1
|
Kang BY, Choi J, Tseng V, Zhao Y, Zhao J, Stearman RS, Lam WA, Sueblinvong V, Kopp BT, Passineau MJ, Park C, Lister J, Benza RJ, Jang AJ. USP11 Promotes Endothelial Apoptosis-Resistance in Pulmonary Arterial Hypertension by Deubiquitinating HINT3. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10002. [PMID: 40376595 PMCID: PMC12080269 DOI: 10.70322/jrbtm.2025.10002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, lethal, and incurable disease of the pulmonary vasculature. A previous genome-wide association study (GWAS) with Affymetrix microarray analysis data exhibited elevated histidine triad nucleotide-binding protein 3 (HINT3) in the lung samples of PAH compared to control subjects (failed donors, FD) and the positive correlations of HINT3 with deubiquitinase USP11 and B-cell lymphoma 2 (BCL2). In this study, we aim to investigate the roles and interplay of USP11 and HINT3 in the apoptosis resistance of PAH. The levels of USP11 and HINT3 were increased in the lungs of idiopathic PAH (IPAH) patients and Hypoxia/Sugen-treated mice. USP11 and HINT3 interacted physically, as shown by co-immunoprecipitation (co-IP) assay in human pulmonary arterial endothelial cells (HPAECs). HINT3 was degraded by polyubiquitination, which was reversed by USP11. Furthermore, HINT3 interacted with the anti-apoptotic mediator, BCL2. Overexpression of USP11 increased BCL2 content, congruent to elevated lung tissue levels seen in IPAH patients and Hypoxia/Sugen-treated mice. Conversely, the knockdown of HINT3 function led to a depletion of BCL2. Thus, we conclude that USP11 stabilizes HINT3 activation, which contributes to endothelial apoptosis-resistance of pulmonary arterial endothelial cells in PAH. This can potentially be a novel therapeutic target for ubiquitination modulators for PAH.
Collapse
Affiliation(s)
- Bum-Yong Kang
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Healthcare System, Decatur 30033, GA, USA
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS 66160, USA
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
| | - Victor Tseng
- Respiratory Medicine, Ansible Health, Mountain View, CA 94043, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert S. Stearman
- Department of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Wilbur A. Lam
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Viranuj Sueblinvong
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin T. Kopp
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - John Lister
- Department of Medicine, Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Raymond J. Benza
- Ichan School of Medicine, Mount Sinai Fuster Heart Hospital, New York, NY 10029, USA
| | - Andrew J. Jang
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
- Department of Medicine, Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Luan RG, Liu MD, Deng ZF, Lu CL, Yu ML, Zhang MY, Liu R, An R, Yao YL, Guo DB, Zhang YX, Zhao L. Correlations of the expression of Cx43, SCF FBXW7, p-cyclin E1 (Ser73), p-cyclin E1 (Thr77) and p-cyclin E1 (Thr395) in colon cancer tissues. World J Gastrointest Oncol 2025; 17:98410. [PMID: 39817129 PMCID: PMC11664607 DOI: 10.4251/wjgo.v17.i1.98410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination. Conversely, reduced expression results in a loss of this capacity to facilitate cyclin E degradation. The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein, with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues. AIM To investigate the correlation between expression of Cx43, SKP1/Cullin1/F-box (SCF)FBXW7, p-cyclin E1 (ser73, thr77, thr395) and clinicopathological indexes in colon cancer. METHODS Expression levels of Cx43, SCFFBXW7, p-cyclin E1 (ser73, thr77, thr395) in 38 clinical colon cancer samples were detected by immunohistochemistry and were analyzed by statistical methods to discuss their correlations. RESULTS Positive rate of Cx43, SCFFBXW7, p-cyclin E1(Ser73), p-cyclin E1 (Thr77) and p-cyclin E1 (Thr395) in detected samples were 76.32%, 76.32%, 65.79%, 5.26% and 55.26% respectively. Positive expressions of these proteins were not related to the tissue type, degree of tissue differentiation or lymph node metastasis. Cx43 and SCFFBXW7(r = 0.749), p-cyclin E1 (Ser73) (r = 0.667) and p-cyclin E1 (Thr395) (r = 0.457), SCFFBXW7 and p-cyclin E1 (Ser73) (r = 0.703) and p-cyclin E1 (Thr395) (0.415) were correlated in colon cancer (P < 0.05), and expressions of the above proteins were positively correlated in colon cancer. CONCLUSION Cx43 may facilitate the phosphorylation of cyclin E1 at the Ser73 and Thr195 sites through its interaction with SCFFBXW7, thereby influencing the ubiquitination and degradation of cyclin E1.
Collapse
Affiliation(s)
- Rong-Gang Luan
- Department of Gastrointestinal Surgery, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China
| | - Ming-Da Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Zi-Feng Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Cong-Lan Lu
- Trauma Surgery, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China
| | - Mei-Ling Yu
- Trauma Surgery, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China
| | - Ming-Yu Zhang
- Trauma Surgery, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China
| | - Rong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Ran An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - You-Liang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Dong-Bei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Yong-Xing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Lei Zhao
- Department of Orthopaedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China
| |
Collapse
|
3
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Li X, Lakshmi SP, Uemasu K, Lane Z, Reddy RT, Chandra D, Zou C, Jiang Y, Nyunoya T. FBXL19 Targeted STK11 Degradation Enhances Cigarette Smoke-Induced Airway Epithelial Cell Cytotoxicity. COPD 2024; 21:2342797. [PMID: 38712759 PMCID: PMC11186665 DOI: 10.1080/15412555.2024.2342797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Sowmya P. Lakshmi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Kiyoshi Uemasu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zachary Lane
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Rajan T. Reddy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Yu Jiang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| |
Collapse
|
5
|
Frazier CL, Deb D, Weeks AM. Engineered reactivity of a bacterial E1-like enzyme enables ATP-driven modification of protein C termini. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593989. [PMID: 38798401 PMCID: PMC11118369 DOI: 10.1101/2024.05.13.593989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In biological systems, ATP provides an energetic driving force for peptide bond formation, but protein chemists lack tools that emulate this strategy. Inspired by the eukaryotic ubiquitination cascade, we developed an ATP-driven platform for C-terminal activation and peptide ligation based on E. coli MccB, a bacterial ancestor of ubiquitin-activating (E1) enzymes that natively catalyzes C-terminal phosphoramidate bond formation. We show that MccB can act on non-native substrates to generate an O-AMPylated electrophile that can react with exogenous nucleophiles to form diverse C-terminal functional groups including thioesters, a versatile class of biological intermediates that have been exploited for protein semisynthesis. To direct this activity towards specific proteins of interest, we developed the Thioesterification C-terminal Handle (TeCH)-tag, a sequence that enables high-yield, ATP-driven protein bioconjugation via a thioester intermediate. By mining the natural diversity of the MccB family, we developed two additional MccB/TeCH-tag pairs that are mutually orthogonal to each other and to the E. coli system, facilitating the synthesis of more complex bioconjugates. Our method mimics the chemical logic of peptide bond synthesis that is widespread in biology for high-yield in vitro manipulation of protein structure with molecular precision.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Debashrito Deb
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| |
Collapse
|
6
|
Tsai M, Osman W, Adair J, ElMergawy R, Chafin L, Johns F, Farkas D, Elhance A, Londino J, Mallampalli RK. The E3 ligase subunit FBXO45 binds the interferon-λ receptor and promotes its degradation during influenza virus infection. J Biol Chem 2022; 298:102698. [PMID: 36379255 PMCID: PMC9747586 DOI: 10.1016/j.jbc.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
Abstract
Influenza remains a major public health challenge, as the viral infection activates multiple biological networks linked to altered host innate immunity. Following infection, IFN-λ, a ligand crucial for the resolution of viral infections, is known to bind to its cognate receptor, IFNLR1, in lung epithelia. However, little is known regarding the molecular expression and regulation of IFNLR1. Here, we show that IFNLR1 is a labile protein in human airway epithelia that is rapidly degraded after influenza infection. Using an unbiased proximal ligation biotin screen, we first identified that the Skp-Cullin-F box E3 ligase subunit, FBXO45, binds to IFNLR1. We demonstrate that FBXO45, induced in response to influenza infection, mediates IFNLR1 protein polyubiquitination and degradation through the ubiquitin-proteasome system by docking with its intracellular receptor domain. Furthermore, we found ectopically expressed FBXO45 and its silencing in cells differentially regulated both IFNLR1 protein stability and interferon-stimulated gene expression. Mutagenesis studies also indicated that expression of a K319R/K320R IFNLR1 variant in cells exhibited reduced polyubiquitination, yet greater stability and proteolytic resistance to FBXO45 and influenza-mediated receptor degradation. These results indicate that the IFN-λ-IFNLR1 receptor axis is tightly regulated by the Skp-Cullin-F box ubiquitin machinery, a pathway that may be exploited by influenza infection as a means to limit antiviral responses.
