1
|
Van der Speeten K, Kusamura S, Villeneuve L, Piso P, Verwaal VJ, González-Moreno S, Glehen O. The 2022 PSOGI International Consensus on HIPEC Regimens for Peritoneal Malignancies: HIPEC Technologies. Ann Surg Oncol 2024; 31:7090-7110. [PMID: 39037523 DOI: 10.1245/s10434-024-15513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
This manuscript reports the results of an international consensus on technologies of hyperthermic intraperitoneal perioperative chemotherapy (HIPEC) performed with the following goals: To provide recommendations for the technological parameters to perform HIPEC. To identify the role of heat and its application forms in treating peritoneal metastases. To provide recommendations regarding the correct dosimetry of intraperitoneal chemotherapy drugs and their carrier solutions. To identify for each intraperitoneal chemotherapy regimen the best dosimetry and fractionation. To identify areas of future research pertaining to HIPEC technology and regimens. This consensus was performed by the Delphi technique and comprised two rounds of voting. In total, 96 of 102 eligible panelists replied to both Delphi rounds (94.1%) with a consensus of 39/51 questions on HIPEC technical aspects. Among the recommendations that met with the strongest consensus were those concerning the dose of HIPEC drug established in mg/m2, a target temperature of at least 42°C, and the use of at least three temperature probes to pursue hyperthermia. Ninety minutes as the ideal HIPEC duration seemed to make consensus. These results should be considered when designing new clinical trials in patients with peritoneal surface malignancies.
Collapse
Affiliation(s)
- Kurt Van der Speeten
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium.
- Faculty of Life Sciences, BIOMED Research Institute, University Hasselt, Hasselt, Belgium.
| | - Shigeki Kusamura
- Department of Surgical Oncology, PSM unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laurent Villeneuve
- Department of Surgical Oncology, Centre Hospitalier Lyon-sud, Lyon, France
| | - Pompiliu Piso
- Department of General and Visceral Surgery, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Vic J Verwaal
- Peritoneal Surface Malignancy and HIPEC Institute for Regional Sundhedforskning, Syddansk University, Odense, Sweden
| | | | - Olivier Glehen
- Department of Surgical Oncology, Centre Hospitalier Lyon-sud, Lyon, France
| |
Collapse
|
2
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Selyutina OY, Mastova AV, Polyakov NE. The Interaction of Anthracycline Based Quinone-Chelators with Model Lipid Membranes: 1H NMR and MD Study. MEMBRANES 2023; 13:membranes13010061. [PMID: 36676868 PMCID: PMC9861344 DOI: 10.3390/membranes13010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Anthracycline antibiotics, e.g., doxorubicin, daunomycin, and other anthraquinones, are an important family of antitumor agents widely used in chemotherapy, which is currently the principal method for treating many malignancies. Thus, development of improved antitumor drugs with enhanced efficacy remains a high priority. Interaction of anthraquinone-based anticancer drugs with cell membranes attracts significant attention due to its importance in the eventual overcoming of multidrug resistance (MDR). The use of drugs able to accumulate in the cell membrane is one of the possible ways of overcoming MDR. In the present work, the aspects of interaction of anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione) (Q1) with a model membrane were studied by means of NMR and molecular dynamics simulations. A fundamental shortcoming of anthracycline antibiotics is their high cardiotoxicity caused by reactive oxygen species (ROS). The important feature of Q1 is its ability to chelate transition metal ions responsible for ROS generation in vivo. In the present study, we have shown that Q1 and its chelating complexes penetrated into the lipid membrane and were located in the hydrophobic part of the bilayer near the bilayer surface. The chelate complex formation of Q1 with metal ions increased its penetration ability. In addition, it was found that the interaction of Q1 with lipid molecules could influence lipid mobility in the bilayer. The obtained results have an impact on the understanding of molecular mechanisms of Q1 biological activity.
Collapse
|
4
|
Kumar N, Sastry GN. Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations. J Mol Graph Model 2021; 108:108000. [PMID: 34365255 DOI: 10.1016/j.jmgm.2021.108000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Human cell membranes consist of various lipids that are essential for their structure and function. It typically comprises phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), phosphatidylserine (POPS), sphingomyelin (PSM), and cholesterol (CHL). Several experimental and computational techniques have been employed to characterize the composition of human cell membranes, however, CHL enriched membrane is still not clearly understood through these techniques. Molecular dynamics simulation results illustrated the biophysical properties of heterogeneous membranes based on the lipid composition as well as the concentration of lipids, exclusively for CHL and PSM. Herein, we have investigated the structure-function relationships of lipids comparatively to delineate the effect of heterogeneity on the biophysical properties of different membranes. It has been observed that the significant fraction of CHL (i.e., ~33% in ternary, ~25% in quaternary, and ~16% in senary type bilayers) in combination with other lipids introduced compactness, and increased the thickness of the membrane. The analysis of lipid mass density stated that the density of lipid head group, phosphate, and glycerol-ester in presence of CHL with or without PSM is an underlying reason for membrane ordering. Results also revealed that the presence of POPI and POPS are the reasons for an adequate drop in the ordering of lipid chain, particularly on POPE chain. The self-interaction of CHL, PSM, POPE and the interaction of CHL and POPC with POPE seem to determine the structure and function of the heterogeneous membrane. Our findings provide a qualitative understanding of the effect of membrane heterogeneity on the physiological properties of membranes. The structures inspected in this study would help to select the heterogeneous bilayer model to mimic the human cell membranes to analyse or characterize the membrane-associated phenomena.
