1
|
Belaidi AA, Bush AI, Ayton S. Apolipoprotein E in Alzheimer's disease: molecular insights and therapeutic opportunities. Mol Neurodegener 2025; 20:47. [PMID: 40275327 PMCID: PMC12023563 DOI: 10.1186/s13024-025-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Apolipoprotein E (APOE- gene; apoE- protein) is the strongest genetic modulator of late-onset Alzheimer's disease (AD), with its three major isoforms conferring risk for disease ε2 < ε3 < ε4. Emerging protective gene variants, such as APOE Christchurch and the COLBOS variant of REELIN, an alternative target of certain apoE receptors, offer novel insights into resilience against AD. In recent years, the role of apoE has been shown to extend beyond its primary function in lipid transport, influencing multiple biological processes, including amyloid-β (Aβ) aggregation, tau pathology, neuroinflammation, autophagy, cerebrovascular integrity and protection from lipid peroxidation and the resulting ferroptotic cell death. While the detrimental influence of apoE ε4 on these and other processes has been well described, the molecular mechanisms underpinning this disadvantage require further enunciation, particularly to realize therapeutic opportunities related to apoE. This review explores the multifaceted roles of apoE in AD pathogenesis, emphasizing recent discoveries and translational approaches to target apoE-mediated pathways. These findings underscore the potential for apoE-based therapeutic strategies to prevent or mitigate AD in genetically at-risk populations.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
2
|
Zeng R, Xu H, Wu M, Zhou X, Lei P, Yu J, Wang P, Ma H, Zhao Y. Entacapone alleviates muscle atrophy by modulating oxidative stress, proteolysis, and lipid aggregation in multiple mice models. Front Physiol 2024; 15:1483594. [PMID: 39717825 PMCID: PMC11663891 DOI: 10.3389/fphys.2024.1483594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Background Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis. Methods C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy. Four murine models were employed: diaphragm atrophy from mechanical ventilation, Dex-induced atrophy, lipopolysaccharide (LPS)-induced atrophy, and hyperlipidemia-induced atrophy. Each model utilized entacapone (10 mg/kg), with sample sizes: Control (9), MV (11), MV + ENT (5) for diaphragm atrophy; Control (4), Dex (4), Dex + ENT (5) for Dex model; Control (4), LPS (4), LPS + ENT (5) for LPS model; and similar for hyperlipidemia. Measurements included muscle strength, myofiber cross-sectional area (CSA), proteolysis, oxidative stress markers [uperoxide dismutase 1 (SOD1), uperoxide dismutase 2 (SOD2), 4-hydroxynonenal (4-HNE)], and lipid levels. Results Our findings confirm Dex-induced muscle atrophy, evidenced by increased expression of muscle atrophy-associated proteins, including Atrogin-1 and Murf-1, along with decreased diameter of C2C12 myotubes. Atrogin-1 levels rose by 660.6% (p < 0.05) in the Dex group compared to control, while entacapone reduced Atrogin-1 by 84.4% (p < 0.05). Similarly, Murf-1 levels increased by 365% (p < 0.05) in the Dex group and were decreased by 89.5% (p < 0.05) with entacapone. Dexamethasone exposure induces oxidative stress, evidenced by the upregulation of oxidative stress-related proteins Sod1, Sod2, and 4-HNE. Entacapone significantly reduced the levels of these oxidative stress markers, enhancing GSH-PX content by 385.6% (p < 0.05) compared to the Dex-treated group. Additionally, ENT effectively reduced the Dex-induced increase in MDA content by 63.98% (p < 0.05). Furthermore, entacapone effectively prevents the decline in diaphragm muscle strength and myofiber CSA in mice. It also mitigates diaphragm oxidative stress and protein hydrolysis. Additionally, entacapone exhibits the ability to attenuate lipid accumulation in the gastrocnemius muscle of hyperlipidemic mice and alleviate the reduction in muscle fiber CSA. Conclusion Our findings suggest that entacapone is a promising therapeutic candidate for muscle atrophy, functioning through the reduction of oxidative stress, proteolysis, and lipid aggregation. Future research should explore the underlying mechanisms and potential clinical applications of entacapone in muscle-wasting conditions.
Collapse
Affiliation(s)
- Rong Zeng
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Health Management, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hanbing Xu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of General Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mingzheng Wu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianlong Zhou
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pan Lei
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiangtao Yu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pinyi Wang
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoli Ma
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhang M, Li H, Tan T, Lu L, Mi J, Rehman A, Yan Y, Ran L. Anthocyanins from Lycium ruthenicum Murray attenuates high-fat diet-induced hypercholesterolemia in ApoE -/- mice are related to the modulation of gut microbiota and the ratio of conjugated to unconjugated bile acids in fecal bile acid profile. Food Sci Nutr 2024; 12:2379-2392. [PMID: 38628207 PMCID: PMC11016428 DOI: 10.1002/fsn3.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024] Open
Abstract
Previous findings showed that anthocyanins from Lycium ruthenicum Murray (ACN) reduced HFD-induced hypercholesterolemia by regulating gut microbiota, but the mechanism has not been fully understood. The objective of this research was to know whether the cholesterol-lowering impact of ACN in HFD-induced ApoE-/- mice is related to the gut microbiota-bile acid (BA) metabolism. Twenty-four male ApoE-/- mice were divided into three groups: the Control group, the HFD group, and the HFD + ACN group. Here, we showed that ACN intervention reduced HFD-induced body weight serum concentrations of TC and LDL-C and ameliorated lipid accumulation in the liver and adipose tissues. Besides, ACN altered gut microbiota composition in HFD-fed ApoE-/- mice. Moreover, UHPLC-MS/MS analysis revealed that ACN intervention significantly increased the ratio of conjugated to unconjugated BAs in feces induced by HFD, attributed to the increase in conjugated BAs and decrease in unconjugated BAs. Finally, the correlation analysis indicated that the above changes in fecal BA profile were linked with an increase in Bifidobacterium, Allobaculum and a decrease in Ileibacterium, Helicobacter, Rikenellaceae_RC9_gut_group, Blautia, Odoribacter, and Colidextribacter. In summary, ACN could alleviate HFD-induced hypercholesterolemia in ApoE-/- mice, which was associated with the improvement of gut microbiota and modulation of fecal BA profile.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Hui Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Tingting Tan
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Lu Lu
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jia Mi
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Abdul Rehman
- School of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yamei Yan
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Linwu Ran
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| |
Collapse
|
4
|
Rodrigues JFR, Rodrigues LP, de Araújo Filho GM. Alzheimer's Disease and Suicide: An Integrative Literature Review. Curr Alzheimer Res 2024; 20:758-768. [PMID: 38409712 DOI: 10.2174/0115672050292472240216052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Suicide has been described in patients with Alzheimer's disease. Some promising medications for treating Alzheimer's disease have had their studies suspended because they increase the risk of suicide. Understanding the correlations between suicide and Alzheimer's disease is essential in an aging world. METHODS A search was carried out on electronic websites (PubMed and Scielo) using the MeSH Terms "suicide" and "Alzheimer" (1986-2023). Of a total of 115 articles, 26 were included in this review. RESULTS Depression and the allele ε4 of Apolipoprotein (APOE4) were demonstrated to be the main risk factors for suicide in patients with Alzheimer's disease. CONCLUSION Adequately delineating which elderly people are vulnerable to suicide is important so that new treatments for Alzheimer's disease can be successful. This review showed a need for new studies to investigate the interface between Alzheimer's disease and suicide.