Collapse
|
7
|
Global Mass Spectrometry-Based Analysis of Protein Ubiquitination Using K-ε-GG Remnant Antibody Enrichment. Methods Mol Biol 2021; 2365:203-216. [PMID: 34432246 DOI: 10.1007/978-1-0716-1665-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ubiquitination is a post-translational modification that affects protein degradation as well as a variety of cellular processes. Methods that globally profile ubiquitination are powerful tools to better understand these processes. Here we describe an updated method for identification and quantification of thousands of sites of ubiquitination from cells, tissues, or other biological materials. The method involves cell lysis and digestion to peptides, immunoaffinity enrichment with an antibody recognizing di-glycine remnants left behind at ubiquitinated lysines, and liquid chromatography-tandem mass spectrometry analysis of the enriched peptides.
Collapse
|
8
|
Yu F, Cao X, Liu G, Wang Q, Xia R, Zhang X, Xie Q. ESCRT-I Component VPS23A Is Targeted by E3 Ubiquitin Ligase XBAT35 for Proteasome-Mediated Degradation in Modulating ABA Signaling. MOLECULAR PLANT 2020; 13:1556-1569. [PMID: 32919085 DOI: 10.1016/j.molp.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 09/08/2020] [Indexed: 05/28/2023]
Abstract
A myriad of abiotic stress responses in plants are controlled by abscisic acid (ABA) signaling. ABA receptors can be degraded by both the 26S proteasome pathway and vacuolar degradation pathway after processing via the endosomal sorting complex required for transport (ESCRT) proteins. Despite being essential for ABA signaling, the upstream regulators of ESCRTs remain unknown. Here, we report that the ESCRT-I component VPS23A is an unstable protein that is degraded via the ubiquitin-proteasome system (UPS). The UEV domain of VPS23A physically interacts with the two PSAP motifs of XBAT35, an E3 ubiquitin ligase, and this interaction results in the deposition of K48 polyubiquitin chains on VPS23A, marking it for degradation by 26S proteasomes. We showed that XBAT35 in plants is a positive regulator of ABA responses that acts via the VPS23A/PYL4 complex, specifically by accelerating VPS23A turnover and thereby increasing accumulation of the ABA receptor PYL4. This work deciphers how an ESCRT component is regulated in plants and deepens our understanding of plant stress responses by illustrating a mechanism whereby crosstalk between the UPS and endosome-vacuole-mediated degradation pathways controls ABA signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xiaoqiang Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangchao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xiangyun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of the Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
9
|
Mallampalli RK, Li X, Jang JH, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J, Rojas M, Zhao Y, Lafyatis R, Zou C, Sciurba F, Sundd P, Lan L, Nyunoya T. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5:125895. [PMID: 31996486 PMCID: PMC7098723 DOI: 10.1172/jci.insight.125895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Our integrative genomic and functional analysis identified transforming acidic coiled-coil-containing protein 2 (TACC2) as a chronic obstructive pulmonary disease (COPD) candidate gene. Here, we found that smokers with COPD exhibit a marked decrease in lung TACC2 protein levels relative to smokers without COPD. Single cell RNA sequencing reveals that TACC2 is expressed primarily in lung epithelial cells in normal human lungs. Furthermore, suppression of TACC2 expression impairs the efficiency of homologous recombination repair and augments spontaneous and cigarette smoke extract-induced (CSE-induced) DNA damage and cytotoxicity in immortalized human bronchial epithelial cells. By contrast, enforced expression of TACC2 attenuates the CSE effects. We also found that CSE enhances TACC2 degradation via the ubiquitin-proteasome system mediated by the ubiquitin E3 ligase subunit, F box L7. Furthermore, cellularly expressed TACC2 proteins harboring naturally occurring mutations exhibited altered protein lifespan coupled with modified DNA damage repair and cytotoxic responses. CS triggers emphysematous changes accompanied by accumulated DNA damage, apoptosis of alveolar epithelia, and lung inflammation in Tacc2-/- compared with Tacc2+/+ mice. Our results suggest that CS destabilizes TACC2 protein in lung epithelia by the ubiquitin proteasome system, leading to subsequent DNA damage, cytotoxicity, and emphysema.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xiuying Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomasz Kaminski
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aki Hoji
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tiffany Coon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Starr Welty
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UMPC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Beijing, China
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| |
Collapse
|
10
|
Xu X, Wang T, Niu Y, Liang K, Yang Y. The ubiquitin-like modification by ThiS and ThiF in Escherichia coli. Int J Biol Macromol 2019; 141:351-357. [PMID: 31442507 DOI: 10.1016/j.ijbiomac.2019.08.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Escherichia coli, one of the most well-studied gram-negative bacterial species, encodes two ubiquitin-like proteins (UBLs), ThiS and MoaD. The studies on prokaryotic UBLs such as Pup, and small archaeal modifier protein have revealed the function of UBLs. However, in gram-negative bacteria, the functions of UBLs in protein modification are still poorly understood to date. Here, we report that ThiS, which has a β-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, is able to form protein conjugates in vivo and in vitro. We also constructed in vitro ThiS conjugation (thisylation) system and identified the modified lysine sites by MS/MS, this provides an essential platform for studying the UBLs thisylation system in E. coli. The modification system is dependent on lysine 83 (ATPase activity site) and cysteine 169 (zinc binding site) in ThiF and three important substrates, GroEL, PriC, FtsA, were found to be covalently modified by this system in vitro. Taken together, this study provided evidence that the protein conjugation function of β-grasp fold UBLs is conserved in the three major evolutionary lineages of life.
Collapse
Affiliation(s)
- Xibing Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; Medical College, Henan University of Science and Technology, Luoyang 471000, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ke Liang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Radón V, Czesla M, Reichelt J, Fehlert J, Hammel A, Rosendahl A, Knop JH, Wiech T, Wenzel UO, Sachs M, Reinicke AT, Stahl RA, Meyer-Schwesinger C. Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney. Kidney Int 2018; 93:110-127. [DOI: 10.1016/j.kint.2017.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
12
|
Increasing the Unneddylated Cullin1 Portion Rescues the csn Phenotypes by Stabilizing Adaptor Modules To Drive SCF Assembly. Mol Cell Biol 2017; 37:MCB.00109-17. [PMID: 28923850 DOI: 10.1128/mcb.00109-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
The dynamic SCF (Skp1-cullin1-F-box protein) assembly is controlled by cycles of cullin neddylation/deneddylation based on the deneddylation activity of the COP9 signalosome (CSN) and global sequestration of cullins by CAND1. However, acceptance of this prediction was hampered by the results of recent studies, and the regulatory mechanism and key players remain to be identified. We found that maintaining a proper Cul1Nedd8/Cul1 ratio is crucial to ensure SCF functions. Reducing the high Cul1Nedd8/Cul1 ratios in csn mutants through ectopic expression of the nonneddylatable Cul1K722R proteins or introducing the endogenous cul1K722R point mutation significantly rescues their defective phenotypes. In vivo protein degradation assays revealed that the large portion of the unneddylated Cul1 contributes to F-box protein stabilization. Moreover, the unneddylated Cul1 tends to associate with adaptor modules, and disruption of Cul1-Skp-1 binding fails to restore the csn phenotypes. Taking the data together, we propose that unneddylated Cul1 is another central player involved in maintenance of the adaptor module pool through the formation of Cul1-Skp-1-F-box complexes and promotion of rapid SCF assembly.