Collapse
Affiliation(s)
- Nandan Kumar
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U. P., India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U. P., India; Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
5
|
Mameri A, Bournine L, Mouni L, Bensalem S, Iguer-Ouada M. Oxidative stress as an underlying mechanism of anticancer drugs cytotoxicity on human red blood cells' membrane. Toxicol In Vitro 2021; 72:105106. [PMID: 33539984 DOI: 10.1016/j.tiv.2021.105106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study is to investigate the direct in vitro effects of anticancer drugs on red blood cells (RBCs) and to explore the underlying mechanism, mainly by measuring RBCs oxidative stress (OS) status. After RBCs direct contact with fourteen (14) anticancer drugs, several parameters were assessed including: cellular turbidity, methemoglobin (metHb) generation, released Hb and Hb stability. Moreover, intracellular Hb, considered as new molecular target of anticancer drugs, was quantified inside RBCs. MDA level, the main biomarker of OS, was simultaneously measured. The cellular turbidity reveled severe (docetaxel "TXT", 0.03 ± 0.002), moderate (methotrexate "MTX", 0.49 ± 0.009), or none (5-fluorouracil "5-FU", 0.76 ± 0.029) membrane cytotoxicity (MC). An inverse relationship between cell concentration, released Hb and metHb content was obtained. High metHb generation, revealing intense OS, was also mostly expressed in paclitaxel "TXL" and etoposide "VP16". Further, epirubicin "EPI" and "TXT" induced important oxidation of membrane lipids with 0.32 ± 0.014 and 0.26 ± 0.004, respectively. Also, MTX (0.17 ± 0.006) and doxorubicin "DOX" (0.32 ± 0.034) affected significantly Hb stability by a direct contact with molecule. These findings demonstrated that anticancer drugs have the ability to induce membrane damages by the exacerbation of OS through membrane lipid peroxidation and Hb oxidation even inside RBCs.
Collapse
Affiliation(s)
- Amal Mameri
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Lamine Bournine
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
6
|
Hou Y, Li J, Liu X, Ruan Y, Chen SL, Yuan Q, Gan W. The effect of side group on the dynamic behavior of anthracyclines on DOPG lipid membranes revealed by second harmonic generation and fluorescence. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm Sin B 2020; 10:1730-1740. [PMID: 33088692 PMCID: PMC7564015 DOI: 10.1016/j.apsb.2020.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
The combination of paclitaxel (PTX) and doxorubicin (DOX) has been widely used in the clinic. However, it remains unsatisfied due to the generation of severe toxicity. Previously, we have successfully synthesized a prodrug PTX-S-DOX (PSD). The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX. Thus, we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation. Due to the fact that copper ions (Cu2+) could coordinate with the anthracene nucleus of DOX, we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+ gradient. Hence, we designed a remote loading liposomal formulation of PSD (PSD LPs) for combination chemotherapy. The prepared PSD LPs displayed extended blood circulation, improved tumor accumulation, and more significant anti-tumor efficacy compared with PSD NPs. Furthermore, PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil, indicating better safety. Therefore, this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.
Collapse
Key Words
- ALT, alanine transaminase
- AST, aspartate transaminase
- AUC, area under the curve
- BUN, blood urea nitrogen
- CHO, cholesterol
- CO2, carbon dioxide
- CR, creatinine
- Combination therapy
- Cu2+, copper ions
- DL, drug loading
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DNA, deoxyribonucleic acid
- DOX, doxorubicin
- DSPE-PEG2000, 2-distearoyl-snglycero-3-phosphoethanolamine-N-[methyl(polyethylene glycol)-2000
- DTT, d,l-dithiothreitol
- EDTA, ethylene diamine tetraacetic acid
- EE, encapsulation efficacy
- FBS, fetal bovine serum
- GSH, glutathione
- H&E, hematoxylin and eosin
- H2O2, hydrogen peroxide
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HPLC, high-performance liquid chromatography
- HSPC, hydrogenated soybean phospholipids
- IC50, half maximal inhibitory concentration
- IVIS, in vivo imaging system
- MLVs, multilamellar vesicles
- MRT, mean residence time
- MTD, maximum tolerated dose
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Nanoparticles
- PBS, phosphate buffer saline
- PDI, polydispersity index
- PSD LPs, PTX-S-DOX liposomes
- PSD NPs, PTX-S-DOX self-assembled nanoparticles
- PSD, PTX-S-DOX
- PTX, paclitaxel
- Paclitaxel–doxorubicin prodrug
- Prodrug
- ROS, reactive oxygen species
- Remote loading liposomes
- SD, standard deviation
- Safety
- TEM, transmission electron microscopy
- UV, ultraviolet
Collapse
|
8
|
Torres M, Rosselló CA, Fernández-García P, Lladó V, Kakhlon O, Escribá PV. The Implications for Cells of the Lipid Switches Driven by Protein-Membrane Interactions and the Development of Membrane Lipid Therapy. Int J Mol Sci 2020; 21:ijms21072322. [PMID: 32230887 PMCID: PMC7177374 DOI: 10.3390/ijms21072322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
Collapse
Affiliation(s)
- Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, 91120 Jerusalem, Israel;
| | - Pablo Vicente Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Correspondence:
| |
Collapse
|
9
|
Pandey N, Menon JU, Takahashi M, Hsieh JT, Yang J, Nguyen KT, Wadajkar AS. Thermo-responsive Fluorescent Nanoparticles for Multimodal Imaging and Treatment of Cancers. Nanotheranostics 2020; 4:1-13. [PMID: 31911890 PMCID: PMC6940202 DOI: 10.7150/ntno.39810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