Collapse
Affiliation(s)
- Juliano Flávio Rubatino Rodrigues
- Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Unimed Bauru Cooperativa de Trabalho Médico, Bauru, SP, Brazil
| | - Livia Peregrino Rodrigues
- Faculdade de Medicina de Barbacena (FAME), Barbacena, MG, Brazil
- Faculdade de Medicina da Universidade de Marília (UNIMAR), Marília, SP, Brazil
| | | |
Collapse
|
5
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
6
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
7
|
Gao P, Ji M, Liu X, Chen X, Liu H, Li S, Jia B, Li C, Ren L, Zhao X, Wang Q, Bi Y, Tan X, Hou B, Zhou X, Tan W, Deng T, Wang J, Gao GF, Zhang F. Apolipoprotein E mediates cell resistance to influenza virus infection. SCIENCE ADVANCES 2022; 8:eabm6668. [PMID: 36129973 PMCID: PMC9491715 DOI: 10.1126/sciadv.abm6668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Viruses exploit host cell machinery to support their replication. Defining the cellular proteins and processes required for a virus during infection is crucial to understanding the mechanisms of virally induced disease and designing host-directed therapeutics. Here, we perform a genome-wide CRISPR-Cas9-based screening in lung epithelial cells infected with the PR/8/NS1-GFP virus and use GFPhi cell as a unique screening marker to identify host factors that inhibit influenza A virus (IAV) infection. We discovered that APOE affects influenza virus infection both in vitro and in vivo. Cell deficiency in APOE conferred substantially increased susceptibility to IAV; mice deficient in APOE manifested more severe lung pathology, increased virus load, and decreased survival rate. Mechanistically, lack of cell-produced APOE results in impaired cell cholesterol homeostasis, enhancing influenza virus attachment. Thus, we identified a previously unrecognized role of APOE in restraining IAV infection.
Collapse
Affiliation(s)
- Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Miao Ji
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotong Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Chao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xu Tan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Tao Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
8
|
Zhao H, Zhao J, Wu D, Sun Z, Hua Y, Zheng M, Liu Y, Yang Q, Huang X, Li Y, Piao Y, Wang Y, Lam SM, Xu H, Shui G, Wang Y, Yao H, Lai L, Du Z, Mi J, Liu E, Ji X, Zhang YQ. Dogs lacking Apolipoprotein E show advanced atherosclerosis leading to apparent clinical complications. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1342-1356. [PMID: 34705220 DOI: 10.1007/s11427-021-2006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerotic cardiovascular disease resulting from dysregulated lipid metabolism is the leading cause of morbidity and mortality worldwide. Apolipoprotein E (ApoE) plays a critical role in cholesterol metabolism. Knockouts in lipid-metabolizing proteins including ApoE in multiple model organisms such as mice and rats exhibiting elevated levels of cholesterol have been widely used for dissecting the pathology of atherosclerosis, but few of these animal models exhibit advanced atherosclerotic plaques leading to ischemia-induced clinical symptoms, limiting their use for translational studies. Here we report hypercholesterolemia and severe atherosclerosis characterized by stenosis and occlusion of arteries, together with clinical manifestations of stroke and gangrene, in ApoE knockout dogs generated by CRISPR/Cas9 and cloned by somatic cell nuclear transfer technologies. Importantly, the hypercholesterolemia and atherosclerotic complications in F0 mutants are recapitulated in their offspring. As the ApoE-associated atherosclerosis and clinical manifestations in mutant dogs are more similar to that in human patients compared with those in other animal models, these mutant dogs will be invaluable in developing and evaluating new therapies, including endovascular procedures, against atherosclerosis and related disorders.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianping Zhao
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Di Wu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhaolin Sun
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Yang Hua
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Min Zheng
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Yumei Liu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Yang
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiahe Huang
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Yueshan Piao
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingchun Wang
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sin Man Lam
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huijuan Xu
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghou Shui
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjun Wang
- TianTan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haifeng Yao
- Beijing Petsguard Animal Hospital, Beijing, 100192, China
| | - Liangxue Lai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuo Du
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jidong Mi
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China.
| | - Xunming Ji
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Yong Q Zhang
- Key Laboratory of Molecular Developmental Biology, and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Ogura M, Toyoda Y, Sakiyama M, Kawamura Y, Nakayama A, Yamanashi Y, Takada T, Shimizu S, Higashino T, Nakajima M, Naito M, Hishida A, Kawai S, Okada R, Sasaki M, Ayaori M, Suzuki H, Takata K, Ikewaki K, Harada-Shiba M, Shinomiya N, Matsuo H. Increase of serum uric acid levels associated with APOE ε2 haplotype: a clinico-genetic investigation and in vivo approach. Hum Cell 2021; 34:1727-1733. [PMID: 34532841 PMCID: PMC8490264 DOI: 10.1007/s13577-021-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 10/30/2022]
Abstract
Elevated serum uric acid (SUA)-hyperuricemia-is caused by overproduction of urate or by its decreased renal and/or intestinal excretion. This disease, which is increasing in prevalence worldwide, is associated with both gout and metabolic diseases. Several studies have reported relationships between apolipoprotein E (APOE) haplotypes and SUA levels in humans; however, their results remain inconsistent. This prompted us to investigate the relationship between APOE polymorphisms and SUA levels. Our subjects were 5,272 Japanese men, premenopausal women, and postmenopausal women. Multiple linear regression analyses revealed the ε2 haplotype of APOE to be independently associated with higher SUA in men (N = 1,726) and postmenopausal women (N = 1,753), but not in premenopausal women (N = 1,793). In contrast, the ε4 haplotype was little related to SUA levels in each group. Moreover, to examine the effect of Apoe deficiency on SUA levels, we conducted animal experiments using Apoe knockout mice, which mimics ε2/ε2 carriers. We found that SUA levels in Apoe knockout mice were significantly higher than those in wild-type mice, which is consistent with the SUA-raising effect of the ε2 haplotype observed in our clinico-genetic analyses. Further analyses suggested that renal rather than intestinal underexcretion of urate could be involved in Apoe deficiency-related SUA increase. In conclusion, we successfully demonstrated that the ε2 haplotype, but not the ε4 haplotype, increases SUA levels. These findings will improve our understanding of genetic factors affecting SUA levels.
Collapse
Affiliation(s)
- Masatsune Ogura
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba, 283-8686, Japan.
- Department of General Medical Science, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8670, Japan.
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan.
| | - Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
- Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, Faculty of Medicine, The University of Tokyo Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, Faculty of Medicine, The University of Tokyo Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Public Health, Aichi Medical University School of Medicine, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Makoto Sasaki
- Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Makoto Ayaori
- Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, Faculty of Medicine, The University of Tokyo Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koki Takata
- Takata Clinic, 10-15 Wakakusa-cho, Higashi-ku, Hiroshima, Hiroshima, 732-0053, Japan
| | - Katsunori Ikewaki
- Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
10
|
Teneggi J, Chen X, Balu A, Barrett C, Grisolia G, Lucia U, Dzakpasu R. Entropy estimation within in vitro neural-astrocyte networks as a measure of development instability. Phys Rev E 2021; 103:042412. [PMID: 34005938 DOI: 10.1103/physreve.103.042412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/01/2021] [Indexed: 11/07/2022]
Abstract
The brain demands a significant fraction of the energy budget in an organism; in humans, it accounts for 2% of the body mass, but utilizes 20% of the total energy metabolized. This is due to the large load required for information processing; spiking demands from neurons are high but are a key component to understanding brain functioning. Astrocytic brain cells contribute to the healthy functioning of brain circuits by mediating neuronal network energy and facilitating the formation and stabilization of synaptic connectivity. During development, spontaneous activity influences synaptic formation, shaping brain circuit construction, and adverse astrocyte mutations can lead to pathological processes impacting cognitive impairment due to inefficiencies in network spiking activity. We have developed a measure that quantifies information stability within in vitro networks consisting of mixed neural-astrocyte cells. Brain cells were harvested from mice with mutations to a gene associated with the strongest known genetic risk factor for Alzheimer's disease, APOE. We calculate energy states of the networks and using these states, we present an entropy-based measure to assess changes in information stability over time. We show that during development, stability profiles of spontaneous network activity are modified by exogenous astrocytes and that network stability, in terms of the rate of change of entropy, is allele dependent.