Collapse
|
13
|
A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. PLoS One 2015; 10:e0143810. [PMID: 26633173 PMCID: PMC4669148 DOI: 10.1371/journal.pone.0143810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
A variety of cellular pathways are regulated by protein modifications with ubiquitin-family proteins. SUMO, the Small Ubiquitin-like MOdifier, is covalently attached to lysine on target proteins via a cascade reaction catalyzed by E1, E2, and E3 enzymes. A major barrier to understanding the diverse regulatory roles of SUMO has been a lack of suitable methods to identify protein sumoylation sites. Here we developed a mass-spectrometry (MS) based approach combining chemical and enzymatic modifications to identify sumoylation sites. We applied this method to analyze the auto-sumoylation of the E1 enzyme in vitro and compared it to the GG-remnant method using Smt3-I96R as a substrate. We further examined the effect of smt3-I96R mutation in vivo and performed a proteome-wide analysis of protein sumoylation sites in Saccharomyces cerevisiae. To validate these findings, we confirmed several sumoylation sites of Aos1 and Uba2 in vivo. Together, these results demonstrate that our chemical and enzymatic method for identifying protein sumoylation sites provides a useful tool and that a combination of methods allows a detailed analysis of protein sumoylation sites.
Collapse
|
14
|
Anjum RS, Bray SM, Blackwood JK, Kilkenny ML, Coelho MA, Foster BM, Li S, Howard JA, Pellegrini L, Albers SV, Deery MJ, Robinson NP. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius. Nat Commun 2015; 6:8163. [PMID: 26348592 PMCID: PMC4569737 DOI: 10.1038/ncomms9163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/25/2015] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.
Collapse
Affiliation(s)
- Rana S. Anjum
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sian M. Bray
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - John K. Blackwood
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mairi L. Kilkenny
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Matthew A. Coelho
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Benjamin M. Foster
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shurong Li
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Julie A. Howard
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, Cambridge CB2 1QR, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Michael J. Deery
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, Cambridge CB2 1QR, UK
| | - Nicholas P. Robinson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
15
|
Ye K, Zhang X, Ni J, Liao S, Tu X. Identification of enzymes involved in SUMOylation in Trypanosoma brucei. Sci Rep 2015; 5:10097. [PMID: 25959766 PMCID: PMC4426598 DOI: 10.1038/srep10097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO), a reversible post-translational protein modifier, plays important roles in diverse cellular mechanisms. Three enzymes, E1 (activating enzyme), E2 (conjugating enzyme) and E3 (ligase), are involved in SUMO modification. SUMOylation system and process in higher eukaryotes have been well studied. However, in protozoa, such as Trypanosoma brucei (T. brucei), these remain poorly understood. Herein, we identified the E1 (TbAos1/TbUba2) and E2 (TbUbc9) enzymes of SUMOylation pathway in T. brucei by sequence analysis and GST pull-down assay. Furthermore, we successfully reconstructed the SUMOylation system in vitro with recombinant enzymes. Using this system, the active site of TbUba2 and TbUbc9 was revealed to be located at Cys343 and Cys132, respectively, and a centrin homologue (TbCentrin3) was identified to be a target of SUMOylation in T. brucei. Altogether, our results demonstrate that TbAos1/TbUba2 and TbUbc9 are the bona fide E1 and E2 enzymes of the SUMOylation system in T. brucei.
Collapse
Affiliation(s)
- Kaiqin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xuecheng Zhang
- 1] School of Life Sciences, Anhui University, Hefei, Anhui 230039, P.R. China [2] Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601, P.R. China
| | - Jun Ni
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
16
|
Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, Mallampalli RK. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis 2015; 6:e1630. [PMID: 25654763 PMCID: PMC4669792 DOI: 10.1038/cddis.2014.585] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
Fbxl7, a subunit of the SCF (Skp-Cul1-F-box protein) complex induces mitotic arrest in cells; however, molecular factors that control its cellular abundance remain largely unknown. Here, we identified that an orphan F-box protein, Fbxl18, targets Fbxl7 for its polyubiquitylation and proteasomal degradation. Lys 109 within Fbxl7 is an essential acceptor site for ubiquitin conjugation by Fbxl18. An FQ motif within Fbxl7 serves as a molecular recognition site for Fbxl18 interaction. Ectopically expressed Fbxl7 induces apoptosis in Hela cells, an effect profoundly accentuated after cellular depletion of Fbxl18 protein or expression of Fbxl7 plasmids encoding mutations at either Lys 109 or within the FQ motif. Ectopic expression of Fbxl18 plasmid-limited apoptosis caused by overexpressed Fbxl7 plasmid. Thus, Fbxl18 regulates apoptosis by mediating ubiquitin-dependent proteasomal degradation of the pro-apoptotic protein Fbxl7 that may impact cellular processes involved in cell cycle progression.
Collapse
Affiliation(s)
- Y Liu
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Lear
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Zou
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - B B Chen
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - R K Mallampalli
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Yu WW, Lu Z, Zhang H, Kang YH, Mao Y, Wang HH, Ge WH, Shi LY. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12315-12325. [PMID: 25419854 DOI: 10.1021/jf503667v] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Uncontrolled inflammatory responses cause tissue injury and severe immunopathology. Pharmacological interference of intracellular pro-inflammatory signaling may confer a therapeutic benefit under these conditions. Daphnetin, a natural coumarin derivative, has been used to treat inflammatory diseases including bronchitis. However, the protective effect of daphnetin in inflammatory airway disorders has yet to be determined, and the molecular basis for its anti-inflammatory properties is unknown. This paper shows that daphnetin treatment conferred substantial protection from endotoxin-induced acute lung injury (ALI), in parallel with reductions in the production of inflammatory mediators, symptoms of airway response, and infiltration of inflammatory cells. Further studies indicate that activation of macrophage and human alveolar epithelial cells in response to lipopolysaccharide (LPS) was remarkably suppressed by daphnetin, which was related to the down-regulation of NF-κB-dependent signaling events. Importantly, this study demonstrates that TNF-α-induced protein 3 (TNFAIP3), also known as A20, was significantly induced by daphnetin, which appeared to be largely responsible for the down-regulation of NF-κB activity through modulation of nondegradative TRAF6 ubiquitination. Accordingly, the deletion of TNFAIP3 in primary macrophages reversed daphnetin-elicited inhibition of immune response, and the beneficial effect of daphnetin in the pathogenesis of ALI was, partially at least, abrogated by TNFAIP3 knockdown. These findings demonstrate the anti-inflammatory and protective functions of daphnetin in endotoxin-induced lung inflammation and injury and also reveal the key mechanism underlying its action in vitro as well as in vivo.