Theranostic systems capable of delivering imaging and therapeutic agents at a specific target are the focus of intense research efforts in drug delivery. To overcome non-degradability and toxicity concerns of conventional theranostic systems, we formulated a novel thermo-responsive fluorescent polymer (TFP) and conjugated it on the surface of iron oxide magnetic nanoparticles (MNPs) for imaging and therapeutic applications in solid tumors. Methods: TFP-MNPs were synthesized by copolymerizing poly(N-isopropylacrylamide), allylamine and a biodegradable photoluminescent polymer, and conjugating it on MNPs via a free radical polymerization reaction. Physicochemical properties of the nanoparticles were characterized using Fourier transform infrared spectroscopy, dynamic light scattering, and vibrational sample magnetometry. Nanoparticle cytocompatibility, cellular uptake and cytotoxicity were evaluated using in vitro cell assays. Finally, in vivo imaging and therapeutic efficacy studies were performed in subcutaneous tumor xenograft mouse models. Results: TFP-MNPs of ~135 nm diameter and -31 mV ζ potential maintained colloidal stability and superparamagnetic properties. The TFP shell was thermo-responsive, fluorescent, degradable, and released doxorubicin in response to temperature changes. In vitro cell studies showed that TFP-MNPs were compatible to human dermal fibroblasts and prostate epithelial cells. These nanoparticles were also taken up by prostate and skin cancer cells in a dose-dependent manner and exhibited enhanced killing of tumor cells at 41°C. Preliminary in vivo studies showed theranostic capabilities of the nanoparticles with bright fluorescence, MRI signal, and therapeutic efficacy under magnetic targeting after systemic administration in tumor bearing mice. Conclusion: These results indicate the potential of TFP-MNPs as multifunctional theranostic nanoparticles for various biological applications, including solid cancer management.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jyothi U Menon
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Masaya Takahashi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Yang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aniket S Wadajkar
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.,Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
A computational study of Anthracyclines interacting with lipid bilayers: Correlation of membrane insertion rates, orientation effects and localisation with cytotoxicity. Sci Rep 2019; 9:2155. [PMID: 30770843 PMCID: PMC6377671 DOI: 10.1038/s41598-019-39411-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/23/2019] [Indexed: 11/09/2022] Open
Abstract
Anthracyclines interact with DNA and topoisomerase II as well as with cell membranes, and it is these latter interactions that can cause an increase in their cytotoxic activity. In the present study a detailed computational analysis of the initial insertion, orientation and nature of the interaction occurring between Anthracyclines and two different lipid bilayers (unsaturated POPC and saturated DMPC) is explored through molecular dynamics (MD) simulations; four Anthracyclines: Doxorubicin (DOX), Epirubicin (EPI), Idarubicin (IDA) and Daunorubicin (DAU) were examined. The results indicate that the increased cytotoxicity of DOX, in comparison to the other three analogues, is correlated with its ability to diffuse at a faster rate into the bilayers. Additionally, DOX exhibited considerably different orientational behaviour once incorporated into the bilayer and exhibited a higher propensity to interact with the hydrocarbon tails in both lipids indicating a higher probability of transport to the other leaflet of the bilayer.
Collapse
|
11
|
Supermolecular drug challenge to overcome drug resistance in cancer cells. Drug Discov Today 2018; 23:1556-1563. [DOI: 10.1016/j.drudis.2018.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/02/2018] [Accepted: 05/29/2018] [Indexed: 01/24/2023]
|
12
|
Alves AC, Ribeiro D, Horta M, Lima JLFC, Nunes C, Reis S. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity. J R Soc Interface 2018; 14:rsif.2017.0408. [PMID: 28855387 DOI: 10.1098/rsif.2017.0408] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function.
Collapse
Affiliation(s)
- Ana Catarina Alves
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Miguel Horta
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - José L F C Lima
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Di Marco A, Dasdia T, Pastori W. Interaction of Calcium Ions and Camp on the Cytotoxic Effect of Doxorubicin. TUMORI JOURNAL 2018; 70:217-21. [PMID: 6330945 DOI: 10.1177/030089168407000301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Doxorubicin tested at the concentration of 1–2 × 10−7 M inhibited the cloning efficiency of MS2T cells following 22 and 48 h exposure in complete medium. In the same experimental conditions the [3H]thymidine incorporation was practically unaffected. The inhibitory effect of doxorubicin on cloning efficiency appeared to be directly related with the serum concentration. In fact, this effect became more marked when the cloning efficiency was stimulated by increasing serum concentration in the cultural medium. However, this effect did not seem to be Ca2+dependent. Similarly doxorubicin displayed a strong inhibitory effect, when the proliferative activity was stimulated by an optimal combination of cAMP and low Ca2+. On the contrary the inhibitory effect of doxorubicin was markedly reduced when the Ca2+ concentration reached the physiological value. These results confirm the direct correlation of the killing effect of doxorubicin with proliferative activity of the cells.
Collapse
|
14
|
Meng Z, Kang Z, Sun C, Yang S, Zhao B, Feng S, Meng Q, Liu K. Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. NANOSCALE 2018; 10:1215-1227. [PMID: 29292451 DOI: 10.1039/c7nr05843h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study presents the design and evaluation of a series of multifunctional peptides and their gene delivery abilities. The peptide sequences contained a cell-penetrating segment, six continuous histidine residues, a stearyl moiety and a laminin receptor-targeting segment. The YIGSR segment promoted cellular uptake through the interaction with laminin receptors on the surface of cells, which resulted in a great improvement in gene transfection efficiency. The conformation, particle size and zeta potential of peptide/DNA complexes were characterized via circular dichroism and dynamic light scattering. Their gene transfection efficiency was investigated by fluorescence-activated cell sorting and confocal microscopy. The transfection efficiency of the designed peptide vectors was higher than that of Lipo 2000. The peptide TAT-H6-K(C18)-YIGSR displayed transfection efficiencies at N/P ratios of 6, which was 3.5 and 7 times higher than that of Lipo 2000 in B16F10 and 293T cells, respectively. All peptides exhibited lower cytotoxicity than Lipo 2000 in B16F10 and 293T cells. In summary, the designed YIGSR-containing multifunctional peptide gene vectors promoted cellular uptake and gene transfection. Their in vivo transfection ability was investigated in zebrafish, and the transfection efficiency was determined by confocal microscopy and bioluminescence imaging. The peptide vectors, owing to their relatively short sequences and ease of functionalization, offer a promising approach for gene delivery because of their low cytotoxicity and high transfection efficiency.
