1
|
Parkinson NJ, Roddis M, Ferneyhough B, Zhang G, Marsden AJ, Maslau S, Sanchez-Pearson Y, Barthlott T, Humphreys IR, Ladell K, Price DA, Ponting CP, Hollander G, Fischer MD. Violation of the 12/23 rule of genomic V(D)J recombination is common in lymphocytes. Genome Res 2014; 25:226-34. [PMID: 25367293 PMCID: PMC4315296 DOI: 10.1101/gr.179770.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
V(D)J genomic recombination joins single gene segments to encode an extensive repertoire of antigen receptor specificities in T and B lymphocytes. This process initiates with double-stranded breaks adjacent to conserved recombination signal sequences that contain either 12- or 23-nucleotide spacer regions. Only recombination between signal sequences with unequal spacers results in productive coding genes, a phenomenon known as the “12/23 rule.” Here we present two novel genomic tools that allow the capture and analysis of immune locus rearrangements from whole thymic and splenic tissues using second-generation sequencing. Further, we provide strong evidence that the 12/23 rule of genomic recombination is frequently violated under physiological conditions, resulting in unanticipated hybrid recombinations in ∼10% of Tcra excision circles. Hence, we demonstrate that strict adherence to the 12/23 rule is intrinsic neither to recombination signal sequences nor to the catalytic process of recombination and propose that nonclassical excision circles are liberated during the formation of antigen receptor diversity.
Collapse
Affiliation(s)
| | - Matthew Roddis
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Ben Ferneyhough
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Gang Zhang
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Adam J Marsden
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Siarhei Maslau
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | - Thomas Barthlott
- Paediatric Immunology, Department of Biomedicine, University of Basel and The Basel University Children's Hospital, 4058 Basel, Switzerland
| | - Ian R Humphreys
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Georg Hollander
- Paediatric Immunology, Department of Biomedicine, University of Basel and The Basel University Children's Hospital, 4058 Basel, Switzerland; Developmental Immunology, Weatherall Institute of Molecular Medicine and Department of Paediatrics, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Michael D Fischer
- Systems Biology Laboratory UK, Abingdon, Oxfordshire OX14 4SA, United Kingdom; Department of Oncology, Division of Cellular and Molecular Medicine, St. George's, University of London, London SW17 0QT, United Kingdom
| |
Collapse
|
2
|
Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination. Mol Cell Biol 2013; 33:3568-79. [PMID: 23836881 DOI: 10.1128/mcb.00308-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA-PKcs deficiency leads to a nearly complete block in coding join formation, as DNA-PKcs is required to activate Artemis, the endonuclease that opens hairpin-sealed coding ends. In contrast to loss of DNA-PKcs protein, here we show that inhibition of DNA-PKcs kinase activity has no effect on coding join formation when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA-PKcs. Mutation of these threonine residues to alanine (DNA-PKcs(3A)) renders DNA-PKcs dependent on its intrinsic kinase activity during coding end joining, at a step downstream of opening hairpin-sealed coding ends. Thus, DNA-PKcs has critical functions in coding end joining beyond promoting Artemis endonuclease activity, and these functions can be regulated redundantly by the kinase activity of either ATM or DNA-PKcs.
Collapse
|
3
|
Rohatgi S, Dutta D, Tahir S, Sehgal D. Molecular Dissection of Antibody Responses against Pneumococcal Surface Protein A: Evidence for Diverse DH-Less Heavy Chain Gene Usage and Avidity Maturation. THE JOURNAL OF IMMUNOLOGY 2009; 182:5570-85. [PMID: 19380805 DOI: 10.4049/jimmunol.0803254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/metabolism
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibody Affinity/genetics
- Antibody Diversity/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Epitopes, B-Lymphocyte/metabolism
- Female
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Hybridomas
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Molecular Sequence Data
- Multigene Family/immunology
- Streptococcus pneumoniae/immunology
Collapse
Affiliation(s)
- Soma Rohatgi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
4
|
Helmink BA, Bredemeyer AL, Lee BS, Huang CY, Sharma GG, Walker LM, Bednarski JJ, Lee WL, Pandita TK, Bassing CH, Sleckman BP. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. ACTA ACUST UNITED AC 2009; 206:669-79. [PMID: 19221393 PMCID: PMC2699138 DOI: 10.1084/jem.20081326] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Mre11–Rad50–Nbs1 (MRN) complex functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle. During HR, the MRN complex functions directly in the repair of DNA DSBs and in the initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM) serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA replication in G0/G1 phase cells has been less clear. In developing G1-phase lymphocytes, DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J recombination. We show that during V(D)J recombination, MRN deficiency leads to the aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover, these defects in V(D)J recombination are remarkably similar to those observed in ATM-deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB response pathways during lymphocyte antigen receptor gene assembly.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Swanson PC, Kumar S, Raval P. Early steps of V(D)J rearrangement: insights from biochemical studies of RAG-RSS complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:1-15. [PMID: 19731797 DOI: 10.1007/978-1-4419-0296-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
V(D)J recombination is initiated by the synapsis and cleavage of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins. Our understanding of these processes has been greatly aided by the development of in vitro biochemical assays of RAG binding and cleavage activity. Accumulating evidence suggests that synaptic complex assembly occurs in a step-wise manner and that the RAG proteins catalyze RSS cleavage by mechanisms similar to those used by bacterial transposases. In this chapter we will review the molecular mechanisms of RAG synaptic complex assembly and 12/23-regulated RSS cleavage, focusing on recent advances that shed new light on these processes.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
6
|
Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP. Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. THE JOURNAL OF IMMUNOLOGY 2008; 181:2620-5. [PMID: 18684952 DOI: 10.4049/jimmunol.181.4.2620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During lymphocyte Ag receptor gene assembly, DNA cleavage by the Rag proteins generates pairs of coding and signal ends that are normally joined into coding joints and signal joints, respectively, by the classical nonhomologous end-joining (NHEJ) pathway of DNA double strand break repair. Coding and signal ends can also be aberrantly joined to each other, generating hybrid joints, through NHEJ or through NHEJ-independent pathways, such as Rag-mediated transposition. Hybrid joints do not participate in the formation of functional Ag receptor genes and can alter the configuration of Ag receptor loci in ways that limit subsequent productive rearrangements. The formation of these nonfunctional hybrid joints occurs rarely in wild type lymphocytes, demonstrating that mechanisms exist to limit both the NHEJ-dependent and the NHEJ-independent joining of a signal end to a coding end. In contrast to wild-type cells, hybrid joint formation occurs at high levels in ataxia telangiectasia mutated (Atm)-deficient lymphocytes, suggesting that Atm functions to limit the formation of these aberrant joints. In this study, we show that hybrid joint formation in Atm-deficient cells requires the NHEJ proteins Artemis, DNA-PKcs, and Ku70, demonstrating that Atm functions primarily by modulating the NHEJ-dependent, and not the NHEJ-independent, joining of coding ends to signal ends.