Collapse
Affiliation(s)
- Wen-wen Yu
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 310036, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Beeken M, Lindenmeyer MT, Blattner SM, Radón V, Oh J, Meyer TN, Hildebrand D, Schlüter H, Reinicke AT, Knop JH, Vivekanandan-Giri A, Münster S, Sachs M, Wiech T, Pennathur S, Cohen CD, Kretzler M, Stahl RAK, Meyer-Schwesinger C. Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J Am Soc Nephrol 2014; 25:2511-25. [PMID: 24722446 DOI: 10.1681/asn.2013050522] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome.
Collapse
Affiliation(s)
| | - Maja T Lindenmeyer
- Institute of Physiology and Division of Nephrology, University of Zurich, Zurich, Switzerland
| | - Simone M Blattner
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan; and
| | | | | | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, University Affiliated Asklepios Clinic Hamburg Barmbek, Hamburg, Germany
| | - Diana Hildebrand
- Clinical Chemistry, Mass Spectrometry and Proteome Analysis, and
| | - Hartmut Schlüter
- Clinical Chemistry, Mass Spectrometry and Proteome Analysis, and
| | | | | | - Anuradha Vivekanandan-Giri
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan; and
| | | | | | - Thorsten Wiech
- Pathology, Division of Renal Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan; and
| | - Clemens D Cohen
- Institute of Physiology and Division of Nephrology, University of Zurich, Zurich, Switzerland
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan; and
| | | | | |
Collapse
|
19
|
E3 ligase subunit Fbxo15 and PINK1 kinase regulate cardiolipin synthase 1 stability and mitochondrial function in pneumonia. Cell Rep 2014; 7:476-487. [PMID: 24703837 PMCID: PMC4085683 DOI: 10.1016/j.celrep.2014.02.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/20/2013] [Accepted: 02/28/2014] [Indexed: 12/04/2022] Open
Abstract
Acute lung injury (ALI) is linked to mitochondrial injury, resulting in impaired cellular oxygen utilization; however, it is unknown how these events are linked on the molecular level. Cardiolipin, a mitochondrial-specific lipid, is generated by cardiolipin synthase (CLS1). Here, we show that S. aureus activates a ubiquitin E3 ligase component, Fbxo15, that is sufficient to mediate proteasomal degradation of CLS1 in epithelia, resulting in decreased cardiolipin availability and disrupted mitochondrial function. CLS1 is destabilized by the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), which binds CLS1 to phosphorylate and regulates CLS1 disposal. Like Fbxo15, PINK1 interacts with and regulates levels of CLS1 through a mechanism dependent upon Thr219. S. aureus infection upregulates this Fbxo15-PINK1 pathway to impair mitochondrial integrity, and Pink1 knockout mice are less prone to S. aureus-induced ALI. Thus, ALI-associated disruption of cellular bioenergetics involves bioeffectors that utilize a phosphodegron to elicit ubiquitin-mediated disposal of a key mitochondrial enzyme.
Collapse
|
20
|
Gromowski T, Masojć B, Scott RJ, Cybulski C, Górski B, Kluźniak W, Paszkowska-Szczur K, Rozmiarek A, Dębniak B, Maleszka R, Kładny J, Lubiński J, Dębniak T. Prevalence of the E318K and V320I MITF germline mutations in Polish cancer patients and multiorgan cancer risk-a population-based study. Cancer Genet 2014; 207:128-32. [PMID: 24767713 DOI: 10.1016/j.cancergen.2014.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/17/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
The E318K mutation in the MITF gene has been associated with a high risk of melanoma, renal cell carcinoma, and pancreatic cancer; the risk of other cancers has not been evaluated so far. Herein, we examined the possible association of E318K and a novel variant of the MITF gene, V320I, with the risk of cancers of different sites of origin in a Polish population. We assayed for the presence of the E318K and V320I missense mutations in 4,226 patients with one of six various cancers (melanoma or cancer of the kidney, lung, prostate, colon, or breast) and 2,114 controls from Poland. The E318K mutation was detected in 4 of 2,114 participants (0.19%) in the Polish control population, the V320I in 3 of 2,114 participants (0.14%) in the control group. We found no statistically significant differences in the prevalence of the E318K and V320I variants among cases and controls. We found two carriers of the E318K variant among melanoma patients (P = 0.95), one carrier among breast cancer patients (P = 0.77), one carrier among colorectal cancer patients (P = 0.82), and one carrier among kidney cancer patients (P = 0.64). Our study demonstrates a lack of strong association of E318K and V320I with increased risk of melanoma or cancers of the kidney, breast, prostate, lung, or colon.
Collapse
Affiliation(s)
- Tomasz Gromowski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Bartłomiej Masojć
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J Scott
- Discipline of Medical Genetics, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Bohdan Górski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Bogusław Dębniak
- Chair and Clinic of Mother's and Child's Health, Medical University, Poznań, Poland
| | - Romuald Maleszka
- Department of Dermatology and Venereology, Pomeranian Medical University, Szczecin, Poland
| | - Józef Kładny
- Department of General and Oncological Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
21
|
Mallampalli RK, Coon TA, Glasser JR, Wang C, Dunn SR, Weathington NM, Zhao J, Zou C, Zhao Y, Chen BB. Targeting F box protein Fbxo3 to control cytokine-driven inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5247-55. [PMID: 24123678 DOI: 10.4049/jimmunol.1300456] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokine-driven inflammation underlies the pathobiology of a wide array of infectious and immune-related disorders. The TNFR-associated factor (TRAF) proteins have a vital role in innate immunity by conveying signals from cell surface receptors to elicit transcriptional activation of genes encoding proinflammatory cytokines. We discovered that a ubiquitin E3 ligase F box component, termed Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by mediating the degradation of the TRAF inhibitory protein, Fbxl2. Analysis of the Fbxo3 C-terminal structure revealed that the bacterial-like ApaG molecular signature was indispensible for mediating Fbxl2 disposal and stimulating cytokine secretion. By targeting this ApaG motif, we developed a highly unique, selective genus of small-molecule Fbxo3 inhibitors that by reducing TRAF protein levels, potently inhibited cytokine release from human blood mononuclear cells. The Fbxo3 inhibitors effectively lessened the severity of viral pneumonia, septic shock, colitis, and cytokine-driven inflammation systemically in murine models. Thus, pharmacological targeting of Fbxo3 might be a promising strategy for immune-related disorders characterized by a heightened host inflammatory response.
Collapse
Affiliation(s)
- Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feligioni M, Nisticò R. SUMO: a (oxidative) stressed protein. Neuromolecular Med 2013; 15:707-19. [PMID: 24052421 DOI: 10.1007/s12017-013-8266-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during "oxidative stress". It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.
Collapse
Affiliation(s)
- Marco Feligioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy,
| | | |
Collapse
|
23
|
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C, Giaever G, Nislow C, Raught B. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. ACTA ACUST UNITED AC 2013; 201:145-63. [PMID: 23547032 PMCID: PMC3613684 DOI: 10.1083/jcb.201210019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple large-scale analyses in yeast implicate SUMO chain function in the
maintenance of higher-order chromatin structure and transcriptional repression
of environmental stress response genes. Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form
oligomeric “chains,” but the biological functions of these
superstructures are not well understood. Here, we created mutant yeast strains
unable to synthesize SUMO chains (smt3allR) and
subjected them to high-content microscopic screening, synthetic genetic array
(SGA) analysis, and high-density transcript profiling to perform the first
global analysis of SUMO chain function. This comprehensive assessment identified
144 proteins with altered localization or intensity in
smt3allR cells, 149 synthetic genetic
interactions, and 225 mRNA transcripts (primarily consisting of stress- and
nutrient-response genes) that displayed a >1.5-fold increase in
expression levels. This information-rich resource strongly implicates SUMO
chains in the regulation of chromatin. Indeed, using several different
approaches, we demonstrate that SUMO chains are required for the maintenance of
normal higher-order chromatin structure and transcriptional repression of
environmental stress response genes in budding yeast.