Collapse
Affiliation(s)
- Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Van der Speeten K, Lemoine L. HIPEC Methodology, Comparison of Techniques, and Drug Regimens: Is There a Need for Standardization? MANAGEMENT OF PERITONEAL METASTASES- CYTOREDUCTIVE SURGERY, HIPEC AND BEYOND 2018:79-102. [DOI: 10.1007/978-981-10-7053-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Alves AC, Nunes C, Lima J, Reis S. Daunorubicin and doxorubicin molecular interplay with 2D membrane models. Colloids Surf B Biointerfaces 2017; 160:610-618. [DOI: 10.1016/j.colsurfb.2017.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
17
|
Anandins A and B, Two Rare Steroidal Alkaloids from a Marine Streptomyces anandii H41-59. Mar Drugs 2017; 15:md15110355. [PMID: 29125577 PMCID: PMC5706044 DOI: 10.3390/md15110355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/02/2022] Open
Abstract
Anandins A (1) and B (2), two rare steroidal alkaloids, were isolated from the fermentative broth of a marine actinobacteria Streptomyces anandii H41-59. The gross structures of the two alkaloids were elucidated by spectroscopic methods including HR-ESI-MS, and NMR. Their absolute configurations were confirmed by single-crystal X-ray diffraction analysis and comparison of their experimental and calculated electronic circular dichroism spectra, respectively. Anandin A exhibited a moderate inhibitory effect against three human cancer cell lines MCF-7, SF-268, and NCI-H460 with IC50 values of 7.5, 7.9, 7.8 μg/mL, respectively.
Collapse
|
18
|
Zhang L, Zhang Z, Jasa J, Li D, Cleveland RO, Negahban M, Jérusalem A. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates. Sci Rep 2017; 7:8316. [PMID: 28814791 PMCID: PMC5559491 DOI: 10.1038/s41598-017-06827-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as “mechanical catalysts” to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
Collapse
Affiliation(s)
- Lili Zhang
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| | - Zesheng Zhang
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - John Jasa
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Dongli Li
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Robin O Cleveland
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Mehrdad Negahban
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Antoine Jérusalem
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| |
Collapse
|
19
|
Desai AJ, Miller LJ. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function. Br J Pharmacol 2017; 175:4009-4025. [PMID: 28691227 DOI: 10.1111/bph.13943] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Drug development targeting GPCRs often utilizes model heterologous cell expression systems, reflecting an implicit assumption that the membrane environment has little functional impact on these receptors or on their responsiveness to drugs. However, much recent data have illustrated that membrane components can have an important functional impact on intrinsic membrane proteins. This review is directed toward gaining a better understanding of the structure of the plasma membrane in health and disease, and how this organelle can influence GPCR structure, function and regulation. It is important to recognize that the membrane provides a potential mode of lateral allosteric regulation of GPCRs and can affect the effectiveness of drugs and their biological responses in various disease states, which can even vary among individuals across the population. The type 1 cholecystokinin receptor is reviewed as an exemplar of a class A GPCR that is affected in this way by changes in the plasma membrane. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
20
|
Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep 2017; 7:6343. [PMID: 28740256 PMCID: PMC5524714 DOI: 10.1038/s41598-017-06445-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/13/2017] [Indexed: 01/31/2023] Open
Abstract
Despite doxorubicin being commonly used in chemotherapy there still remain significant holes in our knowledge regarding its delivery efficacy and an observed resistance mechanism that is postulated to involve the cell membrane. One possible mechanism is the efflux by protein P-gp, which is found predominantly in cholesterol enriched domains. Thereby, a hypothesis for the vulnerability of doxorubicin to efflux through P-gp is its enhanced affinity for the ordered cholesterol rich regions of the plasma membrane. Thus, we have studied doxorubicin’s interaction with model membranes in a cholesterol rich, ordered environment and in liquid-disordered cholesterol poor environment. We have combined three separate experimental protocols: UV-Vis spectrophotometry, fluorescence quenching and steady-state anisotropy and computational molecular dynamics modeling. Our results show that the presence of cholesterol induces a change in membrane structure and doesn’t impair doxorubicin’s membrane partitioning, but reduces drug’s influence on membrane fluidity without directly interacting with it. It is thus possible that the resistance mechanism that lowers the efficacy of doxorubicin, results from an increased density in membrane regions where the efflux proteins are present. This work represents a successful approach, combining experimental and computational studies of membrane based systems to unveil the behavior of drugs and candidate drug molecules.
Collapse
|
21
|
Lemoine L, Sugarbaker P, Van der Speeten K. Drugs, doses, and durations of intraperitoneal chemotherapy: standardising HIPEC and EPIC for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma. Int J Hyperthermia 2017; 33:582-592. [PMID: 28540826 DOI: 10.1080/02656736.2017.1291999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Lieselotte Lemoine
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Paul Sugarbaker
- Washington Cancer Institute, Washington Hospital Center, Washington DC, USA
| | - Kurt Van der Speeten
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
| |
Collapse
|
22
|
Digital imaging information technology for biospeckle activity assessment relative to bacteria and parasites. Lasers Med Sci 2017. [DOI: 10.1007/s10103-017-2256-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Escribá PV. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1493-1506. [PMID: 28577973 DOI: 10.1016/j.bbamem.2017.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
24
|
Van der Speeten K, Lemoine L, Sugarbaker P. Overview of the optimal perioperative intraperitoneal chemotherapy regimens used in current clinical practice. Pleura Peritoneum 2017; 2:63-72. [PMID: 30911634 PMCID: PMC6405035 DOI: 10.1515/pp-2017-0003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Peritoneal surface malignancy (PSM) is a common manifestation of digestive and gynecologic malignancies alike. At present, patients with isolated PSM are treated with a combination therapy of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). The combination of CRS and intraperitoneal (IP) chemotherapy should now be considered standard of care for PSM from appendiceal epithelial cancers, colorectal cancer and peritoneal mesothelioma. Although there is a near universal standardization regarding the CRS, we are still lacking a much-needed standardization among the various IP chemotherapy treatment modalities used today in clinical practice. Pharmacologic evidence should be generated to answer important questions raised by the myriad of variables associated with IP chemotherapy.