Collapse
Affiliation(s)
- Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
7
|
Vanura K, Montpellier B, Le T, Spicuglia S, Navarro JM, Cabaud O, Roulland S, Vachez E, Prinz I, Ferrier P, Marculescu R, Jäger U, Nadel B. In vivo reinsertion of excised episomes by the V(D)J recombinase: a potential threat to genomic stability. PLoS Biol 2007; 5:e43. [PMID: 17298184 PMCID: PMC1820826 DOI: 10.1371/journal.pbio.0050043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 12/12/2006] [Indexed: 01/16/2023] Open
Abstract
It has long been thought that signal joints, the byproducts of V(D)J recombination, are not involved in the dynamics of the rearrangement process. Evidence has now started to accumulate that this is not the case, and that signal joints play unsuspected roles in events that might compromise genomic integrity. Here we show both ex vivo and in vivo that the episomal circles excised during the normal process of receptor gene rearrangement may be reintegrated into the genome through trans-V(D)J recombination occurring between the episomal signal joint and an immunoglobulin/T-cell receptor target. We further demonstrate that cryptic recombination sites involved in T-cell acute lymphoblastic leukemia–associated chromosomal translocations constitute hotspots of insertion. Eventually, the identification of two in vivo cases associating episomal reintegration and chromosomal translocation suggests that reintegration events are linked to genomic instability. Altogether, our data suggest that V(D)J-mediated reintegration of episomal circles, an event likely eluding classical cytogenetic screenings, might represent an additional potent source of genomic instability and lymphoid cancer. Lymphoid cells recognize billions of pathogens as a result of gene rearrangements that generate pathogen-specific B- and T-cell receptors. This genetic reshuffling, called V(D)J recombination, occasionally misfires and damages genomic integrity. When such aberrations dysregulate proto-oncogenes, cancer ensues. It has become increasingly clear that multiple oncogenes acting in different cellular pathways can cooperate to cause cancer. Nevertheless, in the case of T-cell acute lymphoblastic leukemia, about a third of cases display oncogene activation in the absence of identified aberration, suggesting the presence of additional mechanisms of chromosomal alteration. In the hunt for such mechanisms, episomal circles (DNA segments that are excised during V(D)J recombination) have recently drawn attention. Moreover, signal joints, short sequences formed after gene rearrangements, once considered harmless, now appear to take part in events that might compromise genomic integrity. Using ex vivo recombination assays and genetically modified mice, we demonstrate that episomal circles may be reintegrated into the genome through recombination occurring between the episomal signal joints and a T-cell receptor target. Furthermore, we show that cryptic recombination sites located in the vicinity of oncogenes constitute hotspots of episomal insertion. Altogether, our results suggest that reintegration of excised episomal circles constitute a potential source of genomic instability and cancer in leukemia and lymphoma. Episomal DNA circles are the by-products of immunoreceptor gene rearrangements in lymphoid cells. Episomal circles can be reintegrated into the genome by
trans-V(D)J recombination and cause oncogene deregulation.
Collapse
Affiliation(s)
- Katrina Vanura
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Bertrand Montpellier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Trang Le
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Jean-Marc Navarro
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Olivier Cabaud
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Elodie Vachez
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Rodrig Marculescu
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Kriatchko AN, Anderson DK, Swanson PC. Identification and characterization of a gain-of-function RAG-1 mutant. Mol Cell Biol 2006; 26:4712-28. [PMID: 16738334 PMCID: PMC1489120 DOI: 10.1128/mcb.02487-05] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination by cleaving DNA at recombination signal sequences through sequential nicking and transesterification reactions to yield blunt signal ends and coding ends terminating in a DNA hairpin structure. Ubiquitous DNA repair factors then mediate the rejoining of broken DNA. V(D)J recombination adheres to the 12/23 rule, which limits rearrangement to signal sequences bearing different lengths of DNA (12 or 23 base pairs) between the conserved heptamer and nonamer sequences to which the RAG proteins bind. Both RAG proteins have been subjected to extensive mutagenesis, revealing residues required for one or both cleavage steps or involved in the DNA end-joining process. Gain-of-function RAG mutants remain unidentified. Here, we report a novel RAG-1 mutation, E649A, that supports elevated cleavage activity in vitro by preferentially enhancing hairpin formation. DNA binding activity and the catalysis of other DNA strand transfer reactions, such as transposition, are not substantially affected by the RAG-1 mutation. However, 12/23-regulated synapsis does not strongly stimulate the cleavage activity of a RAG complex containing E649A RAG-1, unlike its wild-type counterpart. Interestingly, wild-type and E649A RAG-1 support similar levels of cleavage and recombination of plasmid substrates containing a 12/23 pair of signal sequences in cell culture; however, E649A RAG-1 supports about threefold more cleavage and recombination than wild-type RAG-1 on 12/12 plasmid substrates. These data suggest that the E649A RAG-1 mutation may interfere with the RAG proteins' ability to sense 12/23-regulated synapsis.