Collapse
Affiliation(s)
- Tharan Srikumar
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen BB, Coon TA, Glasser JR, McVerry BJ, Zhao J, Zhao Y, Zou C, Ellis B, Sciurba FC, Zhang Y, Mallampalli RK. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol 2013; 14:470-9. [PMID: 23542741 PMCID: PMC3631463 DOI: 10.1038/ni.2565] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in septic subjects and we furthermore identified a hypofunctional Fbxo3 human polymorphism. A small molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several murine disease models. These studies identify a pathway of innate immunity that may characterize subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance.
Collapse
Affiliation(s)
- Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Banerjee A. Novel targets in drug design: enzymes in the protein ubiquitylation pathway. Expert Opin Drug Discov 2013; 1:151-60. [PMID: 23495798 DOI: 10.1517/17460441.1.2.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein ubiquitylation is a pathway by which many proteins are selectively degraded. Its role has been shown in processes such as cell division and differentiation, oncogenesis, apoptosis, DNA repair, membrane transport and the removal of abnormal proteins. The ubiquitylation pathway enzymes are an insufficiently researched area for drug development. A genetic method has been developed (supported by computational biology) to identify potentially useful small molecules that will have a positive impact on our battle against cancer and other diseases. In silico screening is used for initial selection of drug-like compounds. This method is based on docking three-dimensional chemical libraries onto the target enzyme's functional site for initial screens using a computational scheme, followed by genetic and in vivo methods for hit optimisation. Focus has been on using the ubiquitin conjugation pathway as target for therapeutic intervention against cancer and potent inhibitors of ubiquitylation subpathways have been obtained (including those that are vital for the survival of aggressive cancer cells/tumours). Leads from the development of in vitro inhibitors provided a direction for the development of in vivo inhibitors as investigational tools, and as promising therapeutic agents.
Collapse
Affiliation(s)
- Amit Banerjee
- Wayne State University, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences and Karmanos Cancer Institute, 259 Mack Avenue, Room 3142, Detroit, Michigan 48201, USA.
| |
Collapse
|
26
|
Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D. Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 2012; 11:1595-611. [PMID: 23105008 DOI: 10.1074/mcp.m112.022467] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
27
|
F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 2012; 119:3132-41. [PMID: 22323446 DOI: 10.1182/blood-2011-06-358911] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G(0) phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G(0) phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCF(FBXL2) in lymphoproliferative malignancies.
Collapse
|
28
|
Hwang KW, Won TJ, Kim H, Chun HJ, Chun T, Park Y. Erratum to ‘‘Characterization of the regulatory roles of the SUMO. Diabetes Metab Res Rev 2012; 28:196-202. [PMID: 22423385 DOI: 10.1002/dmrr.2273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Type 1 diabetes is a multi-factorial autoimmune disease that results from the destruction of insulin-producing β cells of the pancreas; both genetic and environmental factors are thought to contribute to its development. Recently, a novel gene encoding small ubiquitin-like modifier protein 4 (SUMO4) was cloned and a single nucleotide substitution (M55V) was found to be strongly associated with type 1 diabetes. SUMO4 was shown to interact with IκBα and inhibit NFκB transcriptional activity. The M55V substitution of SUMO4 may affect its ability to modify IκBα by sumoylation, and so lead to activation of NFκB and transcription of genes implicated in the development of type 1 diabetes. However, the effects of sumoylation on immune cells are poorly understood. METHODS Human SUMO1, 2, 3, 4 and mouse SUMO2 (mSUMO2) were cloned and overexpressed in T and B cells using retroviral transduction. We then investigated whether SUMO overexpression affected their functions in vitro. To study the function of mSUMO2 in vivo, we made transgenic mice overexpressing mSUMO2 in T cells and pancreatic β cells and compared them with transgenic mice expressing a super-repressor of NFκB (a dominant negative form of NFκB, IκBαΔN) in T cells. Diabetes was induced in the two groups of mice by i.p. injection of streptozotocin. RESULTS Human SUMO1, 2, 3, 4 and mSUMO2 were all found to negatively regulate the transcriptional activity of T and B cells. Supporting this idea, mSUMO2 overexpression in T cells suppressed the production of both Th1 and Th2 cytokines unlike T cells from the IκBαΔN mice. However, transgenic mice overexpressing mSUMO2 had the same susceptibility to diabetes as wild type whereas the mice overexpressing IκBαΔN Tg were completely protected against diabetes. CONCLUSION These results indicate that at least in T cells, whereas NFκB has pro-apoptotic activity, mSUMO2 plays a more complex role in the development of autoimmune diabetes. The relative influence of NFκB and sumoylation on the development of autoimmune diabetes in vivo may vary depending on the developmental stage and cell type.
Collapse
Affiliation(s)
- Kwang Woo Hwang
- 1Host Defense Modulation Laboratory, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Hwang KW, Won TJ, Kim H, Chun HJ, Chun T, Park Y. Characterization of the regulatory roles of the SUMO. Diabetes Metab Res Rev 2011; 27:854-61. [PMID: 22069273 DOI: 10.1002/dmrr.1261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 1 diabetes is a multi-factorial autoimmune disease that results from the destruction of insulin-producing β cells of the pancreas; both genetic and environmental factors are thought to contribute to its development. Recently, a novel gene encoding small ubiquitin-like modifier protein 4 (SUMO4) was cloned and a single nucleotide substitution (M55V) was found to be strongly associated with type 1 diabetes. SUMO4 was shown to interact with IκBα and inhibit NFκB transcriptional activity. The M55V substitution of SUMO4 may affect its ability to modify IκBα by sumoylation, and so lead to activation of NFκB and transcription of genes implicated in the development of type 1 diabetes. However, the effects of sumoylation on immune cells are poorly understood. METHODS Human SUMO1, 2, 3, 4 and mouse SUMO2 (mSUMO2) were cloned and overexpressed in dendritic, T and B cells using retroviral transduction. We then investigated whether SUMO overexpression affected their functions in vitro. To study the function of mSUMO2 in vivo, we made transgenic mice overexpressing mSUMO2 in T cells and pancreatic β cells and compared them with transgenic mice expressing a super-repressor of NFκB (a dominant negative form of NFκB, IκBαΔN) in T cells. Diabetes was induced in the two groups of mice by i.p. injection of streptozotocin. RESULTS Human SUMO1, 2, 3, 4 and mSUMO2 were all found to negatively regulate the transcriptional activity of T, B and dendritic cells. Although mSUMO2 overexpression in dendritic cells did not alter the expression of major histocompatibility complex class II proteins or B7, IL-1, IL-6 and IL-7, IL-12 expression decreased, switching Th1-directed immune responses into Th2 responses. Unlike T cells from the IκBαΔN mice, mSUMO2 overexpression in T cells suppressed the production of both Th1 and Th2 cytokines. Whereas the mice overexpressing IκBαΔN were completely protected against diabetes, those expressing mSUMO2 had the same susceptibility to diabetes as wild type. CONCLUSION These results indicate that at least in T cells, whereas NFκB has pro-apoptotic activity, mSUMO2 plays a more complex role in the development of autoimmune diabetes. The relative influence of NFκB and sumoylation on the development of autoimmune diabetes in vivo may vary depending on the developmental stage and cell type.