Collapse
Affiliation(s)
- Kurt Van der Speeten
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600 Genk, Belgium
| | | | - Paul Sugarbaker
- Washington Cancer Institute, Washington Hospital Center, Washington DC, USA
| |
Collapse
|
25
|
Escribá PV. WITHDRAWN: Membrane-lipid therapy: A historical perspective of membrane-targeted therapies-From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017:S0005-2736(17)30139-6. [PMID: 28476630 DOI: 10.1016/j.bbamem.2017.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bbamem.2017.05.017. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
26
|
The daunorubicin interplay with mimetic model membranes of cancer cells: A biophysical interpretation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:941-948. [DOI: 10.1016/j.bbamem.2017.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
|
27
|
Ansari MZ, Grassi HC, Cabrera H, Velásquez A, Andrades EDJ. Online fast Biospeckle monitoring of drug action in Trypanosoma cruzi parasites by motion history image. Lasers Med Sci 2016; 31:1447-1454. [PMID: 27349247 DOI: 10.1007/s10103-016-2008-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
This paper reports on the application of the motion history image (MHI) method on dynamic laser speckle processing as a result of a specific drug action on Trypanosoma cruzi parasites. The MHI procedure is based on human action recognition, and unlike other methods which use a sequence consisting of several frames for recognition, this method uses only an MHI per action sequence for recognition. MHI method avoids the complexity as well as the large computation in sequence matching-based methods and detects a change in the speckle pattern. Experimental results of MHI on real-time monitoring of activity (motility) under the influence of the drug demonstrate the effectiveness of the proposed method. The MHI showed an online result without loss of resolution and definition if we compare with routine LASCA method. The obtained results highlight the advantage of the MHI analysis over traditional qualitative image intensity-based methods and demonstrate the potential of measuring the activity of parasites via dynamic laser speckle analysis. The data was further numerically analyzed in the time domain, and the results presented the ability of the technique to monitor the action of the drug, particularly Epirubicin (100 μg/ml).
Collapse
Affiliation(s)
- Mohammad Zaheer Ansari
- Biomedical Optics Laboratory, Department of Applied Physics, Indian School of Mines, Dhanbad, 826004, Jharkhand, India.
| | - Hilda C Grassi
- Facultad de Farmacia y Bioanálisis, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Humberto Cabrera
- Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, Mérida, 5101, Venezuela.
- SPIE-ICTP Anchor Research in Optics Program Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, 34151, Italy.
| | - Ana Velásquez
- Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, Mérida, 5101, Venezuela
| | - Efrén D J Andrades
- Facultad de Farmacia y Bioanálisis, Universidad de los Andes, Mérida, 5101, Venezuela
| |
Collapse
|
28
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
29
|
Ansari MZ, Grassi HC, Cabrera H, Andrades EDJ. Real time monitoring of drug action on T. cruziparasites using a biospeckle laser method. LASER PHYSICS 2016; 26:065603. [DOI: 10.1088/1054-660x/26/6/065603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
30
|
Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer CT, Wiegering A, Kämmerer U. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:160. [PMID: 27245162 PMCID: PMC4888675 DOI: 10.1186/s12906-016-1138-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fermented wheat germ extract (FWGE) sold under the trade name Avemar exhibits anticancer activity in vitro and in vivo. Its mechanisms of action are divided into antiproliferative and antimetabolic effects. Its influcence on cancer cell metabolism needs further investigation. One objective of this study, therefore, was to further elucidate the antimetabolic action of FWGE. The anticancer compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) is the major bioactive compound in FWGE and is probably responsible for its anticancer activity. The second objective of this study was to compare the antiproliferative properties in vitro of FWGE and the DMBQ compound. METHODS The IC50 values of FWGE were determined for nine human cancer cell lines after 24 h of culture. The DMBQ compound was used at a concentration of 24 μmol/l, which is equal to the molar concentration of DMBQ in FWGE. Cell viability, cell cycle, cellular redox state, glucose consumption, lactic acid production, cellular ATP levels, and the NADH/NAD(+) ratio were measured. RESULTS The mean IC50 value of FWGE for the nine human cancer cell lines tested was 10 mg/ml. Both FWGE (10 mg/ml) and the DMBQ compound (24 μmol/l) induced massive cell damage within 24 h after starting treatment, with changes in the cellular redox state secondary to formation of intracellular reactive oxygen species. Unlike the DMBQ compound, which was only cytotoxic, FWGE exhibited cytostatic and growth delay effects in addition to cytotoxicity. Both cytostatic and growth delay effects were linked to impaired glucose utilization which influenced the cell cycle, cellular ATP levels, and the NADH/NAD(+) ratio. The growth delay effect in response to FWGE treatment led to induction of autophagy. CONCLUSIONS FWGE and the DMBQ compound both induced oxidative stress-promoted cytotoxicity. In addition, FWGE exhibited cytostatic and growth delay effects associated with impaired glucose utilization which led to autophagy, a possible previously unknown mechanism behind the influence of FWGE on cancer cell metabolism.
Collapse
|
31
|
Zhang YM, Li HY, Hu C, Sheng HF, Zhang Y, Lin BR, Zhou GX. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59. Mar Drugs 2016; 14:E84. [PMID: 27153073 PMCID: PMC4882558 DOI: 10.3390/md14050084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/05/2022] Open
Abstract
An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A-C (1-3), along with ten known ones (4-13), were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3-8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 μg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method.
Collapse
Affiliation(s)
- Yang-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hong-Yu Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chen Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hui-Fan Sheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510632, China.
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Bi-Run Lin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510632, China.
| | | |
Collapse
|
32
|
Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy. Invest New Drugs 2015; 33:992-1001. [PMID: 26095786 PMCID: PMC4491345 DOI: 10.1007/s10637-015-0263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. RESULTS Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. CONCLUSION Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.