Collapse
Affiliation(s)
- Aleksei N Kriatchko
- Dept. of Medical Microbiology and Immunology, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
9
|
Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 2006; 442:466-70. [PMID: 16799570 DOI: 10.1038/nature04866] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 05/03/2006] [Indexed: 01/23/2023]
Abstract
The ATM (ataxia-telangiectasia mutated) protein kinase mediates early cellular responses to DNA double-strand breaks (DSBs) generated during metabolic processes or by DNA-damaging agents. ATM deficiency leads to ataxia-telangiectasia, a disease marked by lymphopenia, genomic instability and an increased predisposition to lymphoid malignancies with chromosomal translocations involving lymphocyte antigen receptor loci. ATM activates cell-cycle checkpoints and can induce apoptosis in response to DNA DSBs. However, defects in these pathways of the DNA damage response cannot fully account for the phenotypes of ATM deficiency. Here, we show that ATM also functions directly in the repair of chromosomal DNA DSBs by maintaining DNA ends in repair complexes generated during lymphocyte antigen receptor gene assembly. When coupled with the cell-cycle checkpoint and pro-apoptotic activities of ATM, these findings provide a molecular explanation for the increase in lymphoid tumours with translocations involving antigen receptor loci associated with ataxia-telangiectasia.
Collapse
Affiliation(s)
- Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
11
|
Raghavan SC, Tong J, Lieber MR. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining. DNA Repair (Amst) 2005; 5:278-85. [PMID: 16275127 DOI: 10.1016/j.dnarep.2005.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.
Collapse
Affiliation(s)
- Sathees C Raghavan
- USC Norris Comprehensive Cancer Center Room 5428, Department of Pathology, Biochemistry & Molecular Biology, University of Southern California, Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
12
|
Shuh M, Hixson DC. V(D)J recombination of chromosomally integrated, wild-type deletional and inversional substrates occur at similar frequencies with no preference for orientation. Immunol Lett 2005; 97:69-80. [PMID: 15626478 DOI: 10.1016/j.imlet.2004.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/13/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Efficient and correct recombination of V(D)J substrates results in the generation of antibodies. The RSS substrates are oriented in two directions with respect to each other: deletional and inversional. Deletional recombination results in the formation of the coding joint and excision of the intervening sequences. Inversional recombination retains all the genomic sequences and forms both a coding joint and a signal joint. A bias for deletional recombination has been characterized with specific loci in vivo and recapitulated in experiments using extrachromosomal substrates. We constructed retroviral substrates of RSS in the deletional and inversional orientation. We introduced the substrates into wild-type and scid pre-B cells and measured the frequency of functional recombination in addition to open/shut recombination. We also mutated the RSSs to determine whether mutated sequences influenced orientation bias. We show that pre-B cells recombine the wild-type substrates at a 1.6 ratio of deletion:inversion. Nonamer mutated substrates recombined with a deletional bias whereas heptamer mutated substrates recombined with an inversional bias. A spacer length mutation and drastic mutations in the RSS abolish all recombination. These results suggest that there is no orientation bias with wild-type RSSs but that orientation bias occurs when RSSs are mutated.
Collapse
Affiliation(s)
- Maureen Shuh
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA 70118, USA.
| | | |
Collapse
|
13
|
Abstract
V(D)J recombination is a form of site-specific DNA rearrangement through which antigen receptor genes are assembled. This process involves the breakage and reunion of DNA mediated by two lymphoid cell-specific proteins, recombination activating genes RAG-1 and RAG-2, and ubiquitously expressed architectural DNA-binding proteins and DNA-repair factors. Here I review the progress toward understanding the composition, assembly, organization, and activity of the protein-DNA complexes that support the initiation of V(D)J recombination, as well as the molecular basis for the sequence-specific recognition of recombination signal sequences (RSSs) that are the targets of the RAG proteins. Parallels are drawn between V(D)J recombination and Tn5/Tn10 transposition with respect to the reactions, the proteins, and the protein-DNA complexes involved in these processes. I also consider the relative roles of the different sequence elements within the RSS in recognition, cleavage, and post-cleavage events. Finally, I discuss alternative DNA transactions mediated by the V(D)J recombinase, the protein-DNA complexes that support them, and factors and forces that control them.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178, USA.
| |
Collapse
|
14
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
15
|
Swanson PC, Volkmer D, Wang L. Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition but not hybrid joint formation or disintegration. J Biol Chem 2003; 279:4034-44. [PMID: 14612436 DOI: 10.1074/jbc.m311100200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences flanking a pair of antigen receptor gene segments. Occasionally, the RAG proteins mediate two other alternative DNA rearrangements in vivo: the rejoining of signal and coding ends and the transposition of signal ends into unrelated DNA. In contrast, truncated, catalytically active "core" RAG proteins readily catalyze these reactions in vitro, suggesting that full-length RAG proteins directly or indirectly suppress these undesired reactions in vivo. To discriminate between direct and indirect suppression models, full-length RAG proteins were purified and characterized in vitro. From mammalian cells, full-length RAG-1 is readily purified with core RAG-2 but not full-length RAG-2 and vice versa. Despite differences in DNA binding activity, recombinase containing either core or full-length RAG-1 or RAG-2 possess comparable cleavage, rejoining, and end-processing activity, as well as similar usage preferences for canonical versus cryptic recombination signals. However, recombinase containing full-length RAG-2, but not full-length RAG-1, exhibits dramatically reduced transposition activity in vitro. These data suggest RAG-mediated transposition and rejoining are differentially regulated by the full-length RAG proteins in vivo (the former directly by RAG-2 and the latter indirectly through other factors) and argue that noncore portions of the RAG proteins have little or no direct influence over V(D)J recombinase site specificity.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
16
|
Abstract
Chromosome breakage--a dangerous event that has triggered the evolution of several double-strand break repair pathways--has been co-opted by the immune system as an integral part of B- and T-cell development. This is a daring strategy, as improper repair can be deadly for the cell, if not for the whole organism. Even more daring, however, is the choice of a promiscuous transposase as the nuclease responsible for chromosome breakage, as the possibility of transposition brings an entirely new set of risks. What mechanisms constrain the dangerous potential of the recombinase and preserve genomic integrity during immune-system development?