Collapse
Affiliation(s)
- Kwang Woo Hwang
- Host Defense Modulation Laboratory, College of Pharmacy, Chung-Ang University, and Department of Internal Medicine and Bioengineering, Hanyang University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Chen BB, Glasser JR, Coon TA, Mallampalli RK. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 2011; 31:2566-79. [PMID: 22020328 PMCID: PMC3266958 DOI: 10.1038/onc.2011.432] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dyregulated behavior of cell cycle proteins and their control by ubiquitin E3 ligases is an emerging theme in human lung cancer. Here we identified and characterized the activity of a novel F box protein, termed FBXL2, belonging to the SCF (Skip-Cullin1-F-box protein) E3 ligase family. Ectopically expressed FBXL2 triggered G2/M phase arrest, induced chromosomal anomalies, and increased apoptosis of transformed lung epithelia by mediating polyubiquitination and degradation of the mitotic regulator, cyclin D3. Unlike other F box proteins that target phosphodegrons within substrates, FBXL2 uniquely recognizes a canonical calmodulin-binding motif within cyclin D3 to facilitate its polyubiquitination. Calmodulin bound and protected cyclin D3 from FBXL2 by direct intermolecular competition with the F box protein for access within this motif. The chemotherapeutic agent vinorelbine increased apoptosis of human lung carcinoma cells by inducing FBXL2 expression and cyclin D3 degradation, an effect accentuated by calmodulin knockdown. Depletion of endogenous FBXL2 stabilized cyclin D3 levels, accellerated cancer cell growth, and increased cell viability after vinorelbine treatment. Last, ectopic expression of FBXL2 significantly inhibited the growth and migration of tumorogenic cells and tumor formation in athymic nude mice. These observations implicate SCFFBXL2 as an indispensible regulator of mitosis that serves as a tumor suppressor.
Collapse
Affiliation(s)
- B B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, The University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
31
|
The mouse small ubiquitin-like modifier-2 (SUMO-2) inhibits interleukin-12 (IL-12) production in mature dendritic cells by blocking the translocation of the p65 subunit of NFκB into the nucleus. Mol Immunol 2011; 48:2189-97. [PMID: 21632113 DOI: 10.1016/j.molimm.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Post-translational modification by small ubiquitin-like modifier (SUMO) is involved in several significant cellular events. In particular, SUMO-1 and SUMO-4 modifications of IκBα have been shown to be actively involved in NFκB regulation. However, among the SUMO family, the specific function of SUMO-2/3 remains relatively unknown. In addition, it is not clear whether SUMO-2/3 follows the same functional role as SUMO-1 and SUMO-4 during the activation of NFκB. In this study, we examined the influence of mouse SUMO-2 during the maturation of dendritic cells (DCs). Our results showed that the ectopic expression of SUMO-2 does not affect the cell surface expression of MHC class II molecule (A(b)) and co-stimulatory molecules (CD80 and CD86), and the efficiency of antigen uptake. However, the ectopic expression of mouse SUMO-2 inhibited IL-12 secretion by blocking the translocation of the p65 subunit of NFκB into the nucleus, which led to the polarization of naïve CD4(+) T cells to T helper 2 (Th2) shift in vitro. Further analyses showed that SUMO-2 directly modified IκBα. These results indicate that the functional role of SUMO-2/3 in the regulation of NFκB activity was conserved during evolution.
Collapse
|
32
|
Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke A, Hansdottir S, Hunninghake GW. Identification of an autophagy defect in smokers' alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5425-35. [PMID: 20921532 PMCID: PMC3057181 DOI: 10.4049/jimmunol.1001603] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar D, Misra JR, Kumar A, Chugh J, Sharma S, Hosur RV. NMR-derived solution structure of SUMO fromDrosophila melanogaster(dSmt3). Proteins 2009; 75:1046-50. [DOI: 10.1002/prot.22389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-31. [PMID: 19352404 PMCID: PMC2712597 DOI: 10.1038/nrm2673] [Citation(s) in RCA: 681] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Attachment of ubiquitin or ubiquitin-like proteins (known as UBLs) to their targets through multienzyme cascades is a central mechanism to modulate protein functions. This process is initiated by a family of mechanistically and structurally related E1 (or activating) enzymes. These activate UBLs through carboxy-terminal adenylation and thiol transfer, and coordinate the use of UBLs in specific downstream pathways by charging cognate E2 (or conjugating) enzymes, which then interact with the downstream ubiquitylation machinery to coordinate the modification of the target. A broad understanding of how E1 enzymes activate UBLs and how they selectively coordinate UBLs with downstream function has come from enzymatic, structural and genetic studies.
Collapse
Affiliation(s)
- Brenda A. Schulman
- Howard Hughes Medical Institute, Departments of Structural Biology, and Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| |
Collapse
|
35
|
Engels IH, Daguia C, Huynh T, Urbina H, Buddenkotte J, Schumacher A, Caldwell JS, Brinker A. A time-resolved fluorescence resonance energy transfer-based assay for DEN1 peptidase activity. Anal Biochem 2009; 390:85-7. [PMID: 19328766 DOI: 10.1016/j.ab.2009.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/19/2009] [Accepted: 03/22/2009] [Indexed: 10/21/2022]
Abstract
Neural precursor cell expressed, developmentally down-regulated gene 8 (NEDD8) is a recently discovered ubiquitin-like posttranslational modifier. NEDD8 acts predominantly as a regulator of ubiquitin-protein ligases and as a decoy for proteins targeted for proteasomal degradation. It thereby controls key events in cell cycle progression and embryogenesis. Deneddylase-1 (DEN1/NEDP1/SENP8) features a selective peptidase activity converting the proNEDD8 precursor to its mature form and an isopeptidase activity deconjugating NEDD8 from substrates such as cullins and p53. In this study, we describe a high-throughput screening (HTS)-compatible time-resolved fluorescent resonance energy transfer (TR-FRET) assay measuring the peptidase activity of DEN1.
Collapse
Affiliation(s)
- Ingo H Engels
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
DeMartino GN. PUPylation: something old, something new, something borrowed, something Glu. Trends Biochem Sci 2009; 34:155-8. [PMID: 19282181 DOI: 10.1016/j.tibs.2008.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Most eukaryotic proteins are degraded by the 26S proteasome as a consequence of their covalent modification with ubiquitin. Although the proteasome is found in some prokaryotes, ubiquitin is not, which indicates that substrates are targeted to prokaryotic proteasomes by a fundamentally different mechanism. A recent study has identified Pup (prokaryotic ubiquitin-like protein) as a mycobacterial protein that functions in a manner analogous to ubiquitin for proteasome-dependent proteolysis in prokaryotes.
Collapse
Affiliation(s)
- George N DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040, USA.
| |
Collapse
|
37
|
Guo Y, Yang MCW, Weissler JC, Yang YS. Modulation of PLAGL2 transactivation activity by Ubc9 co-activation not SUMOylation. Biochem Biophys Res Commun 2008; 374:570-5. [PMID: 18655774 DOI: 10.1016/j.bbrc.2008.07.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/15/2008] [Indexed: 11/30/2022]
Abstract
Pleomorphic adenoma gene like-2 (PLAGL2), a developmentally regulated and stress inducible zinc finger protein can be post-translationally modified by small ubiquitin-like modifier peptide (SUMO-1); and SUMOylation attenuates PLAGL2 activity on the interactive promoter. Since PLAGL2 was a transactivator of the surfactant protein-C (SP-C) promoter, we hypothesized that SUMOylation down-regulated PLAGL2-activated SP-C promoter activity. Unexpectedly, the SUMO-conjugating enzyme Ubc9 enhanced, rather than reduced, PLAGL2 activated promoter activity but did not affect TTF-1 activation of the promoter. Ubc9 mutant (Ubc9-C93S) defective in SUMO-conjugating activity also enhanced PLAGL2-driven promoter activity suggesting that the stimulatory effect of Ubc9 on SP-C promoter activation was independent of its enzymatic function. PLAGL2 mutants without the K250 and/or K269 SUMOylation sites did not further improve PLAGL2 programmed transcription nor did they abolish Ubc9 enhanced promoter activity supporting the SUMOylation-independent mechanism. Chromatin immunoprecipitation (ChIP) assay demonstrated the association of PLAGL2 and Ubc9 with the SP-C promoter in vivo. Taken together, our data suggests that Ubc9 can function as a co-factor of PLAGL2, uncoupling from its enzymatic activity, to mediate PLAGL2 interactive SP-C promoter activity.