Collapse
|
33
|
Trendowski M, Christen TD, Zoino JN, Fondy TP. Effects of alkylation and immunopotentiation against Ehrlich ascites murine carcinoma in vivo using novel tetra-O-acetate haloacetamido carbohydrate analogs. Eur J Med Chem 2015; 98:149-59. [PMID: 26005028 DOI: 10.1016/j.ejmech.2015.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/09/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
Tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) are novel alkylating agents that appear to have alkylating activity at the plasma membrane, specificity against neoplastic cells, and may potentiate host leukocyte influx. This study sought to characterize the chemical attributes and in vivo activity of Tet-OAHCs. Four Tet-OAHCs were assessed for their partition coefficient and alkylating activity to determine cellular environments where adduct formation would be favorable. In vitro, IC50 values of all four Tet-OAHCs were determined against Ehrlich ascites murine carcinoma, as well as two leukemias (U937 human monocytic leukemia and L1210 murine lymphoid leukemia) to assess their cytotoxicity in multiple neoplastic cell lines. In vivo, B6D2F1 and CD2F1 mice were challenged i.p. with Ehrlich ascites carcinoma prior to, or after being treated with a single dose of one of the analogs. Finally, a quantitative comparison of host leukocyte influx between Tet-OAHCs and other alkylating agents was performed to confirm previous in vivo observations that the tetra-O-acetate carbohydrate moiety is important for inducing a host leukocyte response in murine models. The results can be summarized as follows: 1) Tet-OAHCs appear to demonstrate high alkylating activity in amphiphilic environments. 2) All four congeners have comparable in vitro cytotoxicities against the neoplastic cell lines examined. 3) The analogs demonstrate marked in vivo activity in both B6D2F1 and CD2F1 mice challenged with a lethal dose of Ehrlich ascites carcinoma, and frequently produce long term survival at 60 days, which is not observed in simple halo derivatives or two currently approved antineoplastic agents (daunorubicin and mechlorethamine). These effects are observed when the agents are administered either before or after the tumor challenge. 4) The carbohydrate moiety appears to be important for potentiating host leukocyte influx, as Tet-OAHCs, but not other alkylating agents demonstrated such activity in vivo.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| | - Timothy D Christen
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Joseph N Zoino
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Thomas P Fondy
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
34
|
Escribá PV, Busquets X, Inokuchi JI, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res 2015; 59:38-53. [PMID: 25969421 DOI: 10.1016/j.plipres.2015.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023]
Abstract
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
35
|
Cytotoxicity of adriamycin by interaction at the cell surface. Clin Cardiol 2015. [DOI: 10.1002/clc.4960051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
He Q, Huang S, Xu S, Wang L. pH-responsive cocktail drug nanocarriers by encapsulating paclitaxel with doxorubicin modified poly(amino acid). RSC Adv 2015. [DOI: 10.1039/c5ra05939a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pH-responsive cocktail paclitaxel/doxorubicin nanocapsule with suitable size (around 100 nm), good biocompatibility and good cell targeting is developed via the assembly of poly(amino acid) for synergetic chemotherapy of cancers.
Collapse
Affiliation(s)
- Qian He
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Sheng Huang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
37
|
Naeimi H, Brojerdi SS. Facile and Efficient One-Pot Synthesis of Anthraquinones from Benzene Derivatives Catalyzed by Silica Sulfuric Acid. Polycycl Aromat Compd 2014. [DOI: 10.1080/10406638.2014.910238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Hill J, Lawrence J, Saba C, Turek M, Feldhaeusser B, Coutermarsh-Ott S, Barber J, Smith J, Gogal R. In vitro efficacy of doxorubicin and etoposide against a feline injection site sarcoma cell line. Res Vet Sci 2014; 97:348-56. [PMID: 25085537 DOI: 10.1016/j.rvsc.2014.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Feline injection site sarcoma (ISS) is a locally invasive tumor, in which surgical treatment is frequently combined with radiation or chemotherapy to improve tumor control. The focus of this study was to evaluate the cytotoxic effects of doxorubicin or etoposide on a feline injection site sarcoma cell line (JB) and to assess the impact of combining these drugs on cell death and cell cycle. Both single agent and combination drug administration increased cell death and significantly reduced the number of viable cells. Cells in G0/G1 were significantly reduced while the G2/M fraction was significantly increased following treatment. Collectively, combining doxorubicin and etoposide at the lower EC yielded comparable results to the EC50 of either drug alone in degree of cytotoxicity, level of apoptosis, and % of cells in G2/M. The results of this study indicate that doxorubicin and etoposide alone and in combination differentially alter ISS cell viability and cycle.
Collapse
Affiliation(s)
- Joseph Hill
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Jessica Lawrence
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Georgia, USA; Veterinary Cancer Centre, The Royal School of Veterinary Studies, University of Edinburgh, UK
| | - Corey Saba
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Michelle Turek
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Georgia, USA; Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Brittany Feldhaeusser
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Sheryl Coutermarsh-Ott
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Jamie Barber
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Jo Smith
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Georgia, USA
| | - Robert Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Georgia, USA; Department of Pathology, College of Veterinary Medicine, University of Georgia, Georgia, USA.
| |
Collapse
|
39
|
Lladó V, López DJ, Ibarguren M, Alonso M, Soriano JB, Escribá PV, Busquets X. Regulation of the cancer cell membrane lipid composition by NaCHOleate: effects on cell signaling and therapeutical relevance in glioma. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1619-27. [PMID: 24525074 DOI: 10.1016/j.bbamem.2014.01.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022]
Abstract
This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - María Alonso
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Joan B Soriano
- Epidemiology and Clinical Research, CIMERA, Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Xavier Busquets
- Cell Biology (IUNICS), University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain.