Collapse
Affiliation(s)
- David B Roth
- Department of Pathology, Program in Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|
17
|
Elkin SK, Matthews AG, Oettinger MA. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 2003; 22:1931-8. [PMID: 12682025 PMCID: PMC154476 DOI: 10.1093/emboj/cdg184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The assembly of antigen receptor genes by V(D)J recombination is initiated by the RAG1/RAG2 protein complex, which introduces double-strand breaks between recombination signal sequences and their coding DNA. Truncated forms of RAG1 and RAG2 are functional in vivo and have been used to study V(D)J cleavage, hybrid joint formation and transposition in vitro. Here we have characterized the activities of the full-length proteins. Unlike core RAG2, which supports robust transposition in vitro, full-length RAG2 blocks transposition of signal ends following V(D)J cleavage. Thus, one role of this non-catalytic domain may be to prevent transposition in developing lymphoid cells. Although full-length RAG1 and RAG2 proteins rarely form hybrid joints in vivo in the absence of non-homologous end-joining factors, we show that the full-length proteins alone can catalyze this reaction in vitro.
Collapse
Affiliation(s)
- Sheryl K Elkin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
18
|
Shih IH, Melek M, Jayaratne ND, Gellert M. Inverse transposition by the RAG1 and RAG2 proteins: role reversal of donor and target DNA. EMBO J 2002; 21:6625-33. [PMID: 12456668 PMCID: PMC136934 DOI: 10.1093/emboj/cdf630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The lymphoid-specific proteins RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double-strand breaks at the recombination signal sequences (RSSs). In addition to DNA cleavage, the versatile RAG1/2 complex is capable of catalyzing several other reactions, including hybrid joint formation and the transposition of signal ends into a second DNA. Here we show that the RAG1/2 complex also mediates an unusual strand transfer reaction, inverse transposition, in which non-RSS DNA is cleaved and subsequently transferred to an RSS sequence by direct transesterification. Characterization of the reaction products and requirements suggests that inverse transposition is related to both hybrid joint formation and signal-end transposition. This aberrant activity provides another possible mechanism for some chromosomal translocations present in lymphoid tumors.
Collapse
Affiliation(s)
| | - Meni Melek
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892, USA
Present address: Salamandra, LLC, 4600 North Park Avenue, Suite 100, Chevy Chase, MD 20815, USA Corresponding author e-mail: I-h.Shih and M.Melek contributed equally to this work
| | | | - Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892, USA
Present address: Salamandra, LLC, 4600 North Park Avenue, Suite 100, Chevy Chase, MD 20815, USA Corresponding author e-mail: I-h.Shih and M.Melek contributed equally to this work
| |
Collapse
|
19
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
20
|
Abstract
Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by--and specifically targeted to--hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.
Collapse
Affiliation(s)
- Gregory S Lee
- Department of Immunology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Sekiguchi JA, Whitlow S, Alt FW. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol Cell 2001; 8:1383-90. [PMID: 11779512 DOI: 10.1016/s1097-2765(01)00423-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.
Collapse
Affiliation(s)
- J A Sekiguchi
- Howard Hughes Medical Institute, Harvard University Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Li AH, Rosenquist R, Forestier E, Holmberg D, Lindh J, Löfvenberg E, Roos G. Clonal rearrangements in childhood and adult precursor B acute lymphoblastic leukemia: a comparative polymerase chain reaction study using multiple sets of primers. Eur J Haematol 1999; 63:211-8. [PMID: 10530408 DOI: 10.1111/j.1600-0609.1999.tb01880.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ig heavy chain (IgH) and T-cell receptor (TCR) gene rearrangements were investigated by polymerase chain reaction (PCR) amplification of diagnostic tumour samples from 91 patients (57 children and 34 adults, with cut-off at age 16) with precursor B acute lymphoblastic leukemia (ALL). Using primers directed to the framework regions (FR) 1, 2 and 3 of the IgH gene, clonal IgH rearrangements were observed in 82, 58 and 58%, respectively, whereas clonality was presented in 45 and 27% using primers hybridising to the TCR delta and gamma genes. A combination of all five primer sets used resulted in 96% positive cases (children 100%, adults 88%). The frequency of clonal IgH rearrangements correlated to patient age with a significantly lower fraction of positive cases in the adult group. The concomitant usage of more than one V(H) family gene was similar for childhood and adult ALL, and an over-representation of V(H)6 rearrangements was found in childhood ALL. Twenty-five out of 91 cases (27%) displayed an oligoclonal pattern for either IgH or TCR gene rearrangements (children 37%, adults 12%). A comparative analysis of samples from different compartments was performed in 23 patients, and differences between two or three compartments were observed in seven cases. Unexpectedly large, clonally appearing PCR products of 540-715 bp were found in three leukemias and sequence analysis verified their clonal nature. In summary, using multiple sets of primers clonal rearrangements of IgH and TCR genes can be detected in a very high frequency, including previously neglected large size PCR products. A common heterogeneity was demonstrated in different compartments reflecting ongoing clonal evolution, which can make detection of minimal residual disease (MRD) in ALL troublesome. Therefore, we suggest that a minimum of three targets should be used to minimise false-negative results.
Collapse
Affiliation(s)
- A H Li
- Department of Pathology, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- S M Lewis
- Program in Genetics and Genomic Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Abstract
Assembly of immunoglobulin and T cell receptor genes from separate gene segments [V(D)J recombination] begins with DNA double-strand breakage by the RAG1 and RAG2 proteins, acting at a pair of recombination signal sequences (RSSs). Here, the RAG proteins are shown to reverse the cleavage reaction by joining an RSS to a broken coding sequence end. These "hybrid joints" have also been found in lymphoid cells, even when the normal pathway of DNA double-strand break repair is inactive, and can now be explained by this activity of the RAG proteins.