Collapse
Affiliation(s)
- Jacopo Teneggi
- Department of Mechanical Engineering, Politecnico di Torino, Torino 10129, Italy; Department of Physics, Georgetown University, Washington, District of Columbia, 20057, USA; and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia 20057, USA
| | - Alan Balu
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| | - Connor Barrett
- Department of Physics, Georgetown University, Washington, District of Columbia 20057, USA
| | - Giulia Grisolia
- Department of Energy "Galileo Ferraris," Politecnico di Torino, Torino 10129, Italy
| | | | - Rhonda Dzakpasu
- Department of Physics, Georgetown University, Washington, District of Columbia 20057, USA and Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia 20057, USA
| |
Collapse
|
11
|
Ruiz C, Zitnik M, Leskovec J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun 2021; 12:1796. [PMID: 33741907 PMCID: PMC7979814 DOI: 10.1038/s41467-021-21770-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Most diseases disrupt multiple proteins, and drugs treat such diseases by restoring the functions of the disrupted proteins. How drugs restore these functions, however, is often unknown as a drug's therapeutic effects are not limited to the proteins that the drug directly targets. Here, we develop the multiscale interactome, a powerful approach to explain disease treatment. We integrate disease-perturbed proteins, drug targets, and biological functions into a multiscale interactome network. We then develop a random walk-based method that captures how drug effects propagate through a hierarchy of biological functions and physical protein-protein interactions. On three key pharmacological tasks, the multiscale interactome predicts drug-disease treatment, identifies proteins and biological functions related to treatment, and predicts genes that alter a treatment's efficacy and adverse reactions. Our results indicate that physical interactions between proteins alone cannot explain treatment since many drugs treat diseases by affecting the biological functions disrupted by the disease rather than directly targeting disease proteins or their regulators. We provide a general framework for explaining treatment, even when drugs seem unrelated to the diseases they are recommended for.
Collapse
Affiliation(s)
- Camilo Ruiz
- Computer Science Department, Stanford University, Stanford, CA, USA
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Marinka Zitnik
- Biomedical Informatics Department, Harvard University, Boston, MA, USA
| | - Jure Leskovec
- Computer Science Department, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
12
|
Mariano C, Alves AC, Medeiros AM, Chora JR, Antunes M, Futema M, Humphries SE, Bourbon M. The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. Clin Genet 2021; 97:457-466. [PMID: 31893465 DOI: 10.1111/cge.13697] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolaemia (FH) is a monogenic disorder characterised by high low-density lipoprotein cholesterol (LDL-C) concentrations and increased cardiovascular risk. However, in clinically defined FH cohorts worldwide, an FH-causing variant is only found in 40%-50% of the cases. The aim of this work was to characterise the genetic cause of the FH phenotype in Portuguese clinical FH patients. Between 1999 and 2017, 731 index patients (311 children and 420 adults) who met the Simon Broome diagnostic criteria had been referred to our laboratory. LDLR, APOB, PCSK9, APOE, LIPA, LDLRAP1, ABCG5/8 genes were analysed by polymerase chain reaction amplification and Sanger sequencing. The 6-SNP LDL-C genetic risk score (GRS) for polygenic hypercholesterolaemia was validated in the Portuguese population and cases with a GRS over the 25th percentile were considered to have a high likelihood of polygenic hypercholesterolaemia. An FH-causing mutation was found in 39% of patients (94% in LDLR, 5% APOB and 1% PCSK9), while at least 29% have polygenic hypercholesterolaemia and 1% have other lipid disorders. A genetic cause for the FH phenotype was found in 503 patients (69%). All known causes of the FH phenotype should be investigated in FH cohorts to ensure accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Cibelle Mariano
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Catarina Alves
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Margarida Medeiros
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Joana Rita Chora
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Marília Antunes
- Department of Statistics and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Centre of Statistics and its Applications - CEAUL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Mafalda Bourbon
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
14
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
15
|
Kim HI, Ye B, Gosalia N, Köroğlu Ç, Hanson RL, Hsueh WC, Knowler WC, Baier LJ, Bogardus C, Shuldiner AR, Van Hout CV, Van Hout CV. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am J Hum Genet 2020; 107:251-264. [PMID: 32640185 DOI: 10.1016/j.ajhg.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| |
Collapse
|
16
|
Liu T, Shi N, Zhang S, Silverman GJ, Duan XW, Zhang S, Niu H. Systemic lupus erythematosus aggravates atherosclerosis by promoting IgG deposition and inflammatory cell imbalance. Lupus 2020; 29:273-282. [PMID: 32075511 PMCID: PMC7057353 DOI: 10.1177/0961203320904779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Systemic lupus erythematosus (SLE) patients experience a premature and more severe presentation of coronary artery disease. The underlying mechanisms of accelerated coronary artery disease in SLE patients remain to be elucidated. Methods By using atherosclerosis combining a SLE murine model, we proved that the onset of SLE aggravates atherosclerosis. Although the onset of SLE reduced blood lipids slightly, immune deviation contributed to aggravated atherosclerosis in lupus mice. Lupus atheroma were characterized by inflammatory cell infiltration, such as gathered dendritic cells, macrophages, and IgG deposition. Results Decreased lymphocytes and magnified dendritic cells in the spleen were also observed in lupus mice. Hydroxychloroquine prevented atherosclerosis progression mainly by reversing immune status abnormality caused by SLE. Serum interferon alfa levels were not changed in lupus mice. Conclusion These findings strongly suggested that anti-inflammatory therapies and hydroxychloroquine provide a new possible strategy for treating SLE patients with atherosclerosis.
Collapse
Affiliation(s)
- T Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - N Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Beijing, China
| | - S Zhang
- School of Medicine, Jinan University, Guangzhou, China
| | - G J Silverman
- Department of Rheumatology, Langone Medical Center, New York, USA
| | - X-W Duan
- Department of Rheumatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - S Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - H Niu
- School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Wolters FJ, Yang Q, Biggs ML, Jakobsdottir J, Li S, Evans DS, Bis JC, Harris TB, Vasan RS, Zilhao NR, Ghanbari M, Ikram MA, Launer L, Psaty BM, Tranah GJ, Kulminski AM, Gudnason V, Seshadri S, for the E2-CHARGE investigators. The impact of APOE genotype on survival: Results of 38,537 participants from six population-based cohorts (E2-CHARGE). PLoS One 2019; 14:e0219668. [PMID: 31356640 PMCID: PMC6663005 DOI: 10.1371/journal.pone.0219668] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Apolipoprotein E is a glycoprotein best known as a mediator and regulator of lipid transport and uptake. The APOE-ε4 allele has long been associated with increased risks of Alzheimer's disease and mortality, but the effect of the less prevalent APOE-ε2 allele on diseases in the elderly and survival remains elusive. METHODS We aggregated data of 38,537 individuals of European ancestry (mean age 65.5 years; 55.6% women) from six population-based cohort studies (Rotterdam Study, AGES-Reykjavik Study, Cardiovascular Health Study, Health-ABC Study, and the family-based Framingham Heart Study and Long Life Family Study) to determine the association of APOE, and in particular APOE-ε2, with survival in the population. RESULTS During a mean follow-up of 11.7 years, 17,021 individuals died. Compared with homozygous APOE-ε3 carriers, APOE-ε2 carriers were at lower risk of death (hazard ratio,95% confidence interval: 0.94,0.90-0.99; P = 1.1*10-2), whereas APOE-ε4 carriers were at increased risk of death (HR 1.17,1.12-1.21; P = 2.8*10-16). APOE was associated with mortality risk in a dose-dependent manner, with risk estimates lowest for homozygous APOE-ε2 (HR 0.89,0.74-1.08), and highest for homozygous APOE-ε4 (HR 1.52,1.37-1.70). After censoring for dementia, effect estimates remained similar for APOE-ε2 (HR 0.95,0.90-1.01), but attenuated for APOE-ε4 (HR 1.07,1.01-1.12). Results were broadly similar across cohorts, and did not differ by age or sex. APOE genotype was associated with baseline lipid fractions (e.g. mean difference(95%CI) in LDL(mg/dL) for ε2 versus ε33: -17.1(-18.1-16.0), and ε4 versus ε33: +5.7(4.8;6.5)), but the association between APOE and mortality was unaltered after adjustment for baseline LDL or cardiovascular disease. Given the European ancestry of the study population, results may not apply to other ethnicities. CONCLUSION Compared with APOE-ε3, APOE-ε2 is associated with prolonged survival, whereas mortality risk is increased for APOE-ε4 carriers. Further collaborative efforts are needed to unravel the role of APOE and in particular APOE-ε2 in health and disease.
Collapse
Affiliation(s)
- Frank J. Wolters
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Mary L. Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | | | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lenore Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Departments of Epidemiology and Health Services, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | |
Collapse
|
18
|
Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. J Neurosci 2019; 39:7408-7427. [PMID: 31331998 DOI: 10.1523/jneurosci.2994-18.2019] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aβ clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aβ clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.