Collapse
Affiliation(s)
- Yuhong Guo
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA
| | | | | | | |
Collapse
|
38
|
Ponts N, Yang J, Chung DWD, Prudhomme J, Girke T, Horrocks P, Le Roch KG. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One 2008; 3:e2386. [PMID: 18545708 PMCID: PMC2408969 DOI: 10.1371/journal.pone.0002386] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Methodology/Principal Findings Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles. Conclusions/Significance This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.
Collapse
Affiliation(s)
- Nadia Ponts
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Jianfeng Yang
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Duk-Won Doug Chung
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Jacques Prudhomme
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Thomas Girke
- Center for Plant Cell Biology (CEPCEB), University of California at Riverside, Riverside, California, United States of America
| | - Paul Horrocks
- Department of Medicine, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Karine G. Le Roch
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 2008; 279:371-83. [PMID: 18219493 DOI: 10.1007/s00438-008-0318-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/31/2007] [Indexed: 11/26/2022]
Abstract
We report an in-depth characterization of two major stress proteins namely SUMO-conjugating enzyme (Sce) and peptidyl prolyl cis-trans isomerase (PPIase) in rice (Oryza sativa L.). Sce mediates addition of SUMO group to various cell proteins, through process referred to as SUMOylation. Rice nuclear genome has two putative genes encoding the Sce protein (OsSce1 and OsSce2). PCR-amplified full-length OsSce1 cDNA functionally complemented the growth defect in yeast cells lacking the equivalent Ubc9 protein (ScDeltaubc9). RT-PCR analysis showed that transcript levels of OsSce1 and OsSce2 in rice seedlings were regulated by temperature stress. OsSce1 protein was localized to the nucleus in onion epidermal cells as evidenced by the transient GFP expression analysis following micro-projectile gun-based shooting of an OsSce1-GFP fusion construct. PPIase proteins assist molecular chaperones in reactions associated with protein folding and protein transport across membrane. There are 23 putative genes encoding for FK506-binding proteins (FKBPs; specific class of PPIase) in rice genome. OsFKBP20 cDNA was isolated as a stress-inducible EST clone. Largest ORF of 561 bases in OsFKBP20 showed characteristic FK506-binding domain at N-terminus and a coiled-coil motif at C-terminus. RNA expression analysis indicated that OsFKBP20 transcript is heat-inducible. OsFKBP20 over-expression in yeast endowed capacity of high temperature tolerance to yeast cells. Yeast two-hybrid analysis showed that OsSce1 protein physically interacts with the OsFKBP20 protein. It is thus proposed that OsSce1 and OsFKBP20 proteins in concert mediate the stress response of rice plants.
Collapse
|
40
|
Chen ZW, Chang CSS, Leil TA, Olsen RW. C-terminal modification is required for GABARAP-mediated GABA(A) receptor trafficking. J Neurosci 2007; 27:6655-63. [PMID: 17581952 PMCID: PMC6672693 DOI: 10.1523/jneurosci.0919-07.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the ubiquitin-like modification of GABA(A) receptor-associated protein (GABARAP) and its function. A fusion protein of GABARAP with v5 in the N terminus and myc in the C terminus was expressed in rat cultured hippocampal neurons and PC12 cells. Western blotting with antibodies to v5 and myc revealed that the C terminus of GABARAP was cleaved off. Cleavage was blocked by mutating the C-terminal Gly116 to Ala, suggesting that G116 is required for the processing. Unlike ubiquitin, GABARAP was not incorporated covalently into higher-molecular-weight protein complexes. Nor was GABARAP degraded by ubiquitinylation through the proteasome, although GABARAP formed noncovalent dimers. Immunofluorescent confocal microscopy demonstrated that recombinantly expressed GABARAP was diffusely localized in PC12 cells. However, prevention of C-terminal processing in the mutant GABARAP(G116A) resulted in redistribution to the Golgi. In neurons, punctate cytoplasmic staining of GABARAP was seen in soma and processes, whereas GABARAP(G116A) was limited to soma. Compared with wild-type GABARAP, the colocalization and interaction of GABARAP(G116A) with GABA(A) receptors were significantly reduced, resulting in a reduction in expression of receptors in the plasma membrane. When alpha1beta2gamma2S-containing GABA(A) receptors were expressed in oocytes, the increased surface expression of GABA(A) receptors, as shown by increased GABA currents and surface-accessible GABA(A) receptor subunit polypeptides resulting from GABARAP coexpression, was prevented by mutation G116A. In addition, the distribution of NSF (N-ethylmaleimide-sensitive factor) was affected in GABARAP(G116A)-expressing neurons. These results suggest that glycine 116 is required for C-terminal processing of GABARAP and that processing is essential for the localization of GABARAP and its functions as a trafficking protein.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1735
| | - Chang-Sheng S. Chang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1735
| | - Tarek A. Leil
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1735
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1735
| |
Collapse
|
41
|
Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 2007; 7:R60. [PMID: 16859499 PMCID: PMC1779556 DOI: 10.1186/gb-2006-7-7-r60] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/14/2022] Open
Abstract
A systematic analysis of prokaryotic ubiquitin-related beta-grasp fold proteins provides new insights into the Ubiquitin family functional history. Background Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results We systematically analyzed prokaryotic Ub-related β-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to function together in signaling systems just as in eukaryotes.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
- Bioinformatics Program, Boston University, Cummington Street, Boston, Massachusetts 02215, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
42
|
Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 2007; 445:394-8. [PMID: 17220875 PMCID: PMC2821831 DOI: 10.1038/nature05490] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/27/2006] [Indexed: 01/21/2023]
Abstract
Ubiquitin-like proteins (UBLs) are conjugated by dynamic E1-E2-E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1 throught UBL thioester intermediate, and generating a thioester-linked E2 throught UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8's heterodimeric E1 (APPBP1-UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1-E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2 throught NEDD8 thioester product. Thus, transferring the UBL's thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades.
Collapse
Affiliation(s)
- Danny T Huang
- Howard Hughes Medical Institute, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095- 1735, USA
| | | |
Collapse
|
44
|
Abstract
Myocyte enhancer factor 2 (MEF2) transcription factors are crucial regulators controlling muscle-specific and growth factor-inducible genes. Numerous studies have reported that the activity of these transcription factors is tightly modulated by posttranslational modifications such as activation by specific phosphorylation as well as repression by class II histone deacetylases (HDACs). We hypothesized that MEF2 could also be regulated by covalent modification by SUMO-1, a reversible posttranslational modification which has been shown to regulate key proteins involved in cell proliferation, differentiation and tumor suppression. In this study, we demonstrate that MEF2A undergoes sumoylation primarily at a single lysine residue (K395) both in vitro and in vivo. We also show that the nuclear E3 ligase, PIAS1, promotes sumoylation of MEF2A. Mutation of lysine 395 to arginine abolishes MEF2A sumoylation and the sumoylation incompetent mutant protein has enhanced transcriptional activity compared to the wild type protein. Our results suggest that protein sumoylation could play a pivotal role in controlling MEF2 transcriptional activity.