Collapse
Affiliation(s)
- M Melek
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21210, USA
| | | | | |
Collapse
|
26
|
Li Z, Otevrel T, Gao Y, Cheng HL, Seed B, Stamato TD, Taccioli GE, Alt FW. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 1995; 83:1079-89. [PMID: 8548796 DOI: 10.1016/0092-8674(95)90135-3] [Citation(s) in RCA: 361] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The XR-1 Chinese hamster ovary cell line is impaired in DNA double-strand break repair (DSBR) and in ability to support V(D)J recombination of transiently introduced substrates. We now show that XR-1 cells support recombination-activating gene 1- and 2-mediated initiation of V(D)J recombination within a chromosomally integrated substrate, but are highly impaired in ability to complete the process by forming coding and recognition sequence joins. On this basis, we isolated a human cDNA sequence, termed XRCC4, whose expression confers normal V(D)J recombination ability and significant restoration of DSBR activity to XR-1, clearly demonstrating that this gene product is involved in both processes. The XRCC4 gene maps to the previously identified locus on human chromosome 5, is deleted in XR-1 cells, and encodes a ubiquitously expressed product unrelated to any described protein.
Collapse
Affiliation(s)
- Z Li
- Center for Blood Research, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
V(D)J recombination is a major source of antigen receptor diversity and represents the only known form of site-specific DNA rearrangement in vertebrates. V(D)J recombination is initiated by specific DNA cleavage at recombinational signal sequences and requires components of the general machinery used for double-strand (DS)-break repair. The involvement of DS cleavage and repair mechanisms suggests that V(D)J recombination might be coupled to the cell cycle, as introduction or persistence of DS breaks during DNA replication or mitosis could interfere with faithful transmission of genetic information to daughter cells. Here, Weei-Chin Lin and Stephen Desiderio review recent evidence indicating that this is indeed the case and consider some biological implications of this linkage.
Collapse
Affiliation(s)
- W C Lin
- Dept of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Gellert M, McBlane JF. Steps along the pathway of V (D)J recombination. Philos Trans R Soc Lond B Biol Sci 1995; 347:43-7. [PMID: 7746852 DOI: 10.1098/rstb.1995.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism of lymphoid-specific gene rearrangement (V(D)J recombination) is discussed, with a focus on the existence of broken DNA intermediates. Older evidence in support of this idea includes the sequence alteration at the recombined junctions and the presence of aberrant recombinants. More recently, broken DNA molecules have been directly detected in recombinationally active cells. The signal sequence ends have normal blunt-ended DNA breaks, but the coding ends have a hairpin (self-joined) structure that provides an explanation for the self-complementary P nucleotide insertions often found after V(D)J joining in the antigen receptor genes.
Collapse
Affiliation(s)
- M Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Abstract
Separate genetic elements (V, D, and J) encode the variable regions of lymphocyte antigen receptors. During early lymphocyte differentiation, these elements rearrange to form contiguous coding segments (VJ and VDJ) for a diverse array of variable regions. Rearrangement is mediated by a recombinase that recognizes short DNA sequences (signals) flanking V, D, and J elements. Signals flank both the 5' and 3' sides of each D element, thereby allowing assembly of a functional VDJ gene. However, in rearrangements involving the D delta 2 and J delta 1 elements of the mouse T-cell receptor delta (TCR delta) locus, we unexpectedly found that the D delta 2 element and a portion of its 5' signal are often deleted. Approximately 50% of recovered D delta 2 to J delta 1 rearrangements from thymocytes of adult wild-type mice showed such deletions. An additional 20% of the rearrangements contained standard D delta 2-J delta 1 coding junctions but showed some loss of nucleotides from the 5' D delta 2 signal. This loss was clearly associated with another event involving a site-specific cleavage at the 5' signal/coding border of D delta 2 and rejoining of the modified signal and coding ends. The abnormal loss of D delta 2 and a portion of the 5' D delta 2 signal was infrequently observed in D delta 2-to-J delta 1 rearrangements recovered from neonatal mice. The possible basis and significance of this age-dependent phenomenon are discussed.
Collapse
|
30
|
Abstract
Separate genetic elements (V, D, and J) encode the variable regions of lymphocyte antigen receptors. During early lymphocyte differentiation, these elements rearrange to form contiguous coding segments (VJ and VDJ) for a diverse array of variable regions. Rearrangement is mediated by a recombinase that recognizes short DNA sequences (signals) flanking V, D, and J elements. Signals flank both the 5' and 3' sides of each D element, thereby allowing assembly of a functional VDJ gene. However, in rearrangements involving the D delta 2 and J delta 1 elements of the mouse T-cell receptor delta (TCR delta) locus, we unexpectedly found that the D delta 2 element and a portion of its 5' signal are often deleted. Approximately 50% of recovered D delta 2 to J delta 1 rearrangements from thymocytes of adult wild-type mice showed such deletions. An additional 20% of the rearrangements contained standard D delta 2-J delta 1 coding junctions but showed some loss of nucleotides from the 5' D delta 2 signal. This loss was clearly associated with another event involving a site-specific cleavage at the 5' signal/coding border of D delta 2 and rejoining of the modified signal and coding ends. The abnormal loss of D delta 2 and a portion of the 5' D delta 2 signal was infrequently observed in D delta 2-to-J delta 1 rearrangements recovered from neonatal mice. The possible basis and significance of this age-dependent phenomenon are discussed.
Collapse
Affiliation(s)
- S M Fish
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
31
|
Lin WC, Desiderio S. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc Natl Acad Sci U S A 1994; 91:2733-7. [PMID: 8146183 PMCID: PMC43444 DOI: 10.1073/pnas.91.7.2733] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The antigen receptors of B and T lymphocytes are encoded in multiple germ-line DNA segments that are joined during lymphocyte development. The recombination-activating proteins RAG-1 and RAG-2 are both essential for this process, termed V(D)J rearrangement. Phosphorylation of the RAG-2 protein at Thr-490 by one or more cyclin-dependent kinases is associated with its rapid degradation. In an immature B-cell line and in normal thymocytes, RAG-2 protein accumulates preferentially in the G0/G1 phases of the cell cycle and declines by at least 20-fold before cells enter S phase. The amount of RAG-2 protein remains low throughout the S, G2, and M phases. The amount of RAG-1 protein shows considerably less fluctuation. The variation in RAG-2 protein is likely to be established, at least in part, by a posttranscriptional mechanism. These observations suggest that V(D)J rearrangement occurs entirely or preferentially within G0/G1.