Collapse
|
19
|
The Opposite Effect of c-Jun Transcription Factor on Apolipoprotein E Gene Regulation in Hepatocytes and Macrophages. Int J Mol Sci 2019; 20:ijms20061471. [PMID: 30909560 PMCID: PMC6471215 DOI: 10.3390/ijms20061471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein E (apoE) is mainly secreted by hepatocytes and incorporated into most plasma lipoproteins. Macrophages, which accumulate cholesterol and are critical for the development of the atherosclerotic plaque, are also an important, albeit smaller, apoE source. Distal regulatory elements control cell-specific activity of the apoE promoter: multienhancers (ME.1/2) in macrophages and hepatic control regions (HCR-1/2) in hepatocytes. A member of AP-1 cell growth regulator, c-Jun regulates the transcription of various apolipoproteins and proinflammatory molecules implicated in atherosclerosis. We aimed to investigate the effect of c-Jun on apoE expression in macrophages versus hepatocytes and to reveal the underlying molecular mechanisms. Herein we show that c-Jun had an opposite, cell-specific effect on apoE expression: downregulation in macrophages but upregulation in hepatocytes. Transient transfections using ME.2 deletion mutants and DNA pull-down (DNAP) assays showed that the inhibitory effect of c-Jun on the apoE promoter in macrophages was mediated by a functional c-Jun binding site located at 301/311 on ME.2. In hepatocytes, c-Jun overexpression strongly increased apoE expression, and this effect was due to c-Jun binding at the canonical site located at -94/-84 on the apoE proximal promoter, identified by transient transfections using apoE deletion mutants, DNAP, and chromatin immunoprecipitation assays. Overall, the dual effect of c-Jun on apoE gene expression led to decreased cholesterol efflux in macrophages resident in the atherosclerotic plaque synergized with an increased level of systemic apoE secreted by the liver to exacerbate atherogenesis.
Collapse
|
20
|
Belloy ME, Napolioni V, Greicius MD. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 2019; 101:820-838. [PMID: 30844401 PMCID: PMC6407643 DOI: 10.1016/j.neuron.2019.01.056] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a polygenic disorder. This view is clouded, however, by lingering uncertainty over how to treat the quasi "monogenic" role of apolipoprotein E (APOE). The APOE4 allele is not only the strongest genetic risk factor for AD, it also affects risk for cardiovascular disease, stroke, and other neurodegenerative disorders. This review, based mostly on data from human studies, ranges across a variety of APOE-related pathologies, touching on evolutionary genetics and risk mitigation by ethnicity and sex. The authors also address one of the most fundamental question pertaining to APOE4 and AD: does APOE4 increase AD risk via a loss or gain of function? The answer will be of the utmost importance in guiding future research in AD.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
21
|
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 2019; 9:2628. [PMID: 30796231 PMCID: PMC6385241 DOI: 10.1038/s41598-019-38732-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The rat is a time-honored traditional experimental model animal, but its use is limited due to the difficulty of genetic modification. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identified endonuclease Cpf1 system is applicable to rats. Here we report the first application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-deficient rats via CRISPR-Cpf1 system, characterized by high efficiency, successful germline transmission, multiple gene targeting capacity, and minimal off-target effect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infiltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efficiently and specifically in rats with genetic heritability and that Apoe knockout rats may help understand initial-stage atherosclerosis.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Chang Hoon Ha
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bohyun Yoon
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Doo Jae Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Wook Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, Liu J, Xiong Q, Zhang L, Jin Y, Liu X, Li L, Wei H, Yang H, Li R, Dai Y. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech 2018; 11:dmm036632. [PMID: 30305304 PMCID: PMC6215431 DOI: 10.1242/dmm.036632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022] Open
Abstract
Miniature pigs have advantages over rodents in modeling atherosclerosis because their cardiovascular system and physiology are similar to that of humans. Apolipoprotein E (ApoE) deficiency has long been implicated in cardiovascular disease in humans. To establish an improved large animal model of familial hypercholesterolemia and atherosclerosis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 system (CRISPR/Cas9) was used to disrupt the ApoE gene in Bama miniature pigs. Biallelic-modified ApoE pigs with in-frame mutations (ApoEm/m ) and frameshift mutations (ApoE-/- ) were simultaneously produced. ApoE-/- pigs exhibited moderately increased plasma cholesterol levels when fed with a regular chow diet, but displayed severe hypercholesterolemia and spontaneously developed human-like atherosclerotic lesions in the aorta and coronary arteries after feeding on a high-fat and high-cholesterol (HFHC) diet for 6 months. Thus, these ApoE-/- pigs could be valuable large animal models for providing further insight into translational studies of atherosclerosis.
Collapse
Affiliation(s)
- Bin Fang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ze Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chu Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Zhengwei Zhang
- Huai'an First Hospital Affiliated to Nanjing Medical University, Department of Pathology, Huai'an 223300, China
| | - Lei Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxue Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
23
|
Zhong Z, Wu H, Wu H, Zhao P. Analysis of apolipoprotein E genetic polymorphism in a large ethnic Hakka population in southern China. Genet Mol Biol 2018; 41:742-749. [PMID: 30508003 PMCID: PMC6415608 DOI: 10.1590/1678-4685-gmb-2017-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/18/2018] [Indexed: 11/21/2022] Open
Abstract
There is currently no data about the genetic variations of APOE in Hakka population in China. The aim of this study was to analyze the allelic and genotypic frequencies of APOE gene polymorphisms in a large ethnic Hakka population in southern China. The APOE genes of 6,907 subjects were genotyped by the gene chip platform. The allele and genotype frequencies were analyzed. Results showed that the ∊3 allele had the greatest frequency (0.804) followed by ∊2 (0.102), and ∊4 (0.094), while genotype ∊3/∊3 accounted for 65.43% followed by ∊2/∊3 (15.85%), ∊3/∊4 (14.13%), ∊2/∊4 (3.01%), ∊4/∊4 (0.84%), and ∊2/∊2 (0.74%) in all subjects. The frequencies of the ∊4 allele in Chinese populations were lower than Mongolian and Javanese, while the frequencies of the ∊2 allele were higher and ∊4 allele lower than Japanese, Koreans, and Iranian compared with the geographically neighboring countries. The frequencies of ∊2 and ∊4 alleles in Hakka population were similar to the Vietnamese, Chinese-Shanghai, Chinese-Kunming Han and Chinese-Northeast, and French. The frequency of ∊2 in Hakka population was higher than Chinese-Dehong Dai and Chinese-Jinangsu Han. The low frequency of the APOE ∊4 allele may suggest a low genetic risk of Hakka population for cardiovascular disease, Alzheimer's disease, and other diseases.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Hesen Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Pingsen Zhao
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| |
Collapse
|
24
|
Ablamunits V, Goldstein AJ, Tovbina MH, Gaetz HP, Klebanov S. Acute Rejection of White Adipose Tissue Allograft. Cell Transplant 2017; 16:375-90. [PMID: 17658128 DOI: 10.3727/000000007783464830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
White adipose tissue (WAT) transplantation, although widely used in humans, has been done for cosmetic and reconstructive purposes only. Accumulating evidence indicates, however, that WAT is an important endocrine organ and, therefore, WAT transplantation may become valuable as a replacement therapy for a number of hereditary human diseases. Because the most readily available source for such transplantations would be allogeneic tissue, the mechanisms involved in the rejection of WAT allograft should be explored. We have established a model in which leptin-producing allogeneic WAT is transplanted into leptin-deficient ob/ob mice. Because ob/ob mice are obese, hyperphagic, and hypothermic, WAT allograft function is monitored as the reversal of this leptin-deficient phenotype. Here we report that allografted WAT is primarily nonfunctional. However, when WAT is transplanted into immunodeficient (Rag1–/–) ob/ob mice, or into ob/ob mice depleted of T cells by anti-CD3 antibody, a long-term graft survival is achieved as indicated by the reversal of hyperphagia, weight loss, and normalization of body temperature. The symptoms of leptin deficiency rapidly recur when normal spleen cells of the recipient type are injected, or when the antibody treatment is terminated. In contrast, selective depletion of either CD4+ or CD8+ cells alone does not prevent WAT allograft rejection. Similarly, WAT allografts that do not express MHC class I or class II molecules are rapidly rejected, suggesting that both CD4+ and CD8+ T cells may independently mediate WAT allograft rejection.