Collapse
Affiliation(s)
- Cecilia Riquelme
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, BoulderColorado, USA
| | - Kristen K B Barthel
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, BoulderColorado, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, BoulderColorado, USA
- * Correspondence to: Dr. Xuedong LIU Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80309, USA., Tel.: +1-303-735-6161, E-mail:
| |
Collapse
|
45
|
Riquelme C, Barthel KKB, Qin XF, Liu X. Ubc9 expression is essential for myotube formation in C2C12. Exp Cell Res 2006; 312:2132-41. [PMID: 16631162 DOI: 10.1016/j.yexcr.2006.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 03/12/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Myogenic differentiation is a fundamental biological process that involves a hierarchical series of events that ultimately leads to muscle-specific gene expression and myofiber formation. Posttranslational modifications of the myogenic regulatory factors have been implicated as important regulatory mechanisms in this process. Here we investigate whether covalent protein modification by a small ubiquitin-like modifier (SUMO) that is known to affect transcription factor activity can impact muscle differentiation. We show that the overall load of sumoylated proteins present in myoblasts diminishes progressively throughout myogenesis. Interestingly, knockdown of the SUMO-conjugating enzyme, Ubc9, severely compromises C2C12 muscle cell terminal differentiation. However, it does not affect the expression, the localization and the activation of MyoD and myogenin. These novel results suggest that protein sumoylation plays a pivotal role in myoblast differentiation and is required to regulate the activity of key targets downstream of MyoD and myogenin.
Collapse
Affiliation(s)
- Cecilia Riquelme
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
46
|
Wang T, Liang Z, Sun S, Cao X, Peng H, Liu H, Tong E. Exon deletions of parkin gene in patients with Parkinson disease. ACTA ACUST UNITED AC 2006; 24:262-5. [PMID: 15315343 DOI: 10.1007/bf02832007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the parkin gene have recently been identified in familial and isolated patients with early-onset Parkinson disease (PD) and that subregions between exon 2 and 4 of the parkin gene are hot spots of deletive mutations. To study the distribution of deletions in the parkin gene among variant subset patients with PD in China, and to explore the role of parkin gene in the pathogenesis of PD, 63 patients were divided into early onset and later onset groups. Exons 1-12 were amplified by PCR, templated by the genomic DNA of patients, and then the deletion distribution detected by agarose electrophoresis. Four patients were found to be carrier of exon deletions in 63 patients with PD. The location of the deletion was on exon 2 (1 case), exon 3 (2 cases) and exon 4 (1 case). All patients were belong to the group of early onset PD. The results showed that parkin gene deletion on exon 2, exon 3 and exon 4 found in Chinese population contributes partly to early onset PD.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Arnold JJ, Bernal A, Uche U, Sterner DE, Butt TR, Cameron CE, Mattern MR. Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity. Anal Biochem 2006; 350:214-21. [PMID: 16356462 PMCID: PMC2094218 DOI: 10.1016/j.ab.2005.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 11/23/2022]
Abstract
The ubiquitin-proteasome pathway is the major nonlysosomal proteolytic system in eukaryotic cells responsible for regulating the level of many key regulatory molecules within the cells. Modification of cellular proteins by ubiquitin and ubiquitin-like proteins, such as small ubiquitin-like modifying protein (SUMO), plays an essential role in a number of biological schemes, and ubiquitin pathway enzymes have become important therapeutic targets. Ubiquitination is a dynamic reversible process; a multitude of ubiquitin ligases and deubiquitinases (DUBs) are responsible for the wide-ranging influence of this pathway as well as its selectivity. The DUB enzymes serve to maintain adequate pools of free ubiquitin and regulate the ubiquitination status of cellular proteins. Using SUMO fusions, a novel assay system, based on poliovirus RNA-dependent RNA polymerase activity, is described here. The method simplifies the isopeptidase assay and facilitates high-throughput analysis of these enzymes. The principle of the assay is the dependence of the viral polymerase on a free N terminus for activity; accordingly, the polymerase is inactive when fused at its N terminus to SUMO or any other ubiquitin-like protein. The assay is sensitive, reproducible, and adaptable to a high-throughput format for use in screens for inhibitors/activators of clinically relevant SUMO proteases and deubiquitinases.
Collapse
Affiliation(s)
- Jamie J. Arnold
- 201 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Uzo Uche
- 201 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - David E. Sterner
- 201 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Craig E. Cameron
- 201 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
48
|
Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 2006; 281:3017-24. [PMID: 16303767 DOI: 10.1074/jbc.m505888200] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, phosphatidylethanolamine is a target of the Atg8 modifier in ubiquitylation-like reactions essential for autophagy. Three human Atg8 (hAtg8) homologs, LC3, GABARAP, and GATE-16, have been characterized as modifiers in reactions mediated by hAtg7 (an E1-like enzyme) and hAtg3 (an E2-like enzyme) as in yeast Atg8 lipidation, but their final targets have not been identified. The results of a recent study in which COS7 cells were incubated with [14C]ethanolamine for 48 h suggested that phosphatidylethanolamine is a target of LC3. However, these results were not conclusive because of the long incubation time. To identify the phospholipid targets of Atg8 homologs, we reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes. Each purified mutant Atg8 homolog with an exposed C-terminal Gly formed an E1-substrate intermediate with hAtg7 via a thioester bond in an ATP-dependent manner and formed an E2-substrate intermediate with hAtg3 via a thioester bond dependent on ATP and hAtg7. A conjugated form of each Atg8 homolog was observed in the presence of hAtg7, hAtg3, ATP, and liposomes. In addition to phosphatidylethanolamine, in vitro conjugation experiments using synthetic phospholipid liposomes showed that phosphatidylserine is also a target of LC3, GABARAP, and GATE-16. In contrast, thin layer chromatography of phospholipids released on hAtg4B-digestion from endogenous LC3-phospholipid conjugate revealed that phosphatidylethanolamine, but not phosphatidylserine, is the predominant target phospholipid of LC3 in vivo. The discrepancy between in vitro and in vivo reactions suggested that there may be selective factor(s) involved in the endogenous LC3 conjugation system.
Collapse
Affiliation(s)
- Yu-shin Sou
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
49
|
Takahashi Y, Yong-Gonzalez V, Kikuchi Y, Strunnikov A. SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 2006; 172:783-94. [PMID: 16204216 PMCID: PMC1456244 DOI: 10.1534/genetics.105.047167] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/21/2005] [Indexed: 12/20/2022] Open
Abstract
The Smt3 (SUMO) protein is conjugated to substrate proteins through a cascade of E1, E2, and E3 enzymes. In budding yeast, the E3 step in sumoylation is largely controlled by Siz1p and Siz2p. Analysis of Siz- cells shows that SUMO E3 is required for minichromosome segregation and thus has a positive role in maintaining the fidelity of mitotic transmission of genetic information. Sumoylation of the carboxy-terminus of Top2p, a known SUMO target, is mediated by Siz1p and Siz2p both in vivo and in vitro. Sumoylation in vitro reveals that Top2p is an extremely potent substrate for Smt3p conjugation and that chromatin-bound Top2p can still be sumoylated, unlike many other SUMO substrates. By combining mutations in the TOP2 sumoylation sites and the SIZ1 and SIZ2 genes we demonstrate that the minichromosome segregation defect and dicentric minichromosome stabilization, both characteristic for Smt3p-E3-deficient cells, are mediated by the lack of Top2p sumoylation in these cells. A role for Smt3p-modification as a signal for Top2p targeting to pericentromeric regions was suggested by an analysis of Top2p-Smt3p fusion. We propose a model for the positive control of the centromeric pool of Top2p, required for high segregation fidelity, by Smt3p modification.
Collapse
Affiliation(s)
- Yoshimitsu Takahashi
- National Institutes of Health, National Institute of Child Health and Human Development, Laboratory of Gene Regulation and Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Gürlebeck D, Thieme F, Bonas U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:233-55. [PMID: 16386329 DOI: 10.1016/j.jplph.2005.11.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.
Collapse
Affiliation(s)
- Doreen Gürlebeck
- Institute of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany.
| | | | | |
Collapse
|