Collapse
Affiliation(s)
- W C Lin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
32
|
Lewis SM. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 1994; 56:27-150. [PMID: 8073949 DOI: 10.1016/s0065-2776(08)60450-2] [Citation(s) in RCA: 482] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S M Lewis
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|
33
|
Abstract
Developing lymphocytes in immune-deficient severe combined immunodeficient (scid) mice express a defective recombinase activity and rarely succeed in making an antigen receptor; those cells that do succeed account for the known B and T cell leakiness in this mutant mouse strain. To gain more insight into the nature of the scid defect, we assessed the status of heavy (H) and light (L)k, chain genes in immunoglobulin (Ig)Mk-secreting B cells from the peritoneal cavity of old leaky scid mice, the only lymphoid site where scid B cells have been routinely detected. We found these cells to be unusual in that their nonexpressed H chain alleles were either abnormally rearranged or in germline configuration (wild-type B cells generally show normal rearrangements at both H chain alleles). The VDJH junctions of the expressed alleles showed little or no nontemplated (N) addition, similar to neonatal B cells from wild-type mice. About half of the V(D)J junctions lacking N additions contained nucleotides that could have been encoded by either of the participating coding elements (VDH, DJH, or VJk), indicating that the recombination occurred between short stretches of homology. Unusually long templated (P) additions were seen in both VDJH and VJK junctions, and many recombinations appeared to involve P-based homologies. These findings suggest that: (a) B cell leakiness results from a low frequency of coding joint formation in cells expressing the defective scid recombinase activity; (b) joining of scid coding ends is facilitated when the ends contain short stretches of sequence homology, where in many cases, one of the homologous sequences results from a P addition; and (c) scid peritoneal B cells may arise early in ontogeny.
Collapse
Affiliation(s)
- D B Kotloff
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | |
Collapse
|
34
|
Abstract
Thymocytes in mutant mice with severe combined immunodeficiency (scid thymocytes) show ongoing recombination of some T-cell receptor delta gene elements, generating signal joints quantitatively and qualitatively indistinguishable from those in wild-type fetal thymocytes. Excised D delta 2-J delta 1 and D delta 1-D delta 2 rearrangements are detectable at levels equivalent to or greater than those in thymocytes from wild-type mice on fetal day 15. Signal junctional modification, shown here to occur frequently in wild-type adult but not newborn excised D delta 2-J delta 1 junctions, can occur normally in adult scid thymocytes. Excised D delta 1-D delta 2 scid junctions, similar to wild-type thymocytes, include pseudonormal coding junctions as well as signal junctions. Inversional D delta 1-D delta 2 rearrangements, generating conventional hybrid junctions, are also reproducibly detectable in scid thymus DNA. These hybrids, unlike those reported for artificial recombination constructs, do not show extensive nucleotide loss. In contrast to the normal or high incidences of D delta 1-, D delta 2-, and J delta 1-associated signal junctions in scid thymocytes, V delta 1, V gamma 3, and V gamma 1.2 signal products are undetectable in scid thymocytes or are detectable at levels at least 10-fold lower than the levels in wild-type fetal thymocytes. These findings confirm biased T-cell receptor element recombination by V(D)J recombinase activity of nontransformed scid thymocytes and indicate that analysis of in vivo-mediated gene rearrangements is important for full understanding of how the scid mutation arrests lymphocyte development.
Collapse
|
35
|
Carroll AM, Slack JK, Chang WT. Biased T-cell receptor delta element recombination in scid thymocytes. Mol Cell Biol 1993; 13:3632-40. [PMID: 8388539 PMCID: PMC359832 DOI: 10.1128/mcb.13.6.3632-3640.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thymocytes in mutant mice with severe combined immunodeficiency (scid thymocytes) show ongoing recombination of some T-cell receptor delta gene elements, generating signal joints quantitatively and qualitatively indistinguishable from those in wild-type fetal thymocytes. Excised D delta 2-J delta 1 and D delta 1-D delta 2 rearrangements are detectable at levels equivalent to or greater than those in thymocytes from wild-type mice on fetal day 15. Signal junctional modification, shown here to occur frequently in wild-type adult but not newborn excised D delta 2-J delta 1 junctions, can occur normally in adult scid thymocytes. Excised D delta 1-D delta 2 scid junctions, similar to wild-type thymocytes, include pseudonormal coding junctions as well as signal junctions. Inversional D delta 1-D delta 2 rearrangements, generating conventional hybrid junctions, are also reproducibly detectable in scid thymus DNA. These hybrids, unlike those reported for artificial recombination constructs, do not show extensive nucleotide loss. In contrast to the normal or high incidences of D delta 1-, D delta 2-, and J delta 1-associated signal junctions in scid thymocytes, V delta 1, V gamma 3, and V gamma 1.2 signal products are undetectable in scid thymocytes or are detectable at levels at least 10-fold lower than the levels in wild-type fetal thymocytes. These findings confirm biased T-cell receptor element recombination by V(D)J recombinase activity of nontransformed scid thymocytes and indicate that analysis of in vivo-mediated gene rearrangements is important for full understanding of how the scid mutation arrests lymphocyte development.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Southern
- Chromosome Inversion
- Cloning, Molecular
- DNA/genetics
- DNA/isolation & purification
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Mice
- Mice, Inbred BALB C/genetics
- Mice, SCID/genetics
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
- Restriction Mapping
- T-Lymphocytes/immunology
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
Affiliation(s)
- A M Carroll
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, New York 12208
| | | | | |
Collapse
|
36
|
Abstract
Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.
Collapse
Affiliation(s)
- W C Lin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
37
|
Abstract
The diversity of immunoglobulins and T cell receptors is largely due to the assembly of functional genes from separate segments. The mechanism by which these gene fragments are joined is starting to be deciphered, with broken DNA molecules that may be intermediates in the reaction providing a new clue.