Collapse
Affiliation(s)
- Vitaly Ablamunits
- Obesity Research Center, St. Luke's Hospital, New York, NY 10025, USA.
| | | | | | | | | |
Collapse
|
25
|
Trusca VG, Fuior EV, Fenyo IM, Kardassis D, Simionescu M, Gafencu AV. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes. PLoS One 2017; 12:e0174078. [PMID: 28355284 PMCID: PMC5371326 DOI: 10.1371/journal.pone.0174078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Violeta Georgeta Trusca
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Elena Valeria Fuior
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Madalina Fenyo
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical School, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece
| | - Maya Simionescu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Anca Violeta Gafencu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
26
|
Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, Liu T, Li G, Wong WT, Keung W, Tse G. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 2017; 16:12. [PMID: 28095860 PMCID: PMC5240327 DOI: 10.1186/s12944-016-0402-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology, pathophysiology and complications. They can be used for invasive interrogation of physiological function and provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies using human subjects, animal models have the advantages of being easier to manage, with controllable diet and environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as different systems are suitable for different research objectives. A good understanding of the similarities and differences to humans enables effective extrapolation of data for translational application. In this article, we will examine the different mouse models for the study and elucidation of the pathophysiological mechanisms underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | | | | | - Olivia Tsz Ling To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR People’s Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| |
Collapse
|
27
|
Plasma levels of apolipoprotein E, APOE genotype and risk of dementia and ischemic heart disease: A review. Atherosclerosis 2016; 255:145-155. [DOI: 10.1016/j.atherosclerosis.2016.10.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/08/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022]
|
28
|
Leren TP, Strøm TB, Berge KE. Variable phenotypic expression of nonsense mutation p.Thr5* in the APOE gene. Mol Genet Metab Rep 2016; 9:67-70. [PMID: 27830118 PMCID: PMC5094269 DOI: 10.1016/j.ymgmr.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/29/2023] Open
Abstract
Subjects with hypercholesterolemia who do not carry a mutation in the low density lipoprotein receptor gene, in the apolipoprotein B gene or in the proprotein convertase subtilisin/kexin type 9 gene, could possible carry a mutation in the apolipoprotein E (APOE) gene. DNA from 844 unrelated hypercholesterolemic subjects who did not carry a mutation in any of the three above mentioned genes, was subjected to DNA sequencing of the APOE gene. Two subjects were found to be heterozygous for mutation p.Thr5*. This mutation which generates a stop codon in the signal peptide, is assumed to prevent the synthesis of APOE. Family studies revealed that the mutation was carried on an APOE4 allele in both families. In one of the families only those who had an APOE2 allele as the second allele, had hypercholesterolemia. These were functionally hemizygous for APOE2 and presented with a Type III hyperlipoproteinemia phenotype. However, in the second family, hypercholesterolemia was observed in the index patient who had APOE3 as the second allele, but not in four heterozygous family members who also had APOE3 as the second allele. These findings underscore that the phenotypic expression of mutations in the APOE gene is variable and that the trait exhibits reduced penetrance.
Collapse
Affiliation(s)
- Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Knut Erik Berge
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Ryu HM, Kim YJ, Oh EJ, Oh SH, Choi JY, Cho JH, Kim CD, Park SH, Kim YL. Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells. J Cell Mol Med 2016; 20:2160-2172. [PMID: 27396856 PMCID: PMC5082407 DOI: 10.1111/jcmm.12916] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in ApoeKO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - You-Jin Kim
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Oh
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - Se-Hyun Oh
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - Ji-Young Choi
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Jang-Hee Cho
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Chan-Duck Kim
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - Sun-Hee Park
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea.,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea
| | - Yong-Lim Kim
- Division of Nephrology and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea. .,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea. .,Cell and Matrix Research Institute, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
30
|
Archer AM, Saber R, Rose S, Shaffer A, Misharin AV, Tsai F, Haines Iii GK, Dominguez S, Eren M, Vaughan DE, Cuda CM, Perlman H. ApoE deficiency exacerbates the development and sustainment of a semi-chronic K/BxN serum transfer-induced arthritis model. J Transl Med 2016; 14:170. [PMID: 27287704 PMCID: PMC4901400 DOI: 10.1186/s12967-016-0912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/16/2016] [Indexed: 02/01/2023] Open
Abstract
Background The risk for developing cardiovascular disease is greater in patients with rheumatoid arthritis (RA) than in the general population. While patients with RA also have dyslipidemia, the impact of dyslipidemia on the severity of inflammatory arthritis and associated cardiovascular disease is unclear. Currently, there are conflicting results regarding arthritis incidence in apolipoprotein E (ApoE) deficient mice, which spontaneously exhibit both hyperlipidemia and atherosclerosis. Here, we utilize a distinct approach to investigate the contribution of a hyperlipidemic environment on the development of arthritis and atherosclerosis in mice lacking ApoE. Methods K/BxN serum transfer-induced arthritis (STIA) was assessed in C57BL/6 (control) and ApoE−/− mice using clinical indices and immunohistochemical staining. Ankle synoviums were processed for flow cytometry. Aortic atherosclerosis was quantitated using Sudan IV staining. Serum cholesterol and cytokine levels were determined via enzymatic and luminex bead-based assays, respectively. Results ApoE−/− mice developed a sustained and enhanced semi-chronic inflammatory arthritis as compared to control mice. ApoE−/− mice had increased numbers of foamy macrophages, enhanced joint inflammation and amplified collagen deposition versus controls. The presence of arthritis did not exacerbate serum cholesterol levels or significantly augment the level of atherosclerosis in ApoE−/− mice. However, arthritic ApoE−/− mice exhibited a marked elevation of IL-6 as compared to non-arthritic ApoE−/− mice and arthritic C57BL/6 mice. Conclusions Loss of ApoE potentiates a semi-chronic inflammatory arthritis. This heightened inflammatory response was associated with an increase in circulating IL-6 and in the number of foamy macrophages within the joint. Moreover, the foamy macrophages within the arthritic joint are reminiscent of those within unstable atherosclerotic lesions and suggest a pathologic role for foamy macrophages in propagating arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0912-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy M Archer
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA
| | - Rana Saber
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA
| | - Shawn Rose
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA.,Immunoscience Exploratory Clinical and Translational Research, Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | - Alexander Shaffer
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA.,Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - FuNien Tsai
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA
| | | | - Salina Dominguez
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA
| | - Mesut Eren
- Division of Cardiology, Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Douglas E Vaughan
- Division of Cardiology, Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA.