| |
Collapse
|
40
|
Ullah I, Naveed A, Shah A, Badshah A, Zia-ur-Rehman, Khan GS, Nadeem A. High Yield Synthesis, Detailed Spectroscopic Characterization and Electrochemical Fate of Novel Cationic Surfactants. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1511-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
42
|
|
43
|
Kusayanagi T, Tsukuda S, Shimura S, Manita D, Iwakiri K, Kamisuki S, Takakusagi Y, Takeuchi T, Kuramochi K, Nakazaki A, Sakaguchi K, Kobayashi S, Sugawara F. The antitumor agent doxorubicin binds to Fanconi anemia group F protein. Bioorg Med Chem 2012; 20:6248-55. [DOI: 10.1016/j.bmc.2012.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/30/2022]
|
44
|
Arancia G, Calcabrini A, Meschini S, Molinari A. Intracellular distribution of anthracyclines in drug resistant cells. Cytotechnology 2012; 27:95-111. [PMID: 19002786 DOI: 10.1023/a:1008040117882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The unresponsiveness of multidrug resistant tumor cells to antineoplastic chemotherapy is often associated with reduced cellular drug accumulation accomplished by overexpressed transport molecules. Moreover, intracellular drug distribution in resistant cells appears to be remarkably different when compared to their wild type counterparts. In the present paper, we report observations on the intracellular accumulation and distribution of doxorubicin, an antitumoral agent widely employed in chemotherapy, in sensitive and resistant cultured tumor cells. The inherent fluorescence of doxorubicin allowed us to follow its fate in living cells by laser scanning confocal microscopy. This study included flow cytometric analysis of drug uptake and efflux and analysis of the presence of the well known drug transporter P-glycoprotein. Morphological, immunocytochemical and functional data evidentiated the Golgi apparatus as the preferential intracytoplasmic site of drug accumulation in resistant cells, capable of sequestering doxorubicin away from the nuclear target. Moreover, P-glycoprotein has been found located in the Golgi apparatus in drug induced resistant cells and in intrinsic resistant cells, such as melanoma cells. Thus, this organelle seems to play a pivotal role in the intracellular distribution of doxorubicin.
Collapse
Affiliation(s)
- G Arancia
- Department of Ultrastructures, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | |
Collapse
|
45
|
Brilhante O, Okada FK, Sasso-Cerri E, Stumpp T, Miraglia SM. Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol 2012; 10:79. [PMID: 22967030 PMCID: PMC3502149 DOI: 10.1186/1477-7827-10-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/27/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Doxorubicin is a potent chemotherapeutic drug used against a variety of cancers. It acts through interaction with polymerases and topoisomerase II and free radical production. Doxorubicin activity is not specific to cancer cells and can also damage healthy cells, especially those undergoing rapid proliferation, such as spermatogonia. In previous studies our group showed that etoposide, another topoisomarese II poison, causes irreversible damage to Sertoli cells. Thus, the aim of this study was to address the effects of doxorubicin on Sertoli cell morphology and function and on the seminiferous epithelium cycle when administered to prepubertal rats. METHODS Prepubertal rats received the dose of 5 mg/Kg of doxorubicin, which was fractioned in two doses: 3 mg/Kg at 15dpp and 2 mg/Kg at 22 dpp. The testes were collected at 40, 64 and 127 dpp, fixed in Bouin's liquid and submitted to transferrin immunolabeling for Sertoli cell function analysis. Sertoli cell morphology and the frequency of the stages of the seminiferous epithelium cycle were analyzed in PAS + H-stained sections. RESULTS The rats treated with doxorubicin showed reduction of transferrin labeling in the seminiferous epithelium at 40 and 64 dpp, suggesting that Sertoli cell function is altered in these rats. All doxorubicin-treated rats showed sloughing and morphological alterations of Sertoli cells. The frequency of the stages of the seminiferous epithelium cycle was also affected in all doxorubicin-treated rats. CONCLUSIONS AND DISCUSSION These data show that doxorubicin administration during prepuberty causes functional and morphological late damage to Sertoli cells; such damage is secondary to the germ cell primary injury and contributed to enhance the spermatogenic harm caused by this drug. However, additional studies are required to clarify if there is also a direct effect of doxorubicin on Sertoli cells producing a primary damage on these cells.
Collapse
Affiliation(s)
- Otávio Brilhante
- Centre for Health and Rural Technology, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Fatima K Okada
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Dental School of São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taiza Stumpp
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Sandra M Miraglia
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Yun CH, Chae HJ, Kim HR, Ahn T. Doxorubicin- and daunorubicin-induced regulation of Ca2+ and H+ fluxes through human bax inhibitor-1 reconstituted into membranes. J Pharm Sci 2011; 101:1314-26. [PMID: 22147501 DOI: 10.1002/jps.23007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/28/2011] [Accepted: 11/15/2011] [Indexed: 11/05/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppressor in both animals and plants. We examined the effect of doxorubicin (DXR) and daunorubicin (DNR), which are clinically important anthracycline compounds, on the functional regulation of BI-1 reconstituted into membranes. DXR and DNR inhibited the proton-induced efflux of encapsulated Ca(2+) from membranes in a drug concentration-dependent manner. Both compounds also reduced the H(+) influx activity of BI-1. The proteoliposomes containing BI-1 increased the quenching of DXR fluorescence by Cu(2+), and the fluorescence energy transfer between pyrene-labeled BI-1 and DXR was enhanced with increasing DXR concentrations. The dissociation constants and the number of binding sites for both drugs in BI-1 were determined to be in the range of 3.7-4.5 × 10(-6) m and approximately 4-5/BI-1 molecule, respectively, using a proteomicelle system. DXR also induced secondary structural changes in reconstituted BI-1 and abolished the ability of BI-1-overexpressing cells to protect against endoplasmic reticulum stress-induced cell death. However, when mitoxantrone was used instead of DNR and DXR as an anthracycline analog, no significant effects were observed. These results suggest that BI-1 can be considered to be a new cancer therapeutic target by anthracyclines because of its stimulatory effects in cancer/tumor progression.