Collapse
Affiliation(s)
- M Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| |
Collapse
|
38
|
Kallenbach S, Rougeon F. A V(D)J site-specific recombination model involving no compulsory double-stranded break formation at the coding segments. RESEARCH IN IMMUNOLOGY 1992; 143:873-8. [PMID: 1289987 DOI: 10.1016/0923-2494(92)80110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Complete immunoglobulin and T-cell-receptor genes are assembled by site-specific recombination of separately encoded gene segments. We present a novel recombination model which accounts for all the characteristics of V(D)J recombination that have been described. The sequence of events proposed implies no formation of double-stranded breaks at the coding ends, ensuring continuity between the recombination partners during the reaction, and solves the problem of the ligation of extremities which have no complementarity. According to this recombination model, the formation of covalently sealed coding ends does not constitute a compulsory step in the recombination process.
Collapse
Affiliation(s)
- S Kallenbach
- Unité de Génétique et Biochimie du Développement, CNRS URA 361, Institut Pasteur, Paris
| | | |
Collapse
|
39
|
Roth DB, Nakajima PB, Menetski JP, Bosma MJ, Gellert M. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 1992; 69:41-53. [PMID: 1313336 DOI: 10.1016/0092-8674(92)90117-u] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the murine T cell receptor delta locus, V(D)J recombination events frequently involve the D2 and J1 elements. Here we report the presence of double-strand breaks at recombination signals flanking D2 in approximately 2% of thymus DNA. An excised linear species containing the sequences between D2 and J1 and a circular product of the joining of D2 and J1 recombination signals were also found. Although broken molecules with signal ends were detected, no species with coding ends could be identified. Observation of these broken molecules in thymus, but not in liver or spleen, provides the first direct evidence for an association between specific cleavage of chromosomal DNA and recombination in mammalian cells, and supports a breakage-reunion model of V(D)J recombination.
Collapse
Affiliation(s)
- D B Roth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
40
|
Abstract
Somatic gene rearrangement of immunoglobulin and T-cell receptor genes [V(D)J recombination] is mediated by pairs of specific DNA sequence motifs termed signal sequences. In experiments described here, retroviral vectors containing V(D)J rearrangement cassettes in which the signal sequences had been altered were introduced into wild-type and scid (severe combined immune deficiency) pre-B cells and used to define intermediates in the V(D)J recombination pathway. The scid mutation has previously been shown to deleteriously affect the V(D)J recombination process. Cassettes containing a point mutation in one of the two signal sequences inhibited rearrangement in wild-type cells. In contrast, scid cells continued to rearrange these cassettes with the characteristic scid deletional phenotype. Using these mutated templates, we identified junctional modifications at the wild-type signal sequences that had arisen from strand breaks which were not associated with overall V(D)J rearrangements. Neither cell type was able to rearrange constructs which contained only a single, nonmutated, signal sequence. In addition, scid and wild-type cell lines harboring cassettes with mutations in both signal sequences did not undergo rearrangement, suggesting that at least one functional signal sequence was required for all types of V(D)J recombination events. Analysis of these signal sequence mutations has provided insights into intermediates in the V(D)J rearrangement pathway in wild-type and scid pre-B cells.
Collapse
|
41
|
Abstract
Somatic gene rearrangement of immunoglobulin and T-cell receptor genes [V(D)J recombination] is mediated by pairs of specific DNA sequence motifs termed signal sequences. In experiments described here, retroviral vectors containing V(D)J rearrangement cassettes in which the signal sequences had been altered were introduced into wild-type and scid (severe combined immune deficiency) pre-B cells and used to define intermediates in the V(D)J recombination pathway. The scid mutation has previously been shown to deleteriously affect the V(D)J recombination process. Cassettes containing a point mutation in one of the two signal sequences inhibited rearrangement in wild-type cells. In contrast, scid cells continued to rearrange these cassettes with the characteristic scid deletional phenotype. Using these mutated templates, we identified junctional modifications at the wild-type signal sequences that had arisen from strand breaks which were not associated with overall V(D)J rearrangements. Neither cell type was able to rearrange constructs which contained only a single, nonmutated, signal sequence. In addition, scid and wild-type cell lines harboring cassettes with mutations in both signal sequences did not undergo rearrangement, suggesting that at least one functional signal sequence was required for all types of V(D)J recombination events. Analysis of these signal sequence mutations has provided insights into intermediates in the V(D)J rearrangement pathway in wild-type and scid pre-B cells.
Collapse
Affiliation(s)
- E A Hendrickson
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
42
|
Mansikka A, Toivanen P. D-D recombination diversifies the CDR 3 region of chicken immunoglobulin heavy chains. Scand J Immunol 1991; 33:543-8. [PMID: 1903210 DOI: 10.1111/j.1365-3083.1991.tb02524.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The occurrence of D-D recombination during the embryonic differentiation of chicken B cells was studied. Ig heavy (H) chains were amplified by polymerase chain reaction from day-12 bursal cDNA, and 30 random V-D-J regions were analysed by DNA sequencing. No gene conversion events were observed in any of the V regions, indicating that diversification of the H chains by gene conversion is not yet activated at this stage of embryonic B-cell development. In contrast, the V-D-J joint regions were extremely heterogeneous. Most of the sequenced V-D-J joints were formed by direct joining of the single-germline V mu 1 gene, one of the multiple-germline D elements, and the single J gene. However, three V-D-J regions were clearly longer in size, and their D-region structure indicated recombination between two or three different germline D elements. Thus, the present data suggest that D-D recombination may have a role in diversification of the Ig H-chain repertoire.