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, McGaw M338, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res 2016; 57:758-66. [PMID: 27015743 DOI: 10.1194/jlr.r067249] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/16/2022] Open
Abstract
ApoE is a multifunctional protein that is expressed by many cell types that influences many aspects of cardiovascular physiology. In humans, there are three major allelic variants that differentially influence lipoprotein metabolism and risk for the development of atherosclerosis. Apoe-deficient mice and human apoE isoform knockin mice, as well as hypomorphic Apoe mice, have significantly contributed to our understanding of the role of apoE in lipoprotein metabolism, monocyte/macrophage biology, and atherosclerosis. This brief history of these mouse models will highlight their contribution to the understanding of the role of apoE in these processes. These Apoe(-/-) mice have also been extensively utilized as an atherosensitive platform upon which to assess the impact of modulator genes on the development and regression of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology University of Chicago, Chicago, IL
| | | |
Collapse
|
32
|
ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis 2016; 245:187-93. [PMID: 26724529 DOI: 10.1016/j.atherosclerosis.2015.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
|
33
|
Zanotti I, Turroni F, Piemontese A, Mancabelli L, Milani C, Viappiani A, Prevedini G, Sanchez B, Margolles A, Elviri L, Franco B, van Sinderen D, Ventura M. Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl Microbiol Biotechnol 2015; 99:6813-29. [DOI: 10.1007/s00253-015-6564-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022]
|
34
|
Mak ACY, Pullinger CR, Tang LF, Wong JS, Deo RC, Schwarz JM, Gugliucci A, Movsesyan I, Ishida BY, Chu C, Poon A, Kim P, Stock EO, Schaefer EJ, Asztalos BF, Castellano JM, Wyss-Coray T, Duncan JL, Miller BL, Kane JP, Kwok PY, Malloy MJ. Effects of the absence of apolipoprotein e on lipoproteins, neurocognitive function, and retinal function. JAMA Neurol 2015; 71:1228-36. [PMID: 25111166 DOI: 10.1001/jamaneurol.2014.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The identification of a patient with a rare form of severe dysbetalipoproteinemia allowed the study of the consequences of total absence of apolipoprotein E (apoE). OBJECTIVES To discover the molecular basis of this rare disorder and to determine the effects of complete absence of apoE on neurocognitive and visual function and on lipoprotein metabolism. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on the patient's DNA. He underwent detailed neurological and visual function testing and lipoprotein analysis. Lipoprotein analysis was also performed in the Cardiovascular Research Institute, University of California, San Francisco, on blood samples from the proband's mother, wife, 2 daughters, and normolipidemic control participants. MAIN OUTCOME MEASURES Whole-exome sequencing, lipoprotein analysis, and neurocognitive function. RESULTS The patient was homozygous for an ablative APOE frameshift mutation (c.291del, p.E97fs). No other mutations likely to contribute to the phenotype were discovered, with the possible exception of two, in ABCC2 (p.I670T) and LIPC (p.G137R). Despite complete absence of apoE, he had normal vision, exhibited normal cognitive, neurological, and retinal function, had normal findings on brain magnetic resonance imaging, and had normal cerebrospinal fluid levels of β-amyloid and tau proteins. He had no significant symptoms of cardiovascular disease except a suggestion of myocardial ischemia on treadmill testing and mild atherosclerosis noted on carotid ultrasonography. He had exceptionally high cholesterol content (760 mg/dL; to convert to millimoles per liter, multiply by 0.0259) and a high cholesterol to triglycerides ratio (1.52) in very low-density lipoproteins with elevated levels of small-diameter high-density lipoproteins, including high levels of prebeta-1 high-density lipoprotein. Intermediate-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins contained elevated apoA-I and apoA-IV levels. The patient's apoC-III and apoC-IV levels were decreased in very low-density lipoproteins. Electron microscopy revealed large lamellar particles having electron-opaque cores attached to electron-lucent zones in intermediate-density and low-density lipoproteins. Low-density lipoprotein particle diameters were distributed bimodally. CONCLUSIONS AND RELEVANCE Despite a profound effect on lipoprotein metabolism, detailed neurocognitive and retinal studies failed to demonstrate any defects. This suggests that functions of apoE in the brain and eye are not essential or that redundant mechanisms exist whereby its role can be fulfilled. Targeted knockdown of apoE in the central nervous system might be a therapeutic modality in neurodegenerative disorders.
Collapse
Affiliation(s)
- Angel C Y Mak
- Cardiovascular Research Institute, University of California, San Francisco
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco
| | - Ling Fung Tang
- Cardiovascular Research Institute, University of California, San Francisco
| | - Jinny S Wong
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco
| | - Jean-Marc Schwarz
- College of Osteopathic Medicine, Touro University California, Vallejo
| | | | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco
| | | | - Catherine Chu
- Cardiovascular Research Institute, University of California, San Francisco
| | - Annie Poon
- Cardiovascular Research Institute, University of California, San Francisco
| | - Phillip Kim
- Darin M. Camarena Health Centers, Madera, California
| | - Eveline O Stock
- Cardiovascular Research Institute, University of California, San Francisco
| | | | | | - Joseph M Castellano
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California7Center for Tissue Regeneration, Repair, and Restoration, VA Palo Alto Health Care System, Palo Alto, California
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco
| |
Collapse
|
35
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
36
|
Kim SH, Kothari S, Patel AB, Bielicki JK, Narayanaswami V. A pyrene based fluorescence approach to study conformation of apolipoprotein E3 in macrophage-generated nascent high density lipoprotein. Biochem Biophys Res Commun 2014; 450:124-8. [PMID: 24866239 DOI: 10.1016/j.bbrc.2014.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 12/18/2022]
Abstract
Apolipoprotein E3 (apoE3) is an anti-atherogenic apolipoprotein with the ability to exist in lipid-free and lipoprotein-associated states. During atherosclerosis, its function in promoting cholesterol efflux from macrophages via the ATP-binding cassette transporter A1 (ABCA1) takes a prominent role, leading to generation of nascent high density lipoprotein (nHDL) particles. The objective of this study is to understand the conformation adopted by apoE3 in macrophage-generated nHDL using a fluorescence spectroscopic approach involving pyrene. Pyrene-labeled recombinant human apoE3 displayed a robust ability to stimulate ABCA1-mediated cholesterol efflux from cholesterol-loaded J774 macrophages (which do not express apoE), comparable to that elicited by unlabeled apoE3. The nHDL recovered from the conditioned medium revealed the presence of apoE3 by immunoblot analysis. A heterogeneous population of nHDL bearing exogenously added apoE3 was generated with particle size varying from ∼12 to ∼19 nm in diameter, corresponding to molecular mass of ∼450 to ∼700 kDa. The lipid: apoE3 ratio varied from ∼60:1 to 10:1. A significant extent of pyrene excimer emission was noted in nHDL, indicative of spatial proximity between Cys112 on neighboring apoE3 molecules similar to that noted in reconstituted HDL. Cross-linking analysis using Cys-specific cross-linkers revealed the predominant presence of dimers. Taken together the data indicate a double belt arrangement of apoE molecules on nHDL. A similar organization of the C-terminal tail of apoE on nHDL was noted when pyrene-apoEA277C(201-299) was used as the cholesterol acceptor. These studies open up the possibility of using exogenously labeled apoE3 to generate nHDL for structural and conformational analysis.
Collapse
Affiliation(s)
- Sea H Kim
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Shweta Kothari
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Arti B Patel
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - John K Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
37
|
Wang Y, Krishna SM, Moxon J, Dinh TN, Jose RJ, Yu H, Golledge J. Influence of apolipoprotein E, age and aortic site on calcium phosphate induced abdominal aortic aneurysm in mice. Atherosclerosis 2014; 235:204-12. [PMID: 24858339 DOI: 10.1016/j.atherosclerosis.2014.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To assess relevant features of abdominal aortic aneurysms (AAA) induced by calcium phosphate within a mouse model. Specifically we investigated: (1) whether apolipoprotein E deficiency and older age promoted AAA formation, and (2) whether the local application of calcium phosphate affected the size of distant aortic segments. METHODS AAA was induced by application of calcium phosphate to the infra-renal aortas of 3 and 7 month old male mice. AAA induction was assessed by calculating expansion of the infra-renal aortic diameter over 1-4 weeks. Aortic samples were assessed to quantify calcification, macrophages infiltration, elastic lamellar degradation and apoptosis. Blood pressure was measured by the tail cuff method, and plasma concentrations of total cholesterol, low density lipoprotein and very low density lipoprotein cholesterol, and pro-inflammatory cytokines were measured using commercially available kits. The maximum diameters of the aortic arch, thoracic and supra-renal aorta at sacrifice were measured by morphometry and the mean maximal diameter of these three aortic segments was calculated. RESULTS The median expansion of the infra-renal aorta 2 weeks after AAA induction was significantly greater in apolipoprotein E deficient (ApoE(-/-)) mice than in age- and gender-matched wild type controls [275.8% (IQR 193.8%-348.5%) versus 94.7% (IQR 47.8%-163.4%), P = 0.02]. The greater aortic expansion in ApoE(-/-) mice was associated with aortic calcification, macrophage infiltration, elastic lamellar degradation and apoptosis of cells in the media and adventitia. The plasma low density lipoprotein/very low density lipoprotein cholesterol concentrations 2 weeks after AAA induction were positively correlated with the expansion of the infra-renal aorta induced by calcium phosphate. The median expansion of the infra-renal aorta 2 weeks after AAA induction was similar in 3 and 7 month old wild type mice. The local administration of calcium phosphate was associated with an increase in the mean maximal diameter of distant aortic segments, but not associated with changes in the concentrations of pro-inflammatory markers in either the plasma or the spleen. CONCLUSION This study suggests that apolipoprotein E deficiency, but not age, predisposes to AAA induced within the calcium phosphate model. Increased AAA expansion in ApoE(-/-) mice was associated with calcification, macrophage infiltration, elastic lamellar degradation, and cell apoptosis. Local application of calcium phosphate also promoted dilation of distant aortic segments.