Collapse
Affiliation(s)
- Chul-ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Kheirolomoom A, Mahakian LM, Lai CY, Lindfors HA, Seo JW, Paoli EE, Watson KD, Haynam EM, Ingham ES, Xing L, Cheng RH, Borowsky AD, Cardiff RD, Ferrara KW. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm 2011; 7:1948-58. [PMID: 20925429 DOI: 10.1021/mp100245u] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated administration of chemotherapeutics is typically required for the effective treatment of highly aggressive tumors and often results in systemic toxicity. We have created a copper-doxorubicin complex within the core of liposomes and applied the resulting particle in multidose therapy. Copper and doxorubicin concentrations in the blood pool were similar at 24 h (∼40% of the injected dose), indicating stable circulation of the complex. Highly quenched doxorubicin fluorescence remained in the blood pool over tens of hours, with fluorescence increasing only with the combination of liposome disruption and copper trans-chelation. At 48 h after injection, doxorubicin fluorescence within the heart and skin was one-fifth and one-half, respectively, of fluorescence observed with ammonium sulfate-loaded doxorubicin liposomes. After 28 days of twice per week doxorubicin administration of 6 mg/kg, systemic toxicity (cardiac hypertrophy and weight and hair loss) was not detected with the copper-doxorubicin liposomes but was substantial with ammonium sulfate-loaded doxorubicin liposomes. We then incorporated two strategies designed to enhance efficacy, mTOR inhibition (rapamycin) to slow proliferation and therapeutic ultrasound to enhance accumulation and local diffusion. Tumor accumulation was ∼10% ID/g and was enhanced approximately 2-fold with the addition of therapeutic ultrasound. After the 28-day course of therapy, syngeneic tumors regressed to a premalignant phenotype of ∼(1 mm)(3) or could not be detected.
Collapse
Affiliation(s)
- Azadeh Kheirolomoom
- Department of Biomedical Engineering, 451 East Health Sciences Drive, School of Medicine, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hong LPT, Scoble JA, Doughty L, Coia G, Williams CC. Cancer-targeting Antibody–Drug Conjugates: Site-specific Conjugation of Doxorubicin to Anti-EGFR 528 Fab' through a Polyethylene Glycol Linker. Aust J Chem 2011. [DOI: 10.1071/ch11071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibody–drug conjugates have been prepared to examine the effect that attaching small-molecule drugs to an antibody fragment has on antibody activity. The anticancer drug doxorubicin was covalently attached through a polyethylene glycol linker to a cancer-targeting, anti-epidermal growth factor receptor antibody fragment (Fab′). The reactivity of maleimide was compared with a substituted maleimide derivative (citraconimide) in conjugation reactions with cysteine residues on a Fab′. Introduction of polyethylene glycol increased aqueous solubility of the cytotoxic drug, which led to an improvement in overall yield of the conjugation reaction with the antibody fragment. Antibody–drug conjugates prepared retained activity of the parent antibody, as determined by antigen binding experiments measured by surface plasmon resonance.
Collapse
|
49
|
Dubey PK, Singodia D, Vyas SP. Polymeric nanospheres modified with YIGSR peptide for tumor targeting. Drug Deliv 2010; 17:541-51. [PMID: 20560774 DOI: 10.3109/10717544.2010.490249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
YIGSR peptide anchored pegylated nanospheres (YIGSR-SN) loaded with 5-fluorouracil (5-FU) were investigated for selective and preferential presentation of carrier contents at angiogenic endothelial cells over-expressing laminin receptors on and around tumor tissue and thus for assessing their targetability. Pegylated nanosphere (SN) without peptide conjugate were used for comparison. The average size of all nanosphere preparations prepared was approximately 108 nm and maximum drug entrapment was 68.5 +/- 5.2%. In vitro endothelial cell binding of nanospheres exhibited 8-fold higher binding of YIGSR-SN to HUVEC in comparison to the SN. Spontaneous lung metastasis and angiogenesis assays show that YIGSR peptide anchored nanospheres are significantly (p <or= 0.05) effective in the prevention of lung metastasis and angiogenesis compared to free 5-FU and SN. In therapeutic experiments, 5-FU, SN, and YIGSR-SN were administered intravenously on day 4 at the dose of 10 mg 5-FU/kg body weight to B16F10 tumor bearing BALB/c mice resulting in effective regression of tumors in YIGSR-SN compared with free 5-FU and SN. Results indicate that YIGSR peptide anchored pegylated nanospheres bearing 5-FU are significantly (p <or= 0.05) active against primary tumor and metastasis than the non-targeted pegylated nanospheres and free drug. Thus, YIGSR peptide anchored pegylated nanospheres hold potential of targeted cancer chemotherapeutics.
Collapse
Affiliation(s)
- Praveen K Dubey
- Novel Drug Delivery Systems Laboratory, Strides Arcolab Limited, Bangalore, Karnataka, 560076, India.
| | | | | |
Collapse
|
50
|
Abstract
Targeted drug delivery to specific group of cells offers an attractive strategy to minimize the undesirable side effects and achieve the therapeutic effect with a lower dose. Both linear and cyclic peptides have been explored as trafficking moiety due to ease of synthesis, structural simplicity, and low probability of undesirable immunogenicity. Peptides derived from sequence of cell surface proteins, such as intercellular adhesion molecule-1 (ICAM-1), LHRH, Bombesin, and LFA-1, have shown potent binding affinity to the target cell surface receptors. Moreover, peptides derived from ICAM-1 receptor can be internalized by the leukemic T-cells along with the conjugated moiety offering the promise to selectively treat cancers and autoimmune diseases. Systematic analyses have revealed that physicochemical properties of the drug-peptide conjugates and their mechanism of receptor-mediated cellular internalization are important controlling factors for developing a successful targeting system. This review is focused on understanding the factors involved in the development of an effective drug-peptide conjugate with an emphasis on the chemistry and biology of the conjugates. Reported results on several promising drug-peptide conjugates have been critically evaluated. The approaches and results presented here will serve as a guide to systematically approach targeted delivery of cytotoxic drug molecules using peptides for treatment of several diseases.
Collapse
Affiliation(s)
- Sumit Majumdar
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Ave., Lawrence, Kansas, 66047, USA
| | | |
Collapse
|