Collapse
Affiliation(s)
- A Mansikka
- Department of Medical Microbiology, Turku University, Finland
| | | |
Collapse
|
43
|
Abstract
Homozygous mutation at the scid locus in the mouse results in the aberrant rearrangement of immunoglobulin and T-cell receptor gene segments. We introduced a retroviral vector containing an inversional immunoglobulin rearrangement cassette into scid pre-B cells. Most rearrangements were accompanied by large deletions, consistent with previously characterized effects of the scid mutation. However, two cell clones were identified which contained perfect reciprocal fragments and wild-type coding joints, documenting, on a molecular level, the ability of scid pre-B cells to generate functional protein-coding domains. Subsequent rearrangement of the DGR cassette in one of these clones was accompanied by a deletion, suggesting that this cell clone had not reverted the scid mutation. Indeed, induced rearrangement of the endogenous kappa loci in these two cell clones resulted in a mixture of scid and wild-type V-J kappa joints, as assayed by a polymerase chain reaction and DNA sequencing. In addition, three immunoglobulin mu- scid pre-B cell lines showed both scid and wild-type V-J kappa joins. These experiments strongly suggest that the V(D)J recombinase activity in scid lymphoid cells is diminished but not absent, consistent with the known leakiness of the scid mutation.
Collapse
|
44
|
Abstract
Homozygous mutation at the scid locus in the mouse results in the aberrant rearrangement of immunoglobulin and T-cell receptor gene segments. We introduced a retroviral vector containing an inversional immunoglobulin rearrangement cassette into scid pre-B cells. Most rearrangements were accompanied by large deletions, consistent with previously characterized effects of the scid mutation. However, two cell clones were identified which contained perfect reciprocal fragments and wild-type coding joints, documenting, on a molecular level, the ability of scid pre-B cells to generate functional protein-coding domains. Subsequent rearrangement of the DGR cassette in one of these clones was accompanied by a deletion, suggesting that this cell clone had not reverted the scid mutation. Indeed, induced rearrangement of the endogenous kappa loci in these two cell clones resulted in a mixture of scid and wild-type V-J kappa joints, as assayed by a polymerase chain reaction and DNA sequencing. In addition, three immunoglobulin mu- scid pre-B cell lines showed both scid and wild-type V-J kappa joins. These experiments strongly suggest that the V(D)J recombinase activity in scid lymphoid cells is diminished but not absent, consistent with the known leakiness of the scid mutation.
Collapse
Affiliation(s)
- E A Hendrickson
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
45
|
Manser T. Limits on heavy chain junctional diversity contribute to the recurrence of an antibody variable region. Mol Immunol 1990; 27:503-11. [PMID: 2116594 DOI: 10.1016/0161-5890(90)90069-c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibody V region structural diversity in the mouse is generated, in part, by the combinatorial joining of different gene segments, as well as by the "imprecision" of these joining events. The same two gene segments can be joined at different locations, and nucleotides can be deleted or added de novo to the segment junction. While it is clear that such junctional processes are a major contributor to V region diversity, the mechanisms that generate this diversity are poorly understood. Here I present sequences in the VH-D-JH region of 34 VH genes that are composed of the same three VH gene segments. In combination with a single V kappa-J kappa pair, these VH genes encode a family of V regions that are recurrently expressed in the immune response of A/J mice to p-azophenylarsonate (Ars). The germline sequences of the three constituent gene segments for these VH genes are known, making it possible to determine the origin of the nucleotides in junctional regions. An examination of the frequency and type of nucleotides present in these regions provides insight into the properties of the segment joining mechanism. In addition, the data suggest that recurrent expression of the anti-Ars V regions which these VH genes partially encode is due not only to antigenic selection, but to the high probability with which these VH genes are formed during B cell differentiation.
Collapse
Affiliation(s)
- T Manser
- Department of Biology, Princeton University, New Jersey
| |
Collapse
|
46
|
Affiliation(s)
- S Lewis
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
47
|
Li M, Morzycka-Wroblewska E, Desiderio SV. NBP, a protein that specifically binds an enhancer of immunoglobulin gene rearrangement: purification and characterization. Genes Dev 1989; 3:1801-13. [PMID: 2606349 DOI: 10.1101/gad.3.11.1801] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunoglobulin and T-cell receptor (TCR) genes are encoded in discrete germ line DNA segments that are joined by site-specific recombination during lymphocyte development. These DNA rearrangements are mediated by conserved heptamer and nonamer DNA sequence elements that lie near the sites of recombination. In this paper we show that the nonamer element coincides with the recognition site for a specific DNA-binding protein: mutations within the nonamer sequence, but not outside of it, decrease affinity for the binding protein by 300- to 1000-fold. Deletion of the binding site for the protein results in at least a 50-fold decrease in recombination frequency in vivo. By a combination of conventional and recognition site affinity chromatography, we have achieved greater than 20,000-fold purification of the protein from calf thymus, with an overall yield of 22%. The purified protein, which we now call nonamer-binding protein (NBP), has an apparent molecular weight of 63,000 and a frictional ratio of 1.27, suggesting that it exists as a globular monomer in 0.5 M NaCl. Our observations suggest that NBP is a component of the recombinational apparatus.
Collapse
Affiliation(s)
- M Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
48
|
Blackwell TK, Alt FW. Molecular Characterization of the Lymphoid V(D) J Recombination Activity. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81620-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Nickerson KG, Berman J, Glickman E, Chess L, Alt FW. Early human IgH gene assembly in Epstein-Barr virus-transformed fetal B cell lines. Preferential utilization of the most JH-proximal D segment (DQ52) and two unusual VH-related rearrangements. J Exp Med 1989; 169:1391-403. [PMID: 2538551 PMCID: PMC2189244 DOI: 10.1084/jem.169.4.1391] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have analyzed the phenotypic characteristics and IgH gene rearrangements in a panel of EBV-transformed B lineage cell lines from human fetal liver and bone marrow. Some lines contained only populations of immature, Ig- Be cells, while others contained mixed populations of mature and immature B cells. The majority of identifiable IgH rearrangements involved joining of the most JH-proximal D segment, DQ52, to various JH segments, implying that DQ52 is a preferred target for initial DJH rearrangements. Three other rearrangements involving VH-related sequences were also characterized. Two involved VHDJH joining using VH3 genes, although one of these had a very unusual DJH structure. The third consisted of inverted 3' signal sequences and flanking regions of a VH4 gene appended to a JH. The mechanisms by which the later rearrangement could have occurred and its potential physiological significance are discussed.
Collapse
Affiliation(s)
- K G Nickerson
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | | | | | |
Collapse
|