Further enhancements are needed to address existing challenges and to make microfluidics a reliable, accurate, and cost-effective tool for antibody discovery.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box 14395/1179, Tehran, IR Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohiela Kashanian
- Faculty of Chemistry, Razi University, Kermanshah, 6714414971 Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, 6714414971 Iran
| |
Collapse
|
47
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
48
|
Li C, Kang N, Ye S, Huang W, Wang X, Wang C, Li Y, Liu YF, Lan Y, Ma L, Zhao Y, Han Y, Fu J, Shen D, Dong L, Du W. All-In-One OsciDrop Digital PCR System for Automated and Highly Multiplexed Molecular Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309557. [PMID: 38516754 DOI: 10.1002/advs.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.
Collapse
Affiliation(s)
- Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Nan Kang
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Shun Ye
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Weihang Huang
- Center for Corpus Research, Department of English Language and Linguistics, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Cheng Wang
- Department of Breast Surgery Huangpu Branch, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuchen Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Biomedical Sciences College & Shandong Medical Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan-Fei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Ma
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yuhang Zhao
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yong Han
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Jun Fu
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
49
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
Stollmann A, Garcia-Guirado J, Hong JS, Rüedi P, Im H, Lee H, Ortega Arroyo J, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. Nat Commun 2024; 15:4109. [PMID: 38750038 PMCID: PMC11096335 DOI: 10.1038/s41467-024-48132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pascal Rüedi
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|