Collapse
Affiliation(s)
- Yutang Wang
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Joseph Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Tam Nguyen Dinh
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Roby J Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Hongyou Yu
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
38
|
Tani M, Matera R, Horvath KV, Hasan TS, Schaefer EJ, Asztalos BF. The influence of apoE-deficiency and LDL-receptor-deficiency on the HDL subpopulation profile in mice and in humans. Atherosclerosis 2014; 233:39-44. [DOI: 10.1016/j.atherosclerosis.2013.11.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/03/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
|
39
|
Tran TN, Kosaraju MG, Tamamizu-Kato S, Akintunde O, Zheng Y, Bielicki JK, Pinkerton K, Uchida K, Lee YY, Narayanaswami V. Acrolein modification impairs key functional features of rat apolipoprotein E: identification of modified sites by mass spectrometry. Biochemistry 2014; 53:361-75. [PMID: 24325674 DOI: 10.1021/bi401404u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apolipoprotein E (apoE), an antiatherogenic apolipoprotein, plays a significant role in the metabolism of lipoproteins. It lowers plasma lipid levels by acting as a ligand for the low-density lipoprotein receptor (LDLr) family of proteins, in addition to playing a role in promoting macrophage cholesterol efflux in atherosclerotic lesions. The objective of this study is to examine the effect of acrolein modification on the structure and function of rat apoE and to determine the sites and nature of modification by mass spectrometry. Acrolein is a highly reactive aldehyde, which is generated endogenously as one of the products of lipid peroxidation and is present in the environment in pollutants such as tobacco smoke and heated oils. In initial studies, acrolein-modified apoE was identified by immunoprecipitation using an acrolein-lysine specific antibody in the plasma of 10-week old male rats that were exposed to filtered air (FA) or low doses of environmental tobacco smoke (ETS). While both groups displayed acrolein-modified apoE in the lipoprotein fraction, the ETS group had higher levels in the lipid-free fraction compared with the FA group. This observation provided the rationale to further investigate the effect of acrolein modification on rat apoE at a molecular level. Treatment of recombinant rat apoE with a 10-fold molar excess of acrolein resulted in (i) a significant decrease in lipid-binding and cholesterol efflux abilities, (ii) impairment in the LDLr- and heparin-binding capabilities, and (iii) significant alterations in the overall stability of the protein. The disruption in the functional abilities is attributed directly or indirectly to acrolein modification yielding an aldimine adduct at K149 and K155 (+38); a propanal adduct at K135 and K138 (+56); an N(ε)-(3-methylpyridinium)lysine (MP-lysine) at K64, K67, and K254 (+76), and an N(ε)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) derivative at position K68 (+94), as determined by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). The loss of function may also be attributed to alterations in the overall fold of the protein as noted by changes in the guanidine HCl-induced unfolding pattern and to protein cross-linking. Overall, disruption of the structural and functional integrity of apoE by oxidative modification of essential lysine residues by acrolein is expected to affect its role in maintaining plasma cholesterol homeostasis and lead to dysregulation in lipid metabolism.
Collapse
Affiliation(s)
- Tuyen N Tran
- Department of Chemistry & Biochemistry, California State University Long Beach , Long Beach, California 90840, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dieckmann M, Beil FT, Mueller B, Bartelt A, Marshall RP, Koehne T, Amling M, Ruether W, Cooper JA, Humphries SE, Herz J, Niemeier A. Human apolipoprotein E isoforms differentially affect bone mass and turnover in vivo. J Bone Miner Res 2013; 28:236-45. [PMID: 22991192 PMCID: PMC3547162 DOI: 10.1002/jbmr.1757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/29/2022]
Abstract
The primary role of apolipoprotein E (apoE) is to mediate the cellular uptake of lipoproteins. However, a new role for apoE as a regulator of bone metabolism in mice has recently been established. In contrast to mice, the human APOE gene is characterized by three common isoforms APOE ε2, ε3, and ε4 that result in different metabolic properties of the apoE isoforms, but it remains controversial whether the APOE polymorphism influences bone traits in humans. To clarify this, we investigated bone phenotypes of apoE knock-in (k.i.) mice, which express one human isoform each (apoE2 k.i., apoE3 k.i., apoE4 k.i.) in place of the mouse apoE. Analysis of 12-week-old female k.i. mice revealed increased levels of biochemical bone formation and resorption markers in apoE2 k.i. animals as compared to apoE3 k.i. and apoE4 k.i., with a reduced osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) ratio in apoE2 k.i., indicating increased turnover with prevailing resorption in apoE2 k.i. Accordingly, histomorphometric and micro-computed tomography (µCT) analyses demonstrated significantly lower trabecular bone mass in apoE2 than in apoE3 and apoE4 k.i. animals, which was reflected by a significant reduction of lumbar vertebrae maximum force resistance. Unlike trabecular bone, femoral cortical thickness, and stability was not differentially affected by the apoE isoforms. To extend these observations to the human situation, plasma from middle-aged healthy men homozygous for ε2/ε2, ε3/ε3, and ε4/ε4 (n = 21, n = 80, n = 55, respectively) was analyzed with regard to bone turnover markers. In analogy to apoE2 k.i. mice, a lower OPG/RANKL ratio was observed in the serum of ε2/ε2 carriers as compared to ε3/ε3 and ε4/ε4 individuals (p = 0.02 for ε2/ε2 versus ε4/ε4). In conclusion, the current data strongly underline the general importance of apoE as a regulator of bone metabolism and identifies the APOE ε2 allele as a potential genetic risk factor for low trabecular bone mass and vertebral fractures in humans.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang ZG, Robson SC, Yao Z. Lipoprotein metabolism in nonalcoholic fatty liver disease. J Biomed Res 2012; 27:1-13. [PMID: 23554788 PMCID: PMC3596749 DOI: 10.7555/jbr.27.20120077] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), an escalating health problem worldwide, covers a spectrum of pathologies characterized by fatty accumulation in hepatocytes in early stages, with potential progression to liver inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an extracellular role in lipid transport between vital organs through circulation, but also play an important intracellular role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metabolism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, potential diagnosis, and treatment of NAFLD.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
42
|
Proinflammatory effects of C-Peptide in different tissues. Int J Inflam 2012; 2012:932725. [PMID: 22762010 PMCID: PMC3384941 DOI: 10.1155/2012/932725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/23/2012] [Accepted: 04/27/2012] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is well known as an inflammatory disease that can lead to clinical complications such as heart attack or stroke. C-peptide as a cleavage product of proinsulin is in the last few decades known as an active peptide with a number of different effects on microvascular and macrovascular complications in type 2 diabetic patients. Patients with insulin resistance and early type 2 diabetes show elevated levels of C-peptide in blood. Several last findings demonstrated deposition of C-peptide in the vessel wall in ApoE-deficient mice and induction of local inflammation. Besides that, C-peptide has proliferative effects on human mesangial cells. This review discusses recently published proinflammatory effects of C-peptide in different tissues.
Collapse
|
43
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
44
|
Fuster JJ, Castillo AI, Zaragoza C, Ibáñez B, Andrés V. Animal models of atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:1-23. [PMID: 22137427 DOI: 10.1016/b978-0-12-394596-9.00001-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiovascular disease is currently the predominant cause of mortality worldwide and its incidence is expected to increase significantly during the next decades owing to the unhealthy effects of modern lifestyle habits (e.g., obesity and lack of physical exercise). Cardiovascular death is frequently associated with acute myocardial infarction or stroke, which are generally the ultimate consequence of an underlying atherosclerotic process. Small and big animal models are valuable tools to understand the molecular mechanisms underlying atherosclerotic plaque formation and progression, as well as the occurrence of associated ischemic events. Moreover, animal models of atherosclerosis are pivotal for testing mechanistic hypothesis and for translational research, including the assessment of dietary and/or pharmacological interventions and the development of imaging technologies and interventional devices. In this chapter, we will describe the most widely used animal models that have permitted major advances in atherosclerosis research and significant improvements in the treatment and diagnosis of atherosclerotic disease.
Collapse
Affiliation(s)
- José J Fuster
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Ablamunits V, Klebanov S, Giese SY, Herold KC. Functional human to mouse adipose tissue xenotransplantation. J Endocrinol 2012; 212:41-7. [PMID: 22007021 DOI: 10.1530/joe-11-0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
White adipose tissue (WAT) produces a number of metabolically important factors and, therefore, some inborn errors of metabolism may potentially be corrected by transplantation of normal allogeneic WAT. To explore the ability of human WAT (HuWAT) to compensate for a missing factor and to induce allogeneic immune response, we created leptin-deficient, immunodeficient mice and transplanted them with either 2·5 or 5 ml HuWAT. Recipient mice showed stable levels of human leptin in circulation, reduced body mass gain, and amelioration of hepatic steatosis. Food consumption and plasma insulin levels were reduced only in recipients of 5 ml WAT. Transfer of 2×10(7) human mononuclear cells to reject WAT as an allograft was ineffective and resulted only in some reduction of circulating leptin and a limited damage to the WAT grafts followed by the loss of human leukocytes.
Collapse
Affiliation(s)
- Vitaly Ablamunits
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
46
|
Petropoulou PA, Gantz DL, Wang Y, Rensen PCN, Kypreos KE. The aminoterminal 1-185 domain of human apolipoprotein E suffices for the de novo biogenesis of apoE-containing HDL-like particles in apoA-I deficient mice. Atherosclerosis 2011; 219:116-23. [PMID: 21802082 DOI: 10.1016/j.atherosclerosis.2011.06.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/20/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
AIMS Recently we showed that apolipoprotein E promotes the de novo biogenesis of apoE-containing HDL particles in a process that requires the function of the lipid transporter ABCA1. Here, we sought to identify the domain of apoE that is responsible for its functional interactions with ABCA1 and the formation of apoE-rich HDL-like particles. METHODS AND RESULTS Recombinant attenuated adenoviruses expressing carboxy-terminal truncated forms of apoE4 (apoE4[1-259], apoE4[1-229], apoE4[1-202], and apoE4[1-185]) were administered to apoA-I-deficient mice at a low dose of 8×10(8) pfu and five days post-infection plasma samples were isolated and analyzed for HDL formation. Fractionation of plasma lipoproteins of the infected mice by density gradient ultracentrifugation and FPLC revealed that all forms were capable of promoting HDL formation. Negative staining electron microscopy analysis of the HDL density fractions confirmed that all C-terminal truncated forms of apoE4 promoted the formation of particles with diameters in the HDL region. Interestingly, apoE4[1-259], apoE4[1-229], and apoE4[1-202] led to the formation of spherical particles while plasma from apoE4[1-185] expressing mice contained a mixture of spherical and discoidal particles. CONCLUSIONS Taken together, our data establish that the aminoterminal 1-185 region of apoE suffices for the formation of HDL particles in vivo. Our findings may have important ramifications in the design of new biological drugs for the treatment of dyslipidemia, atherosclerosis and coronary heart disease.
Collapse
|
47
|
Abstract
It is well-known that nephrotic syndrome and chronic renal failure are associated with lipid and lipoprotein abnormalities. For a long time, it has been thought that hyperlipidemia is a secondary and insignificant condition of these renal injuries. Recently, it has been shown that dyslipidaemia may contribute to the development and progression of chronic kidney disease. Apolipoprotein E (apoE) null mice are a very popular model for studying spontaneous hypercholesterolemia, but only limited data are available for the role of apolipoprotein E in kidney disease. The purpose of this study is to evaluate kidney disease in apolipoprotein E deficient mice. For this study, apoE null mice and control mice at different ages (6 weeks and 15 months) were used. Kidney morphological damage and proteins involved in oxidative stress and aging (TNF-α and NF-kB) were analyzed. ApoE deficient mice have morphological alterations that are the hallmark of kidney pathogenesis, which increase with the age of the animals. In apoE null mice kidneys, there is also increased oxidative stress as compared to control mice at the same age and fewer antioxidant enzymes. Our findings add to the growing list of protective effects that apoE possesses.
Collapse
|
48
|
Trusca VG, Fuior EV, Florea IC, Kardassis D, Simionescu M, Gafencu AV. Macrophage-specific up-regulation of apolipoprotein E gene expression by STAT1 is achieved via long range genomic interactions. J Biol Chem 2011; 286:13891-904. [PMID: 21372127 DOI: 10.1074/jbc.m110.179572] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In atherogenesis, macrophage-derived apolipoprotein E (apoE) has an athero-protective role by a mechanism that is not fully understood. We investigated the regulatory mechanisms involved in the modulation of apoE expression in macrophages. The experiments showed that the promoters of all genes of the apoE/apoCI/apoCIV/apoCII gene cluster are enhanced by multienhancer 2 (ME.2), a regulatory region that is located 15.9 kb downstream of the apoE gene. ME.2 interacts with the apoE promoter in a macrophage-specific manner. Transient transfections in RAW 264.7 macrophages showed that the activity of ME.2 was strongly decreased by deletion of either 87 bp from the 5' end or 131 bp from the 3' end. We determined that the minimal fragment of this promoter that can be activated by ME.2 is the proximal -100/+73 region. The analysis of the deletion mutants of ME.2 revealed the importance of the 5' end of ME.2 in apoE promoter transactivation. Chromatin conformational capture assays demonstrated that both ME.2 and ME.1 physically interacted with the apoE promoter in macrophages. Our data showed that phorbol 12-myristate 13-acetate-induced differentiation of macrophages is accompanied by a robust induction of apoE and STAT1 expression. In macrophages (but not in hepatocytes), STAT1 up-regulated apoE gene expression via ME.2. The STAT1 binding site was located in the 174-182 region of ME.2. In conclusion, the specificity of the interactions between the two multienhancers (ME.1 and ME.2) and the apoE promoter indicates that these distal regulatory elements play an important role in the modulation of apoE gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Violeta Georgeta Trusca
- Institute of Cellular Biology and Pathology, Nicolae Simionescu, Romanian Academy, Bucharest 050568, Romania
| | | | | | | | | | | |
Collapse
|
49
|
Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT, Schaefer EJ. HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events. Clin Chem 2011; 57:392-410. [DOI: 10.1373/clinchem.2010.155333] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
A growing body of evidence from epidemiological data, animal studies, and clinical trials supports HDL as the next target to reduce residual cardiovascular risk in statin-treated, high-risk patients. For more than 3 decades, HDL cholesterol has been employed as the principal clinical measure of HDL and cardiovascular risk associated with low HDL-cholesterol concentrations. The physicochemical and functional heterogeneity of HDL present important challenges to investigators in the cardiovascular field who are seeking to identify more effective laboratory and clinical methods to develop a measurement method to quantify HDL that has predictive value in assessing cardiovascular risk.
CONTENT
In this report, we critically evaluate the diverse physical and chemical methods that have been employed to characterize plasma HDL. To facilitate future characterization of HDL subfractions, we propose the development of a new nomenclature based on physical properties for the subfractions of HDL that includes very large HDL particles (VL-HDL), large HDL particles (L-HDL), medium HDL particles (M-HDL), small HDL particles (S-HDL), and very-small HDL particles (VS-HDL). This nomenclature also includes an entry for the pre-β-1 HDL subclass that participates in macrophage cholesterol efflux.
SUMMARY
We anticipate that adoption of a uniform nomenclature system for HDL subfractions that integrates terminology from several methods will enhance our ability not only to compare findings with different approaches for HDL fractionation, but also to assess the clinical effects of different agents that modulate HDL particle structure, metabolism, and function, and in turn, cardiovascular risk prediction within these HDL subfractions.
Collapse
Affiliation(s)
| | | | - M John Chapman
- INSERM Unit 939, UPMC Paris 6, Hôpital de la Pitié, Paris, France
| | | | | | - Anatol Kontush
- INSERM Unit 939, UPMC Paris 6, Hôpital de la Pitié, Paris, France
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, University of California, Berkeley
- University of California, San Francisco, CA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
50
|
The Fat-Fed Apolipoprotein E Knockout Mouse Brachiocephalic Artery in the Study of Atherosclerotic Plaque Rupture. J Biomed Biotechnol 2011; 2011:379069. [PMID: 21076539 PMCID: PMC2975993 DOI: 10.1155/2011/379069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis has been studied in animals for almost a century, yet the events leading up to the rupture of an atherosclerotic plaque (the underlying cause of the majority of fatal thrombosis formation) have only been studied in the past decade, due in part to the development of a mouse model of spontaneous plaque rupture. Apolipoprotein E knockout mice, when fed a high-fat diet, consistently develop lesions in the brachiocephalic artery that rupture at a known time point. It is therefore now possible to observe the development of lesions to elucidate the mechanisms behind the rupture of plaques. Critics argue that the model does not replicate the appearance of human atherosclerotic plaque ruptures. The purpose of this review is to highlight the reasons why we should be looking to the apolipoprotein E knockout mouse to further our understanding of plaque rupture.
Collapse
|